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Abstract—Activity-tracking applications, where people record and upload information about their location-based activities (e.g., the
routes of their activities), are increasingly popular. Such applications enable users to share information and compete with their friends
on activity-based social networks but also, in some cases, to obtain discounts on their health insurance premiums by proving they
conduct regular fitness activities. However, they raise privacy and security issues: the service providers know the exact locations of
their users; the users can report fake location information, for example, to unduly brag about their performance. In this paper, we
present SecureRun, a secure privacy-preserving system for reporting location-based activity summaries (e.g., the total distance
covered and the elevation gain). SecureRun is based on a combination of cryptographic techniques and geometric algorithms, and it
relies on existing Wi-Fi access-point networks deployed in urban areas. We evaluate SecureRun by using real data-sets from the FON
hotspot community networks and from the Garmin Connect activity-based social network, and we show that it can achieve tight (up to a
median accuracy of more than 80%) verifiable lower-bounds of the distance covered and of the elevation gain, while protecting the
location privacy of the users with respect to both the social network operator and the access point network operator(s). The results of
our online survey, targeted at RunKeeper users recruited through the Amazon Mechanical Turk platform, highlight the lack of
awareness and significant concerns of the participants about the privacy and security issues of activity-tracking applications. They also
show a good level of satisfaction regarding SecureRun and its performance.
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1 INTRODUCTION

MORE and more people rely on activity-tracking ap-
plications to monitor, manage and to encourage

themselves to do physical activities. Mobile apps, such as
Endomondo, Garmin Connect, RunKeeper, Runtastic and
Strava, and wearable devices, such as Fitbit, Nike+ Fuel-
band and Jawbone UP, enable users to keep track of their
performance while running, hiking or cycling. This infor-
mation is collected using location-based services (LBSs) and
embedded sensors in smartphones and wearable devices.
Due to the popularity of these apps, top mobile operating
systems now include APIs that facilitate the gathering and
sharing of fitness and health data across multiple apps and
devices (e.g., HealthKit for iOS and Google Fit for Android).
A key feature of these applications is to enable users to
access summaries of their activities and performance statis-
tics and to share this information with other users and
service providers on online social networks. For instance,
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users can share the total distance covered, the cumulative
elevation gain and the path taken during their activities. For
this purpose, activity-tracking applications collect and send
users’ location and fitness data, possibly while they pursue
their activities, to services providers.

In exchange for their data, users are offered various in-
centives. For example, users can receive discounts, coupons
or even cash [2]–[6], awards at competitions [7], [8] or
simply points to improve their social reputation. In addi-
tion, many companies, including big names such as British
Petroleum (BP), Bank of America and Autodesk, are giving
activity-tracking devices to their employees to encourage
healthier lifestyles and, as a result, improve productiv-
ity and lower corporate insurance costs [9]–[11]. Similarly,
health insurance companies such as United Health, Kaiser
Foundation Group, Humana Group and Aetna have created
programs to include activity-tracking devices into their poli-
cies, i.e., consumers are rewarded by the insurers with lower
rates based on their activity summaries [6], [10], [12].

Although activity-tracking and sharing services are gain-
ing popularity, there are two important issues that could
hinder their wide-scale adoption and viability. First, the
privacy concerns associated with the data collected by these
apps. In particular, users’ location data, which is known
to service providers, can be used to infer private informa-
tion about them, such as their home/work locations [13],
[14], activity preferences [15], interests [16] and social net-
works [17]. This risk is exacerbated by the fact that service
providers often share or sell this data to third-parties [18],
[19]. Second, the concerns about the integrity of the data
reported by users. As the value of incentives increase, users
could be more tempted to cheat when reporting their per-
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formance [20], which would endanger the viability of the
system for the service provider and its affiliates, as well as
its attractiveness to the users. For example, location cheating
can be achieved by making mobile devices report erroneous
location information to the activity-tracking app [21], [22],
or by spoofing the GPS/Wi-Fi signals used for geo-location
users [23]–[25]. Moreover, some tools enable users to manip-
ulate activity data to lie about their performance [26]–[28].

To assess the awareness and concerns of users of activity-
tracking applications regarding opportunities to cheat and
privacy issues, we conducted a user survey of 50 par-
ticipants. Our survey participants are active RunKeeper
users who we recruited on the Amazon Mechanical Turk
platform. In the survey questionnaire, we first informed
the participants about existing opportunities to cheat and
privacy issues of fitness-tracking applications such as Run-
Keeper, and we then polled them about their awareness
and their concerns (see Section 6.1 and Appendix F of the
supplemental material for more details, including the full
transcript of the questionnaire). Regarding opportunities to
cheat, we found that all the participants were unaware of
them and 48% were very or extremely concerned about
them. Regarding privacy issues, we found that 90% of the
participants were unaware of them and 82% were very or
extremely concerned about them. These results highlight the
need to raise awareness and the need for technical solutions
to build cheat-proof and private activity-tracking apps.

A straightforward solution to these issues consists in
enforcing the use of either secure and/or privacy-preserving
location proofs for users [23], [29]–[31], where their location
could be either (1) trusted and known (as it is the case for
activity trackers) or (2) untrusted and known (but useless
for obtaining rewards). In fact, solutions guaranteeing (1)
would benefit the service provider by ensuring that cheating
is infeasible, whereas solutions satisfying (2) would protect
users’ location privacy but would provide locations that are
too coarse-grained for computing meaningful summaries.

In this paper, we propose SecureRun, a novel
infrastructure-based approach that provides guarantees
both in terms of the prevention of cheating and location
privacy for the users vis-à-vis the service provider, while
allowing the latter to compute accurate summaries and
statistics of users’ activities, such as the total distance cov-
ered during an activity. SecureRun relies on existing wireless
access-point (AP) networks and alleviates the need for a
costly deployment of a dedicated ad-hoc infrastructure.
Instead, it could rely on strategic partnerships between so-
cial network providers and access-point network operators.
SecureRun consists of two phases: First, users obtain secure
and privacy-preserving proofs of performance during their
activities, by relying on a lightweight message exchange
protocol between their mobile device and the Wi-Fi access
points encountered while pursuing the activity; second,
the service provider computes an accurate summary of a
user’s activity, such as the total distance covered between
two time instants or the elevation gain, without learning
any additional information about the user’s actual location.
SecureRun produces, in a privacy-preserving way, a secure
and accurate lower bound of the actual distance covered by
a user while she performs an activity. Finally, it is able to
take advantage of the co-existence of multiple access-point
operators to improve the accuracy/privacy trade-off. Unlike

the initial version of our system presented in [1], in order to
maximize the accuracy of the activity summaries produced,
SecureRun computes the optimal set of access points to
communicate with. To the best of our knowledge, this is
the first work to address privacy and cheating issues in the
computation of activity summaries.

We evaluate our solution on a large data-set of real user-
activities, collected from the Garmin connect [32] social net-
work in the regions of Brussels (Belgium), London (UK) and
Paris (France). For these regions, we also extract the actual
locations of a network of deployed Wi-Fi APs operated
by FON [33]. Moreover, to evaluate the benefits of having
multiple operators in a given area, we extract the locations
of a second network in the urban area of Paris. The experi-
mental results show that our solution can gracefully balance
accuracy and privacy. SecureRun achieves good accuracy,
up to a median accuracy of more than 80%. This constitutes
a significant improvement compared to the performance of
the initial version of the system reported in [1]: On average,
we achieved an absolute improvement of 5-10 points in the
median accuracy. In our survey, we also asked the partic-
ipants about their level of satisfaction regarding activity
summaries for different values of the summary accuracy
(i.e., “Assuming that you have run 10 miles, what would
your level of satisfaction be if SecureRun issues a certificate
of 6 mi? 7 mi? 8 mi? 9 mi?): We found that for an accuracy of
80% (i.e., SecureRun issues a certificate of 8 mi when the user
runs for 10 mi), which roughly corresponds to the median
performance of SecureRun, the “high” and “very high” lev-
els of satisfaction account for 42% of the participants (74%
with the “medium” level of satisfaction). We also conduct a
sensitivity analysis to evaluate the effect of the distribution
of the APs on the performance of SecureRun.

