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Abstract

Network intrusion detection is the problem of detecting unauthorised use of, or ac-
cess to, computer systems over a network. Two broad approaches exist to tackle this
problem: anomaly detection and misuse detection. An anomaly detection system is
trained only on examples of normal connections, and thus has the potential to de-
tect novel attacks. However, many anomaly detection systems simply report the
anomalous activity, rather than analysing it further in order to report higher-level
information that is of more use to a security officer. On the other hand, misuse de-
tection systems recognise known attack patterns, thereby allowing them to provide
more detailed information about an intrusion. However, such systems cannot detect
novel attacks.

A hybrid system is presented in this paper with the aim of combining the advan-
tages of both approaches. Specifically, anomalous network connections are initially
detected using an artificial immune system. Connections that are flagged as anoma-
lous are then categorised using a Kohonen Self Organising Map, allowing higher-level
information, in the form of cluster membership, to be extracted. Experimental re-
sults on the KDD 1999 Cup dataset show a low false positive rate and a detection
and classification rate for Denial-of-Service and User-to-Root attacks that is higher
than those in a sample of other works.
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1 Introduction

Ensuring the accessibility, confidentiality, and integrity of data stored on com-
puter systems is an ever growing cause of concern, given the opportunities for
malicious activity afforded by global connectivity. One approach would be
to attempt to build completely secure systems, i.e. software systems without
vulnerabilities; however, this is unlikely to come to fruition given the inherent
difficulty in building such systems and the costs involved [10,28]. It is there-
fore inevitable for the foreseeable future that breaches of system security will
occur. The pertinent question is then how to detect such breaches so that
appropriate actions, such as removing the intruder and reporting him to the
appropriate authorities, can be performed.

An intrusion detection system (IDS) is designed to detect unauthorised use of,
or access to, a computer system by both those with legitimate user accounts
and those from outside with no access rights [28]. Two broad categories of
IDS exist; anomaly detection systems build a model of normal system activity
and then regard deviations from this as potential intrusions [10], while misuse
detection systems look for known attack patterns by signature matching. The
key advantage of anomaly detection systems over signature based misuse ap-
proaches is their ability to detect novel attack patterns for which no signature
exists, while their most often cited disadvantage is a larger false positive rate.
However, in this paper we aim to address a second, often overlooked, disad-
vantage of a pure anomaly detection system. This is that such systems usually
simply report the anomalous actions; they do not provide any further infor-
mation as to the consequences of the attack and the possible future actions of
the attacker.

In order to achieve this, a novel hybrid IDS has been developed that uses two
different nature-inspired techniques. In the first stage, an artificial immune
system (AIS) is used to identify anomalous TCP/UDP connections made to
machines on a network. High-level information about identified anomalous
connections is then provided by clustering the anomaly into one of a number
of broad attack types, using a Kohonen Self Organising Map (SOM) [23].

The following sections describe in further detail the motivation for the hybrid
approach used and the contributions of this paper.

∗ Corresponding author.
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1.1 Motivation for a two-stage approach to intrusion detection

The motivation for a two-stage approach to intrusion detection comes from
considering the advantages and disadvantages of a pure anomaly detection sys-
tem. An anomaly detection system works by constructing a model of normal
activity, for example, a model of normal TCP/UDP connections to a machine.
New activity that deviates from this model is then considered to potentially
signify an intrusion. Clearly, such systems do not depend upon any a priori
knowledge of possible attack patterns, since they are constructed solely from
examples of normal activity. Consequently, they can detect novel attack meth-
ods, providing that the actions carried out in performing the attack deviate
sufficiently from the model of normal.

This potential to detect novel attack methods is highly desirable, given the
large rate at which they are discovered and utilised. For example, the CERT
team at Carnegie Mellon University reported 5990 previously unknown secu-
rity vulnerabilities in 2005 alone [35], any of which could potentially be ex-
ploited by an attacker. This large rate of occurrence of novel attacks suggests
that the purely reactive approach of comparing current activity against known
patterns of misuse (e.g. as used by the popular open source IDS SNORT [6]) is
not sufficient to protect systems from malicious attackers. Therefore, anomaly
detection systems that are scalable up to real-world implementations seem to
be a promising avenue of research.

However, there are two reasons why stand-alone anomaly detection systems
are not often used in a real-world IDS, the first of which has already been
widely discussed in the literature. The first problem is the inherent higher
false positive rate compared to a system such as SNORT that simply looks for
the signatures of known attack patterns. A false positive is where the IDS flags
normal activity as anomalous. Such incidents waste the time of human security
officers and can cause confidence in the system to be lost, potentially leading
to real attacks that are flagged by the system being ignored. It is therefore
very important for an IDS to have a low false positive rate. The reason for the
higher false positive rate of anomaly detection systems is that users sometimes
perform new and different activities, making it very hard to build a model of
normal that is broad enough to encompass such actions but not so broad as to
also mistakenly count attack patterns as normal. The fundamental problem
is that regardless of the particular activity level monitored by the IDS, be
it network packets or operating system audit trails, the root cause of that
activity is a human, and humans are notoriously unpredictable.

The second reason, and the motivation for the inclusion of a second compo-
nent, has to our knowledge not explicitly been commented on in the literature.
This is that all a stand-alone pure anomaly detection system can do when an

3



anomaly occurs is to flag the anomalous actions for the attention of the hu-
man security officer; such a system cannot alone provide any further high-level
information. The drawback with only providing low-level information such as
a list of anomalous actions is that such information is very tedious and time
consuming for a security officer to process. This problem of overwhelming the
security officer with low-level alerts has been recognised in recent years in
the literature on data fusion [2,3], which proposes combining multiple alerts
from different sensors (components of an IDS) into more meaningful high-level
alerts. The difference between the approach proposed in this paper and data
fusion techniques is that we consider how to derive high-level information from
a single low-level sensor, namely one particular anomaly detection system. Of
course, such derived higher-level information from a single sensor could then be
combined with the output of other sensors, such as another anomaly detection
system operating on OS audit trails, using a data fusion approach.

1.2 Contributions of this paper

The remaining question is then how to derive higher-level information from
reported anomalous actions. The idea used in this paper is to analyse examples
of known attacks for common statistical patterns or features, thereby allowing
clusters of attacks sharing similar properties to be created. A cluster centre
then contains common properties of many attacks, i.e. it represents a higher-
level abstraction of those attacks. After the cluster centres have been created,
an anomalous activity can be matched to the cluster that it is most similar
to. Cluster matching means that the anomaly shares common properties with
other attacks that belong to that cluster. Therefore, rather than simply re-
porting the anomaly, the IDS can provide abstract high-level information in
the form of properties of the cluster centre.

Other works have also proposed the clustering of known attack patterns. For
example, a SOMwas used in [8] to cluster attacks from the CERT database in a
similar manner. However, such an approach has not been used to complement a
stand-alone anomaly detection system. Instead, the same clustering technique
is usually used to not only cluster attack patterns but also to cluster normal
activity, e.g. [9]. Likewise, multi-layer perceptron neural networks have been
widely used to make the distinction between both normal and anomalous and
then within anomalous between different attack classes (e.g. [29,25]).

