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Abstract

We study an adaptive statistical approach to analyze brain networks represented by brain connection matrices of
interregional connectivity (connectomes). Our approach is at a middle level between a global analysis and single
connections analysis by considering subnetworks of the global brain network. These subnetworks represent either the inter-
connectivity between two brain anatomical regions or by the intra-connectivity within the same brain anatomical region. An
appropriate summary statistic, that characterizes a meaningful feature of the subnetwork, is evaluated. Based on this
summary statistic, a statistical test is performed to derive the corresponding p-value. The reformulation of the problem in
this way reduces the number of statistical tests in an orderly fashion based on our understanding of the problem.
Considering the global testing problem, the p-values are corrected to control the rate of false discoveries. Finally, the
procedure is followed by a local investigation within the significant subnetworks. We contrast this strategy with the one
based on the individual measures in terms of power. We show that this strategy has a great potential, in particular in cases
where the subnetworks are well defined and the summary statistics are properly chosen. As an application example, we
compare structural brain connection matrices of two groups of subjects with a 22q11.2 deletion syndrome, distinguished by
their IQ scores.
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Introduction

Understanding the human brain is one of the greatest challenges

in science. A vast number and variety of methods have been

developed and applied to analyze and study its organization,

development and function. In the recent years, the determination

of the interregional brain connectivity (connectome [1,2]) has

attracted much attention given the advent of new in-vivo imaging

techniques. One distinguishes between structural connectivity and

functional connectivity. Structural connectivity refers to the

existence of axonal fibers that interconnect parts of the brain.

For example, recent advances in diffusion imaging and tracto-

graphy permit the construction of high-resolution connection

matrices estimating interregional connectivity of the human brain

cortex [3]. Functional connectivity is based on joint activation of

brain regions and is derived from BOLD contrast MRI, Magnetic

EncephaloGraphic (MEG) or other time series data that represent

brain activation while the subject performs certain tasks or the

subject is in resting state [4,5]. Structural and functional

connection matrices have been used to study properties of brain

networks mainly to understand its organization and development

[5–7]. These connection matrices have also been used to study

differences between groups of individuals based on either single

connections or by global measures [8]. When performing such

group comparisons based on single connections, a large number of

correlated statistical tests are routinely performed and, in order to

control the occurrences of false discoveries of pair-wise differences,

a correction for multiplicity (e.g. Bonferroni or other procedures) is

necessary, which greatly reduces the power of the comparisons.

We propose in this article a practical and yet effective strategy to

analyze complex networks, in particular, brain networks repre-

sented by connection matrices. The proposed strategy exploits the

potential of high resolution connection matrices by following the

concept of ‘‘borrowing strength’’. In neuroimaging and in many

other fields of applications, measures are often correlated and

quite well defined regionally. For instance, when analyzing brain

networks, instead of performing the statistical tests on the level

of single connections between pairs of regions of interest (ROIs),

which represent nodes in the brain network, it may be advan-

tageous to reformulate the question in terms of comparisons based

on connections between relevant groups of nodes. This is parti-

cularly appropriate in cases, where connectivity between groups

of ROIs is of major interest to the researcher. The connectivity

between groups of ROIs represents a brain subnetwork and
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corresponds to a block (provided the matrix is properly sorted) in

the connection matrix. The proposed strategy is based on the

construction of an appropriate statistic in each subnetwork where

subnetworks are predefined by the researcher based on prior

knowledge. This statistic, which reflects the investigator’s research

hypothesis or knowledge of the problem, efficiently summarizes a

given feature of the subnetwork and will be used for comparisons

instead of all the values observed on the ROI level. This strategy

has the common advantages of cluster based methods, namely, the

reduction of the number of tests and the reduction of the noise

variance. Furthermore, the researcher has the opportunity to use

some topological network measures that cannot be defined on the

single connections level. Of course, the significance obtained by

the proposed strategy is at the level of subnetworks and not at the

level of single connections. This means that the proposed strategy

can be seen as a first stage of an exploratory procedure or coarse

scale analysis where the researcher is interested in finding affected

subnetworks, that is, those containing one or more affected

connections and hence, the interpretation of the results becomes

more complex with larger subnetworks. In this direction, we

discuss how the proposed strategy could be followed by a local

investigation of the connections inside the significant subnetworks.

The paper is organized as follows. First, we briefly discuss the

subject of multiple comparisons. Then, we show the benefit of

grouping statistical tests into subsets. A particular summary statistic,

the mean of values, is studied in detail. We also discuss the possibility

of performing a local investigation within the significant subsets. We

will call that procedure a ‘‘two stage procedure’’. After presenting

the statistical part of the paper, we show its applicability on complex

networks in general and on brain networks in particular. Finally, we

present a real application of comparing two groups of structural

connection matrices derived from a population of individuals

affected with 22q11.2 deletion syndrome [9,10]. With this appli-

cation, we will emphasize the structural brain connectivity

differences that exist between high (IQ above 70) and low (IQ

below 70) cognitive functioning 22q11.2 deletion syndrome [11].

