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Effects of Forest Harvest on Soil Carbon and 
Related Variables in Canadian Spodosols

Forest, Range & Wildland Soils

Disturbances that alter the SOM cycle have wide effects because 
SOM infl uences many biogeochemical processes. Knowledge about 
SOC stocks and the effects of forest management on the forest fl oor 

and mineral soil C is generally limited (Kurz et al., 2002; Nalder and Merriam, 
1995). While a relatively large number of studies have investigated C dynam-
ics in northern hardwoods (Covington, 1981; Federer, 1984; Londo et al., 1999; 
Zummo and Friedland, 2011), coniferous forests have received less attention. 
There are indications that soils of coniferous forests generally show a good 
retention of C and N stocks after harvest (Johnson, 1992; Johnson and Curtis, 
2001; Nave et al., 2010). This could be due to slower decomposition due to 
litter recalcitrance and low temperatures (Johnson, 1995), and to the rapid 
resumption of C accumulation and limited nutrient loss after disturbance 
(Gholz and Fisher, 1982).Information on soil C dynamics is especially scarce be-
low the top 10 to 20 cm of the soil profi le.

Recently, several authors have emphasized the need to consider subsoil layers 
when evaluating C stocks and dynamics (Harrison et al., 2011; Johnson et al., 2011; 
Rumpel and Kögel-Knabner, 2011). Studies that investigate the entire soil profi le 
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Knowledge about soil organic carbon (SOC) response to forest harvest in 
conifer stands is limited. The objective of this study was to determine the 
short- to medium-term effects of bole-only clearcut harvest on SOC and 
related variables in a Douglas fi r [Pseudotsuga menziesii (Mirbel) Franco]-
dominated forest of southwestern British Columbia. We collected soil samples 
from control (mature forest), cleared (harvested 1–5 yr before sampling), and 
regenerating (harvested 8–15 yr before sampling) stands and measured SOC, 
pH, texture, moisture, total N, loss-on-ignition, effective cation exchange 
capacity (CECe), and pyrophosphate-extractable Fe and Al. We found that 
SOC stocks in the forest fl oor were higher in cleared and regenerating plots 
than in control. The mineral subsoil played an important role in the overall 
response of SOC storage after harvest. In mineral horizons, SOC concentra-
tion was higher in cleared plots and similar to control levels in regenerating 
plots. Treatment effects were restricted to SOC associated with the sand size 
fractions. This suggests that clearcutting resulted in additional soil organic 
matter (SOM) inputs to the mineral soil, but that these inputs were not sta-
bilized or retained in regenerating plots. Harvest also affected bulk organic 
matter composition. The C/N and C/SOM ratios were lower in regenerating 
plots while the CECe/C ratio was higher, suggesting an increase in organic 
matter maturity and oxidation.

Abbreviations: Alp, pyrophosphate-extractable aluminum; CECe, effective cation exchange 
capacity; Fep, pyrophosphate-extractable iron; PC, principal component; SEM, standard 
error of the mean; SOC, soil organic carbon; SOM, soil organic matter.
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generally report no eff ect of harvest in the soil parent material or 
C horizon (Snyder and Harter, 1985), but any part of the solum 
may show treatment eff ects. Diochon and Kellman (2009) pro-
posed that concentrations of C below 20 cm may be driving the 
temporal response of soil C storage aft er harvest. Indeed, even 
moderate changes in SOC distribution and dynamics in deeper 
horizons have the potential to infl uence the overall SOC balance 
due to the large quantities of SOC at stake. Collecting data on 
C stocks in the entire soil profi le is also essential to diff erentiate 
between net changes of soil C and translocation (Federer, 1984; 
Yanai et al., 2003), as redistribution may be an important mecha-
nism by which SOC is conserved in forest soil aft er disturbance 
(Hendrickson et al., 1989; Rubino et al., 2010).

Forest harvesting is generally thought to lead to a reduc-
tion of soil C stocks for a few decades, followed by a partial or 
complete recovery period during which soil C stocks increase 
(Aber et al., 1979; Covington, 1981; Jiang et al., 2002). In some 
models, harvesting is associated with a short-lived increase in soil 
C stocks as a result of increased inputs of aboveground and be-
lowground biomass (Bengtsson and Wikstrom, 1993; Johnson 
et al., 2010).

Notwithstanding the usefulness of such models for the 
generation of present and future regional estimates, empirical 
data that confi rm these models is relatively scarce (Yanai et al., 
2003). Local eff ects such as logging type, harvest technology, 
site history, forest type, and climate greatly infl uence ecosystem 
response to disturbance. Soil characteristics such as pH (Nierop 
and Verstraten, 2003), moisture (Londo et al., 1999), N con-
tent (Moran et al., 2005), texture (Oades, 1988), and organo-
metallic and organo-mineral interactions (Mikutta et al., 2005; 
Rasmussen et al., 2005) also have the potential to infl uence soil 
C retention.

Particle-size fractionation is a useful indicator of SOM 
dynamics (Borchers and Perry, 1992; Gartzia-Bengoetxea et 
al., 2009; Norris et al., 2011; Parker et al., 2002). Soil organic 
matter associated with the clay fraction is considered to be the 
most stable fraction, with physical occlusion and the formation 
of complexes with mineral elements contributing to its stabiliza-
tion (Eusterhues et al., 2003; Paul, 1984; Sollins et al., 1996). In 
contrast, silt and sand-sized SOM fractions are considered to be 
more reactive due to weaker interactions with minerals (Six et al., 
2002; Tiessen and Stewart, 1983).