Using such a single monolithic classifier that is trained on examples of both
normal activity and attack patterns is not necessarily wise, since it may lead to
biasing the classifier towards only recognising the example attack patterns that
are present in the training data. As a result, the classifier may fail to detect
novel attacks, thereby loosing the important advantage of anomaly detection
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systems. In other words, such a system will cease to perform anomaly detection
but instead will perform misuse detection with a generalisation capability, as
was the case in [5].

The approach developed in this paper should also be contrasted with systems
that combine an anomaly detection component with a misuse component that
is designed to recognise the signatures of known attacks, e.g. [11]. In such sys-
tems, the misuse component is used to ensure that known attacks are recog-
nised, while the anomaly detection component is used to attempt to detect
novel attack patterns. While this approach can help to improve the overall de-
tection rate, it still suffers from the drawback that only low-level information
is provided about novel attack patterns identified by the anomaly detection
component.

1.3 Overview of our novel hybrid IDS

This section provides a brief overview of the runtime operation and training
process of our hybrid IDS.

At runtime, the system monitors incoming connections as follows. Firstly, a
connection vector is created to represent an incoming connection. This consists
of features describing the connection, such as the port number and number
of packets sent. The connection vector then undergoes anomaly detection by
detectors generated through negative selection.

Any connection vectors flagged as anomalous are then projected onto a SOM.
This projection places the connection vector onto a neuron close to those
that related attacks are projected onto. This therefore highlights the attacks
that the connection shares common properties with. In this way, attacks are
detected by the anomaly detectors, before being projected onto the SOM to
determine which other attacks a new attack is most similar to, and hence
provide higher-level information. This real-time operation of the system is
highlighted in Figure 1.

During training, the two components of the system are trained independently.
The anomaly detectors are produced by the negative selection algorithm, us-
ing only examples of normal connections in their training data. Conversely,
the SOM is trained exclusively on examples of anomalous connections, i.e.
attacks. This is because the SOM is charged with the task of clustering sim-
ilar attacks together, extracting common features from related attacks. Note
that unlike most other types of neural network, the training of the SOM is
unsupervised. This means that the attack connections are not labelled with
names or types during the computation of the neurons’ weight vectors. The
SOM therefore groups together attacks that share common properties with no
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Self Organising Map

Attack type

Incoming network connection

connections
Anomalous

Normal
connections

Artificial Immune System
anomaly detection rules

Fig. 1. Overview of the runtime operation of the hybrid IDS.

a priori knowledge.

Figure 2 illustrates the training procedure for the two components. The fol-
lowing sections describe the training processes in detail.

attack connections
Examples of

classifier
Attack

GA with negative selection IF−THEN anomaly
detection rules

SOM training algorithm and LVQ

Examples of
normal connections

Fig. 2. Overview of the training procedure for the two components.

2 Anomaly Detection Using an Artificial Immune System

In recent years, the field of artificial immune systems has begun to flourish
[7]. An artificial immune system uses ideas from the operation of the human
immune system and applies them to computational problems. Of particular
relevance to the problem of intrusion detection is the fact that that the immune
system can be viewed as performing anomaly detection, since it distinguishes
between normal self and harmful non-self, e.g. pathogens or tumour cells, in
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the body. This anomaly detection is performed by a certain type of lymphocyte
known as a T-cell, which circulates around the body.

Each T-cell contains a binding site that allows it to bind to certain antigens
for which its binding site “matches” the antigen. Because one T-cell can only
match certain antigens, a whole population of T-cells is required to protect
the body from different non-self cells. The binding site of a T-cell, and hence
which antigens can be matched by it, is determined during T-cell creation
by a random genetic rearrangement process. A consequence of this random
generation process is that a T-cell could potentially bind to self cells, i.e.
raise a false alarm by detecting normal as anomalous. This is prevented by
a maturation process, whereby any newly created T-cells that bind to self
are destroyed, before they are allowed into the blood stream. This process of
selecting only those T-cells that do not match self is termed negative selection.

2.1 Background

The research group of Forrest [13] was the first to apply the idea of negative
selection in a computational setting. In their algorithm, antigens, such as prop-
erties of a TCP connection, were represented as fixed length binary strings.
Detectors, inspired by T-cells, were then also represented as binary strings of
the same length. A detector string was said to match an antigen string if the
two strings shared the same characters in an uninterrupted stretch of r bits;
this is known as the r-contiguous bits matching rule. Negative selection was
used to generate the detectors by randomly generating strings and then dis-
carding those that matched any of the normal antigens in the training data.
Thereafter, the detectors that passed the negative selection filter were used
to monitor new antigens; if a detector matched any antigen then that antigen
was flagged as non-self, i.e. anomalous.

Amongst other applications, e.g. [12], Forrest’s group have applied their algo-
rithm to the problem of network intrusion anomaly detection. Their LISYS
system [19,1] encodes the source IP address, destination IP address and server-
side port of TCP connections in a 49-bit binary string. A set of self strings is
obtained by observing normal TCP connections over a period of time, while
negative selection is used to generate detector strings that aim to match
anomalous connections that may occur in the future.

Unfortunately, there are two problems with such an approach. Firstly, the use
of binary strings and an r-contiguous bits matching rule makes it difficult to
extract high-level domain knowledge from the detectors [16]. For example, in
an intrusion detection system, it is useful to be able to analyse the detectors
that were activated during an attack, in order to discover properties of the
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attack. However, analysing the part of a binary string that matched part of
another such string is unlikely to yield much useful domain knowledge. This
is because both the representation and the matching rule are too low-level to
facilitate such a process.

The second problem with LISYS is one of applicability to a real-world sce-
nario. It is certainly the case that simply looking at the IP addresses and
ports of a connection is insufficient to detect many types of attacks. However,
adding further information about the connection to the detector and antigen
strings would rapidly increase their length, given that binary coding is used.
Furthermore, as the detectors come to store more information, it becomes
questionable whether random detector generation would be feasible. For ex-
ample, random detector generation was shown to be infeasible in [21] when
33 features of a network connection were used. This was due to the length of
time required to find a detector that did not match self.

To overcome these problems, the use of real-valued anomaly detectors has been
proposed [15,14]. The most significant improvement that this approach offers
over binary string representations is a distinction between a detector genotype
and a detector phenotype. At the genotypic level, the detectors are vectors
of real numbers. At the phenotypic level, they are interpreted as specifying
intervals on the space of real numbers. These intervals are then read as condi-
tions for an IF-THEN rule, where the consequent is that an anomaly has been
detected. This means that an antigen vector is matched by a detector if the
components of the antigen vector lie within the corresponding intervals spec-
ified by the detector. A genetic algorithm is then used to generate detectors
that do not match self, rather than the random generation of Forrest.

In applying this idea to network intrusion detection, 3 features were used, cor-
responding to intervals on aggregate network traffic statistics [15,14]. Specif-
ically, the features used were the total number of packets, the number of
ICMP packets, and the number of bytes of data transmitted, over a period of
1 second. In addition, a sliding time window was used to attempt to detect
temporal anomalies, e.g. if the window size was 3 then the last 3 observations
would be considered together as a sequence.