Note that the proposed strategy is applied in this article to brain

connection matrices. However, it can be applied to compare and

analyze any complex network.

Materials and Methods

Multiple comparison procedures
When comparing connection matrices on the level of single

connections between pairs of ROIs, the multiplicity problem has to be

considered. For example, if 10,000 connections are compared

simultaneously and if we naively set a level at a~5% for each

single test, we would expect 500 false positives even if no real

difference exists. This example shows that it is necessary to control

the rate of false positives when multiple comparisons are per-

formed [12–14]. The logic of a multiple comparisons situation is

summarized in Table 1.

In neuroimaging, most problems involving multiple compari-

sons control one of two metrics of false positives:

N The Family-Wise Error Rate (FWER): the probability of

having at least one false positive (FWER = P(FP.0)).

N The False Discovery Rate (FDR): the expected proportion of

false positives among all rejections (FDR = E (FP/R) where

FP/R is defined to be 0 when R = 0).

Classical multiple testing procedures control the FWER, which

can quite easily be achieved via the Bonferroni procedure. This

amounts to dividing the global testing level a by the number m of

tests and performing each individual test at that reduced level [15].

The Bonferroni procedure has a very low power, but exerts a

strong control over the false positives. As an alternative to the

FWER, Benjamini and Hochberg proposed in [12] the FDR and

described a procedure that controls it based on Simes’ procedure

[16]. The FDR has been widely adopted because it increases the

power and it is often felt that controlling the FDR is sufficient.

Many of procedures that control either the FWER or the FDR are

compared in [17]. When the number of tests becomes very large,

which is the case in high-resolution neuroimaging, the multiple

comparisons procedures are all quite ineffective. However, the

advantage, in terms of power, of the FDR procedures, compared

to the FWER procedures, becomes more pronounced, but, of

course, the expected number of false positives increases with the

number of rejections using an FDR control procedure. See

[12,17,18].

Grouping methods
Grouping tests or cluster based methods are relying to the

concept called ‘‘borrowing strength’’ which is well summarized by

[19] who wrote ‘A more explicit use of the dependence structure

should result in a powerful method’. This concept was adopted for

example in [20] in a geographical application where clusters were

defined to be geographical regions. Following this concept, [21]

used a cluster based approach to analyze fMRI data to detect

activations. They argued by the fact that voxels of a neurological

type belonging to a unique anatomical region will usually exhibit

positively correlated behavior whether the measure is physiological

or functional [21,22]. A quite different cluster based method was

proposed in [23] to analyze fMRI data. In their proposal, the

choice of clusters is defined beforehand using prior information. In

general, the grouped tests do not have to correspond to units in the

same vicinity. For this reason, we say that tests are grouped into

subsets instead of using the term of clusters. For, example, a

subnetwork could be the connections (edges) between two clusters

of ROIs (a bi-subnetwork).

We give a general formulation of grouping tests into subsets,

and then explore further the case of using the mean as a summary

statistic.

General formulation of grouping methods. Consider a set

fhj jj~1, . . . ,mg of m hypotheses to be tested. Each hypothesis is

set to test a certain assessment about a single unit that we call atom.

The set of all atoms is called the global set of interest S. Each single

Table 1. The general outcome of a multiple comparisons.

Number of
hypotheses that are

Statistically
non-significant

statistically
significant Total

True TN FP m 0ð Þ

False FN TP m 1ð Þ

Total m-R R m

A total of m null hypotheses are tested. FP is the number of Type I errors or the
number of false positives (rejected true hypotheses). Physical significance as
indicated in the first column means the existence of a real effect, whereas
statistical significance refers to the detection of such effect by means of
measurements. FN is the number of Type II errors or the number of false
negatives (false hypotheses not rejected). The number R of rejected hypotheses
is an observable random variable, while FP, FN, TP and TN are unobservable
random variables. The number of true null hypotheses m 0ð Þ is also unknown in
practice. The empirical type I error rate is defined by FP/m 0ð Þ , while the
empirical type II error rate is defined by FN/m 1ð Þ and the estimated average
power is TP/m 1ð Þ . See [12 and 13].
doi:10.1371/journal.pone.0023009.t001
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hypothesis hj (j = 1,…,m) is tested based on the observation of a

vector xjk (of dimension q) measured in the atom aj for each

individual k k~1, . . . ,nð Þ. The global data (the design matrix) is of

dimension m|q|n. Note that if n~1, we are reduced to a single-

subject experiment. We group the m atoms into s disjoined subsets

S1,:::,Ss such that
Ss

i~1

Si~S and Si\Sl~1 for i=l, where a

subset contains a set of atoms that are linked by attributes

associated with the problem at hand. The number of atoms in the

subset Si is mi i~1, . . . ,sð Þ, that is,
Xs

i~1

mi~m:

.

