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A B S T R A C T

Fetal brain MRI is becoming an increasingly relevant complement to neurosonography for perinatal diagnosis,
allowing fundamental insights into fetal brain development throughout gestation. However, uncontrolled
fetal motion and heterogeneity in acquisition protocols lead to data of variable quality, potentially biasing
the outcome of subsequent studies. We present FetMRQC, an open-source machine-learning framework for
automated image quality assessment and quality control that is robust to domain shifts induced by the
heterogeneity of clinical data. FetMRQC extracts an ensemble of quality metrics from unprocessed anatomical
MRI and combines them to predict experts’ ratings using random forests. We validate our framework on a
pioneeringly large and diverse dataset of more than 1600 manually rated fetal brain T2-weighted images from
four clinical centers and 13 different scanners. Our study shows that FetMRQC’s predictions generalize well
to unseen data while being interpretable. FetMRQC is a step towards more robust fetal brain neuroimaging,
which has the potential to shed new insights on the developing human brain.
1. Introduction

Establishing a protocol for objective image quality assessment and
control for neuroimaging studies is critical to enforce reliability, gen-
eralization and replicability (Mortamet et al., 2009; Niso et al., 2022;
Rosen et al., 2018). Quality assessment (QA) focuses on assessing
and eventually improving the quality of a process to prevent issues
from propagating, while quality control (QC) looks to find and discard
problematic outputs of that process (Alfaro-Almagro et al., 2018). Both
steps are fundamental in magnetic resonance imaging (MRI) studies, as
insufficient MRI data quality has been shown to bias statistical analyses
and neuroradiological interpretation (Power et al., 2012; Reuter et al.,
2015; Alexander-Bloch et al., 2016).

Automated QA/QC tools designed to assist data exclusion decisions
for adult brain neuroimaging studies (Esteban et al., 2017; Klapwijk
et al., 2019; Vogelbacher et al., 2019; Ravi et al., 2023) are becoming
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increasingly available. However, these techniques are inapplicable to
fetal MRI, as they rely on priors that are not valid in utero, such
as e.g., assuming that the head is surrounded by air or the relative
orientation of the brain with respect to the stereotaxic frame defined by
the scanner. In addition, fetal brain MRI typically displays larger and
uncontrolled motion of the head as fixation techniques (e.g., padding)
and real-time feedback countermeasures are only available after birth
(Fig. 1A). Moreover, fetal brain imaging greatly lacks standardization
in acquisition protocols (Fig. 1B). While consensus has settled on 2-
dimensional (2D) fast-spin echo interleaved T2-weighted (T2w) MR
schemes showcasing thick slices (Tortori-Donati et al., 2005; Gholipour
et al., 2014), specific imaging parameters such as in-plane resolution,
slice thickness, field of view, or vendor implementation of the imaging
sequence greatly vary. As a result, the appearance and quality of
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Fig. 1. Variations in data quality illustrated. A – Comparison of data across adult (T1w), from the ABIDE dataset (Di Martino et al., 2014) and from fetal acquisitions. In the
excluded scans, the adult image on the left suffers from severe motion artifacts, while large coil artifacts corrupt the image on the right. The fetal data suffer from strong intensity
changes between multiple slices and signal drop; in the through-plane view, strong inter-slice motion makes it difficult to discern the brain structures. B – Examples of data
acquired on different scanners, with very different appearance. The in-plane and through-plane resolution, the field of view, the repetition time (TR), and the echo time (TE)
can all substantially change between acquisition protocols. C – Importance of quality control for super-resolution reconstruction (SRR), illustrated using NiftyMIC (Ebner et al.,
2020), and NeSVoR (Xu et al., 2023), two SRR methods with built-in outlier rejection. On the top row a subject is reconstructed using all stacks available (13 for NiftyMIC, 5 for
NeSVoR), and each reconstruction shows large artifacts. On the bottom row, FetMRQC is plugged in and by removing low quality series (6 out of 13 for NiftyMIC, 2 out of 5 for
NeSVoR), the reconstruction quality is improved.
fetal MR images in this wild-type data vary markedly across centers
(Fig. 1B).

Although fetal brain MRI can be severely affected by artifacts like
inter-slice motion, signal drops or bias field (Gholipour et al., 2014),
only few methods dedicated to QA/QC have been proposed. Initially,
automated QA/QC has been integrated within the super-resolution
reconstruction (SRR) process (Uus et al., 2022b; Kuklisova-Murgasova
et al., 2012; Ebner et al., 2020; Tourbier et al., 2015; Xu et al.,
2023). SRR is a ubiquitous early step of the fetal MRI processing work-
flow that builds a high-resolution, isotropic, 3D volume from several
differently-oriented stacks of 2D slices with low-resolution (LR) along
the through-plane axis (i.e., anisotropic resolution) (Uus et al., 2022a).
Some of the proposed approaches incorporate an automated QC stage
for outlier rejection that excludes sub-standard slices or pixels from
the input low-resolution stacks, and measure the similarity between
a reconstructed slice and an input slice using information-theoretic
metrics (Ebner et al., 2020; Kuklisova-Murgasova et al., 2012; Kainz
et al., 2015; Xu et al., 2023). However, as illustrated on Fig. 1c, sub-
optimal quality stacks can remain detrimental to the final quality of
the reconstruction, even when SRR pipelines include outlier rejection
schemes. Additional QA/QC checkpoints are thus needed to filter out
low-quality raw T2 stacks before using SRR, and several deep learning-
based methods were recently proposed for this task (Lala et al., 2019;
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Xu et al., 2020; Liao et al., 2020). These solutions aim to automatically
identify problematic slices for exclusion (QC), and, if streamlined with
the acquisition, enable re-acquiring corrupted slices on the fly (Gagoski
et al., 2022) (QA). However, these methods operate at the slice level,
and not all artifacts can be seen by analyzing slices independently.
For instance, inter-slice motion (visible on the right of Figure 1a), a
strong bias field in the through-plane direction, or an incomplete field
of view can be spotted only when considering the entire stack of slices.
Stack-wise QA/QC methods are thus still needed.

