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Abstract

Polarization is a fundamental cellular property, which is essential for the func-

tion of numerous cell types. Over the past three to four decades, research using

the best-established yeast systems in cell biological research, Saccharomyces cere-

visiae (or budding yeast) and Schizosaccharomyces pombe (or fission yeast), has

brought to light fundamental principles governing the establishment and main-

tenance of a polarized, asymmetric state. These two organisms, though both

ascomycetes, are evolutionarily very distant and exhibit distinct shapes and

modes of growth. In this review, we compare and contrast the two systems.

We first highlight common cell polarization pathways, detailing the contribu-

tion of Rho GTPases, the cytoskeleton, membrane trafficking, lipids, and pro-

tein scaffolds. We then contrast the major differences between the two

organisms, describing their distinct strategies in growth site selection and

growth zone dimensions and compartmentalization, which may be the basis

for their distinct shapes.

Introduction

Cell polarization is a basic feature underlying the func-

tionality of virtually all cell types. It is thus not surprising

that the two most established yeast systems in cell biolog-

ical research, Saccharomyces cerevisiae (also known as

budding yeast) and Schizosaccharomyces pombe (or fission

yeast), have for a long time attracted the attention of

researchers as models to study this basic cell biological

question that is how cell asymmetry is established and

maintained. The stereotypical shapes of these yeasts have

facilitated the identification of a large number of mor-

phological mutants, which, thanks to the elaborate genetic

tools developed in these organisms, have led to an

ever-increasing understanding of cell polarization. Most

critically, the unicellularity and simplicity of these yeast

models have allowed experimental and modeling

approaches to start dissecting the fundamental principles

of symmetry breaking – the mechanisms by which cell

polarization can be initiated de novo.

The aim of this review is to provide an up-to-date

overview of our understanding of cell polarization, both

in budding and fission yeast, focusing our attention on

cell polarization during the mitotic growth cycle, that is,

intrinsic cell polarization in the absence of an external

cue. After a brief introduction into the two model sys-

tems, we describe in detail the common major polariza-

tion mechanisms used by both species, reviewing the role

of the cytoskeleton, membrane composition and fluxes,

small Rho-family G-proteins, scaffold proteins, and feed-

back loops in generating polarized states. In the final part

of the review, we then focus our attention on the differ-

ences between the two yeasts, which may underlie the

unique shape of each organism.

Saccharomyces cerevisiae and S. pombe
– a primer

Saccharomyces cerevisiae and S. pombe belong to the

largest fungal phylum, the ascomycetes, defined by the

presence of an ascus, a sac within which spores develop.

While the ascomycetes form a monophyletic group, S. ce-

revisiae and S. pombe are very divergent species within

this group: The archiascomycete lineage, which includes
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S. pombe, is estimated to have diverged from the rest of

the ascomycetes between 400 and 1200 million years ago

(Heckman et al., 2001; Taylor & Berbee, 2006), a diver-

gence roughly as large as that between humans and nem-

atodes (Heckman et al., 2001; Fig. 1a). Accordingly, the

two species diverged significantly in their shapes and phy-

siologies. The study of both systems thus reveals com-

monalities tracing back to the origins of the ascomycetes

and likely well beyond. It can also expose differences

reflecting the inherent diversification of cell biological

processes and guard against the danger of over-simplifica-

tion of one-model-fits-all approaches.

In the wild, S. cerevisiae is believed to exist mostly as a

diploid. Starvation induces meiosis and sporulation. Hap-

loid cells of opposite mating types mate upon encounter,

even as early as during spore germination. Saccharomyces

cerevisiae is found in vineyards, a habitat that led to its

major impact on human economy in brewing and wine-

making. Yeasts, important for these human activities,

were proposed to represent domesticated strains initially

derived from natural habitats such as trees exudates (Fay

& Benavides, 2005). In the laboratory, S. cerevisiae can be

easily maintained as either haploids or diploids. Each cell,

almost round at birth, grows by budding, placing its new

bud either next to the previous division site or at the

opposite cell pole, and dividing at the neck position

between the mother cell and daughter bud. During the

initial bud growth phase, the bud grows apically, extend-

ing in length (Fig. 1b). The cell then undergoes a growth

transition, where growth switches to an isotropic mode,

with growth being distributed throughout the bud, result-

ing in the spherical expansion of the bud.

By contrast, S. pombe is stable only as haploid. In this

species, starvation triggers mating between haploid cells

of opposite mating types, a process then directly coupled

to meiosis and sporulation for the production of stress-

resistant spores. The ecology of S. pombe remains largely

unknown: it was initially isolated from millet beer, and

more recently again from alcoholic beverages or culti-

vated fruits, but almost nothing is known about its natu-

ral niches, nor about its (good or bad) influence on the

fermentation of human drinks. Schizosaccharomyces pombe

cells are rod-shaped. They maintain a constant diameter,

grow in length by tip extension, and divide by medial fis-

sion. Fission yeast cells exhibit several polarity transitions

during their mitotic cycle: A new-born cell initially grows

at a single pole – the ‘old’ pole, which pre-existed before

cell division – and then initiates growth at the second

‘new’ cell pole in G2 phase (Fig. 1b). The process is

referred to as NETO, for New End Take-Off. At the end

Aspergillus nidulans

Schizosaccharomyces pombe

 Candida albicans

 Saccharomyces cerevisiae

Ashbya gossypii

Neurospora crassa

~ 400 million years

~ 275 million years

~ 150 million years

~ 175 million years

~ 85 million years

0.2 substitutions per site

(a)

(b)

Fig. 1. Phylogenetic relationship between

Schizosaccharomyces pombe and

Saccharomyces cerevisiae and sites of growth.

(a) Phylogenetic tree depicting the relationship

between the different species indicated,

adapted from Seiler and Justa-Schuch (2010).

The branch lengths represent number of

substitutions, and approximate divergence

time is indicated in blue. Tree construction is

described in Seiler and Justa-Schuch (2010).

(b) Location of growth sites during mitotic cell

division. Red arrows indicate the local addition

of new plasma membrane material (proteins,

lipids, and cell wall biosynthetic enzymes),

which alternates between single and multiple

sites in both yeasts. Green indicates bud

landmark.

FEMS Microbiol Rev 38 (2014) 228–253 ª 2013 Federation of European Microbiological Societies.
Published by John Wiley & Sons Ltd. All rights reserved

Cell polarization in yeasts 229



of G2, the cell stops growing, enters mitosis, and re-

directs its growth machinery toward building the septum

at the cell equator.

Mechanisms of cell polarization –
common principles

Small Rho G-proteins

Conserved Rho GTPases play a central role in cell polari-

zation. In 1990, S. cerevisiae cdc42 mutants were charac-

terized, which were unable to bud at the restrictive

temperature yet continued to grow (Adams et al., 1990;

Johnson & Pringle, 1990). The same year, yeast Cdc42

was shown to be a homolog of the mammalian GTP-

binding protein G25K, which is now referred to as mam-

malian Cdc42 (Munemitsu et al., 1990; Shinjo et al.,

1990). More recently, Cdc42 depletion was similarly

shown to produce large round unbudded cells (Gladfelter

et al., 2001). By contrast, in S. pombe, depletion of Cdc42

results in small, round, and dense cells (Miller &

Johnson, 1994). Thus, in the absence of Cdc42 function,

S. cerevisiae cells continue to grow in an unpolarized

fashion, whereas S. pombe cells do not appear to grow

substantially. A second small GTPase, Rho1, is essential

for viability in both S. cerevisiae and S. pombe. Inactiva-

tion of the Rho1 homolog in mammalian cells using Clos-

tridium botulinum exoenzyme C3, which ADP-ribosylates

RhoA, results in a loss of actin stress fibers and in cells

rounding up (Rubin et al., 1988; Chardin et al., 1989;

Paterson et al., 1990). A temperature-sensitive S. cerevisi-

ae rho1 mutant arrests growth with small buds at the

nonpermissive temperature (Yamochi et al., 1994), and a

fission yeast rho1 deletion mutant displays rounded cells

as terminal phenotype (Nakano et al., 1997). In both

budding and fission yeasts, Rho1 plays a critical role in

activating 1,3-beta-glucan synthase, which is a major

structural component of the cell wall (Arellano et al.,

1996; Drgonova et al., 1996; Qadota et al., 1996).

The regulation of these two Rho GTPases is critical for

organization of the cytoskeleton, control of exo-/endocy-

tosis, and cell wall remodeling in both S. cerevisiae and

S. pombe. In addition, Cdc42 is required for breaking

symmetry in spherical S. cerevisiae cells, via positive feed-

back mechanisms (Irazoqui et al., 2003; Wedlich-Soldner

et al., 2003, 2004); and in both spherical S. cerevisiae cells

and rod-shaped S. pombe cells, oscillations of Cdc42 have

been observed, suggesting the existence of negative feed-

back loops (Das et al., 2012b; Howell et al., 2012). This

dynamic behavior of Cdc42 may be a fundamental prop-

erty of the polarization process, despite the dramatic

differences in cell shape of these two fungi.