For each subset Si we consider a univariate summary statistic ti,

a function of all observed data within the corresponding subset of

all individuals, that is ti~ti xjkjaj[Si,k~1, . . . ,n
� �� �

for all

i~1, . . . ,s. The generalization to a multivariate summary statistic

is straightforward. Note that if mi~1, we are reduced to the

multivariate atom-wise analysis.

The main advantages of dividing the global set of interest into

subsets of atoms are the following: the reduction of the number of

tests and the reduction of the noise variance. Effectively, the

number of subsets s can be much reduced compared to the

number m of atom-wise tests. For example, using the Bonferroni

correction, the global test level a is divided by s instead of m

for each single test. This considerably increases the power of

comparisons. In addition, aggregating will reduce the variance

of the outcome, which facilitates the detection of significant

structures, while isolated significant atoms are rarely considered.

This leads to a desirable robustness and is the second reason for

increased power. The main disadvantage of grouping methods is

the potential loss of information. If the effect is concentrated on a

single atom for example, diluting the atom inside a subset weakens

the effect. Furthermore, if the subset contains atoms with positive

effect and atoms with negative effect, using the mean as a

summary statistic clearly disadvantages the grouping methods.

Properties of the subset-wise analysis using the mean as a

summary statistic. Using the mean of the values observed in

all the atoms within a subset is a natural choice of summary

statistics. It is also the simplest choice to derive analytical expres-

sions that afford the comparison between the different strategies.

However, other summary statistics with a contextual meaning

would be preferable such as those we propose in the application to

brain networks.

We now, contrast the strategy based on subsets (Subset-Wise-

Analysis, SWA) to the approach that separately tests atoms (Atom-

Wise-Analysis, AWA) in terms of power. We restrict the

comparison to the case of positive effect only.

SWA and AWA solve different problems. While SWA tests the

significance of subsets, AWA tests the significance of atoms. This

has to be kept in mind when comparing the power of the two

different strategies.

Consider the problem of detecting atoms with positive effect

when comparing two groups of individuals. Denote by xjk for all

j = 1,…,m and for all k~1, . . . ,n~n1zn2, the measurements

associated with the atom aj of the individual k, where n1 and n2 are

the sizes of the two groups. For simplification, suppose that n1~n2

and that the measurements are univariate. For the first group, the

observations are of the form xjk~mjzsejk for all j = 1,…,m and

for all k~1, . . . ,n1. For the second group, in the non-affected atoms

(where there is no effect), the observed values are of the form

xjk~mjzsejk and in the affected atoms (that contain the positive

effect) the observations are of the form xjk~mjzDjzsejk for all

k~n1z1, . . . ,n. For both cases, ejk

� ��j~1, . . . ,m and

k~1, . . . ,ng are independent realizations of a normal random

white noise, that is, ejk*N 0,1ð Þ. Dj is the raw effect in the atom

aj . The number of non-affected atoms and affected atoms within

the global set of interest are m(0) and m(1)~m{m(0) respectively.

We assume that the variance s2 is known and includes both the

noise variance and the intra-subject variability. When proceeding

according to the AWA to detect the atoms with positive effect,

we perform one sided tests h
0ð Þ

j : Dj~0 vs. h
(1)
j : Djw0, for all

j = 1,…,m. In all the computations, we use the simple case Dj:D.

If the aim is to strongly control the FWERatomsƒa using the

Bonferroni procedure, each single test is performed at level a=m.

The null hypothesis h
(0)
j is thus rejected if the difference,

dj~
1

n2

� � Xn

k~n1z1

xjk{
1

n1

� �Xn1

k~1

xjk satisfies djwcj , and cj is

given by

cj~
sffiffiffi
n
p W{1 1{

a

m


 �
, ð1Þ

where W is the cumulative distribution function of the standard

normal distribution.

Now, the global set of interest is divided into s subsets. The

number of non-affected subsets, which contain only non-affected

atoms, is s(0) and the number of affected subsets, which contain at

least one affected atom, is s(1)~s{s(0). Consider an affected

subset of size mi where only m
1ð Þ

i m
1ð Þ

i [ 1, . . . ,mif g

 �

of the atoms

are affected with positive effect Dj~D. In fact, it is more realistic to

consider partially affected subsets than considering completely affected

subsets. This could happen for example if the segmentation that

defines the subsets does not exactly match the true limits of the

anatomical or functional regions. It could happen also, if only a

proportion of atoms in the anatomical or functional region are

affected.