Importantly, these methods face the challenge of deployment to
unseen scanners or acquisition settings: how will they generalize to
unseen domains? Due to the private and sensitive nature of medical
data (Willemink et al., 2020), building large and diverse medical imag-
ing datasets is difficult endeavor. As a consequence, proposed methods
are often only evaluated on locally available data, and can fail to
deal with the heterogeneity found across different centers (Sambasivan
et al., 2021; Varoquaux and Cheplygina, 2022). In addition, while
openly shared MRI databases have been released for adults (Mueller
et al., 2005; Di Martino et al., 2014; Markiewicz et al., 2021; Van Essen
et al., 2013), children and adolescents (Makropoulos et al., 2018; Casey
et al., 2018), privacy protection regulations and ethical limitations to
data-sharing are much stronger regarding fetuses, making it even more
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Fig. 2. A look into the dataset. A — Illustration of the quality rating interface developed in this work. B — Inter-rater agreement on the 211 stacks annotated by both raters.
The global R value is 0.75. Note that stacks from La Timone were only annotated by Rater 2. C — Distribution of the quality ratings across the different sites considered, on all
data. The median values are respectively 1.75 [0.84, 2.4] for BCN, 1.75 [1, 2.45] for CHUV and 1 [0.1, 2.05] for KISPI.
difficult to construct robust ML models trained on multicentric data.
As today, the question of the robustness of state-of-the-art approaches
to fetal brain quality control (Xu et al., 2020; Ebner et al., 2020; Uus
et al., 2022b) to unseen domains remains open.

Beyond the need of supporting SRR, quality assessment also builds
towards reproducible neuroimaging pipelines, allowing to fairly com-
pare different processing steps (Payette et al., 2021). For instance,
initiative of fetal brain tissue segmentation but lack of systematic/
standardized objective evaluation of quality input data that would
support the analysis of the comparison results (Payette et al., 2023).

The contribution of our paper is threefold. First, we introduce a
framework specifically designed for QA/QC manual annotations of
T2w fetal brain MRI. It generates a visual report for efficient stack
screening and manual QA, facilitating the work of raters. Second, we
present FetMRQC, a machine learning model based on manual ratings
to automatically perform two tasks: (1) quality assessment, where
a discrete score between 0 (bad quality) to 4 (excellent) quality is
predicted, and (2) quality control, where the model predicts whether
an image reaches a predefined quality threshold. QA — a regression
task in our case – and QC — a binary classification problem — are
performed automatically by a random forest that uses an ensemble
of 332 image quality metrics (IQMs), extracted from raw T2w stacks,
that reflect complementary quality features based on various statistics
computed from image intensity, brain mask and segmentation (details
on IQMs extraction is available in the Materials and Methods section).
Third, by collecting and manually annotating a very large collection
of 1649 low-resolution T2w images from 233 subjects, acquired in
13 different scanners in four different institutions across Europe, we
can benchmark the generalization of automated QA/QC models to
unseen domains, including existing baselines (Ebner et al., 2020) and
pre-trained deep learning models (Legorreta et al., 2020; Xu et al.,
2020). A pilot study of this work, including fewer IQMs and only two
centers, was previously presented (Sanchez et al., 2023). The code
3

and image quality metrics are available at https://github.com/Medical-
Image-Analysis-Laboratory/fetmrqc.

2. Methods

2.1. Data

For this study, we retrieved 1649 T2-weighted 2D stacks of slices
from 233 subjects from existing databases at four different institutions,
including both neurotypical and pathological cases. The correspond-
ing local ethics committees independently approved the studies under
which data were collected, and all participants gave written informed
consent.

Lausanne University Hospital (CHUV), Switzerland, provided 61
subjects (498 scans), with an average of 7.9 ± 3.0 stacks per subject.
BCNatal (Hospital Sant Joan de Déu, Barcelona, Spain) provided 85
subjects (508 scans), 5.8 ± 3.4 stacks per subject. University Children’s
Hospital Zürich (KISPI), Switzerland, provided 19 subjects (441 scans)
with 23.2 ± 5.36 stacks per subject. La Timone University Hospital,
Marseille, France, provided 68 subjects (203 scans) with 3 stacks per
subject. The reason for having few scans per subject at La Timone
is due to the acquisition duration being limited in clinical routine,
while other centers have a more research-oriented acquisition. After the
exclusion of scanners with insufficient data (CHUV - Siemens Avanto
with 5 stacks), the aggregate sample size is N = 1644 stacks. The
imaging parameters, magnetic field strength, repetition time (TR), echo
time (TE), field of view (FoV), etc. greatly varied across centers and
scanners, reflecting the heterogeneity found in clinical practice. The
details are provided in Table 1.

The acquisition parameters show a very large variability across
scanners and sites. For instance, the resolution of 1.5 T scanners
changes from 1.1 × 1.1 mm2 (e.g. CHUV - Aera) in-plane to 0.5 ×
0.5 mm2 (e.g. KISPI - Signa Artist), which leads to large differences

https://github.com/Medical-Image-Analysis-Laboratory/fetmrqc
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Table 1
Detailed description of the data used in the study. Field refers to the magnetic field of the scanner, TR is the repetition time and TE is the echo time, FoV is the field of view.
CHUV

Model (Siemens) Field [T] (𝑛subjects , 𝑛LR) TR [ms] TE [ms] Resolution [mm3] FoV [cm]

Aera 1.5 (34, 281) 1200 90 1.12 × 1.12 × 3.3 36
MAGNETOM sola 1.5 (17, 138) 1200 90 1.1 × 1.1 × 3.3 36
MAGNETOM vida 3 (2, 14) 1100 101 0.55 × 0.55 × 3 35
Skyra 3 (8, 77) 1100 90 0.55 × 0.55 × 3 35

BCNatal

Model (Siemens) Field [T] (𝑛subjects , 𝑛LR) TR [ms] TE [ms] Resolution [mm3] FoV [cm]

Aera 1.5 (𝟏𝟔, 𝟏𝟓𝟖)
−(6, 80) 1500 82 0.55 × 0.55 × 2.5 28
−(4, 34) 1000 137 0.59 × 0.59 × 3.5 23/30
−(4, 33) 1000 81 0.55 × 0.55 × 3.15 28
−(2, 11) 1200 94 1.72 × 1.72 × 4.2 36/44

MAGNETOM Vida 3 (11, 56) 1540 77 1.04 × 1.04 × 3 20
TrioTim 3 (𝟓𝟗, 𝟑𝟐𝟐) // 4 outliers

−(24, 97) 1100 127 0.51 × 0.51 × 3.5 26
−(15, 108) 990 137 0.68 × 0.68 × 3.5−6.0 26
−(14, 71) 2009 137 0.51 × 0.51 × 3.5 26
−(1, 14) 3640 137 0.51 × 0.51 × 3.5 26