Bulk SOM composition is another useful indicator of SOC 
cycling. Th e most common indicator of SOM composition is 
the C/N ratio, which refl ects diff erences in C and N net accu-
mulation rates. Coniferous forests shed litter with a high and 
relatively constant C/N ratio (McGroddy et al., 2004). Th e bulk 
of logging slash typically consists of coarse woody material that 
also has a low N concentration. During the initial decomposi-
tion stage, the C/N ratio of fresh organic inputs decreases as C is 
lost to the atmosphere (Baldock and Skjemstad, 2000; Johnson, 
1995) and N immobilization dominates over mineralization 
(Keeney, 1980). Under the broad assumption that N inputs do 

not vary signifi cantly, narrowing C/N ratios can be thought of as 
an indicator of SOM maturity and humifi cation (John et al., 2005).

Another common indicator of SOM composition is the 
C concentration of organic matter (C/SOM ratio). A high C/
SOM ratio suggests a predominance of C-rich, potentially hy-
drophobic compounds. Oxygen is the second most abundant 
element in SOM aft er C, such that a narrow C/SOM ratio 
should indicate a higher degree of oxidation and a higher O 
content (Ussiri and Johnson, 2003). Oxygen-bearing groups 
include functional groups such as carboxyl and phenolic groups 
( Johnson, 1995) and confer a general hydrophilic tendency to 
organic compounds.

In coarse-textured, acid soils, a large portion of the CECe is 
provided by organic functional groups (Federer and Hornbeck, 
1985). Th e ratio between CECe and SOC (CECe/C ratio) pro-
vides an indicator of organic matter functional group density. A 
high CECe/C ratio denotes SOM of high maturity and sorptive 
capacity (Miralles et al., 2009), which may help reduce nutrient 
loss aft er logging, minimize environmental impacts, and improve 
forest regeneration ( Johnson et al., 1997).

Th e aim of this study is to assess the eff ects of forest harvest 
on SOC distribution and characteristics in a conifer forest of 
coastal British Columbia. We hypothesize that these forest soils 
are relatively resilient to SOC losses following harvest and that 
the mineral subsoil plays a large role in C retention aft er harvest.

MATERIALS AND METHODS
Sampling Sites

Th is study was conducted in the Roberts Creek study for-
est (49°27′ N, 123°41′ W) on the Sunshine Coast of southwest-
ern British Columbia. Th e area lies within the Coastal Western 
Hemlock [Tsuga heterophylla (Raf.) Sarg.]  biogeoclimatic zone 
and experiences a mean annual temperature of 10.2°C and mean 
annual precipitation of 1369 mm (Environment Canada, 2011). 
Elevation ranges from 350 to 590 m above sea level with a gen-
tle (~ 15%) southerly slope. Th e dominant overstory species is 
Douglas fi r, although western hemlock and western red cedar 
(Th uja plicata Donn ex D. Don) are also found among the tall-
est trees. Western hemlock and western red cedar are also found 
in the understory together with abundant salal (Gaultheria shal-
lon Pursh), western sword fern [Polystichum munitum (Kaulf.) 
C. Presl], and bracken fern [Pteridium aquilinum (L.) Kuhn]. 
Charcoal on standing and fallen snags indicates that the cur-
rent forest (~ 145-yr old) initiated following wildfi res (D’Anjou, 
2002). Th e soil type is Aquentic Haplorthods (Soil Survey Staff , 
2006) of sandy loam to loamy sand texture. Th e following se-
quence of horizon was observed: Oi, Oe, Oa, E, Bs1, Bs2, BCg, 
and Cg. Profi le morphology and SOM distribution are reported 
in Grand and Lavkulich (2011).

Harvest Treatment and Sampling
We sampled 27 soil pits by morphological horizon. Each 

sample was collected to represent the entire horizon around a 
~ 90 cm diam. soil profi le. Th e forest fl oor was separated into 
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two parts: (i) fresh litter (Oi) and (ii) hemic and sapric layer 
(Oe+Oa). Th e litter layer was thin and patchy in many plots and 
oft en dominated by coarse woody debris. Only the hemic and 
sapric layer was sampled.

Nine soil pits were located on undisturbed forested plots 
(control), 11 were located on cleared stands (harvested 2–5 yr 
before sampling) and 7 in regenerating stands (harvested 8–15 yr 
before sampling). Vegetation in cleared stands was dominated by 
the herb layer (particularly fi reweed, Epilobium angustifolium 
L.) while regenerating plots were dominated by young Douglas 
fi rs. Th e harvest method was a a clearcut with bole-only removal 
and slash left  untreated on site. Variable retention occurred in 
some of the harvested plots; in this case, we only sampled clear-
cut portions of the plot, maintaining a minimum distance of at 
least 12 m to the nearest retained tree. Samples from harvested 
stands spanned seven harvest clusters distributed throughout the 
experimental forest (Fig. 1). Control locations were interspersed 
in the areas between and around harvested plots and at a distance 
of at least 30 m from the edge of the disturbance.

When sampling harvested plots, our objective was to gain 
insight about the in situ eff ects of vegetation removal over time, 
rather than the extent of mechanical disturbance caused by log-
ging equipment. Large diff erences can arise between harvested 
plots due to changes over time in logging technology (Yanai et 
al., 2003) as well as the skill and commitment of logging crew to 
minimize soil disturbance. We sampled morphologically undis-
turbed soil profi les with no signs of mechanical disturbance or 
water erosion. We avoided old logging roads, equipment tracks, 
and preferential fl ow channels. Overall, the area of harvested 
plots showing signs of disturbance was visually estimated 10 to 
25% of stand area.