For each subset m=sð Þ of size mi i~1, . . . ,sð Þ, we construct a

summary statistic ti based on the mean of differences between

the two groups for each atom in the subset Si, that is,

ti~
1

mi

� � P
jjaj[Sif g

dj~
1

n2mi

� � X
jjaj[Sif g

Xn

k~n1z1

xjk{
1

n1mi

� � X
jjaj[Sif gXn1

k~1

xjk:

For the non-affected subsets, the statistic tiis a realization of a

random variable Ti*N 0,
s2

n

� �
, while for the affected subsets, ti

is a realization of a random variable Ti*N piD,
s2

n

� �
where

pi~
m

(1)
i

mi

is the proportion of affected atoms in the subset Si. The

distribution of Ti depends on the distribution of ejk. In the non-

normal case, if the size mi or if the number n of subjects are large

enough, the central limit theorem (CLT) leads to an approxima-

tion of the distribution of Ti by a normal distribution. Still, we

have to consider that the p-values are sensitive to the distribution

of the summary statistic in the right tail of the approximated

distribution.

We define the FWERsubsets as the probability of having at least

one false positive subset, that is, declaring as significant a subset

that contains no affected atoms. To control the FWERsubsets at

level a and again, using the Bonferroni procedure on subsets, the

null hypothesis H
0ð Þ

i : pi~0 is rejected for the subset Si if the

corresponding observed summary statistic tiwci, and ci is given by

ci~
sffiffiffiffiffiffiffiffi
nmi
p W{1 1{

a

s


 �
: ð2Þ

This relation shows that the critical values for the SWA do not

only depend on the ratio m=sð Þ which represents the reduction of

Analayze and Compare Connectomes
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the number of tests, but also on 1ffiffiffiffiffi
mi

p which decreases as long as

the subset size increases and is due to the reduction in the noise

variance.

We can also compare the power curves corresponding to the

two different strategies. In the case of the AWA, the power Powj of

detecting an affected atom is given by

Powj~1{W W{1 1{
a

m


 �
{

ffiffiffi
n
p

D=s

 �
 �

, ð3Þ

whereas the power of detecting an affected subset that contains a

proportion pi of affected atoms is

Powi~1{W W{1 1{
a

s


 �
{

ffiffiffiffiffiffiffiffi
nmi
p

piD

s

� �
: ð4Þ

Given this two power functions, we want to know when

PowiwPowjjaj[Si
, that is, under what conditions we have a greater

chance to detect an affected subset Si than detecting the affected

atoms aj[Si. We have

PowiwPowjjaj[Si

uW{1 1{
a

s


 �
{

ffiffiffiffiffiffiffiffiffi
n:mi
p

piD

s
vW{1 1{

a

m


 �
{

ffiffiffi
n
p

D=s

u1{s
.
D
ffiffiffi
n
p

W{1 1{
a

m


 �
{W{1 1{

a

s


 �h i
v

ffiffiffiffiffi
mi

p
pi

u
1ffiffiffiffiffi
mi
p {s

.
D
ffiffiffiffiffi
mi

p ffiffiffi
n
p� �

W{1 1{
a

m


 �
{W{1 1{

a

s


 �h i
vpi,

that is, PowiwPowjjaj[Si
u~ppivpi, where

~ppi~
1ffiffiffiffiffi
mi
p {s

.
D
ffiffiffiffiffi
mi

p ffiffiffi
n
p� �

W{1 1{
a

m


 �
{W{1 1{

a

s


 �h i
: ð5Þ

If the proportion of affected atoms is less than ~ppi, the power of

detecting an affected subset is reduced since the effect is diluted.

However, when the proportion of affected atoms pi exceeds the

threshold value ~ppi, the SWA is more powerful than the AWA in

the sense that detecting subsets which contains at least a

proportion ~ppi of affected atoms is more powerful than detecting

the individual affected atoms within such a subset. The threshold

~ppi depends on the size of the subset mi. Larger subsets give more

advantage than smaller subsets, but of course, this has an influence

only when different resolutions are available since we supposed

that the segmentation that defines subsets is predefined. Note that

the threshold ~ppi depends also on the variance s2, the raw effect D
and on the number of subjects n in the sense that the advantage of

the SWA becomes more pronounced when the variance increases

(when the Signal to Noise Ratio (SNR) decreases) and when the

raw effect and the number of subjects decrease.

Note also that W{1 1{
a

m


 �
{W{1 1{

a

s


 �h i
is positive since

1{
a

s
v1{

a

m
and W is an increasing function. Then,

ffiffiffiffiffi
mi

p
piw1um

1ð Þ
i w

ffiffiffiffiffi
mi

p
[~ppivpiuPowiwPowjjaj[Si

:

So, a sufficient condition for having PowiwPowjjaj[Si
is that the

number of affected atoms in that subset is greater than the square

root of the size of the subset. A similar result was found by

simulations in [23] using an adaptive FDR procedure.