The key advantage of this approach is that it is easy to interpret the detec-
tors in terms of domain knowledge. This is because at the phenotypic level
they can be interpreted as conditional rules specifying intervals on the three
network traffic statistics. By contrast, with the binary string representation
used in LISYS there is no corresponding phenotype, and the r-contiguous bits
matching rule does not have an intuitive interpretation at the domain level.

However, we argue that there is still a problem of scalability up to a real-world
IDS with this approach. This is because only a small number of aggregate net-
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work traffic statistics have so far been considered. While such information is
undoubtedly useful, it could not be used in isolation in a real system. For ex-
ample, it is surely important to know discrete information such as the service
ports that are being accessed. However, previous research has considered only
real-valued network features; the problem of how to use a similar genotype /
phenotype distinction and genetic detector generation algorithm with discrete
fields has not been previously addressed. In particular, the previously unan-
swered questions were how to compute detector fitness with discrete fields,
and how to define the similarity between two detectors, in order to produce
a detector set that is spread out in antigen space. These issues are addressed
in the following section of this paper, where a novel detector representation
scheme and generation algorithm is presented.

2.2 Negative Selection Using a Genetic Algorithm

2.2.1 Detector Representation

The antigens in our system are connection vectors, that is, vectors storing
properties of an incoming network connection. These include features such as
the service port that the connection is made to and the duration of the con-
nection. The detectors in our system then specify conditions on these features;
a detector matches a connection vector if all of the conditions specified by the
detector are met by the connection vector. The conditions can take one of two
forms: they can either specify a single value, e.g. that the connection must be
made using the UDP protocol, or they can specify an interval, e.g. that the
number of connections to the same host in the last 2 seconds must be between
5 and 10.

Significantly, a detector does not have to specify conditions on all of the fea-
tures; any of the fields can be left unspecified. Leaving fields unspecified in this
way allows a detector to cover a larger area of the antigen space, potentially
allowing more attacks to be detected. By contrast, in previous works such as
[15,14], every field had to be specified by every detector. While this can make
detector generation easier, by making it less likely that a new detector will
cover any part of the self space, it has the drawback that a larger detector set
will be required to cover the same amount of the non-self space.

The genotype of a detector is then an ordered list of these conditions. For
a condition specifying a single value, one genotypic field corresponds to one
phenotypic field. For a condition specifying an interval, there are genotypic
fields for the upper and lower bounds.

Due to the large range of possible values for many of the fields, it was decided
to use a clustering process. This was performed on all fields apart from port
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number by assigning the possible field values into clusters, such that each
cluster contained approximately the same range of values. The port number
field was handled as a special case by performing clustering manually using
domain knowledge. Specifically, ports were grouped into functional categories,
as shown in Table 1. The motivation behind this was to cluster related ports
together. This could not be done by the process used for the other fields, since
functionally related ports are not necessarily numbered sequentially.

Category Description

1 Remote shell

2 FTP

3 HTTP

4 Mail

5 SQL

6 Several ports known to be unsafe

7 Network diagnostics

8 0 - 49151 (excluding those above): System / Registered ports

9 49152 - 65535: Dynamic / user-defined ports

Table 1
Port categories used by our system.

There are two advantages to clustering field values. The first is a reduction in
the size of the search space during detector generation. The second advantage
follows from the fact that since a cluster represents many values, a detector
specifying a cluster instead of a single value will necessarily cover a larger area
of antigen space. The disadvantage of any clustering is the loss of the ability to
refer to the clustered values independently. However, in the scenario dealt with
in this paper, this was not deemed to be a significant problem. For example,
whether 132 or 133 packets were received over a connection is unlikely to be
significant in determining whether a connection is normal or anomalous.

2.2.2 Detector-antigen matching rule

A detector matches a connection vector when the components of the con-
nection vector match all of the specified fields of the detector; any fields left
unspecified by a detector are ignored. For non-interval fields, such as the port
category, matching is defined simply as equality between the two values. For
interval features, such as connection duration, a match occurs when the rel-
evant component of the connection vector lies within the (inclusive) bounds
specified by the corresponding lower and upper bound fields of the detector.
As previously discussed, this definition of detector-antigen matching should
be contrasted with the r-contiguous bits matching rule that is traditionally
used in negative selection algorithms.
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2.2.3 Detector Generation

This section describes how a set of detectors is produced using a novel gen-
eration algorithm inspired by [15], but which is extended to handle discrete
fields.

Detector generation is a multi-modal search problem, since individual detec-
tors must cover different parts of the non-self space. Our algorithm follows [15]
in the use of a (steady-state) genetic algorithm with deterministic crowding
[26] for this purpose. Of particular importance is the fact that only examples
of normal connections are used during detector generation, thereby avoiding
biasing the generated detectors towards only recognising variants of known
attacks.

A detector generation algorithm should optimise the following two objectives,
computed as discrete analogues of the way that they are presented in [15,14]:

(1) obj1 = Maximise the generality of the detector. Generality is defined as
the sum of the (normalised) ranges specified by each interval field plus the
number of unspecified non-interval fields, where the result is normalised
to lie between 0 and 1.

(2) obj2 =Minimise the number of self samples in the training data matched
by the detector. This is negative selection.

The purpose of obj1 is to ensure that the detector set covers as large an area
of the non-self space as possible, in order to be able to detect as many attacks
as possible. Conversely, the purpose of obj2 is to minimise coverage of the self
space, in order to minimise the number of false positives. A tension therefore
exists between these objectives, since the first favours detectors that cover a
large area of antigen space in order to increase the attack detection rate, while
the second favours those that cover a small area in order to reduce the false
positive rate. Specifying the relative importance of each of these objectives
allows the trade-off between the attack detection and false positive rates to
be controlled.

One approach for dealing with multiple objectives is to weight each objective,
and then sum the weighted objective values to yield the overall fitness [4].

However, our two objectives yield values on different scales, making it inap-
propriate to weight them directly [4]. We therefore use the Sum of Weighted
Ratios method proposed in [4], which computes overall fitness from a number
of different objectives as shown in Equation 1, where i is an index over all
individuals in the population, and j an index over objectives.
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frji =
(objji −min(objj))

(max(objj)−min(objj))
(1)

The fitness of a detector, i, is then as given in Equation 2, where w1 and w2

are the objective weights, and must sum to 1. The negative sign between the
objectives is because obj2 is a penalty for covering the self space, as defined
by the examples of normal connections in the training data.

fitnessi = w1 ∗ fr
1
i − w2 ∗ fr

2
i (2)

A property of the Sum of Weighted Ratios technique that makes it particu-
larly appropriate for detector generation is that it produces best compromise
solutions along a narrow range of the Pareto Front [5]. This property is use-
ful for our application, since detectors that greatly achieve one objective to
the detriment of the other, e.g. by having a large generality but consequently
also matching many self samples, would not be useful. Rather, detectors are
required that achieve a reasonable compromise between both objectives, i.e.
that cover as large an area of antigen space as possible whilst matching few self
samples in the training data. Consequently, the availability of a large range of
candidate detectors spread out right across the Pareto Front is not required.

The population of detectors is initialised at the start of the algorithm as
follows. Each possible phenotypic field (condition in the IF-THEN rule) is left
unspecified with a probability of 0.5, represented on the detector genotype
by assigning to the corresponding gene the value of -1. Leaving some fields /
conditions unspecified in this way increases the generality of the detector as
defined in obj1. The initial values of the corresponding genes for each remaining
specified field are then chosen randomly from the list of values allowed for that
gene, i.e. from the set of discrete cluster identifiers for the field.