Kispi

Model (General Electric) Field [T] (𝑛subjects , 𝑛LR) TR [ms] TE [ms] Resolution [mm3] FoV [cm]

SIGNA premier 3 (𝟑, 𝟓𝟖) // 8 outliers
−(3, 24) <2500 100/120 0.65 × 0.65 × 3∕5 33
−(3, 26) 3000 120 0.47∕0.57 × 0.47∕0.57 × 3 29∕24

Discovery MR750 3 (𝟓, 𝟏𝟐𝟓) // 5 outliers
−(5, 29) <2500 120 0.65 × 0.65 × 3∕5 33
−(5, 81) 3000 120 0.55 × 0.55 × 3 28
−(5, 10) 5000 120/500 0.53 × 0.53 × 3∕5 28

SIGNA artist 1.5 (𝟏𝟏, 𝟐𝟓𝟖) // 22 outliers
−(11, 108) <2500 100/120 0.47∕0.64 × 0.47∕0.64 × 3∕5 24−35
−(11, 128) 3000 120 0.47∕0.55 × 0.47∕0.55 × 3 26

La Timone

Model (Siemens) Field [T] (𝑛subjects , 𝑛LR) TR [ms] TE [ms] Resolution [mm3] FoV [cm]

Skyra 3 (𝟑𝟒, 𝟏𝟎𝟏)
−(31, 93) 3200 177 0.68 × 0.68 × 3 26
−(3, 8) 3750 183 0.59 × 0.59 × 3 30

SymphonyTim 1.5 (34,102) 1680 137 0.74 × 0.74 × 3.5 38
in signal-to-noise ratio. In addition, different models using the similar
parameters can also yield largely different images. Examples are shown
on Fig. 1B. Such variable parameters are strong indicators of domain
shifts that might challenge the generalization of machine learning
models.

2.2. Manual QA of fetal MRI stacks

FetMRQC comprehends two major elements to implement QA/QC
protocols of unprocessed (stacks of 2D slices) fetal brain MRI data. First,
the tool builds upon MRIQC’s framework and generates an individual
QA report for each stack to assist and optimize screening and annota-
tion by experts. Second, FetMRQC proposes to train machine learning
models based on image quality metrics (IQMs).

Akin to MRIQC (Esteban et al., 2017), FetMRQC generates an
HTML-based report adapted to the QA of fetal brains for each input
stack of 2D slices (Fig. 2A) to help make the process of manual rating
of quality standardized and efficient. The input dataset is required to
comply with the Brain Imaging Data Structure (BIDS Gorgolewski et al.,
2016), a format widely adopted in the neuroimaging community. The
reports are generated using an image with a corresponding brain mask.
This mask can be extracted automatically, and in this work, we used
MONAIfbs (Ranzini et al., 2021). Each individual-stack report has a
QA utility (the so-called rating widget), with which raters can fill in
an overall quality score, the in-plane orientation, and the presence and
grading of artifacts visible in the stack. We use an interval (as opposed
to categorical) rating scale with four main quality ranges: [0,1): exclude
– [1,2): poor – [2,3): acceptable – [3,4): excellent. Interval ratings
4

simplify statistical modeling, set lower bounds to annotation noise, and
enable the inference task where a continuous quality score is assigned
to input images rather than broad categories. In addition, a navigation
menu allows the rater to access all reports in a centralized location, and
by being able to access the next image to be rated in a single click. Being
HTML-based, the reports can be visualized on any web browser, and
effectively remove any bias due to using different image visualization
software.

2.3. IQMs extraction and prediction models

FetMRQC’s QA/Qc prediction models work in two steps. An en-
semble of image quality metrics are first extracted from the raw T2-
weighted images and then are used as input to a classification or
regression model that learns to predict the quality ratings from the
IQMs.

2.3.1. IQMs tailored to fetal brain MRI
While tools designed for QA/QC for adult brain neuroimaging stud-

ies (Esteban et al., 2017; Klapwijk et al., 2019) are available, they are
not readily applicable to fetal brain MRI, due to priors invalid in this
context. However, some IQMs can be translated to fetal brain MRI and
several works have proposed developed quantities that can be used
as IQMs, and we include them as features in FetMRQC. The method
of Kainz et al. (2015), rank_error, predicts the quality of a raw T2-
weighted stack by estimating its compressibility using singular value
decomposition. Ebner et al. (2020) used the volume of the brain mask,
mask_volume, to exclude outlying stacks, and de Dumast et al. (2020)
computed its centroid to estimate inter-slice motion. We also include

recently proposed slice-wise and stack-wise deep learning-based IQMs,
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dl_slice (Xu et al., 2020) and dl_stack (Legorreta et al., 2020).
We use their pre-trained models, as we want to test the off-the-shelf
value of these IQMs. Note that the method of Liao et al. Liao et al.
(2020) was not included because their code is not publicly available
and we could not get in contact with the authors. dl_slice (Xu et al.,
020) predicts simultaneously whether a slice contains some brain
olume, and whether this slice is of good quality. We aggregate their
lice-wise score into a global score by computing 1

𝑛slices

∑𝑛slices
𝑖=1 𝑝𝑖,pass −

𝑝𝑖,fail, yielding a score between −1 and 1.
Along with these existing IQMs, we also propose additional IQMs

for quality prediction that have not previously been used in the con-
text of fetal brain MRI. They can be roughly categorized into three
groups: intensity-based, mask-based, segmentation-based. In a nutshell,
intensity-based IQMs directly rely on the voxel values of the image.
These include summary statistics (Esteban et al., 2017) such as mean,
median, and percentiles. We also repurpose metrics traditionally used
for outlier rejection, such as PSNR or Normalized Cross Correlation
(NCC) (Kuklisova-Murgasova et al., 2012; Kainz et al., 2015; Ebner
et al., 2020) to quantify the intensity difference between slices in
a volume. We compute entropy (Esteban et al., 2017), estimate the
level of bias using N4 bias field correction (Tustison et al., 2010) and
estimate the sharpness of the image with Laplace and Sobel filters.
The second type of metrics are mask-based and operate directly on the
automatically extracted brain mask. We propose to use a morphological
closing in the through-plane direction to detect inter-slice motion, as
well as edge detection, to estimate the variation at the surface of the
brain mask, using Laplace and Sobel filters. The third type of IQMs
is segmentation-based. While such metrics were originally proposed in
the context of MRIQC (Esteban et al., 2017), they have never been
adapted to fetal brain imaging. These are segmentation-based and
include region-wise summary statistics, region-wise volume, region-
wise signal-to-noise ratio (Dietrich et al., 2007), contrast-to-noise ratio
between white matter (WM) and gray matter (GM) (Magnotta et al.,
2006), coefficient of joint variation between gray matter and white
matter (Ganzetti et al., 2016) and white matter to maximum intensity
ratio (Esteban et al., 2017). In order to compute these segmentations
from the raw T2-weighted stacks, we train a nnUNet-v2 (Isensee et al.,
2021) 2D model on the FeTA dataset (Payette et al., 2021), a public
dataset consisting of super-resolution (SR) reconstructed fetal brain
images along with manual segmentations. The model is trained with
the parameters automatically defined by nnUNet, which yield satis-
factory results for SR volumes, and is then used to perform slice-wise
inference on the low-resolution T2-weighted stacks. The segmentations
are done over eight different classes, which we merge then into three
groups: white matter (excluding corpus callosum), cerebrospinal fluid
(CSF; intra-axial and extra-axial), and gray matter (cortical and deep).
This is done to enable the use of the segmentation-based IQMs from
MRIQC (Esteban et al., 2017), which rely on these three groups.