We simulated tests when the observed values in the non-affected

atoms and in the affected atoms are independent realizations of

xjk*N 0,nð Þ and xjk*N D,nð Þ respectively. This is a particular

case where mj~0, s2~n, Dj~D. The number of affected atoms

m
(1)
i ~1, . . . ,mi for all affected subsets. In this case, the power of

detecting a significant effect in an affected subset given by equation

4 becomes

Powi~1{W W{1 1{
a

s


 �
{pi

ffiffiffiffiffi
mi

p
D


 �
: ð6Þ

For simplicity, the s subsets are chosen to have the same size mi,

for all i in {1,…,s}. To control the rate of false positives on atoms

and subsets, we used the Bonferroni procedure to control the

FWER and the Benjamini-Hochberg procedure (BH95) intro-

duced in [12] to control the FDR.

In Figures 1 and 2, we see the behavior of the power of

detecting partially affected subsets, depending on the proportion of

truly affected atoms pi using the SWA, compared to the power of

detecting affected atoms using the AWA. In figure 1, we used the

Bonferroni procedure, and in Figure 2 we used the BH95

procedure. The raw effect was set to be D= 1 or 2 and the subset’s

sizes are mi = 4, 8 or 16. The power plotted is the average of
TP

m(1)

across the simulations (average power defined in [24]). Since

Dj~D in all affected atoms, the average power is equal to the per-

pair power defined in [25]. This holds also for the power of

detecting affected subsets since they have the same size, where we

obviously have to replace m by s and m(1) by s(1). In addition, the

power has a different meaning in the two cases. For the AWA we

want to detect significance on the atom level, while for the SWA

we seek significant subsets.

In all cases, for small values of the proportion pi , using the mean

as a summary statistic reduces the power of detecting a significant

effect within such subsets because the effect is diluted. However,

when the proportion of affected atoms pi exceeds the threshold

value ~ppi, the SWA is more powerful than the AWA in the sense

that detecting subsets which contains at least a proportion ~ppi of

affected atoms is easier than detecting the individual affected

atoms. In both cases, by using the Bonferroni procedure or the

BH95 procedure, the threshold ~ppi depends on the size of subsets

mi and the raw effect D. This is in accordance with the result

derived analytically for the Bonferroni case.

A two-stage atom-wise analysis. In the previous section,

we showed that detecting affected subsets using the mean as a

summary statistic is more powerful than trying to detect individual

affected atoms when a subset contains more than
ffiffiffiffiffi
mi
p

affected

atoms. We expect that this condition would be satisfied in

neuroimaging, because we assume the existence of positive

correlations between atoms within the same subset. This was the

principal motivation of our work. We want to shed light in this

section, on an interesting question related to the grouping tests

strategy. Consider the following two stage AWA procedure. First,

we apply the SWA to detect affected subsets. Then, in each subset

declared as affected, we perform a local investigation, that is, we

apply a multiple comparisons procedure inside that subset to

detect affected atoms. Does this have an advantage over the classic

AWA procedure? As the question has a complex answer, we

restrict our discussion to a simple special case.

Proposition 1. The subset Si contains miw1 atoms and is

considered along with s subsets. The corresponding observations

are either xjk*N 0,nð Þ or xjk*N D,nð Þ. The summary statistic is

Analayze and Compare Connectomes
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Figure 1. Power of detecting affected atoms and partially affected subsets depending on the proportion pi . For the multiplicity
correction, the Bonferroni procedure is used. Three different values of the subsets’ size mi (4, 8 or 16) and two different values of the raw effect D (1 or
2). The other parameters are: m~4096, s 1ð Þ~s=5, a~0:05.
doi:10.1371/journal.pone.0023009.g001
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Figure 2. Power of detecting affected atoms and partially affected subsets depending on the proportion pi . For the multiplicity
correction, the BH95 procedure is used. Three different values of the subsets’ size mi (4, 8 or 16) and two different values of the raw effect D (1 or 2)
are used. The other parameters are: m~4096, s 1ð Þ~s=5, a~0:05.
doi:10.1371/journal.pone.0023009.g002
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the subset mean difference ti, which is significant in the Bonferroni

sense, that is, ti§ci~
1ffiffiffiffiffi
mi
p W{1 1{

a

s


 �
. If miƒs, it follows that

at least one individual atom will also pass the second-stage

Bonferroni test.

Proof. Suppose that all atoms in the subset Si satisfy

djvcmi
~W{1 1{

a

mi

� �
, that is, no atom pass the second-stage

Bonferroni test. We have

djvcmi
[ti~

1

mi

X
jjaj[Si

� �djv
1

mi

cmi
~

1ffiffiffiffiffi
mi
p 1ffiffiffiffiffi

mi
p W{1 1{

a

mi

� �� �
:

Given that miƒs[W{1 1{
a

mi

� �
ƒW{1 1{

a

s


 �
, we have

tiv
1ffiffiffiffiffi
mi
p 1ffiffiffiffiffi

mi
p W{1 1{

a

s


 �� �
~

1ffiffiffiffiffi
mi
p civci

Proposition 2. In a significant subset, the power of detecting

affected atoms is larger when using the two-stage AWA than using

the classic AWA if the Bonferroni procedure is used in both cases.