The remainder of the paper is organized as follows.
We first survey the related work and introduce the system
and adversarial models. We then present SecureRun and
report on its evaluation in terms of its performance and
of its security and privacy properties. Finally, we present
directions for future work and conclude the paper.

2 RELATED WORK

Cheating on activity-based social networks is becoming a
serious problem. For example, He et al. [23] show that users
can easily override Foursquare’s GPS verification mecha-
nisms by modifying the values returned by the calls to
the geo-location API of smartphones. Similarly, Polakis et
al. [34] use a black-box approach to uncover the mechanisms
used by Foursquare and Facebook Places to detect loca-
tion attacks and propose several ways to circumvent them.
Moreover, work from Carbunar and Potharaju [20] analyze
data from Foursquare and Gowalla and find that incentives
to cheat exist because people actively check-in and collect
rewards. Thus, it is necessary to carefully balance incentives
with a more effective verification of users’ location claims.
In this regard, Zhang et al. [24] show that fake check-ins lead
not only to monetary losses for the venues offering special
deals on location-based check-ins but also to the degrada-
tion of the quality of service provided by recommendation
systems that rely on users’ location information. Carbunar et
al. [31] also show that there is tension between privacy and
correctness in location-based applications, where users are
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unable to prove that they have satisfied badge conditions
without revealing the time and location of their check-ins.

Meanwhile, to defend against cheating, researchers have
also proposed several mechanisms that offer secure ver-
ification of location information. From a broad perspec-
tive, such mechanisms can be grouped in three categories:
infrastructure-independent, infrastructure-dependent and
hybrid mechanisms. In the infrastructure-independent ap-
proach, a user obtains location evidence from her neighbors
by using short-range communication technologies, such as
Bluetooth [35]–[37]. Specifically, Talasila et al. [35] propose
a location authentication protocol where a set of users help
verify each others’ location claims. The protocol operates
by keeping a centralized authority that, based on users
spatio-temporal correlation, decides whether such claims
are authentic or not. Similarly, Zhu et al. [36] propose a
system where mutually co-located users rely on Bluetooth
communications to generate their location claims that are
then sent to a centralized location verifier. In addition to
the security and privacy guarantees presented in [35], Zhu
et al. [36] enable individual users to evaluate their own
location privacy and decide whether to accept location proof
requests by other users. Jadliwala et al. [38] provide a formal
analysis of the conditions needed in an ad-hoc network to
enable any distance-based localization protocols in wireless
networks. Similar approaches have been explored in mobile
sensor networks [39], [40].

More in line with our work, the infrastructure-dependent
studies assume the presence of a centrally-operated set of
access points (AP) that produce and verify location claims.
For instance, to ensure the presence of a user in a given
region, the AP can require her to execute together a nonce-
based, challenge-response protocol, with constraints on the
maximum round-trip delay of the messages exchanged be-
tween the user and the AP [41], or any distance bounding
protocol [42]–[45], which enables the AP to check the min-
imum distance between itself and the user. In particular,
Capkun and Hubaux [44] propose a verifiable multilatera-
tion protocol that can be used to securely position nodes
in a wireless network. Once the secure localization phase
is done, the user can obtain a location proof to certify
that the user is at a specific geographical location [41].
Alternatively, Luo and Hengartner [30] show that a user
can obtain location proofs with different precision levels and
then select one to disclose to the service provider, depending
on her privacy preferences.

Hybrid approaches rely on both landmarks (e.g., WiFi,
cellular base stations) and short-range communications be-
tween users (e.g., Bluetooth) to obtain location evidences.
For instance, Uchiyama et al. [46] describe an opportunistic
localization algorithm for positioning mobile users in urban
areas. The area of presence of a user is calculated based on
a map of obstacles (i.e., the area where there is no radio
signal), the last presence areas of the node itself and the
nodes it encountered. Similarly, Koo et al. [47] present a
hybrid system that relies on landmarks located at corners
or intersections of streets and short-range communication
between users. The system considers the users’ routes (i.e., a
sequence of segments connecting successive landmarks), the
average moving speed in the segment and the collaboration
between mobile nodes to locate the users.

SecureRun relies on an infrastructure of wireless access
points to provide secure distance proofs, in line with the

infrastructure-dependent models discussed above. How-
ever, it is the first work, to the best of our knowledge, to
provide secure distance proofs and to tackle the challenge
of activity summaries.

3 SYSTEM ARCHITECTURE

In this section, we describe the different entities involved
in our system: a user, one or more Wi-Fi network operator
and a service provider (e.g., a social network). Figure 1
depicts the system considered and a sketch of SecureRun.
We also describe the adversarial model in this scenario.
Moreover, we discuss and analyze the incentives of the
various involved entities and the adoption of SecureRun in
Section 6. For the sake of readability, we provide a table with
the notations used throughout the paper in Appendix A.

3.1 Users
We assume that some users pursue location-based activi-
ties, where they move in a given geographical region, and
that they want to obtain statistics or summaries of their
activities. These users are equipped with GPS- and WiFi-
enabled devices and have sporadic Internet connectivity (at
least at some point in time before and after the activity).
Thus, they can locate themselves and communicate with
nearby Wi-Fi access-points. We assume a unit-disc model
for Wi-Fi communications, in which a user and an AP can
communicate only if the distance between them is lower
than a given radius R, which is constant across all users
and all APs. Note that we do not assume that users can
communicate with the APs as soon as the distance is lower
than R (we only assume that if they can communicate with
an AP, then the distance between the user’s device and the
AP is lower than R); as such, this is a relaxed version of
the unit-disc model. Note also that this assumption can
always be enforced by choosing a high value of R. In
particular, we assume that users cannot violate this model
by, for example, increasing the transmission power of their
devices. We assume that users can obtain random identifiers
(or pseudonyms) from the online service provider, and that
they can use such pseudonyms to protect their privacy
while pursuing their activities. We assume that users do not
hand their pseudonyms to other users (this can be enforced
by embedding sensitive or critical information about the
users in their pseudonyms, such as tokens that enable the
users to reset their passwords). Finally, we assume direct
Wi-Fi connections to have much smaller communication
delays than cellular Internet connections, thus enabling us
to prevent proxy/relay attacks [23] by using delay-based
challenge-response mechanisms.

In order to brag or obtain rewards, users might be
tempted to unduly increase their performance by deviating
from the protocol. To do so, such users could, for instance,
report locations that are different from their actual locations,
forge messages or reuse messages they, or their friends,
obtained in the past.

3.2 Wi-Fi AP Network Operator
We assume the existence of one or multiple Wi-Fi network
operators, and that each operator controls a set of fixed
Wi-Fi APs deployed in the regions where the users pursue
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their activities. ISP-controlled Wi-Fi community networks
such as British Telecom Wi-Fi (or a federation of such
networks, such as FON) constitute typical candidates for
deploying and running the APs used by SecureRun, because
they own and control the routers they provide to their
subscribers (e.g., the ISPs can transparently remotely update
the firmware of their subscribers’ routers). Each AP is aware
of its geographic position and of its communication radius.
We assume that all the APs have synchronized clocks, and
that they are able to compute public-key cryptographic
operations. In particular, we assume that all the APs from
a same network operator share a public/private group key
pair (GK pub,GK priv), where GK pub is known by the users
and the service provider, and GK priv is only known to
the network operator and to its APs. Finally, we assume
that the APs cannot uniquely identify mobile devices based
on the characteristics of their wireless-network adapters
(i.e., wireless fingerprinting techniques based on clock skews
or physical layer signatures [48]–[50]).