In both yeasts, Cdc42 activity is tightly regulated by

activators (guanine nucleotide exchange factors, or GEFs)

and inactivators (GTPase activating proteins, or GAPs,

and Rho-GDP dissociation inhibitors, or RDIs), which

dictate when, where, and how long this GTPase is active

(Fig. 2). In budding yeast, the Ras-like Rsr1 (Bud1)

GTPase, the scaffold protein Bem1, the GEF Cdc24, and

the RDI Rdi1 are all important for the correct localization

of activated Cdc42 (Park et al., 1997; Butty et al., 1998;

Bose et al., 2001; Butty et al., 2002; Park et al., 2002;

Irazoqui et al., 2003; Kozminski et al., 2003; Richman

et al., 2004; Wedlich-Soldner et al., 2004; Slaughter et al.,

2009; Kang et al., 2010). In the fission yeast, while the

Ras1 GTPase binds Scd1, a GEF for Cdc42, it has not

been demonstrated that this GTPase directly binds Cdc42

(Chang et al., 1994), as is the case in S. cerevisiae

Cdc42GDP GTP

GEF
•Cdc24

•Scd1/Gef1

GAP
•Rga1/2, Bem2

•Rga4

Cdc42

  Scaffold
•Bem1

•Scd2

Rdi

Formins 
•Bni1/Bnr1
•For3

PAKs 
•Ste20/Cla4
•Shk1/2

Exocyst 
Sec3 & Exo70

•Gic1/2

Actin/Microtubule/Septin
Cytoskeletons

Exocytosis
Endocytosis

Fig. 2. The Cdc42 GTPase – its main

interactions and cellular roles. Schematic

representation of Cdc42 GDP/GTP cycle and

interactions with downstream effectors. In

each case, the top name is the Saccharomyces

cerevisiae protein and the bottom one the

Schizosaccharomyces pombe protein. Purple

arrows represents interactions or inputs from

upstream regulators, such as Ras-like GTPases

(Rsr1 and/or Ras1), Boi1/2, or Pob1 proteins,

the GTPase-binding protein Gps1, DYRK-family

protein kinase Pom1 and the SH3 domain

containing Tea4 protein. Note that all proteins

represented interact with phosphatidylinositol

phosphates and/or phosphatidylserine, except

for Rdi and formins.
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(Kozminski et al., 2003; Kang et al., 2010). Cdc42 locali-

zation and activation further depend on the scaffold pro-

tein Scd2 (Bem1 homolog; Chang et al., 1994) and on a

second GEF Gef1 (Coll et al., 2003). Fission yeast also

encodes a predicted Cdc42 RDI. In both these yeasts, sev-

eral GAPs promote Cdc42 GTP hydrolysis, of which

Bem2, Bem3, Rga1 and Rga2 in S. cerevisiae (Knaus et al.,

2007; Sopko et al., 2007; Tong et al., 2007; Lo et al.,

2013), and Rga4 in S. pombe (Das et al., 2007; Tatebe

et al., 2008; Kelly & Nurse, 2011a) have been shown to

restrict the distribution of active Cdc42. Rho1 activity is

similarly controlled by a range of regulators. Several GEFs

(Rom1, Rom2, and Tus1 in S. cerevisiae and Rgf1, Rgf2,

and Rgf3 in S. pombe) activate Rho1, which then binds

1,3-beta-glucan synthase (Ozaki et al., 1996; Manning

et al., 1997; Schmidt et al., 1997; Schmelzle et al., 2002;

Tajadura et al., 2004; Mutoh et al., 2005; Garcia et al.,

2006, 2009; Krause et al., 2012). There are four Rho1

GAPs in S. cerevisiae and three in S. pombe, which are

involved in cell wall integrity and actin organization (Pet-

erson et al., 1994; Wang & Bretscher, 1995; Nakano et al.,

2001; Watanabe et al., 2001; Schmidt et al., 2002; Calonge

et al., 2003; Yang et al., 2003).

In their GTP-bound form, Cdc42 and Rho1 activate a

series of effectors to organize cell polarization (Fig. 2):

GTP-Cdc42 specifically binds CRIB-containing proteins

such as the PAK kinases (Ste20 and Cla4 in S. cerevisiae

and Shk1/Pak1 and Shk2/Pak2 in S. pombe) and Gic1/2,

which are only present in S. cerevisiae. In both yeasts,

active Rho1 specifically binds protein kinase C (Pkc1/2

and Pck1/2 in S. cerevisiae and S. pombe, respectively). In

addition, Cdc42, Rho1, and other Rho GTPases activate

actin nucleators of the formin family to promote the for-

mation of actin cables: Bni1 in S. cerevisiae is bound by

Rho1, Rho3, and Cdc42, with Rho1 and Cdc42 regulating

Bni1 indirectly through Pkc1 and Gic2, respectively

(Kohno et al., 1996; Evangelista et al., 1997; Robinson

et al., 1999; Dong et al., 2003; Chen et al., 2012); and For3

in S. pombe is bound by Rho3 and Cdc42 (Nakano et al.,

2002; Martin et al., 2007). These Rho-family GTPases also

bind the exocyst components Sec3 and Exo70 to promote

exocytosis (Guo et al., 2001; Zhang et al., 2001, 2008; Wu

et al., 2010a; Bendezu et al., 2012). These interactions of

activated Cdc42 and Rho1 GTPases with effectors

are critical for cell polarity via reorganization of the actin

cytoskeleton, secretion, and cell wall integrity and

remodeling.

These different interactions of Rho GTPases with their

activators and effectors constitute feedback loops, which

activate and concentrate polarity proteins to a specific site

that will become the site of new growth. For example,

active Cdc42 binds the PAK kinase Ste20, which binds

Bem1 (Scd2), itself in a complex with the GEF Cdc24

(Scd1), thus resulting in further local Cdc42 activation.

Thus, a stochastic increase in active Cdc42 can lead to a

dramatic increase in the active GTPase (Kozubowski

et al., 2008). In addition, actin-dependent vesicle-medi-

ated trafficking of Cdc42 has been proposed to play a role

in polarity establishment (Wedlich-Soldner et al., 2003,

2004), through Cdc42-activating formins, leading to the

nucleation and polymerization of additional actin cables,

thus reinforcing the delivery of Cdc42 and other mem-

brane components to this specific site. Both scaffold-

dependent and actin-dependent feedback mechanisms

have been proposed to be important for symmetry break-

ing, that is, the initiation of a new axis of polarity in the

absence of previous spatial cues. Together, these feedback

loops may be used to establish a robust polarization axis

(Freisinger et al., 2013).

However, the initial recruitment of Cdc42, Cdc24, and

Bem1 to the site of polarized growth does not require an

intact actin cytoskeleton (Ayscough et al., 1997; Nern &

Arkowitz, 1999; Irazoqui et al., 2003; Wedlich-Soldner

et al., 2004; Irazoqui et al., 2005; Yamamoto et al., 2010),

and modeling work taking into account vesicle mem-

branes suggested vesicle trafficking may perturb, rather

than reinforce, Cdc42 polarization (Layton et al., 2011).

By contrast, actin cables are important for maintaining

these proteins to established polarity sites (Wedlich-Sold-

ner et al., 2004; Irazoqui et al., 2005). To maintain a

localized zone of active Cdc42, retrieval of Cdc42 through

endocytosis and via Rdi-mediated membrane dissociation

may also prevent spreading of Cdc42 through lateral dif-

fusion (Irazoqui et al., 2005; Slaughter et al., 2009).

Observations in fission yeast cells suggest a possible simi-

lar role of the actin cytoskeleton for Cdc42 localization as

in S. cerevisiae, with active Cdc42 localizing correctly to

sites of polarized growth at cell poles in the absence of

actin cables, and complete disruption of the actin cyto-

skeleton promoting progressive displacement of active

Cdc42 from cell tip to cell sides within 30 min (Bendezu

& Martin, 2011). The actin cytoskeleton may however be

important for the localization of the Cdc42 GEF Scd1

(Kelly & Nurse, 2011a).

The cytoskeleton

In general, microtubule and actin cytoskeletons function

in delivery and removal of plasma membrane

components, whereas the septin cytoskeleton has a more

passive, barrier function, which may nonetheless recruit

endocytic sites (Stimpson et al., 2009; Fig. 3). In yeasts,

the actin cytoskeleton marks the locations of exocytosis

and endocytosis. By contrast, the microtubule cytoskele-

ton is not used as major vesicular transport route, but is

crucial for nuclear functions including nuclear migration
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and division in S. pombe and S. cerevisiae. In both organ-

isms, microtubules are important for nuclear positioning,

either via opposing pushing forces that center the nucleus

in fission yeast or via microtubule capture-shrinkage and

dynein motor movement, which generate pulling forces

in budding yeast (Tran et al., 2001; Pearson & Bloom,

2004; Piel & Tran, 2009; Winey & Bloom, 2012). How-

ever, a major difference between S. cerevisiae and S. pom-

be lies in the relative importance of the microtubule

cytoskeleton in polarized growth. In S. pombe, microtu-

bules play critical roles in marking cell poles for growth

by depositing landmarks, the Tea1 and Tea4 proteins, at

these locations (described in more details below). By con-

trast, microtubules are dispensable for cell polarization in

S. cerevisiae.

In contrast to the roles of microtubules, the actin cyto-

skeleton is critical for polarity in both budding and fission

yeast. With respect to cell polarity, there are two major

forms of F-actin, cables, and patches. Actin patches assem-

ble at sites of endocytosis, at the cell tips in S. pombe and

the bud tip in S. cerevisiae, whereas cables run along the

length of the cell serving as polarized tracks for delivery of

secretory vesicles and organelles. Both of these actin struc-

tures are highly dynamic in these yeasts with patches mov-

ing at a velocity of about 1 lm s�1 in S. cerevisiae (Yu

et al., 2011) and about 0.3 lm s�1 in S. pombe (Pelham &

Chang, 2001; Sirotkin et al., 2010) and cables moving with

a velocity of 0.3–0.4 lm s�1 in both species (Huckaba

et al., 2004; Martin & Chang, 2006). The lifetime of actin

patches can be divided into three phases: assembly at the

cortex with limited mobility, slow inward movement via

Arp2/3-dependent actin polymerization, and vesicles

pinching off the membrane associated with rapid move-

ments and loss of actin via depolymerization (Galletta &

Cooper, 2009; Berro et al., 2010; Lin et al., 2010; Sirotkin

et al., 2010). In unpolarized S. cerevisiae cells, actin cable

dynamics are dramatically increased (Yu et al., 2011). In

these two yeasts, the formins Bni1 and Bnr1 in S. cerevisiae,

and For3 in S. pombe, are required for actin cable assembly.

Type V myosins are the motors which mediate the move-

ment of vesicles and organelles on the actin cable tracks,

and these motors are also responsible for the translational

actin cable motility along the cell cortex in unpolarized

S. cerevisiae cells (Yu et al., 2011) and for the organization

of actin cables along cell length in S. pombe cells (Lo Presti

et al., 2012).