Proof. Obviously this is true, because

cj~W{1 1{
a

m


 �
wcmi

~W{1 1{
a

mi

� �

This proposition does not assure that the two-stage AWA is more

powerful than the global AWA. In fact, the global AWA may

detect other affected atoms, which do not belong to the declared

significant subsets. However, the two-stage AWA is more powerful

in the subsets that contain more than
ffiffiffiffiffi
mi
p

. Hence, the two-stage

AWA tends to detect affected structures, which is often more

interesting for the researcher. See [23].

In addition, simulations show that the rate of the false positives

is not controlled in the strong sense by the two-stage AWA even if

the Bonferroni procedure is used in the two stages. However, the

weak control of false positives can easily be proved in this case.

The SWA in the context of connection matrices and brain
networks

Suppose that a global region of interest in the human brain is

subdivided into small ROIs. A connection matrix is a weighted

symmetric matrix A where rows/columns correspond to ROIs and

each cell A(r,r’) of the matrix represents a certain measure of the

connectivity between the two ROIs r and r’. A connection matrix

defines a network where the nodes correspond to the ROIs and

the weighted edges correspond to the measure of the connectivity

between the corresponding ROIs. A subnetwork of the human

brain network corresponds to a block of the connection matrix.

We consider separately two kinds of subnetworks. The first type

represents the intra-connection within the same group of ROIs

and whose corresponding blocks are localized on the diagonal of

the global connection matrix. The second type corresponds to the

networks that represent the interconnections between two groups

of ROIs. These are bi-subnetworks and their corresponding blocks

are localized out of the diagonal in the global connection matrix.

See Figure 3 for an illustration.
How to choose subsets or subnetworks. As mentioned in

the introduction, the subsets or subnetworks are chosen before-

hand by the researcher based on an a priori knowledge. This prior

information is obtained either by an investigation of independent

data sets or by using a segmentation atlas. Both the AWA and the

SWA are hampered by a common difficulty, due to the fact that

atoms or subsets have to correspond between the different subjects.

This important difficulty was emphasized in [23]. In practice, the

ROIs do not exactly match geometrically between individuals, in

particular for higher resolutions. Consequently, the effect of

affected atoms will be scattered and will be diluted. However, the

mismatched ROIs have more chance to be located in the same

group of ROIs used to define a subnetwork, in particular, if they

are geometrically not close to the frontiers of the subregions. In

this case, the advantage of the SWA is even more pronounced.

The mismatching between atoms causes problems for any method

that define subsets on the basis of the estimated correlations

between atoms.
Summary statistics and statistical analysis. As men-

tioned in the introduction, three levels of analysis are considered to

analyze the brain complex network. The first level is the atom level

where we perform an AWA. Atoms could be an ROI (a node) or a

Figure 3. Illustration of the different types of subnetworks within a brain network. In the right side, a connection matrix is presented. In
the left side, the connectivity between two groups of node is presented which defines three subnetworks of two types. The first type represents the
intra-connection within the same subset of nodes (the red and the green subnetworks) and whose corresponding blocks are localized on the
diagonal of the global connection matrix (the red and the green blocks). The second type represents the interconnections between the two subsets
of nodes (the yellow subset). Its corresponding block is localized out of the diagonal in the global connection matrix (the yellow block).
doi:10.1371/journal.pone.0023009.g003
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connection between two ROIs (an edge). In the first case, one

could use some network measures that can be evaluated for a

node. For example, one can evaluate for each node its degree, its

clustering coefficient, etc. In the second case, the weight of the

edge can be used. We call the AWA performed with network

based measures the Atom Network Based Analysis (ANBA). The

second level considered is the global level that corresponds to the

global network. We call the analysis at that level the Global

Network Based Analysis (GNBA). In the third level, we consider

the analysis at the level of subnetworks by considering each

subnetwork as a complex network. We call the analysis at that level

the Sub-Network Based Analysis (SNBA). In the two last levels, a

variety of summary statistics could be chosen, but of course, the

number of tests performed is not the same at the two levels. The

choice of summary statistics depends on the subnetwork. One can

construct summary statistics by averaging the network based mea-

sures on atoms within each subnetwork. This has the properties of

the subset mean discussed in the previous sections. For example,

one can use the mean of the edges’ weights or the mean of the

nodes’ degrees, centrality, efficiency, modularity, etc. On the other

hand, several summary statistics which do not necessarily use the

mean of the values and which cannot be defined on the level of

atoms could be used as a summary statistic. For example, one can

use the node-degree distribution, the small world properties, etc. of

each sub-network as a summary statistic. See [26,27] for a list of

relevant network measures that could be used in the brain network

analysis. It is difficult to use network based summary statistics that

do not use the mean of atom values such as small world properties,

as a summary statistic since the control of false positives depends

on the distribution of the summary statistics, in particular, when

using the two-stage procedure, where conditional distributions

come into play. In addition, the network based measures are

evaluated on noisy connection matrices. It is then, worth to

investigate the impact of this factor on the statistical analysis. This

two important aspects need to be investigated and they are parts of

our future work.