Variants of the metrics. All the IQMs operate by default on raw T2-
weighted 2D images and/or masks, but they can be pre-processed in
various manners. For example, Kainz et al. (2015) evaluated their
metrics only on the third of the slices closest to the center of a given vol-
ume. We construct variants on our IQMs using various pre-processing
methods. The variants include considering the third of the center-most
slices instead of the whole ROI; masking the maternal tissue in the
background; aggregating point estimates using mean, median, or other
estimators; and computing information theoretic metrics on the union
or intersection of masks. Finally, metrics used for outlier rejection
can be either computed as a pairwise comparison between all slices
(by default) or only on a window of neighboring slices. With all the
different variations, we obtain a total of 166 different IQMs.

In addition to the previously described IQMs, we also include a
Boolean variable that assesses whether a given IQM computation failed.
If this occurs, the IQM will have a zero value and the corresponding
5

Boolean variable will be set to true. This allows to keep all IQMs values
to a real number. With the variants and the missing value flag, we reach
a total of 332 IQMs. A more thorough description of each IQM used in
FetMRQC is available in Table 4 in the supplementary material, along
with a cross-correlation matrix on the entire training dataset of the 100
IQMs most frequently used.

2.3.2. QA/QC prediction
Given the extracted IQMs, a prediction model is then trained to

predict the discrete ratings (QA; regression) or predict whether an
image should be excluded (QC; classification), using various machine
learning models from the Scikit Learn library (Pedregosa et al., 2011)
and from the XGBoost python package. For the QA task, we consider
linear regression, support vector machine (SVR class using an RBF
kernel with a scaled kernel coefficient, regularization parameter C
= 1.0), random forests (RandomForestRegressor class with 100
estimators, fitted using the Gini coefficient), and XGBoost’s regression
model (Chen and Guestrin, 2016) (XGBRegressor class using 100
estimators). For the QC task, we consider logistic regression, sup-
port vector classifier (SVC class using an RBF kernel with a scaled
kernel coefficient, regularization parameter C = 1.0), random forest
(RandomForestClassifier class with 100 estimators, fitted using
the Gini coefficient), and XGBoost’s classification model (Chen and
Guestrin, 2016) (XGBClassifier function using 100 estimators).

Early experiments included also a multi-layer perceptron
(MLPRegressor and MLPClassifier classes with multiple hidden
layers with up to 1000 neurons per layer), but these models were not
found to bring any added value compared to the non deep-learning
based approaches, while very largely increasing the training time. They
were not used in the following analyses. Note that this behavior is com-
mon in tabular data, where deep learning models are not necessarily
performing best (Grinsztajn et al., 2022).

We performed model selection by ablating over the previously
mentioned feature normalization and feature selection options, as well
as various models.

Pre-processing. The QA/QC prediction started from the unprocessed
clinical acquisitions, converted from the DICOM to the Nifti format.
The same pre-processing steps were applied to the data from all the
sites considered.

IQM normalization. Domain shifts, also known as batch effects (Leek
et al., 2010; Esteban et al., 2017), can induce substantial biases in
IQM computations. One approach to mitigate them is using group
scaling (Esteban et al., 2017). This is why we experiment with vari-
ous normalization techniques: standardization, robust (median-based)
and quantile scaling, group-wise standardization, group-wise robust/
quantile scaling (scaling by subject/scanner/site) and ComBat (Johnson
et al., 2007). In addition to mitigating batch effects, feature standard-
ization is important for models such as logistic or linear regression, but
this is not the case for tree-based models.

Feature selection and dimensionality reduction. Correlated and irrele-
vant features can also be an obstacle for machine learning models. We
experiment with dropping IQMs that are highly correlated with each
other(with thresholds of 0.8 and 0.9), to remove constant features, and
experiment with removing features that do not contribute more than
noise using the Winnow algorithm (Littlestone, 1988) with extremely
randomized trees (Esteban et al., 2017). Finally, we also explore using
principal component analysis to construct orthogonal features.

Model selection. In our initial experiments, we used nested cross-
validation to automatically perform model selection and evaluation
without introducing optimistic biases (Varoquaux et al., 2017). We
performed model selection by ablating over the previously mentioned
feature normalization and feature selection options, as well as the
different models. However, in the large majority of these experiments,
the best-performing configuration used no standardization, no feature
selection, and random forests for both classification and regression.

Based on these ablations (available in the Supplementary Material 5.3),
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Table 2
Summary of the methods compared in the paper.
dl_slice Slice-wise deep learning (DL) quality control of Xu et al. (2020), aggregated into a single score. The decision threshold is learned by logistic

regression.
dl_stack Stack-wise DL QC of Legorreta et al. (2020). The decision threshold is learned by logistic regression.
NiftyMIC-QC Subject-wise QC, excluding stacks with brain volume below 70% of the median brain volume calculated for the subject.
Base Base version of FetMRQC using 6 IQMs: rank error (Kainz et al., 2015), mask centroid (de Dumast et al., 2020), mask volume (Ebner et al.,

2020), normalized cross-correlation, mutual information (Kuklisova-Murgasova et al., 2012; Ebner et al., 2020), dl_stack (Legorreta et al.,
2020), dl_slice (Xu et al., 2020)

FetMRQC Full version of FetMRQC, using 332 IQMs
FetMRQC-20 Use the 20 best IQMs of FetMRQC – rank_error, closing_mask_full, mask_volume, filter_mask_Laplace,

filter_mask_sobel_full, nRMSE_window, filter_mask_Laplace_full, filter_mask_Laplace, closing_mask,
rank_error_center, seg_sstats_BG_N, centroid, rank_error_center_relative, seg_sstats_CSF_N, seg_sstats_GM_N,
im_size_z, NCC_intersection, NCC_window, PSNR_window, seg_SNR_WM, seg_volume_GM.