The contribution of each actin structure to polarized

growth varies between organisms and conditions. Overall,

in S. cerevisiae, actin cables are critical for polarized

growth, whereas polarized actin patches are less

important (Pruyne et al., 1998; Karpova et al., 2000).

However, budding yeast cells that lack formin or tropo-

myosin function, and thus lack actin cables, can still grow

in a polarized fashion to form small buds, which are

unable to enlarge further (Yamamoto et al., 2010). This

formin-independent polarized growth is then dependent

on actin patch components (Yamamoto et al., 2010).

Indeed, complete disruption of the actin cytoskeleton

results in isotropic growth in actively growing cells (Ays-

cough et al., 1997; Pruyne et al., 1998; Yamamoto et al.,

2010); however, this is not the case for the initiation of

polarized growth and bud emergence in quiescent cells,

which do not require polymerized actin (Sahin et al.,

2008). In S. pombe cells that lack the formin For3, actin

cables are absent and actin patches partly depolarized, yet

these cells exhibit only modest defect in polarized growth

(Feierbach & Chang, 2001). Even in a triple formin

mutant or a tropomyosin mutant, S. pombe cells can still

undergo polarized growth (Balasubramanian et al., 1992;

Bendezu & Martin, 2011).

Septins are GTP-binding proteins that polymerize to

form filaments and rings, which can function as protein

S.
 c

er
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e
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be
Actin SeptinMicrotubules

Fig. 3. The yeast cytoskeleton. Representative

fluorescence images of the microtubule, actin,

and septin cytoskeleton in

Schizosaccharomyces pombe and

Saccharomyces cerevisiae. Microtubules are

labeled by incorporation of GFP-tagged alpha-

tubulin monomer. F-actin is stained with

fluorescent phalloidin. Septins are tagged with

GFP (Spn1 in S. pombe, Cdc3 in S. cerevisiae).

The Spn1-GFP image is modified and

reproduced from Wu et al. (2010b), with

permission. The S. cerevisiae microtubule

image is a kind gift from Yu Haochen, ETH.
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scaffolds and also as barriers to diffusion, thereby defining

cellular compartments. Septins function primarily in cyto-

kinesis. In S. cerevisiae, septins are critical for maintaining

organelles, actin patches, proteins required for exocytosis,

and proteins required for cell polarity including Cdc42 to

the bud (Barral et al., 2000; Luedeke et al., 2005; Orlando

et al., 2011). This barrier function of septins is not required

for initial polarization of these components, but rather to

counterbalance lateral diffusion of membrane-associated

proteins (Orlando et al., 2011). Septin ring assembly

requires Cdc42 and specifically its GTP/GDP cycling (Glad-

felter et al., 2002; Caviston et al., 2003). Formin and PAK

are also required for initial septin ring assembly (Kadota

et al., 2004). Presently there is no indication that septins

are important for cell polarity in S. pombe, where septins

are instead important for sporulation and cell division

(Onishi et al., 2010; Wu et al., 2010b). Of these three cyto-

skeletal elements, it is the actin cytoskeleton that plays a

central role in the delivery and uptake of membrane mate-

rial, critical for polarized growth.

Exo-/Endo-cytosis

The flux of membrane material, integral membrane pro-

teins, and secreted proteins to and from the plasma mem-

brane is required for cell growth: The targeting and

maintenance of these processes to a specific site underlies

polarized growth. A number of mechanisms restrict the

regions of exocytosis to the incipient bud or cell tip and

position endocytosis to prevent dispersal of the exocytosis

site. Exocytosis is important for the delivery of mem-

brane-associated proteins necessary for polarized growth,

such as Rho G-proteins as well as the subsequent delivery

of cell wall-remodeling enzymes which are required for

bud or new end growth. It is important to note that in

walled organisms, such as yeasts, cell growth is driven by

turgor pressure, which provides the force for cell expan-

sion (Slaughter & Li, 2006; Minc et al., 2009a). Turgor

pressure is counterbalanced by the rigidity of the cell wall,

which is locally remodeled by enzymes delivered via

exocytosis allowing growth at polarized sites.

Vesicle-based transport of Cdc42 has been suggested to

be important for symmetry breaking in S. cerevisiae

(Wedlich-Soldner et al., 2003, 2004). How trafficking

contributes to Cdc42 polarization remains unclear, how-

ever, as modeling efforts have indicated that directed

membrane traffic, that is exocytosis, should result in

polarization of integral membrane proteins, but not

Cdc42, which diffuses more rapidly (Layton et al., 2011).

In this yeast, there are two exocytic pathways: one that

originates from the trans-Golgi network (TGN;

characterized by Bgl2-containing vesicles) and the other

that comes from the endosome (characterized by

invertase-containing vesicles); either one alone is suffi-

cient, and at least one required, for delivery of Cdc42 to

the bud (Orlando et al., 2011). The endocytic recycling

pathway may be sufficient for polarized growth both in

the early stages of bud formation in S. cerevisiae and at

all stages in S. pombe (Feierbach & Chang, 2001; Yamam-

oto et al., 2010; Bendezu & Martin, 2011; Orlando et al.,

2011). Specifically in these studies, formin and tropomyo-

sin mutants with no observable actin cables, yet with

actin patches, were still able to grow in a polarized fash-

ion. Even upon disruption of both actin cable and

patches, Cdc42 and other polarity regulators were still

observed in a tight cluster, which was, however, depen-

dent on myosin V (Yamamoto et al., 2010). Collectively

these studies point to the existence of actin cable-inde-

pendent transport, which requires the exocyst (Yamamoto

et al., 2010; Bendezu & Martin, 2011). It remains to be

seen whether these actin cable-independent transport

pathways are identical in the two yeasts.

When delivery of Cdc42 to the bud is somewhat defec-

tive, endocytosis plays a negative role depolarizing this

GTPase (Irazoqui et al., 2005; Orlando et al., 2011). It

has been further suggested that the rate of Cdc42 recy-

cling, through endocytosis or through Rdi-mediated

extraction from the membrane, is critical to maintain the

polarized distribution of Cdc42 and can be tuned to

define the size of the Cdc42 domain (Marco et al., 2007;

Slaughter et al., 2009). This suggests that a balance

between exo- and endocytosis is required for maintenance

of a polarized site. A key question has been whether

endocytosis and exocytosis occur at the same site on the

plasma membrane or whether these two processes are

segregated. Two recent studies reveal that indeed sites of

endocytosis and exocytosis are distinct with exocytic sites

being surrounded or corralled by a region of endocytosis

(Jose et al., 2013; Slaughter et al., 2013). Such a mecha-

nism of fencing or corralling would not only restrict and

focus exocytosis, but also create microdomains at the site

of polarization with different physical characteristics

(Slaughter et al., 2013). In S. pombe, endocytosis and exo-

cytosis are localized to the cell ends, and it remains to be

seen whether these processes are physically segregated and

whether their spatial organization plays a role in polarized

growth.

Defining the specific locations of exocytosis and

endocytosis is fundamentally important for polarized

growth. In addition, restricting the location of where

new membrane material is delivered and existing mem-

brane material is recovered is critical for growth of

defined geometries. A major challenge is to overcome

diffusion in the plane of the membrane, which is in

part dictated by the physical characteristics of the

plasma membrane.
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Membrane lipids

The major lipids in S. cerevisiae and S. pombe are glycero-

phospholipids, sphingolipids, and sterols. In these yeasts,

glycerophospholipids are comprised of phosphatidylserine,

phosphatidylethanolamine, phosphatidylinositol (PI) and

its phosphorylated derivatives, phosphatidic acid (PA),

and phosphatidylcholine (van der Rest et al., 1995; Shui

et al., 2010). In S. cerevisiae, there are three main complex

sphingolipids – inositol phosphate ceramide, mannosyl-

inositolphosphate-ceramide (MIPC), and mannosyl-

diinositolphosphate-ceramide (M[IP]2C) – whereas in

S. pombe, this latter complex sphingolipid and the enzyme

necessary for its synthesis has not been detected (Nakase

et al., 2010). Ergosterol is the major sterol in these two

yeasts.

Interestingly, in budding yeast, phosphatidylinositols

and phosphatidylserine levels peak upon bud emergence

(Cottrell et al., 1981), suggesting that these two phospho-

lipids function in polarized growth. Schizosaccharomyces

pombe cells which lack phosphatidylserine synthase are

morphologically abnormal with bent, bulbous branched

and ovoid morphologies, suggesting that phosphatidylser-

ine is required for polarized growth (Matsuo et al., 2007).

In addition, these cells have cytokinesis defects and the

actin cytoskeleton is severely perturbed. In S. cerevisiae,

phosphatidylserine is required for the endocytosis of the

integral membrane protein Arn1 (Guo et al., 2010) and the

polarized distribution of endocytic actin patches to small

buds (Sun & Drubin, 2012). Phosphatidylserine is primar-

ily found on the inner leaflet of the plasma membrane, and

its distribution is highly polarized in S. cerevisiae with an

accumulation at the bud and bud neck plasma membrane

(Fairn et al., 2011). Furthermore, phosphatidylserine colo-

calizes with Cdc42 (Slaughter et al., 2013) and phosphati-

dylserine is required for the polarized localization of Cdc42

and Bem1 to the small buds (Fairn et al., 2011). It is

thought that the increased negative charge of phosphatidyl-

serine-containing membrane domains stabilizes Cdc42 at

the membrane via its polybasic C-terminal regions (Das

et al., 2012a). It will be interesting to know whether modu-

lation of the cell tip plasma membrane negative charges in

S. pombe is critical for polarized growth.

Phosphatidylethanolamine is thought to be localized to

the inner leaflet of the plasma membrane; however, this

lipid has also been shown to be exposed on the outer

leaflet of the plasma membrane localizing specifically to

the sites of polarized growth that is the presumptive bud

site, the cortex of the emerging small bud cortex and the

bud neck large-budded cells in S. cerevisiae, and one end

or both ends as well as at the division plane in S. pombe

(Iwamoto et al., 2004). Furthermore, S. pombe cells that

are mutant in phosphatidylethanolamine synthesis have

dramatic morphological defects (Luo et al., 2009), sug-

gesting that this lipid is critical for polarized growth. In

S. cerevisiae, phospholipid flippase mutants (Lem3, which

flips phosphatidylethanolamine from the outer leaflet to

the inner leaflet), active Cdc42, remain at the growth site,

resulting in hyperpolarized growth (Saito et al., 2007). If

the flipping of phosphatidylethanolamine from the outer

leaflet to the inner leaflet is blocked, this disrupts guanine

nucleotide dissociation inhibitor-dependent dissociation

of Cdc42 from the polarized growth site (Das et al.,

2012a). It has been proposed that the flipping of phos-

phatidylethanolamine to the inner leaflet may reduce the

overall negative charge of the bud plasma membrane

(predominantly from phosphatidylserine at the growth

site), which is likely to reduce the interaction of the C-

terminal polybasic region of Cdc42 with inner leaflet.