Uniform crossover is used at each iteration of the steady-state genetic algo-
rithm to produce a single child from two randomly chosen parents. Each gene
of the resulting child is then mutated with a small probability. This mutation
is performed by replacing the value of the gene with a randomly chosen value
from the list of those allowed for that gene. Alternatively, the value of the
gene is randomly set to -1, which means that the corresponding field is left
undefined at the phenotypic level. Under the deterministic crowding scheme,
the child replaces the parent that it is most similar to if it is fitter than that
parent.

Similarity between two detectors in the population is defined at the phenotypic
level as follows. A similarity score is computed for each corresponding field in
the two detectors. For non-interval fields, a score of 1 is given if the fields
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store the same value, otherwise the score is 0. For interval fields, the score is
the degree of overlap between the corresponding intervals, normalised to lie
between 0 and 1. The sum of the scores from each field then yields the overall
similarity between the two detectors.

At the end of the generation algorithm, the following process is executed in
order to remove any detectors that still match one or more normal connections
in the training set. Each detector is compared with every normal connection in
the training set. If a detector matches any such connection, then that detector
is discarded. Consequently, the final detector set will only contain detectors
that do not match any normal training examples, thereby reducing the false
positive rate.

3 Deriving Higher-level Information About Anomalies Using a Self

Organising Map

3.1 Creating a SOM of attack connection vectors

The SOM is a neural network trained with a competitive learning rule in an
unsupervised manner. A competitive learning rule means that the neurons
compete to respond to a stimulus, such as a connection vector (recall that a
connection vector describes properties of a network connection, such as the
destination port and number of packets sent). The neuron that is most excited
by the stimulus, i.e. whose weight vector is most similar to the connection
vector, wins the competition. The winning neuron earns the right to respond
to that stimulus in future, and the learning rule adjusts its weight vector so
that its response to that stimulus in future will be enhanced, i.e. by moving the
weight vector closer to the connection vector. This means that the next time
that same connection vector is presented, the neuron that won the competition
for that same vector last time will be more excited by it.

Unsupervised learning means that the training examples are not labelled with
target outputs. In our case, this means that the unsupervised learner is sim-
ply presented with connection vectors that were recorded during attacks; the
learner is not told which type of attack those connection vectors were gener-
ated by. The task of the unsupervised learner is therefore to discover hidden
structure or patterns in the training data. For this application, the aim is
to discover clusters of similar attacks in the training data. Attacks belonging
to the same cluster will then share some common properties, i.e. higher-level
features.

The training set consists of connection vectors that occurred during example
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attacks. It must be stressed that no examples of normal connections are in-
cluded in the training data, since the decision as to whether a connection is
normal or not is handled separately by the anomaly detectors described in
Section 2; the SOM only has to process connections that have already been
flagged as anomalous.

At runtime, the SOM projects already identified anomalous connection vectors
onto an output layer of neurons. The neurons in this layer posses a spatial
topology, such as a square or rectangle, although other shapes are possible.
This layer of neurons is referred to as the output grid. Each neuron has a weight
vector of the same dimensionality as the connection vectors. The winning
neuron for a connection vector is the neuron whose weight vector is closest
to the connection vector. In this paper, a Euclidean distance metric between
vectors is used. The connection vector is then projected onto the winning
neuron.

During training, the SOM learns to project connection vectors that are close
together (in terms of Euclidean distance) onto neurons that are close to each
in the output grid. In this way, the SOM learns relationships between the
connection vectors, expressing them as spatial relationships in the output grid.
The training algorithm also ensures that the weight vectors of the neurons are
a good representation of the connection vectors in the training data. This is
achieved by aiming for a low mean quantisation error, where the quantisation
error is the distance between a connection vector and the winning neuron’s
weight vector. The mean quantisation error is the average of this over all
connection vectors in the training set.

The training algorithm for the SOM is as follows (adapted from the presenta-
tion given in [18]):

(1) Initialise the weight vectors, wj(0), where j is an index denoting the
neuron number and runs from 1, 2, . . . , l, where l is the total number
of neurons in the output grid. The number in () afterwards is used to
denote the time-step. The weight vectors can be initialised by setting
each component of each weight vector to a small random number (say
between -0.1 and 0.1).

(2) Draw a connection vector, x(n), from the training data without replace-
ment.

(3) Find the winning neuron, i(x(n)), for the connection vector presented at
this time-step. This is the neuron whose weight vector is closest to x(n)
in a Euclidean sense, calculated as follows:

i(x(n)) = argmin
j

‖x(n)−wj(n)‖ , j = 1, 2, . . . , l
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(4) Adjust the weight vectors of all neurons, as follows:

wj(n+ 1) = wj(n) + η(e)hj,i(x)(e)(x(n)−wj(n)),

where η(e) is the learning rate at epoch number e, and hj,i(x) is the
neighbourhood function defined in Equation 3 below, centred on i(x).
Both the neighbourhood function width and learning rate vary with time,
as stated in Equations 5 and 7 below, respectively. Note that n denotes
the time-step that is incremented with the presentation of each training
example, whereas e denotes the epoch number. n is therefore incremented
after each training example has been presented, whereas e is incremented
after all training examples have been presented once.

(5) Repeat from step 2 until all training examples have been presented. This
constitutes one epoch.

(6) Repeat from step 2 until the desired number of epochs is reached.

The neighbourhood function, hj,i(x), follows a Gaussian probability distribu-
tion as defined by Equations 3 and 4, where rj denotes a vector storing the
spatial position of neuron j on the discrete output grid, and σ2(e) denotes the
variance of the Gaussian probability distribution at epoch number e.

hj,i(x)(e) = exp

(

−
d2j,i

2σ2(e)

)

(3)

d2j,i = ‖rj − ri‖
2 (4)

It is important to note that the Euclidean distance in this neighbourhood
equation is between the neuron positions on the output grid, and not between
the corresponding weight vectors. This is necessary to ensure that neighbour-
ing neurons in the output grid have similar weight vectors, thereby allowing a
topological mapping from connection vector space to the output grid to take
place. It is this concept of a neighbourhood function defined over the out-
put grid of neurons that distinguishes this algorithm from traditional vector
quantisation.

The variance of the Gaussian probability distribution can be viewed as the
neighbourhood width. It therefore defines the extent to which the winning
neuron’s neighbours participate in the learning process by also updating their
weights. In order to ensure convergence, i.e. that given enough epochs the
training algorithm will eventually lead to a state where no further weight
adjustments are made, it is necessary to reduce this width with increasing
time. We use the exponential decay function cited in [18], presented here in
Equation 5 below.

σ(e) = σ0 exp
(

−
e

τ1

)

(5)
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As before, e denotes the epoch number; σ0 denotes the initial width / variance.
For a square output grid of neurons, we have found it suitable to initialise the
width to the length of one side of the square, e.g. in a 10-by-10 grid it would
be initialised to 10. τ1 is a time constant, which following advice in [18] we
define as in Equation 6.

τ1 =
1000

log(σ0)
(6)

.