Some access-point operators might be interested in track-
ing the users’ locations, based on the information obtained
by all of their APs.1 We assume them to be semi-honest or
honest-but-curious, meaning that they do not deviate from
the protocol specified in our solution, but that they analyze
the information they collect while executing the protocol.

3.3 Social Network Provider
We assume that there is a social-network provider that offers
activity summaries and sharing services to its registered
users. The provider is able to generate sets of pseudonyms
for its users, by using a suitable public-key encryption
scheme. Moreover, it is able to verify the authenticity of
messages signed with the network operators’ group keys
(by using their public group keys). Like the network opera-
tors, the social network provider might be interested in the
users’ locations1 and is assumed to be honest-but-curious.

Finally, we assume that the different entities do not
collude with each other.

4 SECURERUN

Our high-level design goal is to build an activity-tracking
system that (1) guarantees the authenticity of the user’s
activity data with respect to cheating users who try to un-
duly increase their performance and (2) protects the users’
location-privacy with respect to curious network operators
and service providers that try to track them.

In this section, we present SecureRun, our solution for
secure and privacy-preserving activity summaries. First, we
give a high-level overview of SecureRun and define the
main operations it involves. Then, we provide a detailed de-
scription of each of the aforementioned operations. Figure 1
shows an overview of SecureRun and of its operations.

4.1 Overview
From a general perspective, SecureRun operates as follows.
As a user pursues her location-based activity, she moves and
communicates (through her smartphone) with the wireless

1. The information available to the adversaries is made explicit in the
description of the protocol (Section 4) and summarized in the security
analysis (Section 7).

access points located along her route (and in her communi-
cation range) to obtain location proofs (LP). A location proof is
a digitally signed message, delivered by an access point, that
certifies that the user is, at a given time t, in a given range of
an access point that is located at a given position (x, y).2 The
times/positions at which users request such location proofs
are determined by a sampling algorithm.

A user employs different pseudonyms (provided to her
beforehand by the service provider) when communicating
with the access points. The different location proofs ob-
tained by a user (from different access points) in a short
interval of time are aligned in time and combined into a more
precise location proof by using intersection techniques. To
obtain an activity proof, a user provides pairs of consecutive
precise location proofs to an access point; more specifically,
she obtains a distance proof (DP) and/or an elevation proof
(EP). The activity proofs that the user obtains do not provide
any location information, as they do not include information
about where the activity was pursued but only about the
distance or elevation. Such proofs are digitally signed mes-
sages that certify that a user achieved (at least) one given
performance during a given time span, e.g., that she ran
at least 1 km between 3:02pm and 3:08pm on March 19th.
Finally, a user sends all the activity proofs she collects, while
pursuing her activity, to the service provider that performs
the adequate verifications; if the information is correct, the
provider combines the proofs into an activity summary that
it publishes on the user’s profile.

In terms of privacy, the use of pseudonyms protects
users’ locations with respect to the access-point operators;
the lack of location information in activity proofs provides
protection with respect to the social-network provider. Fi-
nally, the use of digital signatures and pseudonyms, com-
bined with the fact that the activity proofs represent the
lower bounds of the user’s actual performance, provide
security properties with respect to dishonest users.

4.2 Location Proofs

At each sampling time ti (determined by the sampling al-
gorithm described below)3, a user begins to collect location
proofs from the access points in her communication range.
To do so, she periodically broadcasts (during a short time in-
terval starting at time ti) location-proof requests that contain
one of her pseudonyms P . Note that a different pseudonym
is used for each sampling time. All the access points in her
communication range send back messages that contain the
pseudonym P , a timestamp t (i.e., the time at which the re-
quest is processed by the access point) and their coordinates
(x, y), digitally signed with the private group key GK priv,
specifically a location proof LP = sigGKpriv

{P, t, (x, y)}.
We denote by LPi,j = {Pi, ti,j , (xi,j , yi,j)} the j-th location
proof collected at sampling time ti (note that we omit the
signature for the sake of readability). As the communica-
tion and processing delays differ from one access point to
another, the location proofs collected from different access

2. Throughout the paper, we use an equi-rectangular projection to
map the latitude and longitude of the considered locations to a Carte-
sian coordinate system, in which the Euclidean distance between two
points is a good approximation of the Haversine distance between the
corresponding locations.

3. For the sake of clarity, we describe the sampling algorithm after
the location and activity proofs.
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Figure 1. Overview of SecureRun’s system architecture. A user first obtains a set of pseudonyms {p1, . . . , pK} from the social network provider.
Then, while performing an activity along the dotted trajectory, she sporadically requests location proofs (LP) at times τi, using pseudonyms pi, to
the APs encountered along the trajectory. By using the LPs, the APs compute, and deliver to the user, distance proofs for the different time intervals.
The user finally sends the distance proofs to the social network provider that combines them and publishes the summary on her profile.

points at a same sampling time have different timestamps.
Under the relaxed unit-disc communication model (with
radius R), such a location proof certifies that, at time t, the
user is at a distance of at most R to the access point that
issues the location proof. In other words, it certifies that
the user is in a disc of radius R, centered at the point of
coordinate (x, y). We denote such a disc by C((x, y), R). In
addition, we denote by C the entire set of APs located along
the user’s route and by Ci the set of APs defined by the
location proofs collected by the user at time ti.

4.3 Activity Proofs

To obtain an activity proof (i.e., a distance proof or an
elevation proof), a user sends to any access point (whenever
she needs it) the location proofs collected at two consecutive
sampling times ti and ti+1. The contacted AP first combines
the location proofs (those collected at each of the two sam-
pling times) into more precise location proofs, by aligning
them in time and intersecting them. As these location proofs
have different timestamps, the first step of the combination
consists in aligning the different location proofs as follows.
Assuming the speed at which users move is upper-bounded
by a constant vmax, the fact that a user is at a distance at
most d to an access point at time t means that, at time t′,
the user is at a distance of at most d + vmax · |t − t′| to
this access point. The second step of the combination simply
consists in computing the intersection of the aligned location
proofs. Note that only the locations proofs with a timestamp
in [ti, ti + δt] are combined. The access point determines a
geographical area Ai where the user was at time ti from the
following expression4

Ai =
⋂
j∈Ci

C((xi,j , yi,j), R+ vmax · |ti − ti,j |) (1)

The AP repeats the same operation for the location proofs
obtained at sample time i + 1. Figure 2 shows an example
of a location-proof combination: Assuming that at sampling

4. Note that we do not consider the information that the user is not in
the communication ranges of the APs from which she did not receive
location proofs. This case is discussed in Appendix E.

time t1, a user obtains two LPs: LP11 = {P1, t11, (x11, y11)}
and LP12 = {P1, t12, (x12, y12)} from two APs.

R R

R12R11

R12 = R+ vmax · |t1 − t12|

R11 = R+ vmax · |t1 − t11|

access point

communication range of an AP

communication range of an AP (aligned)

Figure 2. Time alignment of location proofs LP11 and LP12 at time t1.
At t1, the user was in the gray area defined by the intersection of the two
solid discs.

The activity proofs are computed from a lower bound of
a user’s performance. As for distance proofs, knowing that a
user was in an area Ai at time ti and in an area Ai+1 at time
ti+1, the distance di betweenAi andAi+1 (i.e., the minimum
of the distances between any point in Ai and any point in
Ai+1) constitutes a lower bound of the distance covered by
a user during the time interval [ti, ti+1]. More specifically,
using the Euclidean distance, we have

di = min
(x, y) ∈ Ai

(x′, y′) ∈ Ai+1

√
(x− x′)2 + (y − y′)2 (2)

A tight approximation of di can be obtained by using a non-
linear optimization toolbox such as IPOPT [51].