Soil Analyses
Soil pH and moisture were measured on fi eld-moist samples 

before sieving. Soil pH was determined potentiometrically in a 
0.01 M CaCl2 solution (Schofi eld and Taylor, 1955; Van Lierop, 
1990). Gravimetric moisture content was determined by oven-
drying at 70°C (organic horizons) or 105°C (mineral horizons) 
to constant weight. Because it is a one-point measurement (in 
late summer), the gravimetric moisture content had no absolute 
meaning, but gave an indication of possible moisture regime dif-
ferences between plots.

Other analyses were performed on the <2 mm fraction 
(mineral soil) or on material ground to pass through a 2-mm 
sieve (forest fl oor). Soil organic matter concentration was de-
termined by loss on ignition in a muffl  e furnace (Kalra and 
Maynard, 1991). Total C and N concentrations were measured 
by dry combustion using an induction furnace (LECO model 
CN-200 0). Texture was estimated aft er dispersion in Na hexa-
methaphosphate by a combination of sieving and sedimentation 
steps (Kettler et al., 2001). Organic matter concentration in the 
sand, silt, and clay fractions was estimated by loss-on-ignition. 
Soil organic C and N stocks were calculated using SOC and N 
concentration, horizon thickness, bulk density, and adjusted for 

coarse fragment content. Bulk density was not directly measured 
but was estimated based on SOC concentration and sampling 
depth using the equations of Heuscher et al. (2005) and Federer 
et al. (1993) (Grand and Lavkulich, 2011). Estimated bulk den-
sity averaged 0.15 g cm–3 in the forest fl oor and ranged from 
1.25 g cm–3 (Bs1) to 1.42 g cm–3 (BCg) in mineral horizons. 
Organically complexed Al and Fe (pyrophosphate-extractable 
aluminum [Alp] and pyrophosphate-extractable iron [Fep]) were 
extracted with sodium pyrophosphate (Bascomb, 1968). Th e 
cation exchange capacity was estimated as the sum of base cations 
displaced by a 0.5 M (NH4)2SO4 solution and of exchangeable 
acidity extracted with 1 M KCl (McLean, 1965).

Statistical Analyses
Statistical analyses were performed using SAS version 9.2 

soft ware (SAS Institute, 2008) and statistical tests were per-
formed with an α level of 0.05. Means are given ± standard error 
of the mean (SEM).

Th e eff ects of harvest treatment were investigated using 
a mixed statistical model. Treatment eff ects (control/cleared/
regenerating plots), horizon eff ects and the treatment × ho-
rizon interaction were included as fi xed eff ects. Observations 
were blocked by harvest operation using a random group eff ect 
(G-side). To avoid pseudo-replication with respect to horizon ef-
fect, we included the horizon eff ect as a repeated measure (R-side 
random eff ect). Th is sets a common correlation among all obser-
vations of the same soil profi le. We used the Toepliz covariance 
structure to model the correlation between horizons (Littell et 
al., 2006).

Degrees of freedom were calculated using the Satterthwaite 
adjustment. Model diagnostics (normality, homoskedasticity, 
goodness of fi t) were run on the conditional residuals (Haslett 
and Haslett, 2007). Variables with non-normal residual distribu-
tion were transformed according to results of the Box–Cox pro-
cedure (Box and Cox, 1964) to achieve approximate normality. 
Treatment means were compared using a t test with no provision 
for multiple inferences (Webster, 2007). If the interaction term 
was signifi cant, treatment means were compared separately for 
each horizon. In this case, the analysis reduced to a single-factor 
experiment in which there are no repeated measures.

Fig. 1. Approximate sampling locations in Roberts Creek Study Forest
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Finally, we used a principle component (PC) analysis to rep-
resent treatment eff ects in an integrative way. Input variables for 
the PC analysis were SOC, C/N, C/SOM, Alp, Fep, moisture, 
and CECe/C. Eigenvectors and results of the PC analysis are 
presented in the next section.

RESULTS
Diff erences in mean soil characteristics between treatments 

are summarized in Table 1. Diff erences in variance were also ob-
served. In the forest fl oor and illuvial horizons of cleared plots, 
the variables SOC, SOM, C/SOM, N/SOM, and C/N all had a 
signifi cantly higher variance than in control plots as evaluated by 
Levene’s test for homogeneity of variance (test results not shown).

Soil Organic Carbon
Treatment eff ects on SOC concentration were diff erent in 

the forest fl oor and in the mineral soil. No signifi cant diff erence 
between treatments was observed in the forest fl oor while in il-
luvial (Bs-BCg) horizons, SOC concentration was 40% higher 
in cleared than in control and regenerating plots (Table 1, Fig. 
2). Silt and clay-associated SOM was similar in all treatments. 
Sand-sized SOM in illuvial horizons showed signifi cant treat-
ment eff ects that followed the general pattern observed for total 
SOC (Table 1).

Th e C stock of the forest fl oor was signifi cantly higher in 
regenerating plots than in control (Fig. 3), despite the small de-
crease in C concentration (Table 1). Th is higher C stock corre-
sponded to a higher forest fl oor thickness (70% on average, Table 
1). Th e thickness of mineral horizons was not aff ected by treat-
ment. Consequently, C stocks followed the same general pattern 
as SOC concentration (Table 1). Total profi le stocks were 25% 
higher in cleared than in control plots (Fig. 3), but this diff erence 
was not statistically signifi cant. Th e proportion of total profi le 
SOC present in the forest fl oor was signifi cantly higher (p value 
= 0.01) in regenerating plots (45%) when compared to control 
sites (25%) (Fig. 3).