In addition, to ensure convergence the learning rate, η, should also decrease
with time. We again use the exponential decay suggested in [18], presented in
Equation 7, where η0 = 0.1 is the initial learning rate, and τ2 = 1000.

η(e) = η0 exp
(

−
e

τ2

)

(7)

3.1.1 Extracting Cluster Information through Labelling the SOM

After this process of unsupervised training, it is possible to use information
about the attack types of connections in the training data in order to label the
neurons on the SOM output grid, i.e. label the cluster centres with higher-level
information. In this paper, the attacks in the training data are grouped into
broad categories; each neuron is then labelled as representing one of these
categories. Specifically, the 4 broad classes of attack type defined by MIT
Lincoln Labs [27] are used, as stated below:

• Denial-of-Service (DoS): These are attacks designed to make some service
accessible through the network unavailable to legitimate users. For example,
a successful DoS attack against a Web server may make the pages stored
on that server unavailable for a period of time.

• Probe: A Probe is a reconnaissance attack designed to uncover information
about the network, which can be exploited by another attack. For example,
a port scan connects to many different ports on a machine in order to
determine which services that machine is running. An attacker could then
look up known vulnerabilities in these services which he could exploit in a
follow up attack.

• Remote-to-Local (R2L): This is where an attacker with no privileges to ac-
cess a private network attempts to gain access to that network from outside,
e.g. over the internet. An example would be a dictionary attack to try and
guess the password of a legitimate user.

• User-to-Root (U2R): Here, the attacker has a legitimate user account on the
target network. However, the attack is designed to escalate his privileges so
that he can perform unauthorised actions on the network, e.g. delete another
user’s files.
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It should be stressed that these 4 attack classes are broad, with each one
encompassing many different named attacks. However, all of the attacks within
a class have the same goal, and are also likely to use similar means to achieve
that goal. Therefore, knowing which of these classes a (possibly new) attack
belongs to tells the human security officer the purpose of the attack and the
actions that it may involve.

The neurons of the trained SOM are labelled with these attack classes using
the algorithm shown below:

(1) Draw an attack connection vector from the training set, without replace-
ment.

(2) Find the winning neuron for that connection vector.
(3) Add 1 to the count of the number of connection vectors of that class

projected onto that neuron.
(4) Repeat from 1 until all connection vectors in the training set have been

presented.
(5) Label each neuron with the most frequently occurring class of connection

vectors that was projected onto it.

After labelling, when a new connection vector is projected onto the SOM then
it is assigned to the attack class of the corresponding winning neuron.

3.1.2 Improving Attack Classification Performance Using Learning Vector
Quantisation

Learning Vector Quantisation (LVQ) [24] adjusts the weight vectors of the
SOM after the initial unsupervised training. Initially, the neurons in the SOM
are labelled with the attack classes they represent, as previously described
in Section 3.1.1. After labelling, the weight vector of the winning neuron for
each training example is adjusted as follows. If the winning neuron has the
same attack class label as the connection vector, then the weight vector is
moved towards that connection vector. Alternatively, if the winning neuron
and connection vector have different class labels then the weight vector is
moved away from the connection vector that has just been misclassified. This
process repeats, looping through the whole training set several times. A full
presentation of the algorithm is given below, adapted from the presentation
given in [18]:

Present each labelled connection vector in the training set, one at a time. Let
x(n) denote the connection vector presented at time-step n, and let e denote
the epoch number. At each time-step, make one of the following adjustments
to the weight vector wi(x(n)) of the winning neuron i(x(n)):

• If the class label of the winning neuron is the same as the class label of x(n)
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then:

wi(x(n))(n+ 1) = wi(x(n))(n) + αe

[

x(n)−wi(x(n))(n)
]

• Alternatively, if the class label of the winning neuron is different to the class
label of x(n) then:

wi(x(n))(n+ 1) = wi(x(n))(n)− αe

[

x(n)−wi(x(n))(n)
]

The presentation of all training examples constitutes one epoch. The procedure
is repeated for a specified number of epochs. αe denotes the learning rate at
epoch number e, which must be greater than 0 and less than 1. It should
decrease with increasing epochs, in order to ensure convergence.

The aim of LVQ is to reduce the number of misclassifications made on the
connection vectors in the training set. It should be noted that it is a supervised
learning procedure, as the class labels of the examples in the training set must
be known. However, prior to LVQ, the weights of the SOM are trained in the
normal unsupervised way. As far as we are aware, our system is the first IDS
with a SOM component that makes use of LVQ.

3.2 Motivation for using a SOM for attack type classification

A more conventional classifier, such as a Multi-Layer Perceptron, could have
been trained to classify connection vectors into one of the 4 predefined broad
attack classes. However, a SOM approach can be regarded as more flexible
for several reasons. The first reason is that the operation of the SOM is very
transparent compared to that of a Multi-Layer Perceptron. This is because
a Multi-Layer Perceptron operates as a black box, making it very difficult to
see why an anomalous connection vector is classified as being of a particular
attack type. With a SOM, however, the results of the training process can
easily be visualised by plotting the output grid of neurons and labelling them
with attack classes. A new anomalous connection can then be projected onto
this grid graphically, revealing which neurons and hence classes it is closest
to.

Another advantage of the SOM is that it is not required that the attack con-
nection vectors in the training data be grouped into predefined classes. This
is because the initial training of the SOM is unsupervised. The SOM will
therefore group similar attack connection vectors together without reference
to class labels. It was decided to use 4 broad attack class labels throughout
this paper for reasons of convenience during testing, and in order to facilitate
a comparison of results with other works. However, a real implementation in
an IDS may benefit from providing more fine grained information. This could
be in the form of details of a sample of specific named attacks that the new
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anomalous connection was most similar to. A SOM approach could easily ac-
commodate this, by recording a sample of which attacks in the training data
were projected onto which neuron. Then, when a new anomalous connection
was projected onto a neuron, details about other attacks that have been pro-
jected onto the same neuron could be presented to the human security officer.
By looking at detailed information about those other attacks, it may be possi-
ble to infer some properties about the new attack. A Multi-Layer Perceptron,
however, would be unable to do this. It should also be noted that the neurons
of the SOM would only have to be labelled with a sample of the details of par-
ticular attacks; a list of every attack in the training data would not have to be
permanently stored, saving considerable space over a simple nearest-neighbour
approach.

4 Results

This section presents experimental results detailing the performance of our
hybrid system on the “corrected” 10% version of the popular KDD 1999 Cup
dataset [36]. This dataset consists of a set of preprocessed network connection
records, each containing 41 features. The fact that the raw network traffic com-
prising this dataset has already been processed in order to compute statistics
such as the number of failed login attempts makes this dataset a popular choice
amongst IDS researchers, since it avoids the need for extensive preprocessing.
For this reason, we do not address the preprocessing of raw network traffic
data in this paper.

4.1 Choice of network features and description of detectors

4.2 Dataset description

The “corrected” KDD 1999 Cup dataset is supplied pre-partitioned into a
training set consisting of (approximately):

• 56000 normal connections,
• 8000 DoS,
• 3300 Probe,
• 29 U2R,
• 110 R2L,

and a testing set containing (approximately):

• 19100 normal connections,
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• 73100 DoS,
• 2300 Probe,
• 19 U2R,
• 1000 R2L.