With respect to the elevation proofs, the following ex-
pression gives a lower bound of the cumulative elevation
gain5 achieved by a user during the time interval [ti, ti+1].

ei = min
(x, y) ∈ Ai

(x′, y′) ∈ Ai+1

(max (0, z(x′, y′)− z(x, y))) (3)

where z( · , · ) denotes the elevation of the point of coordi-
nate (x, y). Note that the “max” operator is used here in
order to account for only positive elevation gains. Unlike

5. Note that the elevation loss can be computed by following the
same line of reasoning.
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for the lower bound of the covered distance, we com-
pute the lower bound of the elevation gain analytically:
ei = max

(
0,min(x,y)∈Ai+1

z(x, y)−max(x,y)∈Ai
z(x, y)

)
.

Figure 3 illustrates the stages of the generation of activity
proofs in the case of the covered distance/elevation gain.

To provide stronger privacy-guarantees, SecureRun also
hides the time intervals [ti, ti+1] included in each activ-
ity proof, by encrypting them with an order-preserving
encryption scheme (OPE) [52], [53]. As its name implies,
an OPE scheme guarantees that the numerical ordering of
the input data is preserved in the encrypted output data,
i.e., a > b ⇔ EOPE(a, k) > EOPE(b, k), where EOPE()
is an OPE encryption function and k is the corresponding
encryption key. In a nutshell, without the key, the encrypted
timestamps cannot be decrypted but can still be ordered.

SecureRun uses OPE as follows. When an AP gen-
erates an activity proof, it encrypts the timestamps
with the key GKOPE (known to all APs) and in-
cludes them in the proof, instead of the plain-text
timestamps. Thus, the access point generates an activ-
ity proof sigGKpriv

{di, ei, [ci, ci+1], {Pi, Pi+1}} where ci =
EOPE(ti,GKOPE) and ci+1 = EOPE(ti+1,GKOPE).

4.4 Activity Summary
To publish an activity summary on her profile, the user
uploads her collected activity proofs to the social network
service provider. In turn, the provider checks that (1) the
signatures of the activity proofs are valid (using the public
group keys of the access points), that (2) all the pseudonyms
that appear in the activity proofs indeed belong to the user,
and that (3) the OPE-encrypted time intervals of the activity
proofs do not overlap (otherwise the distance covered in
the time overlap would be counted twice, hence violating
the lower-bound property of the summary). If this is the
case, the social network provider simply sums the distances
(or the elevation gains, respectively) from the activity proofs
and adds the resulting summary to the user’s profile. Notice
that, thanks to OPE, the service provider can validate that
the time intervals are indeed disjoint, without learning the
exact time values.

If the user’s mobile device has an active wireless Internet
connection (e.g., 3/4G), the user can upload on-the-fly the
activity proofs she collects while she pursues the activity. By
doing so, it enables real-time online tracking of the user’s
activity by her friends, such as the LIVE-tracking feature
offered by the Runtastic and Endomondo mobile apps.

4.5 Sampling Algorithms
We now describe SecureRun’s sampling algorithm. The sam-
pling algorithm determines the sampling times/positions
at which the user requests location proofs from the access
points in her communication range. The general objective of
the sampling algorithm is to achieve high accuracy (i.e., tight
lower-bounds in the activity proofs) and a high level of
privacy.

We distinguish between two cases: the case where a user
knows beforehand the path she is about to take, namely
planned sampling, and the case where she does not, namely
unplanned sampling. In both cases, the sampling algorithm
knows the locations of the access points. Planned sam-
pling corresponds to the quite common situation where

sampling point
access point

user’s route

distance lower bound
elevation gain lower bound
communication range of an AP (aligned)

Figure 3. Computation of distance and elevation proofs. The shaded
areas correspond to the intersections of the location proofs obtained
at the same sampling time. The 3D plots correspond to the elevation
profiles of the shaded areas, based on which the lower-bound of the
elevation gains are computed.

a user records the set of her preferred paths and of her
past activities. Such a feature is commonly implemented
in activity-tracking applications (including Garmin’s) in or-
der to enable users to compete against their own previous
performance. For instance, the activity-tracking application
indicates to the user whether she is late or in advance,
compared to her best performance. With planned sampling,
the sampling points are determined before the user starts the
activity with the full knowledge of the path, thus yielding
potentially better results. We now describe both variants of
the algorithm, considering at first the case of a single access-
point operator and, subsequently, multiple operators.

We focus our description on the case of distance proofs.6

The planned and unplanned versions of the algorithm share
a common design rationale: (1) limit the discrepancies be-
tween the actual path and the lower-bounds, by requesting
location proofs where the direction of the path changes sig-
nificantly; and (2) enforce a silence period after requesting
certain location proofs, in order to achieve unlinkability of
successive activity proofs.

Silence Periods. To highlight the importance of silence
periods, consider a user who collects three location proofs
at three successive sampling times (with pseudonyms P1,
P2 and P3). If she requests a distance proof for the time
interval between the first two location proofs and another
distance proof for the time interval between the last two,
the access-point operator can link the three location proofs
(as it knows that P1 and P2 belong to the same user
and so do P2 and P3) and thus track the user, despite
the use of pseudonyms. To circumvent this issue, a user
requests an additional location proof some time after she
requests the second location proof, leaving her with four
location proofs. The time between the second and the third
(i.e., the additional) location proofs is called a silence period.
Finally, the user requests distance proofs only for the time
intervals between the first and the second, and between the
third and the forth location proofs. The distance covered
between the second and the third location proofs is not
counted in the user’s activity summary. The users repeat
this process throughout her activity, as depicted in Figure 4.

6. The reasoning is the same for elevation proofs.
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The duration ∆T of the silence period7 is a parameter of the
system that enables users to balance their accuracy of the
activity summaries and their privacy: Short silence periods
yield high-accuracy activity summaries (as the distances
covered during the silence periods, which are not counted
in the activity summary, are small) but provide low privacy
guaranties (as the access-point operators can link with high
confidence two successive activity proofs, because the time
interval between them is short). Conversely, long silence
periods yield low-accuracy activity summaries and provide
high privacy guaranties.

silence period (∆T )

Figure 4. Silence period. By implementing a silence period between
every pair of successive distance proofs (i.e., not requesting a distance
proof for this period), a user reduces the risk of her distance proofs being
linked by the access-point, hence protecting her privacy.

Multiple Access-Point Operators. In the case where multi-
ple access-point operators are involved, the silence periods
are not always needed: By requesting successive distance
proofs from different operators (assumed to not collude
with each other), a user does not need to wait for ∆T
seconds (i.e., implement a silence period) to reduce the risks
of linking her distance proofs. To protect her privacy, a user
should not need to request two successive distance proofs
from the same operator, unless she implements a silence
period. With two operators, a user can alternatively request
distance proofs from each of the two operators, as illustrated
in Figure 5.

Figure 5. Case of multiple access-point operators (Operator 1 in red
and Operator 2 in blue). At every sampling point, a user requests
location proofs from both operators. Then, she requests distance proofs,
alternatively from different operators, to reduce the risk of linking the
distance proofs she collects without reducing the accuracy of her activity
summary (unlike with silence periods).

For the sake of simplicity, we now describe the planned
and unplanned sampling algorithms without silence peri-
ods, in the case of a single access-point operator.
Planned sampling. In the planned case, we formalize the
sampling problem at discrete time: The path of a user is
represented as a sequence of time/position samples, or-
dered by increasing times {(τi, pi)}i=1..T . Such a discrete
formalism matches the conventional format of activity traces
(e.g., Garmin represents the paths of activities as sequences
of time/positions samples). In such a formalism, the sam-
pling problem consists in selecting sampling times (i.e., ,
a subset of T = {τi}i=1..T ) at which a user needs to
collect location proofs from the neighboring access points so
that the sum of the resulting activity proofs is maximized.