Homlogs of these flippases exist in S. pombe; however,

their roles in polarized growth have not been examined.

In both S. cerevisiae and S. pombe, PI(4,5)P2 is required

for cell growth and actin cytoskeleton organization, as well

cell division (Desrivieres et al., 1998; Homma et al., 1998;

Zhang et al., 2000). PI(4,5)P2 is important for both endo-

cytosis and exocytosis (He et al., 2007; Sun et al., 2007;

Zhang et al., 2008; Yakir-Tamang & Gerst, 2009; Bendezu

& Martin, 2011; Sun & Drubin, 2012). This lipid has been

shown to bind two exocyst subunits and septins as well as

recruit a Rho1 GEF, PAK, and a Cdc42 effector (Audhya &

Emr, 2002; He et al., 2007; Orlando et al., 2008; Takahashi

& Pryciak, 2008; Zhang et al., 2008; Bertin et al., 2010). In

budding yeast, PI(4,5)P2 is enriched at sites of polarized

growth including the bud, bud neck, and at the site of cell

division during cytokinesis (Garrenton et al., 2010; Guillas

et al., 2013) and at the site of cell division in fission yeast

(Zhang et al., 2000). It has been proposed that PI(4,5)P2 is

generated by the exocytic delivery of phosphatidylinositol

to the plasma membrane and that this results in the activa-

tion of Cdc42 and regulation of the actin cytoskeleton

(Yakir-Tamang & Gerst, 2009).

Sterols and sphingolipids have structural roles in the

membrane, being important for permeability and fluidity

(Hannich et al., 2011). In S. cerevisiae, sterol and sphin-

golipid mutants exhibit defects in endocytosis (Munn

et al., 1999; Zanolari et al., 2000; Friant et al., 2001; He-

ese-Peck et al., 2002). Furthermore, two proteins involved

in ergosterol biosynthesis, Erg4 and Ncp1, are important

for cell polarity as erg4 and ncp1 deletion mutants have

defects in bud morphology and bud site selection (Tiedje

et al., 2007). Interestingly, S. pombe ergosterol mutants

appear to not be affected in endocytosis and have normal

morphologies (Iwaki et al., 2008); however, the sphingo-

lipid component MIPC is required for normal cell mor-

phology, with mutants exhibiting pear or round shapes

and defects in endocytosis (Nakase et al., 2010). In these
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two yeasts, sterol distribution has been investigated using

the fluorescent sterol-binding compound filipin, yet sterol

binding by filipin is dependent on the membrane compo-

sition, and hence, caution is required when using this ste-

rol reporter (Jin et al., 2008; Hannich et al., 2011). In

S. cerevisiae, filipin distribution is essentially uniform at

the plasma membrane in budding cells (Bagnat &

Simons, 2002; Beh & Rine, 2004; Malathi et al., 2004). In

fission yeast, filipin is enriched at the cell tip plasma

membrane and the site of cytokinesis (Wachtler et al.,

2003; Takeda et al., 2004). In yeasts, sphingolipids and

ergosterol are enriched in specific membrane domains,

which have been referred to as rafts or distinct domains

(Takeda & Chang, 2005; Mollinedo, 2012; Spira et al.,

2012). The role of such domains in polarized growth,

however, remains to be established. Very recently polarity

factors including Tea proteins and Mod5 in S. pombe and

Kel1 and the scaffold protein Spa2 in S. cerevisiae have

been observed in distinct 50- to 100-nm clusters at the

cell cortex (Dodgson et al., 2013) yet the connection

between these structures and plasma membrane lipids is

an open question.

In budding yeast, while the septin ring functions as a dif-

fusion barrier dramatically reducing diffusion into the

mother cell, endocytic cycling is also important for efficient

polarization of membrane-associated proteins (Valdez-

Taubas & Pelham, 2003). In such a mechanism, mem-

brane-associated proteins are polarized as long as they are

endocytosed before they diffuse to equilibrium. This mech-

anism, which depends on slow membrane diffusion cou-

pled with endocytosis, may function in cells without ‘neck’

diffusion barriers such as in S. pombe. Ergosterol appears

to be required for slow diffusion in the S. cerevisiae plasma

membrane (Valdez-Taubas & Pelham, 2003).

Scaffold proteins

Scaffold proteins are modular domain proteins that bring

together two or more additional proteins, which facilitate

the coordination and integration of different processes or

signals as well as increase local concentrations of signaling

proteins. Bem1 (Scd2) is the quintessential scaffold protein

as it has been shown to bind the Rho GTPase Cdc42, PAK

which binds activated Cdc42, the GEF Cdc24 (Scd1) as well

phosphoinositides (Chang et al., 1994; Leeuw et al., 1995;

Bose et al., 2001; Endo et al., 2003; Irazoqui et al., 2003;

Wheatley & Rittinger, 2005; Winters & Pryciak, 2005). In

addition, Bem1 can bind Boi1/2 (Pob1), which is itself a

scaffold protein (Bender et al., 1996; Matsui et al., 1996).

In S. cerevisiae, Cdc42-dependent symmetry breaking does

not require the cytoskeleton; however, Bem1 is essential

(Irazoqui et al., 2003). It is thought that local fluctuations

in the levels of activated Cdc42 result in the recruitment of

Bem1 via interaction with the bound PAK. This also brings

the Cdc42 activator Cdc24, which facilitates the activation

of inactive Cdc42, in the proximity, resulting in a feedback

amplification loop. Hence, the critical function of Bem1 is

to bring the PAK and GEF together. Indeed, it was shown

that the requirement for Bem1 during symmetry breaking

can be bypassed by fusing the GEF and PAK (Kozubowski

et al., 2008). Importantly, these experiments were carried

out in cells lacking the Ras-like GTPase Rsr1, which is nor-

mally present and also binds Bem1, Cdc42, and Cdc24

(Park et al., 1997; Kang et al., 2010) and, as we discuss

below, likely also contributes to Cdc42 activation. In fission

yeast, Ras1 has a clear role in Cdc42 activation, but no

direct interaction has been observed between Ras1 and

Scd2. It is also less clear in fission yeast whether Bem1/

Scd2 has a strict scaffold function: In scd2Δ cells, which

display a very wide growth zone, Scd1 fails to localize to

cell tips, but active Cdc42 is nonetheless observed at the

cell tip, however, over a wider zone (Kelly & Nurse,

2011a). The width of scd2Δ cells can be restored to wild-

type dimensions by targeting Scd1 to the cell tips using

N-terminal tip targeting domain of the formin For3, sug-

gesting that the GEF–PAK interaction per se is not critical

for polarized growth in this yeast. One possibility is that

the function of Bem1 in S. cerevisiae to bring together the

PAK and GEF may be critical only for symmetry breaking,

but not for maintenance of a polarized growth state. The

function of scaffold proteins in cell polarity is likely to

require their role in feedback loops, which serve to increase

small differences in protein distribution or activity.

A second example of a scaffold protein is the Boi1/2 or

Pob1 protein, which contains an amino-terminal SH3

domain, a SAM (sterile alpha motif) protein interaction

domain, a central proline-rich region, and a carboxy-ter-

minal PH domain (Bender et al., 1996; Matsui et al.,

1996; Toya et al., 1999). Boi1/2 or Pob1 proteins have

been shown to bind Bem1 (via their proline-rich region),

the GTP-bound form of Cdc42 (via their PH domain),

and a formin (via their SAM domain; Bender et al., 1996;

Matsui et al., 1996; McCusker et al., 2007; Rincon et al.,

2009). The PH domain of this protein also binds the

acidic phospholipids PI(4,5)P2 and phosphatidylserine

(Hallett et al., 2002). In S. cerevisiae, Boi1/2 are phos-

phorylated by Cdk and associate with the Cdc42 GEF

Cdc24 (McCusker et al., 2007). While interaction with

formins has not been observed in S. cerevisiae, in fission

yeast, Pob1 is critical for localization of For3 as well as

the exocyst (Rincon et al., 2009; Nakano et al., 2011).

Whether Boi1/2 or Pob1 binds these different proteins

simultaneously or sequentially remains to be addressed.

A major function of this protein may be to increase the

local concentration of the Bem1 scaffold protein thereby

promoting signal amplification.
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Feedback loops

A feedback loop is a circuit in which information

passes from the output back to the input, that is, fed

back into itself. Both positive and negative feedback

loops have been shown to be involved in cell polariza-

tion. In positive feedback loops, signals are typically

self-reinforcing, hence grow larger, and are amplified or

enhanced over time. Negative feedback loops, in con-

trast, tend to dampen or buffer changes, frequently

resulting in an oscillation around a particular value in

a self-regulating fashion. Positive feedback loops in cell

polarization can be divided into those that are cytoskel-

eton dependent and those that appear to function

independently of the cytoskeleton. The classical cytoskel-

eton-dependent feedback loop involves targeting of cell

polarity proteins via the cytoskeleton (such as Tea1/4

proteins via microtubules or Cdc42 via actin-mediated

vesicle transport) to a particular location on the plasma

membrane, which then leads to nucleation or stabiliza-

tion of the cytoskeleton and increased delivery or tar-

geting of the cell polarity proteins. In S. cerevisiae, such

an actin-dependent feedback loop for Cdc42 polariza-

tion (Wedlich-Soldner et al., 2003, 2004) is not required

for symmetry breaking (which occurs in the absence of

F-actin) (Irazoqui et al., 2003), but given the impor-

tance of the actin cytoskeleton in polarized growth, it is

likely to contribute to bud formation in wild-type cells.