In order to facilitate comparison with existing systems, it was decided that this
particular partitioning into training and testing sets should not be modified
for the experimental analysis in this paper.

A list of the network features used from the dataset along with a specification
of the detector genotype are provided in Appendix A.

4.3 Anomaly Detection Performance

Results on the testing set for the artificial immune system anomaly detection
component are shown in Table 2, averaged over 50 runs. This experiment
focussed on varying the objective weights; the authors’ previous work [31] has
explored the effect of varying the population size of the detector generation
algorithm.

The following parameter settings were held constant throughout:

• population size of 1600,
• steady-state genetic algorithm executed for 50000 iterations,
• crossover rate = 1.0,
• mutation rate = 1/L, where L is the number of fields in the detector geno-
type.

When interpreting these results, it is crucial to understand that although
attack detection performance is listed by attack class, the artificial immune
system component simply classifies each connection as normal or anomalous,
with no regard to class division between anomalous connections. However, the
results are presented broken down into attack classes, since this reveals the
anomaly detection performance on different kinds of attacks.

For all of the weight settings, the resulting false positive rate (number of
normal connections misclassified) was very low, never stepping above 0.6%.
This was achieved in part due to the fact that at the end of detector generation,
our algorithm destroys any detectors that still match any normal connection
vectors in the training data. Such a low false positive rate is highly desirable,
since it avoids overwhelming a security officer with false alarms.

The general trend in the results is that increasing the weight of obj1 increases
the anomalous connection detection performance. This is intuitive, since obj1
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obj1

weight

obj2

weight

Normal DoS Probe U2R R2L

0.1 0.9 99.7% 59.2% 39.1% 42.3% 9.8%

0.2 0.8 99.6% 71.1% 41.9% 47.7% 12.3%

0.3 0.7 99.6% 67.3% 54.4% 50.6% 13.1%

0.4 0.6 99.6% 81% 54.3% 52.1% 10.9%

0.5 0.5 99.5% 91% 63.4% 58% 12.8%

0.6 0.4 99.4% 96.9% 68.5% 58.4% 12.5%

0.7 0.3 99.5% 94.9% 71.8% 58.9% 12%

0.8 0.2 99.5% 96.9% 67.4% 58% 11.4%

0.9 0.1 99.5% 98.9% 65.4% 60.3% 11.6%

Table 2
Anomaly detection performance by the artificial immune system on the “corrected”
KDD99 test set.

is to minimise the number of conditions in the detector IF-THEN matching
rule. A rule with fewer conditions will be able to match more connection
vectors in total, thereby allowing it to match more attack connection vectors.
The results also show that there is not a substantial difference in performance
between different settings of obj1 > 0.5.

4.4 Classification of Detected Attacks

This section reports the attack classification performance of the SOM. The
task here is not to distinguish between normal and anomalous; that is handled
by the artificial immune system. Instead, given an anomalous connection that
has already been detected, the job of the SOM is to classify the anomaly into
one of the 4 attack types.

The following parameters of the SOM training algorithm were used through-
out:

• Square output grid topology,
• 2000 epochs of training,
• η0 = 0.1,
• σ0 = length of one side of output grid.
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4.4.1 Varying the Size of the Output Grid

Table 3 shows the results of varying the size of the output grid, averaged over
2 runs. It should be noted that the only stochastic element of the SOM train-
ing algorithm is the initialisation of the neurons’ weight vectors. However,
the training algorithm is known to be quite insensitive to the setting of this
[20]. Furthermore, any suboptimal training results due to a poor initialisation
would become apparent as a topological defect in the final mapping between
connection vector space and the output grid of neurons, allowing such poor
runs to be discarded. For these reasons, it is not essential to repeat this ex-
periment for a large number of times, as would be the case with, say, the
back-propagation training algorithm.

Output

grid

size

DoS Probe U2R R2L

5-by-5 99.13% 96.32% 0% 99.83%

7-by-7 99.90% 93.46% 28.95% 34.84%

10-by-
10

99.57% 99.62% 55.76% 35.89%

15-by-
15

99.91% 93.18% 21.05% 37.66%

Table 3
Attack classification performance by SOMs of varying sizes on the test set.

The results show that a SOM with a small 5-by-5 output grid of neurons
produced very good correct classification scores of 99.13%, 96.32% and 99.83%
on the DoS, Probe and R2L attack classes, respectively. The reason for the
0% score for the U2R class was discovered by examining a plot of the labelled
output grid, which revealed that no neurons were labeled as U2R. A further
examination of the winning neurons for test examples of this class revealed
that they were all labelled as R2L, i.e. that U2R attacks are misclassified as
R2L. This is somewhat intuitive, since both of these types of attack involve
a user attempting to gain unauthorised access to a system. The difference
between them is that in an R2L attack the attacker is operating from outside
the network, whereas in a U2R attack he is operating from within it.

Using a larger output grid, i.e. more neurons, allows some neurons to be la-
belled as representing the U2R class. For example, in a 7-by-7 grid, 28.95% of
the U2R attack connections were correctly classified. When the grid size was
increased to 10-by-10, the classification performance for this type of attack
improved further to 55.76%. Unfortunately, classification performance for the
R2L class decreases substantially with these larger grid sizes, being close to
35% in both cases. An analysis of the winning neurons for the test R2L con-
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nection vectors revealed that many of the vectors were being projected onto
neurons labelled as U2R. This therefore leads to the conclusion that there is
an inherent trade-off in the ability to classify the two attack types correctly,
with the 5-by-5 SOM forcing this trade-off to be taken to the extreme. It may
be possible to remove this trade-off by using additional properties of network
connections to discrminate between the classes.

From Table 3, the best compromise seems to be to use a grid of size 10-by-10
(for which a plot of the labelled output grid is provided in Figure 3). This
is because this size performs better than a 7-by-7 grid in all attack classes,
except for DoS. However, the difference between their DoS scores is only 0.33%.
Although a 5-by-5 grid achieves a very high score for the R2L class, it achieves
0% on the U2R class. It would therefore be unwise to use such a system, as it
would leave the network completely vulnerable to these kinds of attack.
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Fig. 3. The labelled output grid of neurons for a trained 10-by-10 SOM. The circles
represent Probe, the +’s DoS, the triangles R2L and the x’s U2R.

4.4.2 Testing the LVQ Algorithm

The aim of this experiment was to determine whether or not an application
of the LVQ algorithm after SOM training improves classification performance
in this domain. Such a study is novel, as we are unaware of any other works
that have applied LVQ in the intrusion detection domain.

Before applying LVQ, the SOM is trained in the usual manner. The nodes are
then labelled, and the LVQ algorithm described in Section 3.1.2 is applied.

Table 4 shows the effect of applying the LVQ algorithm to a SOM with an
output grid of size 10-by-10. Recall that the results in Table 3 revealed this
size grid to yield a good compromise between correctly classifying the different
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types of attacks. The LVQ algorithm is applied for 10 epochs, with the initial
learning rate varied as specified in the table. The learning rate is reduced by
a half at the end of each epoch.