Total Nitrogen
Treatment eff ects on N concentration were similar to pat-

terns observed for SOC, but were not statistically signifi cant in 
any horizon (Table 1). Nitrogen stocks followed the same gen-
eral trend as SOC stocks. In regenerating stands, forest fl oor N 
stocks were 2.5 times higher than in control stands (Table 1). 
Nitrogen stocks in the E horizon were relatively constant. In illu-
vial horizons, soil N stocks were signifi cantly lower in regenerat-
ing than in cleared stands.

Indicators of Bulk Organic Matter Composition
Measured indicators of bulk SOM composition included 

the C/SOM, N/SOM, CECe/C, and C/N ratios. Th e C/SOM 
ratio of organic and illuvial horizons was signifi cantly lower in 
regenerating than in control or cleared plots. Th e N/SOM ra-
tio showed no signifi cant treatment trends in mineral horizons. 
In the forest fl oor, the N/SOM ratio was higher in regenerating 

plots than in control or cleared plots. Th e CECe/C ratio was sig-
nifi cantly higher in illuvial horizons of regenerating plots when 
compared to control or cleared plots (Table 1).

Th e forest fl oor of regenerating stands had a lower C/N 
ratio than control or cleared plots. In the eluvial horizon, both 
cleared and regenerating plots had a lower C/N ratio than con-
trol (Table 1). Treatment also aff ected the depth profi le of the 
C/N ratio (Fig. 4). In control plots, the C/N ratio narrowed 
rather smoothly with depth. In cleared plots, the C/N ratio was 
lower in the E horizon while lower horizons were largely unaf-
fected, causing the Bs1 horizon to have a higher C/N ratio than 
the overlying E. In regenerating plots, this trend was smoothed 
as C/N was slightly lower (although not signifi cantly so) in il-
luvial horizons. Th e relationship between SOC concentration 
and the C/N ratio was also diff erent between treatments (Fig. 
5). In control plots, there was no correlation between SOC and 
C/N, while a positive relationship was observed in cleared and 
regenerating plots.

Pyrophosphate-Extractable Metals
Table 1 shows the eff ects of treatment on the sum of Alp and 

Fep. Similar trends were observed for Alp and Fep individually 
(not shown). No signifi cant changes were observed in the forest 
fl oor. In the E horizon of regenerating stands, Alp and Fep were 
lower and the C/(Al+Fe)p ratio was higher than in control or 
cleared plots. In the illuvial horizons, Alp and Fep concentrations 
were higher in cleared plots than in control or regenerating plots. 
Th is trend matched the changes in SOC so that the C/(Al+Fe)p 
ratio remained essentially constant at ~5.

Principal Component Analysis
Treatment eff ects were summarized by plotting samples 

along PC axes. Table 2 shows the eigenvector coeffi  cients of the 
fi rst 3 PCs for mineral horizons. Eigenvector coeffi  cients are the 
values used to linearly combine the original variables into or-
thogonal PCs. A high eigenvector coeffi  cient signals that the as-
sociated original variable is an important part of the PC consid-
ered, and that the original variable correlates highly with the PC.

Th e fi rst 3 PC accounted for 77% of the total variance. Th e 
fi rst PC (PC1) is an index of organic matter content, as shown by 
its correlation with SOC, moisture, and organically-complexed 
Al and Fe. Th e third PC (PC3) is an index of organic matter 
“freshness” or “immaturity” and correlated positively with C/N 
and C/SOM ratios, and negatively with the CECe/C ratio. Th e 
interpretation of the second PC (PC2) is less obvious. PC2 cor-
related positively with the C/N ratio and the CECe/C ratio, but 
negatively with the C/SOM ratio. PC2 thus probably refl ects 
the fact that some of the processes controlling the C/N and C/
SOM ratios are diff erent. Th e C/SOM ratio is likely to be mostly 
infl uenced by the oxidation state of the organic matter, while the 
C/N ratio depends both on the extent of organic matter decom-
position and on the fate of the mineralized N. Th e PC2 and PC3 
represent similar amounts of variance (15 and 14%, respective-
ly), indicating that either are equally valid representations of the 
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Table 1. Mean ± standard error of the mean (SEM) of selected soil variables by soil layer and treatment. P values at the end of each 
row document the statistical signifi cance of treatment effect. Within each row, means followed by different letters are signifi cantly 
different at the α = 0.05 level.

Soil
property

Soil
layer

Treatment

p valueControl
n = 9

Cleared
n = 11

Regenerating
n = 7

Thickness†, cm Oe+Oa 6.3±0.7a 10.7±2.3b 11.7±1.6b 0.02
Mineral 87.3±6.3 74.5±5.8 80.3±10.9 0.41

SOC‡, % Oe+Oa 38.1±2.1 30.7±4.7 29.2±3.6 0.12

E 1.6±0.2 1.7±0.3 1.3±0.2 0.46

Bs-BCg 1.7±0.1a 2.3±0.2b 1.6±0.2a 0.03

N‡, % Oe+Oa 1.06±0.07 0.82±0.12 1.03±0.14 0.13

E 0.06±0.01 0.08±0.01 0.06±0.01 0.20

Bs-BCg 0.08±0.01 0.10±0.01 0.07±0.01 0.18

Clay-sized SOM§, % E 0.80±0.07 0.81±0.13 0.60±0.08 0.16
Bs-BCg 1.31±0.21 1.47±0.15 1.14±0.14 0.65

Silt-sized SOM§, % E 0.44±0.03 0.53±0.05 0.51±0.09 0.29
Bs-BCg 0.65±0.05 0.86±0.06 0.59±0.07 0.06

Sand-sized SOM§, % E 1.47±0.11 1.34±0.17 1.11±1.07 0.18
Bs-BCg 1.96±0.13a 2.47±0.18b 1.56±0.17c 0.004