Similarly, in S. pombe, the delivery of the landmark

Tea1 via microtubule ends may promote the targeting

of microtubules to cell poles resulting in further Tea 1

delivery to the cell end (Mata & Nurse, 1997). In fis-

sion yeast, a further positive feedback loop between cell

shape and the cytoskeleton is well established, in which

cell shape leads to microtubule reorganization, which

then results in repositioning the polarisome and ulti-

mately new cell growth (Terenna et al., 2008; Minc

et al., 2009a, b). These feedback loops in both budding

and fission yeast rely on the polymeric and dynamic

properties of the cytoskeleton, which facilitates targeting

or delivery of critical components over relatively long

distances.

Cytoskeleton-independent feedback loops act by a

Turing reaction-diffusion mechanism. In these feedback

loops, an activated protein recruits its activator further

increasing the levels of the activated protein. This pro-

cess is limited by diffusion, which results in substrate

depletion, as this process occurs at membrane surface.

Such feedback loops have been shown to underlie pat-

tern formation in different organisms (Meinhardt &

Gierer, 1974). This type of positive feedback loop

functions with activated Cdc42, Bem1, and Cdc24

(Butty et al., 2002) in S. cerevisiae symmetry breaking

(Irazoqui et al., 2003; Goryachev & Pokhilko, 2008; Ko-

zubowski et al., 2008). In S. pombe, an analogous feed-

back loop has been suggested between Tea1 and its

prenylated tether Mod5, in which cell tip-localized

Mod5 facilitates the anchoring of Tea1 (delivered via

microtubules) and conversely Tea1 at the cell tips

restricts the diffusion of Mod5 (Snaith & Sawin, 2003;

Snaith et al., 2005). The molecular details of these inter-

actions, however, remain to be elucidated.

In contrast to positive feedback loops, which serve to

amplify small signals, negative feedback loops lead to

adaptive behavior and, in general, promote stability of

the system. The molecular details of negative feedback

loops in fission and budding yeast, however, are less clear.

This type of feedback loop is characterized by oscillatory

behavior such as the oscillation of Cdc42 in these yeasts

(Das et al., 2012b; Howell et al., 2012). Negative feedback

could be mediated via G-protein GAPs and may or may

not require the cytoskeleton (Ozbudak et al., 2005; Das

et al., 2012b; Howell et al., 2012; Lo et al., 2013). It is

also possible that site-specific endocytosis or dilution of

polarity factors by exocytosis in a Cdc42-dependent fash-

ion may constitute part of a negative feedback loop.

Modeling has revealed that negative feedback decreases

the sensitivity of the system to the concentration of polar-

ity factors (Howell et al., 2012). This robustness conferred

by negative feedback loops may be important in systems

where the levels of polarity factors, such as Cdc42, are

limiting and thus are likely to exhibit substantial varia-

tions from cell to cell.

Generating distinct cells shapes

The shapes and modes of division of S. cerevisiae and

S. pombe are obviously very distinct. With the many com-

monalities between the major polarization mechanisms

described above, how are these specific shapes generated?

To answer this question, it is necessary to delineate the

main differences between the shapes of S. cerevisiae and

S. pombe. At least two major differences can be defined in

(1) the positioning of growth sites and (2) the dimen-

sions and compartmentalization of the growth zone.

Below, we review the distinct strategies used by the two

yeasts in generating these differences.

Positioning of growth sites

Saccharomyces cerevisiae and S. pombe cells place their

growth sites at distinct locations (Fig. 4a): S. pombe

marks its poles as sites of growth, using both the ‘old’

end (the one that existed before the last division) and the

‘new’ end (the one created at division). By contrast, S. ce-

revisiae avoids the previous division site and instead
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places its incipient bud site adjacent to it, or in the case

of diploid cells at either cell pole. In both organisms, this

is achieved through the use of landmarks, which serve to

harness the polarization apparatus and place it at appro-

priate location. In the absence of the landmark(s), the cell

retains the ability to polarize growth, but does so at a

random location.

One interesting difference between the two yeasts is

that in one case, the division site is used as new growth

site (S. pombe), while in the second (S. cerevisiae), active

mechanisms prevent the use of that site. Indeed, the

formation of the daughter bud at the site of division

causes cell lethality. This is prevented in S. cerevisiae by

spatially and temporally inhibiting the activation of

Cdc42 at the bud neck thereby restricting active Cdc42

outside the bud neck region. This is accomplished by

the additive actions of a Cdc42 GAP Rga1 and a

GTPase-binding protein Gps1, which both localize

within the bud neck (Tong et al., 2007; Lo et al., 2013;

Meitinger et al., 2013).

Growth site selection in fission yeast

The mode of growth of fission yeast cells ensures that

newborn daughters inherit their rod shape from their

mother. During vegetative growth, fission yeast cells thus

maintain their shape and do not need to establish it de

novo. Thus, although growth sites have to be re-estab-

lished after division, this occurs at geometrically defined

cellular regions, the cell poles. Symmetry breaking can,

however, occur under artificial situations, for instance

upon cell wall re-assembly from spheroplasts (cells from

which the cell wall has been digested), or in other life

stages, such as during mating when cells position a new

site of growth toward a partner cell, or during spore ger-

mination when a growth pole is created from a spherical

spore. Where this has been studied, the Cdc42 machinery

has been shown to play a central role (Kelly & Nurse,

2011b; Bendezu & Martin, 2013), but mechanisms for

growth site selection are unknown. We thus focus below

on the mechanisms in place during vegetative growth.

Apical growth Isotropic growthMonopolar growth Bipolar growth

S. cerevisiae

Septins

Rsr1/Bud1

Cdc42

Rax1, Rax2
Bud8, Bud9

Bud4, Bud3
Axl1, Axl2

Haploid Diploid

Axial pattern Bipolar pattern
Rga1
Gps1

S. pombe

Tea4, Tea1

For3

Dis2

Pom1

Rga4

Cdc42

Mod5

Microtubules

Scd1; Gef1 Cdc24

(a)

(b)

Fig. 4. Distinct placement and sizes of growth

zones in Schizosaccharomyces pombe and

Saccharomyces cerevisiae. (a) Schematic

representation of the position of new growth

after cell division, from both cell poles in

S. pombe, including the new pole formed by

division, adjacent to the bud scar in haploid

S. cerevisiae and at the opposite pole in

diploid S. cerevisiae. The main molecular

players are indicated. Please see text for

details. (b) Illustration of the dimensions of the

growth zones, which remains constant at one

and then both cell ends in S. pombe. In

S. cerevisiae, the growth zone is initially

constant at the bud tip and then enlarges at

the isotropic switch.
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In the case of fission yeast, the microtubule cytoskele-

ton plays a fundamental role in positioning landmarks

and sites of growth (Fig. 4a). Microtubules are organized

in a few antiparallel bundles, nucleated around the

nucleus in the middle of the cell, and extending dynamic

plus ends toward both cell poles. This microtubule distri-

bution is achieved through self-organization, relying both

on a limited number of microtubule-associated proteins

(Sawin & Tran, 2006) and on the shape of the cell, which

serves as a guide to promote the alignment of microtu-

bules along the long cell axis (Terenna et al., 2008; Minc

et al., 2009b). That microtubules are necessary and

instructive for polarized growth has been demonstrated

by loss-of-function experiments and physical manipula-

tion of cell shape. Studies using pharmacological treat-

ment or mutations to depolymerize microtubules have

shown that cells lacking microtubules do not precisely

position their growth site at cell poles and upon growth

re-initiation often grow from ectopic sites (Umesono

et al., 1983; Sawin & Nurse, 1998; Sawin & Snaith, 2004).

Furthermore, physical bending of wild-type cells in

micro-chambers resulted in microtubules touching cell

sides, which was sufficient to promote polarized growth

at this location (Terenna et al., 2008; Minc et al., 2009b).

As microtubules use the existing cell shape to target cell

poles and are instructive to mark these as sites of growth,

they form part of a positive feedback system ensuring the

robustness of the fission yeast rod shape.

Microtubules transport on their plus ends a complex of

two landmarks, Tea1 and Tea4, which are deposited at

the cell poles upon microtubule contact (Mata & Nurse,

1997; Feierbach et al., 2004; Martin et al., 2005; Tatebe

et al., 2005). Both landmark proteins are thought to act

primarily as a protein–protein interaction platform

(Fig. 4a): Tea1 consists of kelch repeats and coiled coils,

which mediate interaction with the microtubule plus end

and the plasma membrane (Martin et al., 2005; Snaith

et al., 2005); Tea4 contains an SH3 domain and an RVxF

motif for PP1 (Protein Phosphatase 1) binding (Alvarez-

Tabares et al., 2007) and is thought to link with down-

stream effectors. Microtubule plus end binding occurs

through interaction of Tea1 with the CLIP-170 Tip1

(Martin et al., 2005), itself localized to the microtubule

plus end through the actions of the kinesin Tea2 and the

EB1 protein Mal3 (Busch & Brunner, 2004; Busch et al.,

2004; Bieling et al., 2007). How the transfer of Tea1–Tea4
from the microtubule end to the cell pole occurs remains

unclear, but Mod5, a prenylated Tea1-binding partner, is

an important player. Mod5 is required for the accumula-

tion of Tea1 at the cell pole, especially in the absence of

microtubule delivery (Snaith & Sawin, 2003). Recent

modeling work proposed that Mod5 plays not simply a

stoichiometric anchor function, but rather a catalytic role

to promote the formation of a stable Tea1 network at the

cell poles (Bicho et al., 2010). Bipolar Tea1 localization

also depends on Tea3, a Tea1-like protein, and Tea4

itself, both proteins playing a more modest (and poorly

understood) role (Arellano et al., 2002; Snaith & Sawin,

2003; Martin et al., 2005). As Mod5 enrichment at the

cell poles likewise depends on Tea1 (Snaith & Sawin,

2003), these proteins are also part of a self-amplifying

loop to focus cell polarization.