Subject-wise oracle For each subject, compute the average stack quality and return this value for all the stacks of the subject.
we decided to only use a random forest without standardization or
feature selection. As no model selection needs to be carried out, nested
cross-validation is not required and will not be used in the rest of the
paper.

2.4. Experimental setting

We divide our dataset in two: 1246 stacks were used for training
and validation of the models based on cross-validation experiments and
398 were used for assessing the generalization to unseen data, from
La Timone and two randomly selected scanners. Data from La Timone
were included in the study specifically to serve as external testing from
an unseen site. Three increasingly challenging evaluation settings are
considered: (i) Subject-wise 10-fold cross validation (CV) on the training
tacks, which quantifies the expected performance of the method on
ew subjects acquired on already seen scanners; (ii) Leave-one-Scanner-
ut (LoSo) CV on the training stacks, where each fold leaves out all
ata from a single scanner for evaluation. This evaluates the expected
erformance of the method on different scanners; (iii) Pure testing on
nseen scanners and an unseen site. This is the closest to a real-world
eployment setting, as the pure testing data were not seen during the
rocesses of design and training of the models.

aselines. For classification, we consider the following baselines. We
irst include NiftyMIC-QC (Ebner et al., 2020), which computes the
olume of the brain for each stack and, for each subject, excludes the
tacks with a volume below 70% of the median volume. We also include
he deep learning methods of Legorreta et al. (2020) (dl_stack)
nd Xu et al. (2020) (dl_slice). These IQMs are computed for
ach individual subject, we then standardize them and train a logistic
egression model to adjust their prediction to the statistics of our
ataset. This step adjusts the threshold for prediction and can only be
eneficial to the prediction accuracy of these baselines.

For regression, as there is no baseline available to our knowledge,
e consider a simple model predicting only subject-wise class statistics

or regression, predicting the average rated quality of each subject as
uality assessment (e.g. for a subject with three stacks rated as 3.5,
, 3 respectively, the model assigns the value 2.83 to all stacks). This
racle is based on the assumption that the subject-wise averaged rating
an be predictive of the quality rating, which is the case in our data,
s the Pearson correlation of the two is 𝑅 = 0.59. This method serves
s a coarse point of comparison for the QA performance of FetMRQC.

In addition, for both QC and QA, we assessed the added value of
ur proposed IQMs as follows. First, we constructed a Base version of
etMRQC using the six state-of-the-art IQMs proposed in the context of
etal brain QA/QC. Then, we considered two variants of our model:
etMRQC used all estimated 332 IQMs and FetMRQC-20 used only
0 IQMs (selected based on their measured feature importance on the
raining data). Note that as this selection was based on the results
n evaluation settings (i) and (ii), the performance of the model was
ikely be inflated due to double dipping (Kriegeskorte et al., 2009).
t remains nonetheless informative on the expected performance of
6

FetMRQC when only relying on a restricted set of IQMs. FetMRQC-20
is further discussed in our last experiment. All details regarding the
baselines is provided in Table 2.
Evaluation metrics. Our classification results use a weighted F1-score,
to handle imbalanced classes, and the area under the receiver operating
characteristic curve (ROC AUC), as well as precision and recall. Our
regression results are evaluated using Pearson’s 𝑅2 score, Spearman
rank correlation, and mean absolute error (MAE).
Implementation. The experiments were implemented with Python
3.9.15 and Scikit-learn 1.1.3 (Pedregosa et al., 2011). All code is
available on Github1 and a Docker version2 is also provided.

3. Results

3.1. Stack screening optimization with visual reports

Using FetMRQC’s visual reports interface, Rater 1 annotated 657
stacks, and rater 2 annotated 1203 stacks. 211 of these stacks selected
randomly across the training dataset were annotated by both raters to
assess inter-rater reliability. Rater 1, YG, is a maternal-fetal physician
with 5 years of experience, and Rater 2, MBC, is an engineer with
20 years of experience. The total rating time was 6 h 40 min for Rater
1 (median of 36 s per volume), and 14h20 for Rater 2 (median of 42 s
per volume). A high inter-rater agreement was achieved in the manual
quality annotations, with Pearson’s correlation value of 0.75 overall (R2

= 0.56; Fig. 2). The inter-rater agreement is consistently high within
each site (2B). On CHUV data, 127 stacks were manually rated below
the exclusion threshold (Quality < 1), and 371 were rated between poor
and excellent. On BCNatal data, 155 stacks were excluded, and 353
rated above the threshold. On KISPI, 218 stacks were rated below 1, and
223 above. On La Timone, 42 stacks were rated below 1, and 161 stacks
above. The average ratio of excluded stacks is 2.04. Regarding inclusion
and exclusion of stacks (stacks with quality above 1 are included, other
are rejected), the inter-rater agreement yielded a Cohen’s coefficient of
𝜅 = 0.58 (moderate agreement according to the interpretation of Landis
and Koch (1977)).

While the raters were trained to rate the overall quality of the
images, they also were instructed, but not trained, to rate specific
artifacts. They were asked to rate the degree of fetal motion (visible as
discontinuities through-plane and signal drops in-plane) and bias field,
visible as a low-frequency varying field. However, as their main goal
was to give a global rating, the raters often skipped the assessment
of the artifacts when the image was either clearly good or clearly
bad, leading to inconsistent ratings for motion rating, their Pearson’s
correlation drops to R2 = 0.15, and for bias rating, R2 = 0.02. We
believe that such a low reliability could be avoided by designing the
rating differently, and asking the raters to assess artifacts before giving
a global score. In the sequel, we will only use the overall quality rating
of the images.