Initial

learning

rate η0

DoS Probe U2R R2L

0 (no
LVQ)

99.57% 99.62% 55.76% 35.89%

0.2 99.92% 94.46% 59.21% 41.49%

0.4 99.90% 99.47% 28.95% 44.13%

0.6 99.90% 99.39% 19.74% 99.77%

0.8 99.89% 99.49% 2.63% 99.79%

Table 4
Attack classification performance for a 10-by-10 SOM after an application of the
LVQ algorithm.

It can be seen from the results that adjusting the initial learning rate for
the LVQ algorithm allows the trade-off between classifying the U2R and R2L
attacks to be set. Setting a higher initial learning rate favours correct clas-
sification of R2L attacks, while a lower initial learning rate favours correct
classification of the U2R attacks. The reason for this is that there are many
more examples of R2L connections in the training set than their are U2R (110
versus 29). If there are more examples of one class then the LVQ algorithm
will bias the improvement in classification performance towards that class.
This follows from the fact that the standard LVQ algorithm treats each train-
ing example equally, and adjusts the SOMs weights to improve classification
performance on each such example in turn. Therefore, the sum of the weight
changes made by LVQ over all training examples will be biased towards the
most frequently occurring class.

A good compromise between detecting the different types of attacks was ob-
tained with an initial learning rate of 0.2. Compared to not using vector quan-
tisation, this gives a 3.45% improvement in classification performance on U2R
attacks, and a 5.6% improvement on R2L attacks. For DoS, the improvement
is marginal at 0.35%, while for Probe there is a decrease of 5.16%. However,
there is still a net improvement in classification performance across all attack
types of 4.24%. Furthermore, it can be argued that the improvement in classi-
fying U2R and R2L attacks is more important pragmatically than the decrease
in classification performance of Probe attacks, since Probe attacks were still
correctly classified 94.46% of the time.
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4.5 Overall Performance

Results are presented in Table 5 that compare the overall (detection and clas-
sification) performance of the hybrid system to that of two monolithic systems
chosen from the literature. These are a recent work that uses a 3-layer hier-
archy of SOMs for both attack detection and classification on the same 10%
dataset [20], and the winning entry from the KDD 1999 Cup competition [30].
The first system was chosen because it also uses a SOM, while the second was
chosen as a standard benchmark reference result.

It should be remarked that a plethora of other techniques have been applied to
the KDD 1999 Cup dataset, including, for example, hybrid machine learning
techniques [32], genetic programming [34], and an anomaly detection scheme
based on Principle Components Analysis [33]. Likewise, various artificial im-
mune system approaches have also been applied (of which a comprehensive
review can be found in [22]), including a recent use of the negative selec-
tion algorithm described in [17]. However, it is unfortunately not easy to
directly compare the performance of our system to these approaches, since
their authors each calculate performance in a different way. In particular, the
traditional approach from the original KDD competition of considering per-
formance on the 4 attack classes separately is often not used; instead, all
attack types are often treated homogeneously, or they are grouped in a differ-
ent manner. Consequently, it was only possible to compare the performance of
our system to those where the authors report the same performance statistics,
from which the most relevant have been selected.

Following from the results presented in Sections 4.3 and 4.4, the following
parameter settings were chosen for the hybrid system:

• Objective weights of 0.6 & 0.4 (for obj1 and obj2, respectively) for anomaly
detector generation,

• a SOM grid of size 10-by-10,
• an initial learning rate of 0.2 for LVQ.

The overall detection and classification performance was then computed ac-
cordingly from Tables 2 and 4, i.e. by multiplying the detection rate from
Table 2 with the classification rate from Table 4.

The results show that the hybrid system is better at detecting and classifying
DoS and U2R attacks than the 3 layer hierarchy of SOMs. Furthermore, a
lower false positive rate is also obtained; this may be because of a divide-and-
conquer advantage in separating detection from classification. This enables
the anomaly detection component of the hybrid system, in the form of the
artificial immune system, to concentrate on having a low false positive rate
without having to learn to (sub)classify attacks. Likewise, the SOM component
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Approach Normal DoS Probe U2R R2L

Hybrid artificial
immune system
and SOM

99.4% 96.8% 64.7% 34.6% 5.2%

Hierarchy of
SOMs (3 layers)
[20]

95.4% 95.1% 64.3% 10.0% 9.9%

Winning entry
from KDD 1999
Cup [30]

99.5% 83.3% 97.1% 13.2% 8.4%

Table 5
Comparing the performance of our hybrid system to a monolithic hierarchy of SOMs
[20] and to the winning entry from the KDD 1999 Cup competition [30].

can be trained solely to classify different kinds of attacks, without having to
also learn the difference between normal and anomalous.

When comparing results with the winning entry from the KDD 1999 Cup
competition, it should be noted that both the hybrid system and the hierarchy
of SOMs were tested only on the 10% version of the full dataset. However,
many researchers test their systems on this same 10%, making it a reasonable
portion of the dataset to use. Bearing this in mind, the results show that the
hybrid system is better at detecting and classifying DoS (96.8% versus 83.3%)
and U2R (34.6% versus 13.2%) attacks than the winning entry. In addition,
the false positive rates of both systems are similar.

However, the winning entry is better at detecting and classifying Probe (97.1%
versus 64.7%) and R2L (8.4% versus 5.2%). Using more features in the con-
nection vectors may help to improve the performance of the hybrid system
on these attacks. Finally, the fact that the winning entry also has low de-
tection and classification rates for U2R and R2L attacks suggests that such
attacks are indeed problematic for intrusion detection systems. In addition, if
classification of these two attack types is considered a trade-off, as previously
discussed, then the results of the hybrid system are favourable. This is because
the hybrid system is 2.6 times better at detecting U2R attacks, whereas the
winning entry is only 1.6 times better at detecting R2L attacks.

5 Conclusion

The main contribution of this paper has been to propose a hybrid IDS that
combines pure anomaly detection with the provision of higher-level informa-
tion about the detected anomalies. At present, this information takes the form
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of the broad attack type. However, other sorts of information are possible, such
as a list of specific example attacks that the anomaly is most similar to. By
contrast, other works that propose an anomaly detection based IDS typically
only provide low-level output. This low-level output is usually a binary score
indicating whether a connection is anomalous or not. However, such low-level
information leaves a security officer with much work to do to find out the
possible actions and consequences of an attack.

The key feature and novelty of the system presented in this paper is the use of
separate components for anomaly detection and attack classification. Detec-
tion is about recognising that a connection is anomalous, while classification
is about determining the broad attack type of the connection. The advantage
of using separate components is that in the first stage, the system is able to
perform pure anomaly detection. In other words, examples of specific attacks
are not required for attack detection, thereby avoiding biasing the system to-
wards only detecting variants of known attacks. This is important, given the
rate at which new attacks are developed. This approach should be contrasted
with the misuse based approach that looks for signatures of known attacks,
since such systems cannot detect attacks for which a signature is not present.