Application to structural connection matrices of the
human brain

The purpose of this application section is to give a simple

example of a real application of the proposed strategy to compare

normalized whole-brain structural connection matrices derived

from diffusion MRI tractography.

The construction of structural brain connection

matrices. The processing pipeline used to derive connection

matrices compared in this application is basically divided into two

pathways. See [3] for more details. On one hand, the cortical

surface is extracted from a high resolution T1-weighted Magnetic

Resonance (MR) image and subdivided into N~83 anatomical

parcels by matching the most important sulci using atlas-based

segmentation. On the other hand, a whole brain tractography is

performed on diffusion MR images, which results in millions of

virtual fibers spread over the brain. The combination of these two

procedures allows the construction of connection matrices by

computing the connection density for each pair of ROIs. Con-

sidering the cortical parcellation and the white matter tracto-

graphy described above, the fiber bundle F(r,r’) connecting the

pair of ROIs (r,r’) could be identified. The value of the connection

matrix cell A(r,r’) is the connection density between these ROIs

and is defined as follows: A r,r0ð Þ~
P

f [F r,r0ð Þ

1

l fð Þ, where l(f) is the

length of the fiber f along its trajectory.

The correction term l(f) in the denominator is needed to

eliminate the linear bias towards longer fibers introduced by the

tractography algorithm. We obtain at the end of the application

of the pipeline an N6N symmetric matrix A. The pipeline is

summarized in Figure 4.

Description of the data. The clinical group used for com-

paring the AWA and the SWA or equivalently, for comparing

ANBA and SNBA, is a group of subjects with a 22q11.2 deletion

syndrome (22q11DS) [9,10]. Amongst other manifestations, this

syndrome shows a mild cognitive impairment (MCI) resulting from

a loss of IQ performance [11,28].

Amongst the 22q11DS population, there is an existing

discrepancy in the cognitive abilities between patients with a

relatively high IQ level (above 70) and patients with a low IQ level

(below 70). Delineating the structural brain connectivity that

sustains this discrepancy may provide useful clues to understand

how brain connections are involved in the loss of intellectual

functioning in the 22q11DS population.

The high IQ group (.70) is composed of nh~14 patients, 7

girls and 7 boys (mean age = 14.562.9 years, ranged from 7.4 to

17.6 years and mean IQ = 80.466.7). The low IQ group (,70) is

composed of nl~12 patients, 5 girls and 7 boys (mean age 14.86

3.9 years old ranged from 7.2 to 19.8 years and mean IQ =

6066.8).

In addition of the connection density matrices, we have Fractional

Anisotropy (FA) connection matrices where the weight represents the

mean FA along a fiber tract connecting a pair of ROIs.

Data analysis. To detect atoms (connections) or subnetworks

that differ between the two groups, we consider different strategies:

First, we consider the ANBA analysis using all the available

variables (density of fibers, FA, density of fibers truncated by the

FA) and the combinations of variables as univariate and mul-

tivariate statistics.

Second, we consider the SNBA analysis with different summary

statistics.

N The SWA using the mean of the density of fibers xi in each

subnetwork as a summary statistic.

N The truncated proportion, where the summary statistic in each

subnetwork is defined by ~xxi~
1

mi

P
jjaj[Sif g

I xjwuj

� �
, where I is

the indicator function. This variable is interpreted as the

number of interconnections between ROIs within the

subnetwork Si (number of edges). We use here, a truncation

threshold based on the FA values. One can choose other

thresholds for the truncation depending on the nature of the

problem.

N The effective mean, where the summary statistic is defined byP
jjaj[Sif g

xj

� �
I xjwuj

� �� �, P
jjaj[Sif g

I xjwuj

� �
which is inter-

preted as the mean of edges’ weights in the subnetwork Si.

Since the distribution of the two later statistics is unknown, we

use the Wilcoxon-Mann-Whitney rank test [29] instead of the

Student test to derive the p-values.