C stock¶, kg m–2 Oe+Oa 3.6±0.5a 5.9±1.2ab 7.6±1.7b 0.05

E 1.1±0.2 1.0±0.2 1.1±0.3 0.89

Bs-BCg 11.1±1.2ab 13.1±1.1a 8.5±0.7b 0.01

profi le 15.9±1.3 20.0±1.5 17.2±1.8 0.21

N stock¶, kg m–2 Oe+Oa 0.10±0.01a 0.16±0.03a 0.25±0.04b 0.02

E 0.04±0.01 0.05±0.01 0.05±0.01 0.71

Bs-BCg 0.51±0.06ab 0.61±0.07a 0.42±0.04b 0.05

profi le 0.66±0.06 0.83±0.08 0.73±0.06 0.29

C/N# Oe+Oa 36.2±1.1a 37.8±4.5a 29.0±2.6b 0.05

E 29.3±2.4a 21.3±1.5b 21.7±2.3b 0.02

Bs-BCg 24.2±1.2 23.2±1.0 21.2±1.1 0.58

C/SOM, %†† Oe+Oa 53.0±1.2a 54.1±2.5a 47.9±1.6b 0.05

E 60.3±4.4 64.9±4.8 59.1±2.7 0.60

Bs-BCg 49.8±2.0a 50.6±1.8a 41.1±1.8b 0.02

N/SOM††, % Oe+Oa 1.48±0.05a 1.53±0.13a 1.81±0.10b 0.05

E 2.33±0.30 3.28±0.40 2.87±0.26 0.19

Bs-BCg 2.27±0.15 2.25±0.12 2.03±0.12 0.67

CECe/C‡‡ Oe+Oa 1.10±0.11 1.05±0.17 1.42±0.23 0.35

E 2.57±0.38 3.12±0.45 2.68±0.17 0.72

Bs-BCg 0.92±0.05a 0.90±0.09a 1.30±0.09b 0.005

Moisture§§ Oe+Oa 0.87±0.29a 1.21±0.33b 1.39±0.16b 0.01

E 0.10±0.05a 0.16±0.07b 0.13±0.03ab 0.05

Bs-BCg 0.13±0.01 0.19±0.01 0.13±0.01 0.09

(Al+Fe) p¶¶, g kg–1 Oe+Oa 3.0±1.5 3.4±0.8 4.6±2.2 0.54

E 1.1±0.3a 1.0±0.2a 0.5±0.1b 0.03

Bs-BCg 3.8±0.4a 5.0±0.4b 3.5±0.5a 0.02

C/(Al+Fe) p## Oe+Oa 253.9±44.7 162.8±50.1 142.0±57.2 0.35

E 18.8±2.9a 18.5±2.3a 26.6±1.9b 0.05
Bs-BCg 5.0±0.3 5.1±0.3 4.6±0.3 0.90

† Thickness of the organic (Oe+Oa) and mineral soil layers (E-BCg).
‡  Soil organic carbon and nitrogen concentration expressed as mass % in the organic (Oe+Oa), eluvial (E) and illuvial (Bs-BCg) horizons. 

Concentration in the illuvial horizon represents the arithmetic mean of Bs1, Bs2, and BCg horizons.
§ Clay, silt, and sand-sized organic matter concentration, expressed as mass percentage.
¶ Carbon and nitrogen stocks in different horizons and entire profi le (to 1-m depth) expressed in kg m–2.
# Carbon to nitrogen mass ratio.
†† Carbon and nitrogen concentration of soil organic matter, expressed as mass percentage.
‡‡ Ratio of sum of exchangeable cations (cmolc) to soil organic carbon (kg).
§§ Gravimetric moisture content expressed on oven-dried soil basis.
¶¶ Sum of organically-complexed (pyrophosphate extractable) iron and aluminum concentration (g kg–1).
## Mass ratio of carbon to organically-complexed iron and aluminum.
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range of the original variables. We chose to represent PC1 and 
PC3 as the x and y axes in the bivariate graph (Fig. 6). PC3 was 
preferred to PC2 on the y axis because PC3 is a more straightfor-
ward representation of the illustrated processes.

Samples from the Bs1 horizon were moderately clustered 
according to treatment (Fig. 6). We found similar results for the 
Bs2 and BCg horizons (not shown). Samples from cleared plots 
tended to score higher than control on PC1, an index of SOM 
content. Samples from regenerating plots were characterized by 
a low score on PC3, indicating low C/N and C/SOM ratios and 
a high CECe/C ratio.

DISCUSSION
The Chronosequence Approach

Th is study investigated forest harvest eff ects using the dis-
turbance chronosequence approach, where disturbed sites are 
compared to spatially distinct control sites. Th e basic assump-
tion of disturbance chronosequences is that the only diff erence 
between sites should be their disturbance regime, and that all 

other site properties should be similar (Dyck and Cole, 1994). 
In Roberts Creek we observed no altitudinal, longitudinal, or 
latitudinal gradients in any of the soil properties measured (test 
results not shown). Since all sampling sites exhibited reason-
able similarity in properties that are likely to aff ect the response 
variables, the chronosequence is expected to yield valid results 
(Pennock and van Kessel, 1997).

Th e statistical power of chronosequence methods is limited 
by the error term introduced in the experiment by spatial vari-
ability (Yanai et al., 2003). In Roberts Creek, within-plot vari-
ability was particularly high in the forest fl oor. Th e degree of 
replication was also low due to limitations in sampling and ana-
lytical resources as well as in the number of suitable study sites. 
Th is resulted in a high probability for Type II error (false nega-
tive) (Eberhardt and Th omas, 1991). Th is means that only large Fig. 2. Soil organic carbon (SOC) depth profi le in mineral horizons of 

control, cleared, and regenerating plots. Points represent SOC means 
± standard error of the mean (SEM).