Similar to microtubule disruption, tea1Δ or tea4Δ cells

are curved and, upon growth re-initiation, form T-shapes

(Mata & Nurse, 1997; Martin et al., 2005; Tatebe et al.,

2005). They also fail to undergo NETO, growing instead

in a monopolar manner throughout interphase. How

these landmarks may recruit the growth machinery, and

in particular the Cdc42 module, remains a mystery, but

Tea4 is sufficient to promote Cdc42 activation when

ectopically localized to cell sides (K. Kokkoris and

S.G.M., unpublished data). Several connections between

the landmark and the polarization machinery have been

proposed. First, Tea4 directly binds the formin For3,

which assembles an array of actin cables from cell poles

(Martin et al., 2005). This interaction was proposed to be

central for the initiation of growth at the second cell pole,

by allowing the recruitment of the formin to the second

cell end for NETO. In support of this idea, forced bipolar

localization of For3 promotes bipolar cell growth. How-

ever, as For3 is strictly required neither for polarized

growth, nor for bipolar growth, nor for the Tea4-medi-

ated growth at ectopic sites (Feierbach & Chang, 2001; K.

Kokkoris and S.G.M., unpublished data), it is likely that

the Tea4–For3 connection is only one part of the story.

Second, Tea4 acts as a type 1 phosphatase co-factor: It is

required for the localization at cell poles of the PP1 Dis2,

which it binds via both its SH3 domain and RVxF motif

(Alvarez-Tabares et al., 2007; Hachet et al., 2011). Muta-

tion of this motif abolishes PP1 binding and localization,

leading to cell polarization defects (Alvarez-Tabares et al.,

2007). One critical role of the Tea4-Dis2 phosphatase com-

plex is to localize at cell poles the DYRK-family protein

kinase Pom1 (Hachet et al., 2011). Tea4 binds Pom1

directly and brings it in proximity of the PP1 Dis2, which

dephosphorylates the kinase, thereby revealing a region

with phospholipid-binding affinity that allows Pom1 to

bind the plasma membrane. As it diffuses at the plasma

membrane, Pom1 autophosphorylates, thus reducing its

lipid-binding affinity. Therefore, at the plasma membrane,

Pom1 forms concentration gradients from cell poles (Padte

et al., 2006; Hachet et al., 2011). These provide temporal

and positional information for cell division: (1) Pom1

delays CDK1 activation and mitotic entry through negative

regulation of Cdr2, a medially placed mitotic inducer. This

mechanism was proposed to couple cell length with the cell
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cycle, delaying division until a sufficient cell length has

been achieved (Martin & Berthelot-Grosjean, 2009; Mose-

ley et al., 2009). However, recent data failed to reveal a

defect in size homeostasis in cells lacking pom1 (Wood &

Nurse, 2013), and measurements of Pom1 cortical levels

failed to reveal important changes in short versus long cells

(Bhatia et al., 2014). (2) Pom1 ensures that division occurs

at the geometric middle of the cell by modulating the local-

ization of this same Cdr2 kinase, as well as that of the anil-

lin-like protein Mid1 (Celton-Morizur et al., 2006; Padte

et al., 2006; Almonacid et al., 2009), and by preventing

septum formation at cell poles (Huang et al., 2007). Dele-

tion of pom1 also produces phenotypes akin to those of

tea1Δ or tea4Δ in terms of growth positioning – curved,

T-shaped, and monopolar cells – suggesting Pom1 repre-

sents an important downstream effector of the landmark

(Bahler & Pringle, 1998).

Tea1, Tea4, and Pom1 may promote Cdc42 activation by

regulating Cdc42 GEFs and GAPs. Both Pom1 and Tea4

associate with Rga4 and somehow (but not via direct phos-

phorylation) prevent its localization at cell poles (Tatebe

et al., 2008; K. Kokkoris and S.G.M., unpublished data). Of

note, the role of Tea4 in locally excluding Rga4 can only in

part be explained by Pom1, suggesting that the Tea4-Dis2

phosphatase has other important substrates that remain to

be defined. These interactions may serve to create at cell

poles zones locally devoid of Rga4 GAP, but surrounded by

this GAP, which serve to limit Cdc42 activation to a

defined zone. However, the exact mechanisms by which

Rga4 is controlled remain unclear, and furthermore, the

relatively weak phenotype of rga4Δ cells suggests that this,

again, is only part of the story.

While the Tea1–Tea4 complex marks cell poles for

growth and are required for NETO, this complex is unli-

kely to provide the signal for the transition to bipolar

growth. NETO requires correct completion of the last

stages of cytokinesis to render the new cell pole growth-

competent (Bohnert & Gould, 2012). NETO is also

known to depend on progression of the cell cycle to the

G2 phase and is modulated by the DNA replication

checkpoint (Mitchison & Nurse, 1985; Kume et al.,

2011). This growth transition is triggered by the activa-

tion of CDK1 on spindle poles bodies at mid-G2 phase

(Grallert et al., 2013). How this signal is transmitted to

induce growth initiation at the second cell pole is

unknown. Aside from Tea1, Tea4, and Pom1, numerous

mutants have been described with at least partial NETO

defect (Martin & Chang, 2005), suggesting that CDK1

may have multiple targets for this growth transition.

In summary, in fission yeast, a landmark complex, con-

sisting of Tea1 and Tea4 proteins, is deposited at cell

poles by microtubules, which themselves align along the

length of the cell. This complex recruits the Cdc42

machinery, in part by excluding the Cdc42 GAP Rga4,

thereby creating a local environment favorable for Cdc42

activation. It likely also more directly recruits Cdc42 acti-

vators, although the mechanisms are presently unknown.

Finally, it binds a Cdc42 effector, the formin For3, which,

as itself binds Cdc42 (Martin et al., 2007), may also con-

tribute through feedback mechanisms to Cdc42 activation

at cell poles.

Bud site selection in budding yeast

In the case of budding yeast, the microtubule cytoskele-

ton is completely dispensable for cell polarization (Huffa-

ker et al., 1988; Jacobs et al., 1988). Budding yeast

prevents growth at the previous division site and instead

selects a new site for growth with a defined pattern

depending on cell type (Fig. 4a). Normally, haploid cells

place their new bud in an axial pattern, adjacent to the

previous division site. Diploid cells place their new bud

in a bipolar pattern, at the opposite end from the previ-

ous division site. Budding patterns are dependent on cell

type rather than ploidy, with axial budding observed in a

or a cells and bipolar budding observed in cells express-

ing both a and a information. Three distinct groups of

‘BUD’ genes important for the positioning of the bud site

– in haploids, diploids, or both – were identified through

genetic screens for mutants exhibiting altered budding

patterns (reviewed in Bi & Park, 2012).

Three genes are required for bud site selection in both

haploids and diploids: the small Ras-like GTPase Rsr1, its

GEF Bud5 and its GAP Bud2 (Chant et al., 1991; Chant

& Herskowitz, 1991; Park et al., 1993). All three proteins

localize to the incipient bud site with Bud2 localizing to

the bud neck after bud emergence (Park et al., 1999);

thus, G-protein, GAP, and GEF localize with somewhat

distinct timings, and all are required for the correct bud-

ding pattern, suggesting Rsr1 needs to cycle between its

GTP- and GDP-bound forms. Bud5 localization is crucial

for the establishment of the correct budding pattern

(Kang et al., 2001; Marston et al., 2001), suggesting it

serves to activate Rsr1 at the correct location. This tripar-

tite module is thought to connect directly to the Cdc42

module: First, Rsr1-GTP interacts with itself, as well as

with Cdc42-GDP through a polybasic region necessary

for bud site selection (Kozminski et al., 2003; Kang et al.,

2010). Second, Rsr1-GTP binds the Cdc42 GEF Cdc24,

and Rsr1-GDP binds the scaffold Bem1 (Park et al.,

1997). Rsr1 is also necessary for Cdc24 recruitment to the

correct incipient bud site. A model has been proposed for

how the Rsr1 module directs polarity establishment to a

specific site: Cycling of Rsr1 between its GTP and GDP-

bound states may promote the local recruitment of

Cdc24, Bem1, and Cdc42, leading to a critical level of
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active Cdc42 at the incipient bud site (Bi & Park, 2012).

Interestingly, Rsr1 may not function only in bud site

selection, but may also have a role in polarity establish-

ment per se: rsr1 deletion or mutation of its polybasic

region prevents budding in strains lacking the Cdc42

effectors Gic1 and Gic2 (Kozminski et al., 2003; Kang

et al., 2010). In fact, the specialization of Rsr1 to bud site

selection and its relatively minor role in polarity estab-

lishment may be unique to S. cerevisiae. Indeed, Ras-like

GTPases in close relatives of budding yeast (such as Ash-

bya gossypii) or in distant basidiomycetes (such as Ustil-

ago maydis), like in S. pombe (see below), are more

important in polarity establishment and maintenance

(Lee & Kronstad, 2002; Bauer et al., 2004).

Bipolar landmarks include four transmembrane pro-

teins: Bud8, Bud9, Rax1 and Rax2 (Zahner et al., 1996;

Chen et al., 2000; Fujita et al., 2004). Bud8 and Bud9

form landmarks for the distal and proximal poles of the

cell, respectively, localizing and promoting bud formation

at these locations (Zahner et al., 1996). All four proteins

are somewhat co-dependent for localization, with Bud9

being dependent on the three others (Kang et al., 2004).