Comparing the performance of the system described in this paper to a sample
of other works on the KDD 1999 Cup dataset has shown favourable false posi-
tive and attack classification results. It would be valuable in future to consider
the attack detection rate on novel attacks only, since the use of anomaly detec-
tion may provide a further advantage against such attacks. Finally, regarding
the nature-inspired techniques used in our system, the system presented here
is the first to combine an artificial immune system with another technique at
runtime as part of a hybrid IDS.
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A Detector Genotype for the KDD 1999 Cup Dataset

The 18 features shown in Table A.1 were selected for use from the KDD
1999 Cup dataset. A clustering process was performed on the discrete and
real-valued fields in order to reduce the size of the detector search space and
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increase detector generality, as previously discussed in Section 2.2.1. This clus-
tering was carried out using the standard equal-frequency binning algorithm,
which divides the values observed in the training data into a number of bins,
such that approximately the same number of training records are placed in
each bin. The number of bins used for each feature is shown in the third
column of Table A.1.

Feature Datatype Number of bins

Connection duration integer 8

Protocol type categorical N/A

Port category integer 9

Number of urgent packets integer 3

Number of “hot” indicators in packet contents integer 3

Number of failed login attempts integer 3

Whether the user is logged in successfully binary N/A

Whether a root shell was obtained binary N/A

Whether the command “su root” was attempted binary N/A

Number of file creation operations integer 4

Number of open shell prompts integer 3

Whether the login username belongs to the “hot list” binary N/A

Whether the login is to a guest account binary N/A

Number of connections to same host in past 2 seconds integer 10

% of connections to same port in past 2 seconds real 3

% of connections to different ports in past 2 seconds real 3

% of connections to different hosts in past 2 seconds real 3

Table A.1
Network features used from KDD 1999 Cup Dataset.

Given this choice of network features, a detector genotype is then of the fol-
lowing form:

(1) Lower bound on the connection duration,
(2) upper bound on the connection duration,
(3) protocol type,
(4) port category,
(5) connection from/to same host/port?,
(6) lower bound on number of urgent packets,
(7) upper bound on number of urgent packets,
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(8) lower bound on number of “hot” indicators,
(9) upper bound on number of “hot” indicators,
(10) lower bound on number of failed login attempts,
(11) upper bound on number of failed login attempts,
(12) user logged in?,
(13) root shell obtained?,
(14) ’su root’ attempted?,
(15) lower bound on number of file creation operations,
(16) upper bound on number of file creation operations,
(17) lower bound on number of shell prompts open,
(18) upper bound on number of shell prompts open,
(19) login user name in “hot list”?,
(20) guest login?,
(21) lower bound on number of connections to same host in past 2 seconds,
(22) upper bound on number of connections to same host in past 2 seconds,
(23) lower bound on % of connections to same port in past 2 seconds,
(24) upper bound on % of connections to same port in past 2 seconds,
(25) lower bound on % of connections to different ports in past 2 seconds,
(26) upper bound on % of connections to different ports in past 2 seconds,
(27) lower bound on % of connections to different hosts in past 2 seconds,
(28) upper bound on % of connections to different hosts in past 2 seconds.

It should be noted that any of these fields can be left unspecified, denoted by
a value of -1.
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[16] F. González, D. Dasgupta, Anomaly detection using real-valued negative
selection, Genetic Programming and Evolvable Machines 4 (4) (2003) 383–403.

[17] C. R. Haag, G. B. Lamont, P. D. Williams, G. L. Peterson, An artificial immune
system-inspired multiobjective evolutionary algorithm with application to the
detection of distributed computer network intrusions, in: Proceedings of the
6th International Conference on Artificial Immune Systems (ICARIS 2007),
vol. 4628 of Lecture Notes in Computer Science, Springer, 2007.

[18] S. Haykin, Neural Networks: A Comprehensive Foundation, Prentice-Hall, 1999.

[19] S. A. Hofmeyr, S. Forrest, Immunity by design: an Artificial Immune System,
in: Proceedings of the Genetic and Evolutionary Computation Conference
(GECCO’99), vol. 2, Morgan Kaufmann, 1999.

30



[20] H. G. Kayacik, A. N. Zincir-Heywood, M. I. Heywood, On the capability of an
SOM based intrusion detection system, in: Proceedings of the 2003 International
Joint Conference on Neural Networks, vol. 3, IEEE Press, 2003.

[21] J. Kim, P. J. Bentley, Evaluating negative selection in an Artificial Immune
System for network intrusion detection, in: Proceedings of the 2001 Genetic
and Evolutionary Computation Conference (GECCO’01), Morgan Kaufmann,
2001.

[22] J. Kim, P. J. Bentley, U. Aickelin, J. Greensmith, G. Tedesco, J. Twycross,
Immune system approaches to intrusion detection a review, Natural Computing
6 (4) (2007) 413–466.

[23] T. Kohonen, Self-organized formation of topologically correct feature maps,
Biological Cybernetics 43 (1982) 59–69.

[24] T. Kohonen, Improved versions of learning vector quantization, in: Proceedings
of the IEEE International Joint Conference on Neural Networks, vol. 1, IEEE
Press, 1990.

[25] J. Li, G.-Y. Zhang, G.-C. Gu, The research and implementation of intelligent
intrusion detection system based on artificial neural network, in: Proceedings
of 2004 International Conference on Machine Learning and Cybernetics, vol. 5,
IEEE Press, 2004.

[26] S. W. Mahfoud, Crowding and preselection revisited, in: Proceedings of the
Second Conference on Parallel Problem Solving from Nature, North-Holland,
1992.

[27] MIT Lincoln Labs, 1999 DARPA intrusion detection evaluation, available online
at: http://www.ll.mit.edu/IST/ideval/.

[28] B. Mukherjee, L. T. Heberlein, K. N. Levitt, Network intrusion detection, IEEE
Network 8 (3) (1994) 26–41.

[29] S. Mukkamala, G. Janoski, A. Sung, Intrusion detection using neural networks
and support vector machines, in: Proceedings of the 2002 International Joint
Conference on Neural Networks (IJCNN’02), vol. 2, IEEE Press, 2002.

[30] B. Pfahringer, Winning entry of the kdd’99 classifier learning contest, results
available online at: http://www.acm.org/sigs/sigkdd/kddcup/ (1999).

[31] S. T. Powers, J. He, Evolving discrete-valued anomaly detectors for a network
intrusion detection system using negative selection, in: X. Z. Wang, R. F. Li
(eds.), Proceedings of the 2006 UK Workshop on Computational Intelligence
(UKCI 2006), University of Leeds, 2006.

[32] T. Shon, J. Moon, A hybrid machine learning approach to network anomaly
detection, Information Sciences 177 (18) (2007) 3799–3821.

[33] M.-L. Shyu, S.-C. Chen, K. Sarinnapakorn, L. Chang, A novel anomaly
detection scheme based on principal component classifier, in: Proceedings of
the IEEE Foundations and New Directions of Data Mining Workshop, IEEE
Press, 2003.

31



[34] D. Song, M. I. Heywood, A. N. Zincir-Heywood, A linear genetic programming
approach to intrusion detection, in: Proceedings of the 2003 Genetic and
Evolutionary Computation Conference (GECCO 2003), Springer, 2003.

[35] The Software Engineering Institue at Carnegie Mellon University, Cert/cc
statistics 1988-2006, http://www.cert.org/stats/ (2006).

[36] The UCI KDD Archive, KDD Cup 1999 data, available online at:
http://kdd.ics.uci.edu//databases/kddcup99/kddcup99.html.

32