Fig. 3. Average C stock in the soil profi les of control, cleared, and 
regenerating plots.

Fig. 4. The C/N variation in profi les of (a) control plots, (b) cleared 
plots, and (c) regenerating plots. Mean (thicker line) is shown with 
90% confi dence limits.
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treatement eff ects could be detected, commonly in the range of 
35 to 150% change.

Soil Organic Carbon
Soil organic C concentration in the mineral subsoil was sig-

nifi cantly higher in cleared plots relative to control. Th is increase 
was not likely due to mechanical mixing since physical profi le dis-
turbance was minimal. Mineral horizon boundaries showed no 
evidence of disruption and the C content of the overlying E hori-
zon was constant. A more likely explanation involves a temporary 
intensifi cation of organic matter illuviation immediately aft er 
harvest (Kalbitz et al., 2004; Morris, 2009; Snyder and Harter, 
1985). Th e importance of dissolved C transport was supported 
by the high correlation between SOC and Alp + Fep (r2 = 0.69, 
p < 0.0001) (Rasse et al., 2006). Decomposing roots may also 
contribute SOM to the subsoil.

Th e SOC concentration was similar in control and regen-
erating plots throughout the soil profi le, suggesting that SOC 
gains were not retained or that older C was metabolized. Th is is a 
surprising fi nding since spodic horizons are known to stabilize C 
by interaction with minerals and metals (Eusterhues et al., 2005; 

Kleber et al., 2005; Mikutta et al., 2006; Rasmussen et al., 2006; 
Scheel et al., 2007; Schmidt et al., 2000). Parfi tt (2009) noted 
that SOM generally interacts rather slowly with minerals while 
Buurman et al. (2007) suggested that mineral protection did not 
act on primary organic matter, so that fresh inputs of organic 
matter to the illuvial horizons are not necessarily stabilized.

In the mineral soil, most changes occurred in SOM associ-
ated with the sand fraction. Th is confi rms that sand-sized SOM 
is the most sensitive to changes in land management (Gregorich 
et al., 2006). Sand-sized SOM is not protected by interaction 
with minerals (Zinn et al., 2007) and is susceptible to decompo-
sition. In contrast, SOM associated with the silt and clay fraction 
was comparatively constant across treatments, suggesting that 
it contains mostly mineralogically, chemically, and biochemi-
cally stabilized SOC (von Lützow et al., 2007). Organic matter 
associated with the clay fraction showed the least relative varia-
tion, supporting the hypothesis that the clay fraction was satu-
rated with SOM (Gulde et al., 2008; Six et al., 2002). Th is is ex-
pected in soils with low clay content and few complexation sites 

Fig. 5. The C/N ratio as a function of soil organic carbon (SOC) in (a) 
the organic layer and (b) the mineral soil. The relationship between 
SOC and C/N ratio was similar in both cleared and regenerating plots 
(grouped under “harvested” for clarity).

Table 2. Eigenvectors of the fi rst 3 principal components 
(PC1–PC3) for mineral horizon analysis. The last line shows 
the percentage variance explained by each factor. The highest 
coeffi cients are in bold font.

Variables
PC1 PC2 PC3

SOM content SOM immaturity

SOC† 0.50 0.01 0.07
C/N‡ 0.09 0.63 0.76

C/SOM‡ 0.25 –0.48 0.30

Alp§ 0.49 0.17 –0.18

Fep§ 0.47 0.14 –0.22

Moisture¶ 0.41 0.08 –0.19

CECe:C# –0.21 0.57 –0.45
Variance explained 48% 15% 14%
† Soil organic carbon concentration.
‡ Carbon to nitrogen and carbon to soil organic matter ratios.
§ Pyrophosphate-extractable aluminum and iron.
¶ Gravimetric moisture content.
# Effective cation exchange capacity to carbon ratio.

Fig. 6. Distribution of control, cleared and regenerating samples 
along the fi rst (PC1) and third principal components (PC3) for the 
fi rst spodic horizon (Bs1).
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(Borchers and Perry, 1992). Th e C/(Al+Fe)p ratio also remained 
essentially constant at ~5. Th is constant and relatively narrow C/
metal ratio suggests that in the subsoil, metals are present in suf-
fi cient amounts for humus to reach its maximum metal sorptive 
capacity, and probably the maximum protection that can be af-
forded by metal complexation.

Variations in total profi le C stock were not statistically 
signifi cant, due in part to the diff erent behavior of organic and 
mineral layers. Forest fl oors of regenerating plots had a higher C 
stock than control plots, suggesting that the gradual conversion 
of living biomass into detrital pools and subsequent incorpora-
tion into the forest fl oor outweighed decomposition, leaching, 
and translocation losses. In control plots, the forest fl oor only 
accounted for a quarter of profi le SOC, suggesting tight nutri-
ent cycling with rates of loss through decay and transfer approxi-
mately equal to those of gain from biomass (Simonson, 1959). In 
regenerating stands, the forest fl oor accounted for almost half of 
profi le SOC. Organic matter in the forest fl oor is more suscep-
tible to degradation or mobilization due to the lack of protection 
by interaction with the mineral phase, and is more vulnerable to C 
losses following harvest than the mineral soil (Nave et al., 2010).