7. In practice, the length of the silence period is a random variable of
mean ∆T (e.g., drawn for the uniform distribution on [0.5∆T, 1.5∆T ])
in order to prevent an access-point operator from linking two distance
proofs based on the time elapsed between them.

Using the notations from Equations 1 and 2, the sum of the
distance proofs obtained by collecting locations proofs at
times τi1 , . . . , τiK ∈ T , with a single operator and without
silence periods, is

K−1∑
k=1

d
(
Aik , Aik+1

)
, (4)

and the optimal set of sampling points is the subset of T
that maximizes this quantity.8 This optimization problem is
equivalent to a maximum-weight path problem in a directed
graph G, where the vertices of G are the time samples
(i.e., T ), and where the edges of G connect each time sample
τi to all the subsequent time samples τj (j > i), with a
weight equal to the value of the distance proof obtained
by combining the location proofs obtained at time τi, with
those obtained at time τj (i.e., d (Ai, Aj)). A sample graph
is shown in Figure 6, together with an example of a set of
sampling points (in red). As G is a directed acyclic graph,
the maximum-weight path problem can be solved in linear
time in the number of edges, that is O(T 2). Unlike the
heuristic proposed in [1], this formalization enables Secure-
Run to find the optimal set of sampling points, resulting
in an absolute improvement of 5-10 points in the median
accuracy of SecureRun (see Section 5).

τ1 τ2 τ3 τ4 τ5

d1,3

d3,5

Figure 6. Graph construction for the maximum-weight path formulation
of the sampling problem (one operator, no silence periods). The thick,
red path shows an example of a set of sampling points: The user collects
location proofs at times τ1, τ3, and τ5. The total of the obtained distance
proofs is d1,3 + d3,5 (di,j is the short for d(Ai, Aj)).

The sampling point problem can be formulated as a
maximum-weight graph problem also with silence peri-
ods and with multiple operators. The details of the graph
construction in these different scenarios are given in Ap-
pendix B of the supplemental material.

Note that in practice, a user normally does not follow the
exact same path as she previously did. Therefore, the algo-
rithm determines sampling points based on the previously
recorded path, and the user requests location proofs when
she reaches the vicinity of a pre-determined sampling point
(e.g., within 20 m).

Unplanned Sampling. In the unplanned version, only the
current and past positions of the user are known to the al-
gorithm. A users first collects location proofs at the starting
point of her activity (e.g., when she presses the “start” button
on her mobile device). As the user pursues her activity, the
algorithm periodically determines whether location proofs
should be requested. To do so, the algorithm compares the
actual distance covered since the last sampling point with
the straight-line distance between the last sampling point
and the current position. If the difference between the two

8. The exact same reasoning applies to elevation-gain proofs. The
distance function d() that appears in Equation 4 should be replaced
with the elevation-gain function e() from Equation 3.
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distances is higher than a threshold, the algorithm triggers
the collection of location proofs. To limit the rate at which
location proofs are collected, we impose a minimal distance
between two sampling points. Algorithm 1 presents the
pseudo-code version of the unplanned sampling algorithm,
where d( · , · ) denotes the distance between two locations.

Algorithm 1 Unplanned sampling algorithm.
Input: MIN LP . Minimum distance between two LPs

MAX LP . Maximum distance between two LPs
MAX ERR . Maximum error

1: S ← [ ] . List of past locations since last sampling
2: while true do
3: pc ← current location
4: S ← S + [pc]
5: pl ← S[1]
6:
7: if d(pl, pc) < MIN LP then
8: next
9:

10: e←

 |S|∑
k=1

d(S[k], S[k + 1])

− d(pl, pc)

11:
12: if d(pl, pc) > MAX LP or e > MAX ERR then
13: sample()
14: S ← [pc]

4.6 Summary
In this section, we have presented SecureRun, a solution
for providing secure and privacy-preserving activity sum-
maries, and we have described in detail the different opera-
tions it involves. The inaccuracy of the activity summaries,
defined as the difference between the lower bounds and the
actual values, produced by SecureRun are due to the fact
that (1) the distances covered inside the areas {Ai} and
the distances covered during the silence periods are not
counted, and (2) the paths taken by the users between two
areas are approximated with a straight line. We will report
on the evaluation of the accuracy of SecureRun in the next
section. The security and privacy properties of SecureRun
are provided by the use of pseudonyms and cryptographic
techniques, by the aggregation and sanitization of data (with
respect to location information), and by the silence periods.
We discuss this in more detail in Section 7.

5 EVALUATION

We evaluate SecureRun’s performance on real traces of
users’ activities from Garmin Connect [32], pursued in cities
where wireless access-point networks are deployed by the
FON operator [33] (and possibly Free [54]). We consider
scenarios where mobile users, equipped with Wi-Fi-enabled
devices, report the total elevation gain and distance cov-
ered during their location-based activities (e.g., running).
We focus our evaluation on three geographical areas that
correspond to the cities of Brussels, London and Paris. We
also discuss the practical aspects of the implementation of
SecureRun on wireless routers.

5.1 Data Sets
In order to evaluate SecureRun, we collected data sets of
access-point locations and activities, and we relied on the

Google Elevation API. Table 4 contains general statistics
about the (filtered) data sets. All the data we collected was
publicly available and the data collection was in accordance
with the policies of ethical comittee at EPFL (HREC).

Wi-Fi Access Points. In late 2013, we collected the ge-
ographic coordinates of the Wi-Fi access points from the
FON community network in the region of Brussels, London
and Paris. FON is a large community network with more
than 14 million hotspots (12 million at the time of the
data collection) worldwide, most of them are located in
western Europe. FON achieves very high coverage in urban
areas (up to 2,500 AP/km2) through strategic partnerships
with local ISPs (e.g., Belgacom, British Telecom, SFR): The
routers of the ISPs’ subscribers, provided by the partner
ISP, act as FON hotspots. As ISPs hold total control over
the routers of their subscribers (through automatic firmware
updates), they could easily implement and deploy Secure-
Run. Overall, we obtained the locations of 92,280 unique
APs in Brussels, 39,776 unique APs in London, and 87,521
unique APs in Paris. In order to evaluate SecureRun with
multiple access-point network operators (used jointly as
described in the previous section), we also collected the
geographic coordinates of the Wi-Fi access points from the
Free community network. Free is a major French national
ISP that offers community network features based on the
routers of its subscribers. We obtained the locations of 60,280
unique APs from Free in Paris, which correspond to a
density of 445±381 AP/km2. Figure 14 (top) and Figure 12
(shown in Appendix C of the supplemental material) depict
the heat-maps of the densities of FON access points and Free
access points respectively . We can observe that the density
of access points is low in regions corresponding to rivers,
cemeteries, parks, highways and railways; this is due to the
community nature of the FON network (i.e., access points
are in residential areas).

Activities. In early 2014, we collected activity information
from Garmin Connect, an online service where users can
upload and share information about their location-based
activities, including the type of activity (e.g., running, bik-
ing) and the path of the activity (under the form of time-
coordinates samples). We collected running activities and we
computed, for each of them, the duration, the length and
the cumulative elevation gain of the path, the inter-sample
times, and the density of APs along the path (i.e., the number
of APs met along the path, assuming a unit-disc commu-
nication model with a radius R = 25 meters, normalized
by the length of the path). For each activity, we divided
its path into chunks of 500 m, and we determined for each
chunk whether it is covered by at least one access point (i.e.,
it intersects with the communication range of at least one
access point). This metric is crucial for SecureRun to work,
as having a high proportion of covered chunks ensures
that users will be able to collect location proofs, and thus
distance proofs. To exclude clear outliers or activities that
are not covered by a minimal number of access points from
our data set, we filtered out activities that (1) last less than 10
minutes or more than 4 hours, or (2) are shorter than 2 km or
longer than 45 km, or (3) have a gap of more than 10 minutes
between two samples, or (4) have less than 4 AP/km along
their paths, or (6) have less than 20% of covered chunks. In
the remainder of the paper, we consider only the activities
that pass the aforementioned filters (i.e., the filtered data-sets).
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Table 1 summarizes the filters applied to our raw data-set.