1 https://github.com/medical-image-analysis-laboratory/fetmrqc.
2 https://hub.docker.com/u/thsanchez.

https://github.com/medical-image-analysis-laboratory/fetmrqc
https://hub.docker.com/u/thsanchez
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Table 3
Quality control and assessment results. QC (classification, left) and QA (regression, right) results were averaged over five repetitions of the experiment. Results are the median
cross-validation performance. The number in parentheses is the average worst-performing cross-validation fold. Three evaluation settings were considered: 10-fold subject-wise
cross-validation (CV), LoSo CV and pure testing. Pure testing evaluation was grouped by scanners in the testing set.
Quality control (classification) Quality assessment (regression)

Weighted F1 (↑) ROC AUC (↑) Precision (↑) Recall (↑) 𝑅2 (↑) Spearman (↑) MAE (↓)

10-fold subject-wise cross-validation 10-fold subject-wise cross-validation

dl_slice (Xu et al., 2020) 0.64 (0.65) 0.72 (0.61) 0.71 (0.73) 0.98 (0.86)
dl_stack (Legorreta et al., 2020) 0.71 (0.72) 0.77 (0.73) 0.78 (0.80) 0.85 (0.81)
NiftyMIC-QC (Ebner et al., 2020) 0.76 (0.75) – 0.76 (0.77) 0.96 (0.96) Subject-wise oracle 0.33 (0.39) 0.53 (0.68) 0.65 (0.61)

Base 0.82 (0.78) 0.88 (0.79) 0.85 (0.83) 0.92 (0.84) Base 0.40 (0.38) 0.69 (0.68) 0.59 (0.61)

FetMRQC 0.86 (0.79) 0.91 (0.87) 0.86 (0.85) 0.94 (0.86) FetMRQC 0.60 (0.49) 0.80 (0.75) 0.50 (0.56)

FetMRQC-20 0.86 (0.77) 0.92 (0.87) 0.86 (0.85) 0.93 (0.81) FetMRQC-20 0.60 (0.53) 0.79 (0.78) 0.50 (0.53)

Leave-one-Scanner-out cross-validation Leave-one-Scanner-out cross-validation

dl_slice (Xu et al., 2020) 0.61 (0.47) 0.75 (0.60) 0.70 (0.62) 0.96 (0.93)
dl_stack (Legorreta et al., 2020) 0.64 (0.53) 0.75 (0.62) 0.69 (0.47) 0.90 (0.87)
NiftyMIC-QC (Ebner et al., 2020) 0.75 (0.66) – 0.76 (0.71) 0.95 (0.86) Subject-wise oracle 0.29 (0.40) 0.48 (0.58) 0.64 (0.64)

Base 0.78 (0.63) 0.80 (0.76) 0.80 (0.69) 0.84 (0.67) Base 0.29 (0.25) 0.59 (0.48) 0.64 (0.66)

FetMRQC 0.80 (0.64) 0.89 (0.74) 0.85 (0.71) 0.86 (0.73) FetMRQC 0.45 (0.39) 0.74 (0.72) 0.56 (0.60)

FetMRQC-20 0.82 (0.72) 0.90 (0.83) 0.85 (0.76) 0.88 (0.83) FetMRQC-20 0.52 (0.36) 0.77 (0.71) 0.55 (0.62)

Pure testing (KISPI + CHUV + La Timone – by scanner) Pure testing (KISPI + CHUV + La Timone – by scanner)

dl_slice (Xu et al., 2020) 0.73 (0.76) 0.79 (0.79) 0.77 (0.77) 0.97 (0.92)
dl_stack (Legorreta et al., 2020) 0.62 (0.60) 0.72 (0.51) 0.68 (0.67) 0.97 (0.86)
NiftyMIC-QC (Ebner et al., 2020) 0.74 (0.52) – 0.70 (0.65) 0.98 (1.00) Subject-wise oracle 0.41 (0.41) 0.60 (0.60) 0.45 (0.45)

Base 0.77 (0.54) 0.77 (0.62) 0.80 (0.65) 0.97 (1.00) Base 0.26 (0.36) 0.45 (0.47) 0.65 (0.37)

FetMRQC 0.82 (0.67) 0.77 (0.76) 0.83 (0.70) 0.91 (0.91) FetMRQC 0.35 (−0.74) 0.59 (0.39) 0.51 (0.65)

FetMRQC-20 0.79 (0.56) 0.74 (0.64) 0.78 (0.65) 0.93 (0.94) FetMRQC-20 0.30 (−0.94) 0.54 (0.31) 0.53 (0.68)
u
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3.2. Performance and robustness of FetMRQC

Based on the ratings from FetMRQC, we considered two tasks: a
quality control (QC) task, where we aimed at predicting whether a scan
should be excluded (rating below 1), and a quality assessment (QA)
task, where we predicted the interval rating (between 0 and 4). Results
from the experiment are summarized in Table 3. A more detailed
outlook at the variations in performance across scanners in the LoSo
cross-validation and pure testing performance is available in Fig. 3.
As expected, the three increasingly challenging evaluation settings (10-
fold CV, LoSo CV, pure testing) led to a decrease of performance. This
decrease is less notable for QC than QA.
Quality control. Overall, FetMRQC and FetMRQC-20 consistently per-
formed best with a performance (weighted F1) of 0.86, 0.80 and 0.82
in median for the cross-validation, leave-one-out scanner and pure
testing scenarios respectively. This performance is consistent across
the evaluation metrics considered (3). Precision is of great interest in
our case, as including bad quality in further analysis can be greatly
detrimental to further processing. FetMRQC shows a consistently high
precision in all settings considered, with median performance of 0.86,
0.85 and 0.83 in CV, LoSo CV and pure testing respectively.

Focusing on the scanner-wise breakdown of performance (Fig. 3A
and B), FetMRQC and FetMRQC-20’s performance is very consistent
across almost all scanners considered, and does not change on new
scanners from sites used in training (Siemens’ MAGNETOM Vida at
CHUV and BCNatal - GE’s Discovery MR750 at Kispi). On the other
hand, DL-based methods (Legorreta et al., 2020; Xu et al., 2020),
trained on homogeneous data from a single site, fail to perform and
exhibit very large variations in performance across sites, making them
generally unreliable. We note also that a few scanners were consistently
challenging for the models. On panel A, we see that all methods except
NiftyMIC-QC and FetMRQC-20 struggled on the CHUV - Skyra scanner.
On panel B, we see that FetMRQC managed to generalize well to
unseen scanners from known sites (BCN, KISPI and CHUV). However,
all models, except dl_slice, poorly generalized to data from La
7

imone. m
Quality assessment. In the case of quality assessment, we observed
that FetMRQC’s new IQMs were instrumental in achieving a perfor-
mance above the subject-wise oracle. On Table 3B, we see that while
the IQMs used in the base model (R2= 0.49) were sufficient to out-
perform the subject-wise oracle (R2 = 0.33) in the subject-wise CV,
sing FetMRQC with either all IQMs (R2 = 0.44) or the selected 20
R2 = 0.49) was necessary to achieve a performance over the subject-
ise oracle (R2 = 0.29) in the LoSo setting. This was nonetheless not

ufficient to achieve a satisfying performance in the pure testing setting,
here FetMRQC’s prediction, despite outperforming consistently over

he base model, do not outperform the subject-wise oracle. It also fails
n one scanner (CHUV - MAGNETOM Vida scanner, Fig. 3D), but we
ypothesize that such drop is likely due to the small amount of data
vailable from this scanner.