N The summary t statistic is a p-variate statistic that includes a

combination of p univariate statistics among the summary

statistics defined above. In this case, the test follows by

computing the statistic f: f ~
nhnl

nhznl

th
i {tl

i

� �T
C{1 th

i {tl
i

� �
nhznl{p{1

p nhznl{1ð Þ
, where C is the estimated covariance matrix of

the data given by C~
nh{1ð ÞChz nl{1ð ÞCl

nhznl{2ð Þ

� �
, where Ch

and Cl are the estimated covariance matrices of the high IQ

group and the low IQ group respectively. The statistic f follows

a Fisher distribution F p, nhznl{1ð Þ{pf g.
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We apply the SNBA to the data by defining subnetworks as the

interconnections between brain cortex lobes. The brain cortex is

divided into 13 lobes. By considering the interconnections between

these 13 lobes and the intra-connections within these 13 lobes, we

define s~
13

2

� �
z13~91 subnetworks. The SNBA is followed

by a local investigation in the subnetworks detected as significant.

For the multiplicity correction of p-values we use the Bonferroni

correction with level FWER = 0.05 and the BH95 procedure with

FDR = 0.1 for all tests.

Results and Discussion

First, using the AWA (or the ANBA), no significant results were

found with any statistic (univariate or multivariate). This is due

first, to the small number of individuals in each group and second,

to the fact that the two compared groups belong to the same

community of patients and so, no big differences could exist

between the two groups (small raw effect) and of course, this is due

to the multiplicity correction since
83

2

� �
z83~3486 tests are

performed simultaneously.

Using the SWA (or the SNBA), three subnetworks were detected

as significant after the BH95 correction of the p-values. Only one

of the three subnetworks passed the Bonferroni correction.

Within these three subnetworks, only 5 connections are detected

as significantly different within the three detected subnetworks.

The application results presented here are in accordance with

the performance showed in the theoretical part either by analytical

formulas or by simulations. We are in a situation where the raw

effect and the sample size are both small. So, the advantage of the

SWA over the AWA is pronounced.

Amongst the five significant connections detected as significant,

four were found to be connectively reduced in 22q11DS patients

with a low IQ compared with the ones with a high IQ. Right

caudate intra-connectivity and the number of fibers connecting it

with the putamen were reduced. Right accumbens nucleus inter-

connectivity with sub-thalamic nucleus, and left lingual intra-con-

nectivity were also found reduced. The last connection referring to

the number of fibers connecting the left putamen and the left

superior temporal cortex were increased.

Morphological alterations of the caudate, putamen, left superior

temporal gyrus (STG) and lingual area have frequently been found

in 22q11DS [30–32].

Here, we show that there is a specific alteration of the con-

nectivity of the striatal structure (composed of the caudate and the

putamen) affecting the cortico-striatonigral-thalamocortical circuit

[33] and therefore may impairs the cognitive functioning [34] in

the 22q11DS with the low IQ.

Conclusion and future directions
We proposed a statistical network based strategy to analyze and

compare brain networks with the aim of increasing the power of

detections. The strategy is based on grouping tests into subsets that

define brain subnetworks in order to reduce the number of tests.

We showed in the simulation examples and in the real application

the relevance in neuroimaging, in particular, when the number of

Figure 4. Extraction of a Whole Brain Structural Connection Matrix. A–B. MRI Acquisition: (A) high-resolution T1-weighted image and (B)
diffusion images. The T1 is registered on the diffusion images. In every imaged voxel the Orientation Density Function (ODF) is extracted from the
diffusion images. C. Whole brain tractography provides an estimate of axonal trajectories across the WM. D. Cortex partitioning into 83 gyral-based
parcels using the Freesurfer software (http://surfer.nmr.mgh.harvard.edu). E. Creation of the low-resolution structural connection matrix,
representing the fiber density between every pair of the 83 parcels (upper left and lower right blocks: connections in the right, respectively left
hemisphere; off-diagonal blocks: inter-hemispheric connections).
doi:10.1371/journal.pone.0023009.g004
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tests is very large and when the raw effect and the sample size are

small. We proposed as well the use of the local investigation in the

significant subnetworks in a second stage. We can summarize the

subnetwork based analysis (SNBA) as follows:

1. Define subnetworks based on the prior knowledge.

2. Choose an appropriate summary statistic for each subnetwork,

which has a contextual interpretation.

3. Apply a multiple comparisons procedure (that controls the

FWER, the FDR or other measures).

4. If desired, a local investigation in significant subnetworks may

help to interpret the results.

We showed that if a subset of size mi contains more than mi~ppi

affected atoms where ~ppi is given by equation 5, the power of

detecting such a subset is greater than the power of detecting each

affected atom within the subset. The threshold ~ppi is always smaller

than 1ffiffiffiffiffi
mi

p and we expect that this condition i.e. (
ffiffiffiffiffi
mi
p

piw1) is

often satisfied in neuroimaging, that is, a part of a subset or a

subnetwork behaves coherently.

It should be emphasized that the proposed strategy as presented

in the application uses some particular examples of summary

statistics and shows a real advantage over the atom-wise

comparisons. A part of our future work will be focused on how

to estimate more complex network based summary statistics on

noisy connection matrices and to show the control of false positives

under their use.
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