Table 1
Summary of the filters applied to our activity data-set.

Property Filter
Duration <10 min or > 4 h
Length <2 km or > 45 km
Elevation gain > 50 m
(only for elevation gain summaries)
Inter-sample times > 10 min
Density of AP along activities < 4 AP/km
Proportion of covered chunks < 20%

Figure 15 (shown in Appendix C of the supplemental
material) shows the experimental cumulative distribution
functions of the main characteristics of the activities used
in our evaluation and Figure 14 (bottom) (shown in Ap-
pendix C of the supplemental material) depicts the heat-
maps of the densities of activities (i.e., the number of distinct
activities that cross a given area of the map). It can be
observed that many activities take place in parks, where
the density of access points is relatively low. In the filtered
data set, we observe a median inter-sample time of 3-4
seconds (which correspond to 7-11 meters). Table 4 (shown
in Appendix C of the supplemental material) summarizes
some relevant (with respect to our solution) statistics on the
filtered data.
Elevation. We evaluate SecureRun for the case of elevation
only in the region of Paris, and we filter out the activities
with bogus elevation data or with an elevation gain lower
than 50 m. In order to determine the minimum and maxi-
mum elevation in a given region, typically the intersection
of communication discs centered at the AP locations, we
rely on the Google Elevation API and sample the elevation
of random points in the regions of interest. We make sure
that every region contains at least 20 samples. We obtained
a total of 701,793 such elevation samples. We show the
elevation map of Paris in Figure 13 included in Appendix C
of the supplemental material.

5.2 Methodology
We implement SecureRun in a Java simulator and evaluate
its performance for the activities from the Garmin Connect
data-set, with the access-point networks from the FON and
Free data-sets (under the relaxed unit-disc communication
model with a radius of 25 meters). The parameters used in
our simulation are shown in Table 2. For each activity, we
simulate the execution of SecureRun in different scenarios:
with one or multiple access-point network operators, with
the planned/unplanned sampling algorithm, and for differ-
ent values of the parameters (such as the duration ∆T of
the silence periods). For each such setting, we compute the
corresponding activity summary. We measure the Secure-
Run’s performance in terms of the accuracy of an activity
summary: the ratio between the distance (resp. elevation)
in the summary and the actual distance (resp. elevation)
covered by the user during her activity.

5.3 Results for Distance Summaries
First, we look at SecureRun’s absolute performance in differ-
ent settings. Figure 7 shows a box-plot representation (first
quartile, median, third quartile, and outliers) of SecureRun’s

Table 2
Parameters used in the simulation.

Parameter Description Value Unit
vmax Maximum speed 3 m/s
R Communication range of APs 25 m
MAX LP Maximum distance between two LPs 500 m
MIN LP Minimum distance between two LPs 50 m
MAX ERR Maximum relative error 10 m
δt Threshold on the time difference between 5 s

aligned LPs

accuracy in the (a) planned and (b) unplanned cases, in the
cities of Brussels, London and Paris, for different durations
of the silence periods. In the case of Paris, we also evaluate
SecureRun with two access-point operators (Free and FON).

Overall, SecureRun achieves good performance: up to
a median accuracy of 78% (Paris, FON, planned sampling,
∆T = 0). This value drops to 69% when unplanned
sampling is used. It can be observed that, as expected,
the planned sampling algorithm yields consistently better
results than the unplanned algorithm, and that the accuracy
decreases with the duration of the silence period. In the
case of two operators (in Paris), it can be observed that
the accuracy is substantially better (84%) compared to the
scenario with a single operator, when the duration of the
silence period is set to 0. This is because a user can optimize
the lengths of her distance proofs between the two opera-
tors. Moreover, the (negative) effect of the duration of the
silence periods on the accuracy is substantially lower in the
case of two operators (73% for the case of two operators
vs. 53% for the case of a single operator, with planned
sampling and ∆T=180 s). This is because silence periods
are less frequently needed in such a scenario, only when a
user requests a distance proof from an operator and cannot
find any access points belonging to the other operator for
the subsequent distance proof). Finally, the performances
are quite similar across the different cities, with a slight
advantage for London, which has a higher proportion of
covered chunks. This confirms our intuition and suggests
that SecureRun’s performance increases with the propor-
tion of covered chunks. Compared to the initial version
of SecureRun, we observed an absolute improvement of 5-
10 points in the median accuracy. The improvement is lower
for situations where the accuracy is already good, typically
when no silence periods are used (except in the case of two
operators). This means that the optimal sampling algorithm
is most beneficial for adjusting the silence periods (except in
the case of two operators in which they are less needed) and
for choosing a best operator when there are several of them.
Note that, as the number of Wi-Fi access points and their
communication ranges are likely to increase in the coming
years, SecureRun’s performance is expected to increase.
Moreover, with the emergence of activity-tracking apps, the
deployment of networks of wireless access points (including
in parks) dedicated to activity tracking could become a
thriving business, thus further increase the performance and
applicability of SecureRun.

To further study the sensitivity of SecureRun to the
density and the distribution of the access points (as captured
by the number of AP/km and the proportion of covered
chunks, respectively), we split the activities into three buck-
ets, based on the values of these two metrics, and we plot the
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Figure 8. Sensitivity analysis of the accuracy, with respect to the density of access point along the activities (top) and to the proportion of covered
chunks (bottom). The plots represent complementary cumulative distribution functions (ccdf). The planned sampling algorithm was used, with
silence periods of ∆T = 60 s. Note that in London, all activities have a density ≤20 AP/km.
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Figure 7. Accuracy of the distance summaries, with the (a) planned and
(b) unplanned sampling algorithms, for different values of the duration of
the silence periods, with the FON network (+ Free for Paris 2 operators).

experimental cumulative density functions of the accuracy
in each of these buckets. Activities with a low density of
AP and/or a low proportion of covered chunks typically
correspond to those that are located in parks; thus they do
not really match our target context, i.e., urban areas. In the
case of two operators, we only consider the values of the
metrics with respect to the FON network.

The results are depicted in Figure 8, with planned
sampling and ∆T = 60 s. It can be observed that the
performance is substantially better for high densities and for
high proportions of covered chunks, as compared to the low
counterparts. In Brussels for instance, the median accuracy
goes up to 74% for activities with high densities, whereas it
is only 57% for all the activities. Note that even for some
activities with a high density, the accuracy can be quite
low (i.e., <25%). We investigated this issue by manually
inspecting the paths of these activities and we report on
the results in Appendix D of the supplemental material.

5.4 Results for Elevation-Gain Summaries

Figure 9 shows a box-plot representation of the accuracy
of our solution for the case of elevation gain in Paris, with
the planned sampling algorithm, for different durations of
the silence periods. Overall, SecureRun achieves reasonable
performance: up to a median accuracy of 60 % with one
operator and silence periods of 60 seconds. This number
goes up to 78 % when two operators are used.
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Figure 9. Accuracy of the elevation gains proofs in Paris, with the
planned sampling algorithms, for different values of the duration of the
silence periods, with the FON network (+ Free for 2 operators).

5.5 Practical Aspects of SecureRun

For SecureRun to have low latency, it should be imple-
mented at a low layer, typically at the MAC layer. Moreover,
the computations involved in the AP-part of the protocol
(e.g., cryptography, optimization) should be lightweight.