.3. Generalization as a function of scanner diversity and number of
raining examples

Data annotation is known to be a time-consuming process that
equires highly specialized raters (Rädsch et al., 2023). Given a limited
udget (in time and expertise), the question of which data to annotate
hen raises naturally. In this experiment, we investigated how the
umber of scanners 𝑛scanner and the number of data 𝑛training available
uring training impacted the generalization performance of FetMRQC
n the context of LoSo CV. We had in total 8 different scanners and 1251
ata points. For a given configuration (𝑛scanner, 𝑛training), we performed
LoSo CV where the data used in training were subsampled: between
and 7 scanners were sampled randomly from the available data and

etween 100 and 900 data points were then randomly sampled from
he available scanners. For each (𝑛scanner, 𝑛training), the experiment was
epeated 20 times.

Fig. 4 contains the results of the experiment, showing the minimum,
aximum and median performance with the deviation from the me-
ian, across 20 repetitions. In each case entry, the reported measure
as computed as the average across the 20 repetitions. Looking at the

edian performance, it is clear that increasing the size of the training
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Fig. 3. Scanner-wise results for QA/QC. A – Weighted F1 score for the QC task for each
scanner used in LoSo cross-validation (sorted from the one with the least subjects to
the most subjects). B – Weighted F1 score for the QC task for each scanner used in the
pure testing set. C – R2 for the QA task for each scanner used in LoSo cross-validation.
D – R2 for the QA task for each scanner used in the pure testing set. Distribution of
scores is aggregated by scanner, and the median performance for each method is shown
as the black dashed line. The red line in the prediction task at 0 shows the baselines
for a constant predictor. These results detail the ones presented in Table 3.

set (x axis) or the number of scanners (y axis) both improve the general-
ization. Starting with best-case generalization (maximum performance,
lower row in Fig. 4), we see that in every case, there is a subset of data
that enables reaching the best performance with only 100 data points.
While this is not surprising, this is also difficult to exploit: one cannot
readily find ahead of time a subset of data that will generalize well
to the testing data. The worst-case generalization is more interesting:
using 100 training data points from seven scanners reaches a similar
performance as using 700 data points from four scanners in the case of
classification. In the case of regression however, we see that both the
number of training samples and scanners is important: the worst-case
generalization with 100 training data and 7 scanners is close to zero,
and the performance steadily increases with more data.

Overall, using multiple scanners is key to achieving the highest
performance regimes, but using more data is also greatly valuable.
However, if constrained to a limited annotation budget, we anticipate
that annotating more diverse data from various scanners will be more
helpful for generalization than gathering a large corpus from a single
scanner.

In addition, we also observe, on the median performance, that the
classification task is generally more straightforward than the regression
task: fewer data allow to reach the highest performance, while per-
formance keeps increasing for regression when adding more sites and
more data. Thus, we hypothesize that regression performance would
further be increased by increasing the size of training data. In contrast,
the median classification performance might stagnate, although its
8

Fig. 4. Performance as a function of the number of scanners and training points.
This is obtained by performing leave-one-scanner-out cross-validation 20 times, using
different random subsets of data. (Top row.) Minimum (worst-case) performance
across folds (Middle row.) Median performance across folds. The smaller plots show
the corresponding median average deviation. (Bottom row.) Maximum (best-case)
performance across folds.

worth case performance might still improve, thus making the model
more robust to new scanners by further enhancing the training dataset.

3.4. Model performance on a restricted set of IQMs

FetMRQC relies 332 different IQMs that are not fully independent
from each other, as shown in Figure 6. In this final experiment, we
explore the IQMs that are most important for FetMRQC QA and QC
models.

We computed the feature importance of the random forest model
used in each fold of the LoSo CV and average them across folds. We
grouped together the IQMs with a correlation coefficient above 0.95 (as
shown in Figure 6) to prevent several IQMs contributing very similar
information but selected by different models in the LoSo CV for QA
and QC. We then randomly selected a single IQM from each correlated
group, and arrived at the ranking shown in the top row of Fig. 5. First,
we see that in the QC task (A), IQMs are generally spread out (the top
four IQMs sum up to 0.20). In the regression task (B) however, a few
IQMs capture a large part of the feature importance (the top four IQMs
sum up to 0.53). Nonetheless, three IQMs are consistently among the
top predictors: rank-based error (Kainz et al., 2015), the volume of the
brain mask and the morphological closing of the brain mask. The first
estimates the consistency of the intensities across slices by computing
how well a low-rank approximation can represent the volume, the
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Fig. 5. Most important IQMs for QA/QC. Feature importance for quality control (classification) on the left, and for quality assessment (regression) on the right. The top row shows
the top-25 IQMs from FetMRQC and the bottom row shows the 20 selected IQMs that form FetMRQC-20. Blue IQMs are intensity-based, orange are mask- (or shape) based, green
are segmentation based, pink are deep-learning based and brown are metadata based. Hatched features denote the new ones proposed in this work. The error bars are the standard
deviation over the different cross-validation folds, performed over different scanners. Note that the scales are very different between the plots: the highest feature importance for
classification is around 0.055, whereas it is around 0.23 for regression.
second estimates the volume of the brain and the third estimates the
degree of motion across stacks by computing a morphological closing
of the brain mask in the through-plane direction and then subtracting
the original brain mask. The first two IQMs are the ones that have been
used in NiftyMIC-QC (Ebner et al., 2020) and complement each other
well. Secondly, we see that although the ranking of the most important
IQMs can vary, overall 19 out of the 25 IQMs of Fig. 5A and B appear in
common in both tasks as the most important IQMs. Thirdly, let us note
that the best IQMs cover different representative families of features:
intensity-based, mask (or shape)-based, and segmentation-based IQMs.
Finally, note that features proposed within FetMRQC rank highly in
terms of feature importance: 14 out of the 25 IQMs shown in Fig. 5A
and B were proposed in this work.