Bud8 and Bud9 require the actin cytoskeleton for locali-

zation, whereas only Bud9 requires the septin cytoskele-

ton (Harkins et al., 2001; Schenkman et al., 2002). Rax1

and Rax2 localize very stably to both proximal and distal

poles, forming persistent rings marking the previous sites

of division. This localization is consistent with a role as a

stable mark, over several generations (Chen et al., 2000;

Fujita et al., 2004). However, how these landmarks couple

to the Rsr1 module remains unclear, as regions of Bud8

and Bud9 necessary for interaction with the Rsr1 GEF

Bud5 have been mapped to the extracellular domains of

these membrane proteins, suggesting that these interac-

tions are indirect (Krappmann et al., 2007).

The major axial landmarks include four proteins, Axl1,

Axl2 (Bud10), Bud3, and Bud4, of which only Axl1 is

expressed specifically only in haploid cells (Chant & Her-

skowitz, 1991; Fujita et al., 1994; Roemer et al., 1996).

Bud3 has a region with homology to a guanine nucleotide

exchange factor domain; the anillin-like Bud4 is a GTP-

binding protein; Axl1 is an endoprotease necessary for

the processing of the a-factor pheromone, whose enzy-

matic activity is dispensable for its landmark function;

Axl2 is a transmembrane protein. These factors localize to

the division site, with Bud4 functioning as a platform for

the assembly of the axial landmark (Kang et al., 2012).

Bud4 localizes to the division site in a septin-dependent

manner (Sanders & Herskowitz, 1996; Kang et al., 2013).

In contrast to the bipolar landmarks, this localization is

transient, providing only a short-term memory of the

previous division site. Bud4 is then required for the

ordered recruitment of Bud3, Axl1, and Axl2 (Kang et al.,

2012). Bud4, Axl1, and Axl2 then depend on each other

to associate with the Rsr1 GEF Bud5 (Kang et al., 2012).

Here again, it is unclear whether these interactions are

direct. How exactly the new growth site is placed adjacent

to the previous site remains unclear, although proteins

required for cytokinesis play an important role in deter-

mining the new site of polarized growth.

The axial and bipolar landmarks provide spatial con-

straints, dictating where polarized growth will occur. It is

intriguing that a number of these axial and bipolar land-

marks are transmembrane proteins, raising the possibility

that they may be anchored to the cell wall thereby increas-

ing their positional stability. In addition, polarized growth

also occurs at a specific cell cycle stage, that is, it is initiated

by the cyclin-dependent kinase (Cdk) Cdc28 during G1.

This occurs via Cdk-dependent activation of Cdc42 (Lew &

Reed, 1993; Gulli et al., 2000; Butty et al., 2002; Moffat &

Andrews, 2004), leading to polarization of the actin cyto-

skeleton and subsequent bud emergence. The activation of

Rho1 and Cdc42 to a defined region on the cell cortex is

Cdk dependent (Evangelista et al., 1997; Nern & Arkowitz,

2000; Shimada et al., 2000). Specifically, Cdk phosphory-

lates a number of Rho G-protein regulators including GAPs

and scaffold proteins (Knaus et al., 2007; McCusker et al.,

2007; Sopko et al., 2007; Kono et al., 2008). Cdk also con-

trols the dynamics of membrane trafficking, in particular

endocytic and exocytic domains at the growth site (McCus-

ker et al., 2012). In addition to initiating polarized growth,

which leads to bud emergence, Cdk is also required for

subsequent bud growth (McCusker et al., 2007). Hence,

the strict spatial control of polarized growth is accompa-

nied by a precise regulation of its timing.

In summary, budding yeast cells use distinct landmark

proteins for haploid and diploid cells to position the

incipient bud site at axial or bipolar positions. Although

entirely distinct from the landmark system used by fission

yeast cells, one commonality is that the localization of all

the landmarks proteins examined thus far relies on the

cytoskeleton (actin and/or septin, rather than microtu-

bules in fission yeast). In budding yeast, these landmarks

recruit the Ras-like protein Rsr1, through interactions

that remain to be defined. In turn, Rsr1 cycles between

active and inactive states to promote the local activation

and recruitment of Cdc42.

Homologs of landmarks proteins in the other
yeast

While both yeast species use very distinct strategies to

position their growth sites, some of the factors used as

landmarks in one species also exist in the other. For

instance, S. pombe encodes homologous genes to two

bipolar BUD genes Rax1 (SPAC23G3.05c) and Rax2
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(Rax2), with Rax2 playing some role in defining the old

end (Choi et al., 2006). It also encodes proteins related to

three axial BUD genes Bud4 (Mid2), Axl1 (Mug138), and

Axl2 (SPAC11G7.01). As Bud4, Mid2 interacts with sep-

tins, but in agreement with the divergent role of septins

in the two species, plays distinct roles in cell division (see

below; Berlin et al., 2003). Schizosaccharomyces pombe also

has a single Ras-like protein, Ras1, which, at the sequence

level, is more closely related to the S. cerevisiae Ras pro-

teins Ras1 and Ras2, implicated in cAMP signaling, than

to Rsr1. Ras1 has important roles in cell polarization, as

mutant cells are nearly round, but none reported in

growth site positioning (Fukui et al., 1986). Instead, it

may be involved in polarity establishment, by interacting

(like Rsr1) with the Cdc42 GEF Scd1 and likely activating

it (Fukui & Yamamoto, 1988; Chang et al., 1994). How-

ever, any possible role in linking the landmark with

Cdc42 may have been masked by its predominant

function in polarity establishment.

Conversely, S. cerevisiae has homologs for Tea1 and

Tea3 (Kel1 and Kel2), and for Tea4 (Bud14). These pro-

teins all localize to the bud tip, but in an actin-dependent

manner, and are all involved in cell polarization (Philips

& Herskowitz, 1998; Cullen & Sprague, 2002). Kel1 also

associates with and is required for the localization to the

bud cortex of Lte1, an activator of mitotic exit (Hofken

& Schiebel, 2002; Seshan et al., 2002). Bud14 displays

many similarities to Tea4: Bud14 localization depends on

Kel1 and Kel2 and as Tea4, depends on Tea1. As Tea4,

Bud14 acts as PP1 regulatory subunit, associating with

the sole PP1 catalytic subunit Glc7 and targeting it to the

bud tip (Cullen & Sprague, 2002; Knaus et al., 2005). Its

main function appears to be in regulating microtubule

interaction with the cell cortex in a dynein-dependent

manner for spindle orientation (Knaus et al., 2005).

Finally, as Tea4, Bud14 interacts with a formin, Bnr1. It

functions as an inhibitor of Bnr1, displacing it from the

actin filament end, thereby promoting the formation of

short actin filaments (Chesarone et al., 2009). Thus,

Bud14 and Tea4 share many physical interactors, which

are used in distinct manner in the two species.

Dimensions and compartmentalization of the

growth zone

The size and shape of the active Cdc42 region are thought

to define the final dimensions of the growth zone. In try-

ing to define the differences between the dimensions of

the growth zones in S. cerevisiae and S. pombe, two obvi-

ous differences come to mind (Fig. 4b).

The first one lies in the size of the growth zone. In

S. cerevisiae, the size of the active Cdc42 zone is small

prior to bud emergence, on the order of 0.6–0.7 lm in

diameter (Tong et al., 2007; I. Guillas & R.A.A. unpub-

lished data). Upon bud emergence, the zone of active

Cdc42 covers more or less uniformly the bud plasma

membrane (Tong et al., 2007; I. Guillas & R.A.A. unpub-

lished data), expanding as the bud enlarges. By contrast,

the S. pombe growth zone is significantly wider, covering

the entire hemispherical pole of the cell, roughly 4 lm in

width or 12 lm2 in surface (F. Bendez�u and S.G.M.,

unpublished data), and remains constant over time, with

cell sides inert for growth, resulting in rods of constant

width. This tubular growth mode is widespread among

many fungi forming hyphae. Besides the size of the

growth zone, it is possible that differences in the compo-

sition or physical resistance of the cell wall contribute to

establishing these distinct modes of growth, as the more

spheroidal shape of S. cerevisiae would be predicted to

distribute pressure more evenly and thus reduce the

effects of turgor pressure, while the tubular shape of

S. pombe may require higher wall resistance. However,

physical measurements of the overall elastic moduli of the

cell walls of S. pombe and S. cerevisiae showed very simi-

lar values of 101 � 30 and 112 � 6 MPa, respectively

(Smith et al., 2000; Minc et al., 2009a).

The second difference is the presence of a constriction

at the base of the bud, the bud neck, delimiting in S. ce-

revisiae the bud growth compartment from the nongrow-

ing, or very slowly growing (Woldringh et al., 1993)

mother cell. The bud neck forms a geometrical barrier

that compartmentalizes the bud from the mother cell.

Such geometrical barrier does not exist in S. pombe.

Dimension and compartmentalization in budding
yeast

In S. cerevisiae, the septin cytoskeleton plays a key role in

the formation of the bud. Septins were first discovered in

the budding yeast, which encodes seven distinct septin

genes, as cytoskeletal filaments encircling the mother-bud

neck (Byers & Goetsch, 1976). These contain a variable

N-terminal domain, a polybasic region, a GTP-binding

domain, and a C-terminal coiled coil and form rod-

shaped octameric complexes in vitro (Frazier et al., 1998;

Bertin et al., 2008). Phospholipids are important for the

assembly of septins into filaments: Their basic region

binds to phosphoinositides (Casamayor & Snyder, 2003)

and PIP2 monolayers promote the assembly of septin fila-

ments in vitro (Bertin et al., 2010).

In vivo, the septins form higher-order structures, first

as a patch, which quickly matures into a ring around the

incipient bud site, then as an hourglass structure around

the neck of the growing bud, finally as two split rings on

either side of the division site (Lippincott et al., 2001;

Rodal et al., 2005; Iwase et al., 2006). Septin filament
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formation is critical for their function, and septin

mutants that prevent filament formation are inviable

(McMurray et al., 2011). The ring structures are dynamic,

exhibiting substantial turnover, whereas the hourglass

structure is highly stable (Caviston et al., 2003; Dobbela-

ere et al., 2003). It is likely that the transition between

these states involves disassembly and reassembly of septin

filaments along different growth axes (DeMay et al., 2011;

Bertin et al., 2012). The maturation of the septin cyto-

skeleton into its diverse forms is regulated by multiple

factors, including post-translational modifications. For

instance, the Nim1-like kinase Gin4 phosphorylates the

septin Shs1 and promotes the formation of the hourglass

structure (Mortensen et al., 2002; Gladfelter et al., 2004),

and septins are also sumoylated; however, the function of

this modification remains to be established (Johnson &

Blobel, 1999; Johnson & Gupta, 2001).