To better understand the technical challenges of the
implementation of SecureRun on a router and to assess its
feasibility, we developed a proof-of-concept prototype on a
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router (alix2d2 @ 500 MHz, 256 MB of RAM) running Open-
Wrt by using the Click framework9 for network operations
and OpenSSL for cryptographic operations. To do so, we
defined a new frame at the MAC layer of the Wi-Fi protocol.
In our experiments, we observed a delay of 9 milliseconds
for the two-way message exchange between a user’s mobile
device and an AP to obtain an LP (for an ECDSA signa-
ture algorithm with a 224-bit key). The router managed to
handle 12 clients that simultaneously send one LP request
per second. As for the message exchange to obtain DPs,
we estimated the additional running time incurred by the
computation of a DP with IPOPT at 150 milliseconds (i.e.,
we ran it on a laptop and made a projection for a router
based on the CPU speed). Note that as IPOPT’s optimization
algorithm is iterative, we can easily balance the running
time and the accuracy of the computation. Note also that the
computation of the DPs could be advantageously offloaded
to a cloud server maintained by the AP network operator.
Finally, to put the aforementioned delays in perspective,
note that, in our dataset, a user remains in the connection
range of an AP for about 10.7 seconds on average (i.e., the
total delay for a message exchange between the user and the
AP for a LP/DP is less than 2% of the in-range time).

As for the battery consumption overhead induced by
SecureRun on the mobile device, SecureRun essentially
consists of two main operations: the sampling algorithm
and LP/DP collection. The unplanned sampling algorithm
is lightweight and the planned sampling algorithm can be
run offline (and only once per route). The LP/DP collection
process is sporadic and involves cryptographic operations,
the overhead of which is negligible compared to those per-
formed by activity-tracking applications (e.g., continuous
geolocation, HTTPS communication over 3G/4G).

6 ADOPTION OF SECURERUN

In order for SecureRun to be adopted, it must be beneficial
to all the stakeholders: the users, the Wi-Fi AP network
operator, and the social-network provider. In this section,
we discuss and analyze the incentives for the stakeholders.

6.1 Users
In order to assess the interest, as well as the expectations,
of activity-tracking application users in SecureRun, we con-
ducted a user survey in early 2015. Our survey involved
50 participants recruited through the Amazon Mechanical
Turk platform. The online survey was composed of 11
questions covering general demographics, awareness and
concerns about opportunities to cheat and privacy issues in
activity-tracking systems, and satisfaction and expectations
regarding the accuracy of cheat-proof and private sum-
maries (see Appendix F of the supplemental material for
the full transcript of the survey questionnaire). The survey
took approximately two minutes to complete; we paid each
participant US $2. In order to be allowed to participate in
our survey, participants were required to have an active
RunKeeper account10 and a minimum Human Intelligence

9. http://www.read.cs.ucla.edu/click
10. An active account is an account with at least 20 running activities,

recorded with the mobile apps, with a duration of at least 10 minutes
and a distance of at least 2 miles over the time period spanning from
2013-01-01 to 2014-12-01. In order for us to check this, the participants
had to grant us access to their RunKeeper account through the API

Task (HIT) approval rate of 95% with at least 100 past
approved HITs. We obtained a diverse and balanced sample
of participants: 44% of male and 56% of female, diverse
primary areas of employments, age ranging from 20 to 47
year old (avg.: 31, stdev.: 5.9). Most participants used a
single activity-tracking application.

We polled the participants about their awareness of ap-
plications that enable users to cheat (i.e., claim performances
they did not actually achieve) and about their concerns
regarding the authenticity of the performance reported by
their friends. None of the participants were aware of the
existence of such applications; however, a large proportion
of the participants (48%) were very or extremely concerned
about them. Similarly, we polled the participants about their
awareness of the privacy implications of activity-tracking
applications (i.e., the ability to infer home/work locations,
demographic information, and medical conditions, and the
fact that activity data can be sold to third parties such as
insurance companies11) and about their concerns regarding
these issues. Only 10% of the participants were aware of
the existence of such privacy issues; a large majority of the
participants (82%) were very or extremely concerned about
it. These results clearly make the case for SecureRun.

Finally, we briefly introduced SecureRun to the partici-
pants and we polled them about their satisfaction (on a 5-
point Likert scale) if, for a 10-mile run, SecureRun provided
them with a certificate of 5, 6, 7, 8 or 9 miles. We show the
results in Figure 10. It can be observed that for an accuracy
of 80% or more (which is the case for SecureRun in most
scenarios), the participants’ opinions were mostly positive.
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Figure 10. Level of satisfaction of the survey participants for various
values of the accuracy of activity summaries.

6.2 Wi-Fi AP-Network Operators and Service Providers
Social network providers12 offering activity-tracking appli-
cations have incentives to deploy SecureRun as it increases
their attractiveness to the users and certifies the data pro-
vided by their users. In order to deploy SecureRun, the
social-network provider needs the help of one or multiple
Wi-Fi AP-network operators. The social-network provider
could pay the AP-network operator for the certified activ-
ities, in a B2B fashion, either directly (i.e., in currency) or
through advertisement. For instance, we envision a business
model in which the activities that are certified by distance
proofs provided by the FON network and uploaded on

11. http://www.dailymail.co.uk/news/article-2409486/
12. The same applies to health insurance companies that provide

their customers with activity-tracking apps.
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Garmin Connect or RunKeeper are displayed with an icon
“Certified by FON”, thus providing FON with ad space on
the activity-based social network website. The AP-network
operator could also charge the distance proofs to the users
(e.g., via a specific subscription). Finally, with the emergence
of activity-tracking apps and inexpensive low-power Blue-
tooth beacons (e.g., iBeacons), wireless networks dedicated
to activity-tracking could be deployed (e.g., in parks)..

7 SECURITY AND PRIVACY ANALYSIS

In this section, we discuss the security and privacy guaran-
tees provided by SecureRun, by considering the adversarial
model from Section 3 (i.e., three possible adversaries: the
users, the service provider and the AP operator(s)).

7.1 Cheat-Proof Guarantees

Adversary: User. Malicious users can attempt to cheat
by forging or modifying location or activity proofs. To
prevent these types of attacks, SecureRun relies on digital
signatures to protect the integrity of the proofs created
by the APs. Moreover, users cannot double-count some
of the distances they cover, because the service provider
validates that the time intervals on each activity proof do
not overlap before summing them up. Note that as the
service provider does not allow users to declare activities
that overlap in time, a user cannot use twice a collected
distance proof. Users could also try to claim other users’
location or activity proofs as their own. However, the service
provider can detect such cheating attempts by checking that
the pseudonyms included in the activity proofs belong to
the user claiming them. A malicious user could also ask
other users to collect proofs on her behalf by sharing her
pseudonyms. To discourage such attempts, pseudonyms in-
clude sensitive information such as tokens to reset the user’s
password or modify certain service’s settings.13 Also note
that pseudonyms are sent encrypted to the APs with their
group public key to prevent eavesdropping by other parties
and that our threat model assumes honest-but-curious APs
(i.e., they do not abuse the information on the pseudonyms).

SecureRun also requires users to be in the communi-
cation range with the APs to obtain valid location proofs.
Users can try to bypass this restriction by launching proxy
attacks, in which two or more users collude to obtain
valid location proofs. Still, such attacks can be limited by
introducing constraints on the execution time of the protocol
(i.e., distance-bounding mechanisms). For instance, the AP
operator could impose a communication delay on the Wi-Fi
interface that is smaller than the one achieved by connecting
through the cellular network.

Finally, the activity proofs obtained are, by design,
lower-bounds of the performance achieved by the users.
Thus, independently of the way users obtain and combine
their location proofs, the reported summary will always be
lower than the actual performance.