Total Nitrogen
Nitrogen stocks in the overall profi les of cleared and regen-

erating plots were not signifi cantly diff erent than in control. Th is 
contrasts with many studies of hardwood forests, which reported 
a signifi cant decrease in soil N content for 5 to 15 yr aft er clear-
cutting (Federer, 1984; Hendrickson et al., 1989). In the forest 
fl oor of regenerating plots, N stocks were higher than in control, 
likely due to inputs of detrital organic matter. In the mineral soil, 
retention of dissolved N by reactive mineral phases such as fer-
rihydrite and imogolite-type material, which are abundant in the 
subsoil (Grand and Lavkulich, 2008), may have prevented more 
signifi cant losses. Even though N stocks were largely conserved 
over the timeframe of the study (15 yr), subsoil N stocks were 
signifi cantly lower in regenerating than in cleared plots. Th is 
trend could extend into the future, which could exacerbate N 
limitation for regenerating forests (Hendrickson et al., 1989).

Since bulk density was estimated from depth and SOM 
concentration rather than being directly measured, the C and 
N stocks reported here are subject to some error. De Vos et al. 
(2005) reviewed the predictive quality of 12 models for bulk 
density estimation, and found that all models produced underes-
timates of fi eld bulk density. Underestimation error was up to 9 
to  36% (Boucneau et al., 1998; De Vos et al., 2005). Th e uncer-
tainty introduced by bulk density estimates is, however, expected 
to be moderate compared to the variability in coarse fragment 
content and C concentration (Holmes et al., 2012). Skid trails, 
tracks, and landings sites were avoided and soil compaction was 
not likely to be an important factor at sampled sites. Another 
source of uncertainty are coarse fragments, which were not ana-
lyzed for C content but have been shown to contain between <1 
and 25% of SOC (Zabowski et al., 2011). Th is suggests that the 
C and N stocks presented here may be conservative estimates. 

Carbon and N stock comparisons with other sites should there-
fore be considered with caution.

Organic Matter Composition
Indicators of Decomposition

Organic matter in regenerating plots generally had lower 
C/N and C/SOM ratios relative to control. Th is suggests in-
creased organic matter decomposition and maturation aft er har-
vest (Dai et al., 2001; Hannam et al., 2005; Kalbitz et al., 2004), 
with the C/N and C/SOM ratios decreasing as C is preferentially 
lost from SOM ( Johnson, 1995). In the forest fl oor, the N/SOM 
ratio was signifi cantly higher in regenerating than in cleared and 
control stands, which may indicate intense oxidation.

Several factors are likely to enhance organic matter decom-
position aft er disturbance (Spielvogel et al., 2006). Th e allevia-
tion of summer drought may contribute to higher decomposi-
tion rates (Niinistö et al., 2011). In Roberts Creek, we observed 
a higher soil moisture content in the topsoil of cleared plots rela-
tive to control during sampling in late summer, possibly due to a 
decrease in canopy interception and vegetation uptake (Bekele 
et al., 2007). In regenerating plots, forest fl oor moisture content 
remained higher than in control, perhaps refl ecting incomplete 
canopy closure. It should, however, be noted that these moisture 
measurements only represent one point in time and are not likely 
to be representative of year-round conditions. Soil temperature 
is also likely to increase aft er harvest as a result of increased so-
lar irradiation ( Johnson et al., 1985). Finally, fresh needles and 
early successional litter may have higher N content and be less 
recalcitrant than mature forest litter (Covington, 1981). In 
Roberts Creek, we observed active growth of fi reweed in cleared 
plots and a few N2-fi xing alders (Alnus rubra Bong.) in regen-
erating plots, which may contribute easily degradable organic 
matter to the soil (Bradley et al., 2001) and exert a priming ef-
fect on existing soil organic matter (Crow et al., 2009; Fontaine 
et al., 2007). Th ese conditions can stimulate microbial activity 
(Gabriel and Kellman, 2011). On the other hand, Prescott et 
al. (2000) reported that forest fl oor material lost mass at similar 
rates in forests and clearcuts, but pointed out that the response 
of decomposition to clear-cutting is highly variable and cannot 
be generalized.

Carbon and Nitrogen Relations
Th e C/N depth profi le diff ered markedly between treat-

ments. Th e C/N ratio decreased rather constantly with depth in 
control plots but showed sharp diff erences between horizons in 
cleared plots. Th is suggests that forest harvest disrupted a pre-
existing steady state of organic matter maturation. In the forest 
fl oor, the mean C/N value of cleared plots remained similar to 
control values while the variance was signifi cantly higher (p = 
0.02 by Levene’s test for homoskedasticity). We propose that 
this higher variance but constant mean could result from vary-
ing proportions of fresh organic matter inputs from logging slash 
and increased maturation of existing organic matter. In the E ho-
rizon, the C/N ratio was lower in cleared plots than in control, 
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suggesting that SOM in the top part of the profi le was rapidly 
aff ected by disturbance.

Treatment also aff ected the relationship between SOC 
concentration and the C/N ratio. In control plots, there was no 
relation between SOC and C/N, in accordance with the obser-
vation of Waksman (1924), who noted that soils tend to achieve 
a relatively stable C/N ratio over time. In cleared and regenerat-
ing plots however, there was a positive relationship. Th is corre-
sponds to a “nutrient dilution eff ect” (McGroddy et al., 2004), 
with SOC concentration increasing more rapidly than N con-
centration in organic-rich samples. On the other hand, samples 
low in SOM also had a low C/N ratio, consistently with the idea 
that decomposition reduces both the amount of organic matter 
and the C/N ratio. Th is suggests that forest harvest disrupted 
the steady-state relations observed in undisturbed plots (Chaer 
et al., 2009).