The initial recruitment of septins at the incipient bud

site depends on Cdc42 (Cid et al., 2001; Gladfelter et al.,

2002; Iwase et al., 2006). Cdc42 may control septin ring

formation by first recruiting septins to the plasma mem-

brane for subsequent ring assembly and then promoting

the formation of a polarized membrane domain within

the septin ring by activating the assembly of actin cables

for vesicle delivery, contributing to the maturation of the

septins into a ring (Oh & Bi, 2011). Recent data have

indeed shown that polarized exocytosis sculpts a hole in

the initial septin density, which is critical for maturation

of the septin ring (Okada et al., 2013). Septins were fur-

ther proposed to inhibit Cdc42 activity, acting in a nega-

tive feedback loop (Okada et al., 2013). Together, these

activities lead to the creation of spatially segregated

Cdc42/growth zone from the septin/bud neck collar.

The septin cytoskeleton is critical for cell morphogenesis

in S. cerevisiae. Mutants with misorganized septin arrest

with elongated buds that have abnormally wide necks,

although these mutants remain highly polarized. Septins

are thought to act at the bud neck both as a scaffold for

polarization and cytokinesis factors, as well as a diffusion

barrier. Their scaffold function is well illustrated by the fact

that a mislocalized septin mutant remains competent to

recruit several cytokinesis components to the mislocalized

sites (Roh et al., 2002). Septins are required for the recruit-

ment of a large number of factors at the bud neck for cyto-

kinesis and are involved in chitin deposition, which

maintains the neck dimensions during polarized growth

(Schmidt et al., 2003). They also play an important role for

bud site selection in haploid cells, anchoring the axial land-

marks at sites adjacent to the former division site (Chant &

Pringle, 1995; Kang et al., 2013).

Septins also form a diffusion barrier at the bud neck at

the plasma membrane, the endoplasmic reticulum, and

the nuclear envelope (Barral et al., 2000; Shcheprova

et al., 2008). This restricts the diffusion of plasma mem-

brane proteins and morphogenesis factors such as exocyst

or polarisome components across the neck during polar-

ized growth (Barral et al., 2000; Takizawa et al., 2000)

and the diffusion of cytokinetic factors away from the

neck during cytokinesis (Dobbelaere & Barral, 2004).

Given that septins bind phosphoinositide phosphates,

septin rings may also restrict the mobility of lipids (Gar-

renton et al., 2010; Vernay et al., 2012). The septins are

similarly required for the polarization of Cdc42 to the

bud during bud growth, but not at the incipient bud site

(Orlando et al., 2011). The septins thus contribute to

define the limit of new growth by spatially segregating

membrane domains.

Growth zone dimensions in fission yeast

Schizosaccharomyces pombe cells have no reported diffu-

sion barrier between the growth zone and the cell sides,

which instead appear as a continuum. In addition, septins

do not appear to play a role during vegetative polarized

growth and only exhibit defects in primary septum degra-

dation for cell separation (Berlin et al., 2003; Tasto et al.,

2003; Martin-Cuadrado et al., 2005) and in conjugation

and sporulation (Onishi et al., 2010). How then are the

limits of the growth zone defined? Despite the absence of

a clear barrier, the plasma membrane at cell poles is dis-

tinct from the sides, as it is rich in ergosterols, detected

by filipin staining (Wachtler et al., 2003). This suggests

that distinct membrane domains exist and are main-

tained. One possibility is that there may be a kinetic bar-

rier defined by differences in diffusion rates at cell tips

and cell sides.

The width of the cell, and thus the size of the growth

zone, is modulated by regulators of Cdc42 activity. Dele-

tion of the main Cdc42 GEF Scd1 or of the scaffold Scd2

results in a substantial widening of the zone of growth,

producing almost round cells (Chang et al., 1994; Kelly &

Nurse, 2011a, b). Similarly, deletion of the Cdc42 GAP

Rga4 results in wider cells, which is additive to that

observed in scd1Δ cells (Das et al., 2007; Tatebe et al.,

2008; Kelly & Nurse, 2011a). As Rga4 localizes to cell

sides and Scd1-Scd2 to cell poles, this suggests that these

proteins function additively to restrict and respectively

concentrate active Cdc42 to the cell poles, thereby defin-

ing the proper growth dimension.

The width of the cell, and thus presumably the growth

zone, is also altered under distinct conditions. For

instance, disruption of actin cable-mediated transport, in

for3Δ or myo52Δ cells (Feierbach & Chang, 2001; Motegi

et al., 2001; Win et al., 2001), or partial disruption of the

actin cytoskeleton with low-dose LatA treatments (Kelly

& Nurse, 2011a), leads to wider cells, although the
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specific effects on the distribution of active Cdc42 are

unclear. Thus far, only a single mutant, deletion of rga2,

has been reported to yield thinner cells, and thus smaller

growth zones (Villar-Tajadura et al., 2008). Rga2 encodes

a GAP for Rho2, but also associates with Cdc42 and

somehow indirectly promotes its activation. The fluctua-

tions, or even regular oscillations, in Cdc42 activity

between the two cell poles may also contribute to defin-

ing the width of the growth zone, but their precise role

remain unclear (Bendezu & Martin, 2012; Das et al.,

2012a).

Advantages and adaptations of molecular
processes to distinct cell shapes

The very distinct shapes of S. cerevisiae and S. pombe cells

have important consequences on how these cells have

solved some fundamental cellular problems, such as cell

fate specification, aging, equal segregation of the genetic

material, or polarized exocytosis.

The compartmentalization of the S. cerevisiae bud con-

fers the ability to generate diversity between the mother

and daughter cells. For instance, the transport and tether-

ing in the bud of the ash1 mRNA, which codes for a repres-

sor of the HO endonuclease, prevents mating-type

switching in the daughter cell, thus generating a cell fate

difference (Cosma, 2004). By contrast, fission yeast cells

evolved a distinct mechanism to promote mating-type

switching in only one daughter cell. This does not rely on a

cytoplasmic polarity, but on the inherent asymmetry in

DNA replication, where the lagging, but not the leading,

strand at the Mat1 locus imposes an imprint on the DNA,

marking it for transposition (Klar, 2007). In S. cerevisiae,

the barrier at the bud neck was also proposed to contribute

to the retention of aging factors in the mother cell, thus

allowing the rejuvenation of the daughter cell (Shcheprova

et al., 2008), although the mechanism remains debated

(Khmelinskii et al., 2011) and other factors, such as

nuclear geometry, may also contribute (Gehlen et al.,

2011). Whether fission yeast cells asymmetrically distribute

aging factors between daughter cells remains unclear, espe-

cially as these cells were recently proposed not to age in the

absence of stress (Coelho et al., 2013).

Conversely, the bud neck imposes a geometrical con-

straint on the cell, which has developed mechanisms to

overcome it. For instance, as mentioned earlier, S. cerevisi-

ae is strictly dependent on vesicular transport across the

bud neck to grow a large bud (Johnston et al., 1991; Imam-

ura et al., 1997; Yamamoto et al., 2010). Maybe for this

reason, budding yeast cells have developed robust strategies

to polarize actin cables from the bud tip into the mother

cell, both by localizing formins to the bud tips through

multiple redundant domains (Evangelista et al., 1997;

Fujiwara et al., 1998; Sheu et al., 1998; Chen et al., 2012)

and by promoting alignment of actin cables through the

bud neck through myosin II-dependent capture mecha-

nisms, even in absence of localized cable assembly (Gao &

Bretscher, 2009). By contrast, the fission yeast cell does not

strictly need active long-range cytoskeletal transport of ves-

icles for polarized exocytosis and polarized growth: Cells

lacking both actin cables and microtubules still polarize

growth to opposite cell poles, suggesting that vesicles carry-

ing cell wall enzymes can freely diffuse and be trapped at

cell poles (Bendezu & Martin, 2011).

Finally, the bud neck also represents an impediment to

equal segregation of the genetic material. In S. cerevisiae

cells, robust, redundant mechanisms promote and moni-

tor the correct alignment of the spindle across the

mother-bud axis (Pereira & Yamashita, 2011). Astral

microtubules are captured at the bud neck and trans-

ported along actin cables in a Kar9-dependent manner

and pulled toward the bud tip by dynein motors. This

process is closely monitored and the cell cycle halted by

the spindle orientation checkpoint in case of spindle mis-

alignment. By contrast, fission yeast cells may align their

spindle along the length of the cell primarily through the

physical properties of microtubules. Despite early reports

of a spindle orientation checkpoint (Gachet et al., 2001;

Oliferenko & Balasubramanian, 2002), more recent work

found no evidence for such a checkpoint (Vogel et al.,

2007; Meadows & Millar, 2008). The spindles may be

already prealigned at mitotic entry along the long cell axis

through the action of interphase microtubules, which

align along the long cell axis by sliding along the cell

sides (Vogel et al., 2007; Daga & Nurse, 2008). Intranu-

clear astral microtubules may then contribute to spindle

orientation by exerting pushing, rather than pulling forces

(Tolic-Norrelykke et al., 2004; Zimmerman et al., 2004).

Thus, in the absence of a neck, the fission yeast cell may

rely more on simple physical properties, such as diffusion

or microtubule sliding.

In summary, studies of fundamental properties as well

as cell-type-specific adaptions of the polarization machin-

eries in budding and fission yeast are starting to reveal

how a cell may be adapting common principles to its

own specific needs to generate diverse cell shapes from

very similar toolkits. It will be interesting to investigate

whether manipulation of the size of the growth zone

along with the addition or removal of a septin diffusion

barrier can alter the modes of growth of these two yeasts.
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