FetMRQC-20 is built on the feature importance obtained for FetM-
RQC (Fig. 5A and B). The IQMs were selected by averaging the feature
importance from QC and QA, and then by selecting the top-20 features.
In order to keep the reduced model as interpretable as possible, we
excluded the deep learning (DL)-based IQMs from FetMRQC-20 and
replaced them with the two features that came next in line. Results in
Table 3 show that does not yield a decrease in performance. The feature
importance using only FetMRQC-20’s IQMs is shown on Fig. 5C and D
and is generally consistent with FetMRQC’s results. As fewer IQMs are
available, their relative importance is generally higher, and the same
IQMs end up carrying the largest weight in decision.

4. Discussion

In this work, we proposed FetMRQC, a novel open-source machine
learning framework for the automated quality control and quality
assessment of fetal brain MRI. While most existing works focus on a
single-center, single-scanner setting (Legorreta et al., 2020; Xu et al.,
2020; Gagoski et al., 2022), the evaluation in this work was carried
out on a large, multi-scanner, multi-centric dataset. These diverse data
allowed us to measure the impact of domain shift on generalization,
and assess the variability in performance across scanners. Being trained
9

with multi-centric data FetMRQC achieves a reliable performance in
quality control over most scanners considered, which is not the case
for baseline DL-methods, trained on homogeneous data, which exhibit
a very large variability in performance. These observations were made
possible by following good practices regarding evaluation and reporting
of dataset with domain shifts (Roberts et al., 2021; Varoquaux and
Cheplygina, 2022; Zech et al., 2018). Indeed, cross-validation at the
group level (subject or scanner in our case) (Varoquaux et al., 2017),
computing the performance metrics at the group level and reporting the
worst-performing site were essential in unfolding the large variability
in performance, which is obfuscated when averaging across the entire
testing set (Dockès et al., 2021; Zhou et al., 2023). Designing a pure
testing (Varoquaux and Cheplygina, 2022; Kapoor and Narayanan,
2022) set comporting both unseen scanners and unseen sites allowed to
observe another trend: methods performing well in the LoSo CV setting
performed well on unseen scanners from known sites, but struggled on
the unseen site. Indeed, data from La Timone were very different from
the ones acquired at other institutions: only three stacks were acquired
per subject due to strong constraints on the duration of the scanning
session, and the acquisition was done at a high in-plane resolution,
leading to higher level of noise in the images compared to the rest of
the data.

Beyond measuring the impact of domain shifts, several methods
to correct and compensate them on tabular data have been proposed,
including group-wise normalization of data (Esteban et al., 2017),
or empirical Bayes approaches, like ComBat (Johnson et al., 2007).
As shown in our supplementary experiments, we did not find these
approaches to be beneficial in our case, which is most likely due to
the quality of data being related to the scanner on which data were
acquired: removing the scanner information at the IQM level might not
be helpful because it might remove meaningful information (Dockès
et al., 2021). This might be mitigated by attempting to directly har-
monize the input T2w images (Zhou et al., 2023; Wang et al., 2022)
rather than the IQMs, as the IQMs were directly extracted from images
acquired with widely different imaging parameters that could induce
some confounding factors in the derived metrics.
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A question that can be raised is whether a deep models (like
convolutional neural networks (CNN) or transformers (Vaswani et al.,
2017)) could serve as an alternative to FetMRQC. FetMRQC operates
in a highly heterogeneous setting, with relatively few, high dimen-
sional data points when compared to deep learning standards — where
datasets commonly feature more than 105−106 data points (Deng et al.,
2009; Varoquaux and Cheplygina, 2022). Using our data, we were
unable to train a CNN or a transformer model that would outperform
FetMRQC. In addition, the trained models exhibited unstable gener-
alization performances. We hypothesize that the diversity of IQMs of
FetMRQC, leveraging image intensity, brain masks and finer segmenta-
tions were able to provide a more stable ground for generalization than
the one learned by a deep learning model on our data. Our choice of
privileging random forests over deep networks in FetMRQC then hinged
on practical considerations, rather than the theoretical representation
power of deep networks. Nevertheless, deep learning has still been
successful for quality control (Legorreta et al., 2020; Xu et al., 2020;
Liao et al., 2020) and it is likely that having more data or leveraging
semi-supervised (Xu et al., 2020) or self-supervised (Liu et al., 2021;
He et al., 2022) learning methods could help build some robust deep
models.

Note however that FetMRQC suffers from two main limitations. As
any other supervised learning method, the first limitation comes from
an often underestimated component of machine learning pipelines,
namely the quality of annotations. As QA/QC has an inherently sub-
jective dimension, narrowing the task at hand for rating is key to
maximize inter-rater reliability (Esteban et al., 2018; Rädsch et al.,
2023). The quality rating interface is an essential tool for displaying the
raw T2w fetal brain data uniformly, and when providing the raters with
a training session, can successfully lead to high inter-rater reliability.
However, our fetal motion and bias field rating results suggest that a
finer protocol is needed. The protocol should, in particular, encourage
raters to proceed in artifact-based quality ratings: first assessing the
presence and degree of various artifacts and then deciding on a score
to give rather than the opposite. Improving the inter-rater agreement
might further improve the quality of FetMRQC, in particular on the
quality assessment task, where the subject-wise CV regression perfor-
mance comes close to the level of agreement between the raters: R2

0.58 for the subject-wise CV and the inter-rater agreement has R2 =
0.56. A second limitation comes from the simplicity of the model: while
FetMRQC’s predictions are easily interpretable and generally depend
on a small number of IQMs, its learning capabilities are limited by its
shallow nature. A deep learning model trained directly on 3D clinical
acquisitions is likely to improve QA/QC predictions, if enough training
data is available, as it can make better use of large amounts of training
data.

Beyond addressing these limitations, future work will investigate
how preprocessing the raw T2w data might impact FetMRQC’s perfor-
mance. Future work will also include a more thorough evaluation of
the impact of FetMRQC on downstream tasks such as super-resolution
reconstruction quality. FetMRQC is only a first step towards robust
tools for quantitative analysis of fetal neuroimaging. While QA/QC
starts at the raw images, it is greatly needed at every stage of the fetal
brain MRI pipeline, from acquisition to reconstruction to surface ex-
traction. Such checkpoints, along with community efforts in collecting
large, reality-centric datasets are key to developing robust and reliable
learning-based approaches for fetal neuroimaging and beyond.
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