Implications
Th e soil C/N ratio generally shows an inverse relationship 

with net nitrifi cation, with a C/N ratio of 25 to 30 in the top-
soil generally considered to be a threshold below which net ni-
trifi cation and nitrate leaching may take place (Gundersen and 
Rasmussen, 1990; Gundersen et al., 1998). In control sites, the 
C/N ratio in the uppermost layers (Oe+Oa and E horizons) was 
high, suggesting that these soils were not actively nitrifying. In 
cleared and regenerating plots however, the C/N ratio in the E 
horizon averaged 21 (range 14–28). In the forest fl oor, regen-
erating plots had a signifi cantly lower C/N ratio than control, 
averaging 29 on average (range 24–42). Th is suggests that at least 
some of the profi les from cleared and regenerating plots may re-
lease nitrate (Hazlett et al., 2007). Acid soils generally have high 
N release rates because the N requirement of fungi tends to be lower 
than that of bacteria (Kooijman and Martinez-Hernandez, 2009).

Th e CECe/C ratio is an indicator of organic exchange site 
density, and was signifi cantly higher in illuvial horizons of regen-
erating plots compared to cleared and control stands. Th e pH 
was constant or slightly lower in cleared and regenerating plots 
than in control (data not shown), implying that much of the 
increase in the CECe/C ratio was due to actual changes in the 
character of SOM. Changes may include increased oxidation and 
increased density of oxygen-bearing functional groups such as 
carboxl and phenolic groups ( Johnson, 1995). A high CECe/C 
ratio denotes SOM of high maturity and sorptive capacity 
(Miralles et al., 2009) that may help retain nutrients on-site.

Integrated Effects of Forest Harvest
Th e principal component analysis showed that the main 

diff erence between control and cleared plots was the amount of 
SOC, while regenerating plots were characterized by a change in 
bulk organic matter composition. Th is suggests that the response 
to harvest includes two stages. Th e fi rst stage was characterized 
by SOM gains, probably resulting from the gradual assimilation 
of logging slash (Lee et al., 2002), increased translocation of 
dissolved C to mineral horizons (Rubino et al., 2010) and root 

decay. Th e second stage was characterized by SOM losses from 
the mineral soil and changes in bulk organic matter quality sug-
gesting the prevalence of mature SOM that is more oxidized and 
bears a larger number of functional groups.

Podzolization and Soil Organic Matter Dynamics
Because SOM translocation is one of the main soil-forming 

factors in Spodosols (Lundström et al., 2000; Petersen, 1976), 
observed changes in SOM dynamics were likely a product of the 
interaction between the land disturbance and podzolization pro-
cesses. Th e increase in SOC concentration in Bs-BCg horizons 
of cleared plots and concomittant increase in pyrophosphate-
extractable metals suggests that illuvial accumulation of SOM in 
the subsoil may have temporarity increased aft er harvest. Possible 
causes include an increase in eff ective precipitation and result-
ing increase in soil moisture, and the eff ect of large additions of 
fresh SOM to the litter layer as logging slash. Decomposition of 
the litter layer generates mobile low-molecular weight organic 
compounds involved in SOC and metal translocation to the 
subsoil (Buurman and Van Reeuwijk, 1984; De Coninck, 1980; 
Petersen, 1976).

Th e increased illuviation of SOC to the mineral subsoil af-
ter harvest may improve soil resilience to the biochemical eff ects 
of forest harvest (Strahm et al., 2009). In Roberts Creek, the 
translocation of dissolved C, Al, and Fe species to the subsoil and 
their subsequent precipitation is likely to have made a signifi cant 
contribution to the retention of SOM and associated nutrient 
retention capacity in profi les of cleared plots.

Th e abundance of logging slash thus appeared to be one 
of the key to the conservation of SOC stocks both in the forest 
fl oor and in the subsoil aft er harvest. Whole-tree harvesting is 
currently not a widespread forestry practice in British Columbia, 
but may receive growing consideration in the future as the de-
mand for biomass to produce bioenergy increases. By reducing 
the amounts of logging slash inputs, whole-tree harvesting is 
likely to decrease ecosystem resilience to the eff ects of logging.

CONCLUSIONS
We found that clearcut harvesting of coastal British 

Columbia Douglas fi r stands infl uenced SOM content, distribu-
tion, and bulk composition in underlying Spodosols. Our results 
suggest that the soils’ response to harvest included two stages. 
Th e fi rst stage was characterized by an increase in C stock in the 
forest fl oor and an increase in SOC concentration in the mineral 
subsoil, likely resulting from the gradual assimilation of logging 
slash, SOC illuviation, and root decay. Th e second stage was 
characterized by SOM losses from the mineral soil and changes 
in bulk organic matter quality suggesting an increased degree 
of decomposition. Th e sand-sized fraction recorded the largest 
variations in SOC concentration between treatments, while the 
clay fraction had a comparatively constant SOC concentration, 
suggesting that there was no net formation of new organo-min-
eral complexes and that new SOM inputs were not stabilized. 
Th e majority of the C stock was located in the mineral subsoil 
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and the overall variations of SOC storage between treatments 
followed changes in illuvial horizons. Studies of C dynamics in 
spodic soils should therefore take into account the entire thick-
ness of illuvial horizons. When considering the entire solum, for-
est harvesting was not accompanied by a signifi cant variation of 
SOC stocks up to 15 yr aft er cutting. Changes in the C/N depth 
profi le, correlation between SOC and C/N and partition of SOC be-
tween the forest fl oor and mineral soil however provided indications 
that the preexisting steady state between SOM inputs and decomposi-
tion had been disrupted. A study on the evolution of SOM amount 
and composition in plots harvested 15+ yr before sampling is needed 
to ascertain long-term eff ects of forest harvesting in these soils.
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