7.2 Privacy Guarantees

Adversary: Service Provider. A curious service provider
could try to infer location information from its users’ activity

13. A similar approach has been proposed in systems such as
PKIs [55] and anonymous credentials [56] to ensure non-transferability.

proofs. However, activity proofs contain neither location
information nor time information (i.e., timestamps are ob-
fuscated by using order-preserving encryption14), hence the
service provider cannot link the activity proofs to actual
locations or time intervals. In a region covered by APs,
a given distance (more precisely, its lower bound) can be
attributed to many possible trajectories between any two
sets of APs, thus rendering unfeasible an accurate inference
of the actual locations and trajectory. Moreover, as a distance
also depends on the time difference between the location
proofs, attributing a single distance to a given trajectory is
even more challenging.
Adversary: AP operator(s). SecureRun is also designed to
prevent curious AP operator(s) from tracking users’ loca-
tions, particularly by linking activity proofs to reconstruct
users’ trajectories. For this purpose, SecureRun relies on
both randomized pseudonyms (generated by the service
provider) and silence periods. On every sampling point,
a new pseudonym is used, therefore it is difficult for AP
operator(s) to link users’ proofs and activities. For single-
operator scenarios, the use of silence periods reduces the
chances of an AP operator linking users’ proofs during
an activity, as described in Section 4.5. Note that, even if
no silence periods are used, the operator can track a user
only during her activity, without being able to link different
activities over time. Thus, this prevents the AP operator
from inferring patterns from activity trajectories over time.
In addition, unlike the service provider, the operators have
no personal information about the users (e.g., their names).
Also note that, because of the need for physical proximity
to interact with the APs, the privacy features of SecureRun
are offerred on a best-effort basis. We do not provide for-
mal privacy, but it still provides significant improvements
compared to the current solutions of activity-tracking appli-
cations.

Finally, quantifying the location-privacy of users when
pseudonyms and silence periods are employed is a typical
mix-zone [58]/mix-network problem. Note, however, that
in SecureRun the pseudonym-change strategy optimizes the
sum of the distance proofs, whereas for traditional mix-
zones it optimizes the users’ privacy. In such situations, the
location privacy of a user depends on the other users, as
shown in [59]–[61], where the higher the number of users is,
the better their privacy is.
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9 CONCLUSION AND FUTURE WORK

Activity-based social networks have become increasingly
popular over the last few years. In their current form, such
systems rely on the users’ mobile devices to report the
users’ real locations while they pursue their activities. This
provides neither security guarantees against cheaters, nor
privacy protection against curious social-network providers,
thus potentially threatening their adoption.

14. Note that most OPE schemes leak some information about the
plaintext, in addition to the numeric order [53]. However, recent pro-
posals do not suffer from this problem [57].
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In this paper, we have proposed SecureRun, a system
for providing secure and private proofs of location-based
activities. SecureRun relies on the existing wireless access-
point networks deployed in urban areas (at the cost of
only a software upgrade, hence alleviating the need for
deploying ad-hoc infrastructures), and it provides protec-
tion for both users and service providers. Our experimen-
tal evaluation, conducted using real data-sets of deployed
wireless access-points and actual users’ outdoor activities,
shows that SecureRun achieves a good accuracy (up to 79%)
when estimating a lower-bound of the distance that users
cover during their activities, and it provides privacy and
security properties. From a practical perspective, we envi-
sion our scheme to be of interest for strategic partnerships
between social-network providers and access point network
operators. We have focused our description and evaluation
of SecureRun on distance summaries and have sketched a
solution for elevation gain summaries as well. In addition,
our proof-of-concept implementation of SecureRun on a
router has shown that it can be deployed in practice. As
such, this work constitutes a first step towards the design of
secure and private activity-based social networks.

As part of future work, we consider (1) further im-
proving SecureRun’s accuracy by optimizing the unplanned
sampling algorithms and (2) evaluating SecureRun on a
real testbed of deployed access points to assess its technical
feasibility and its performance in practice and (3) improving
the users’ location privacy, with respect to the AP operators,
by e.g., introducing dummy requests to confuse the adver-
sary, using homomorphic encryption to combine LPs and
(4) exploring the use of zero-knowlege proof techniques to
prove the activity summaries without requiring the users to
reveal their locations. Finally, to quantify the users’ location
privacy, we contemplate modeling the system (in the pres-
ence of many users pursuing location-based activities in the
same region) as a mix-zone problem, define formal privacy
metrics and evaluate them on real data-sets or through
experiments.
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APPENDIX A
SUMMARY OF NOTATIONS

Table 3
Summary of notations.

Notation Description
AP Access Point
LP Location Proof
DP/EP Distance/Elevation Proof
R Communication range of APs
∆T Duration of silence periods
EOPE(·) Order-preserving encryption scheme
GKpub The public group key. It is known by everyone.
GKpriv The private group key. It is known only by (all) the APs.
GKOPE The group key used for order-preserving encryption. It is

known only by (all) the APs.
LPi,j The j-th LP collected at sampling time ti. It has format

{Pi, ti,j , (xi,j , yi,j)}.
Pi The pseudonym which is used at sampling time ti.
ti,j The time at which the j-th LP is collected at sampling

time ti.
(xi,j , yi,j) The coordinate of the AP from which the j-th LP is

collected at sampling time ti.
Ci The set of APs from which the LPs are collected at

sampling time ti.
Ai The time-aligned intersection of the communication discs

of the APs from which the LPs are collected at sampling
time ti.

APPENDIX B
FORMALIZATION OF THE SAMPLING PROBLEM

In this appendix, we detail the graph construction for the
maximum-weight path formulation of the sampling prob-
lem in different scenarios (with one or multiple operators,
with or without silence periods). Unlike in the base case,
with silence periods, we must distinguish between the sam-
ples where a user collects a location proof to start a distance
proof and those where she collects a location proof to end
a distance proof. The case of a single operator with silence
periods is illustrated in Figure 11. We build a graph with two
vertices per time sample that correspond to both situations
(“start” and “end”). The “start” vertex corresponding to τi
is connected to all the “end” vertices corresponding to τj
(j > i), which means that a distance proof started at time
τi can be ended at any time τj (j > i). The weight of such
edges (depicted with solid lines in the figure) is the value
of the distance proof obtained, i.e., d(Ai, Aj). To start a
new distance proof, the users must observe a silence period.
Implementing silence periods means that a user cannot start
a new distance proof before ∆T time units after she ended
her last distance proof. In other words, assuming that the
time between two time samples is 10 seconds and that
∆T = 15, if a user ends a distance proof at τi, she can
start a new distance proof at τi+2 at the earliest. Therefore,
we connect the “end” vertex corresponding to τi to all the
“end” vertices corresponding to τj (j > i + 1). The weight
of such edges (depicted with dashed lines) is zero.

In the case of multiple operators, we build a graph with
two vertices per sample (“start”/”end”), for each operator.
A distance proof started with a location proof of a given
operator can be ended only with a location proof from the
same operator, therefore the “start” vertices are connected
only to the “end” vertices of the same operator. The “end”
vertices, however, are connected to the start vertices of all

“start”

“end”

. . .

τ1 τ2 τ3 τ4 τ5

τ1 τ2 τ3 τ4 τ5

d
1
,2

d
4
,5

Figure 11. Graph construction for the maximum-weight path formulation
of the sampling problem (one operator, with silence periods). Solid
edges have weights equal to the corresponding distance proofs (di,j
is the short for d(Ai, Aj)). Dashed edges have zero weights. The thick,
red path shows an example of a set of sampling points: The user starts a
distance proof at time τ1 (by collecting location proofs), which she ends
at time τ2 thus collecting a proof of value d1,2; she then starts a new
distance proof at time τ4 (thus observing a silence period) which she
ends at time τ5. The total weight of this path is d1,2 + d4,5.

the operators as a user can start a new distance proof with
any of the operators. The construction of these edges follows
the same rationale as above, except that a user does not
need a silence period when starting a distance proof with an
operator different than that of the previous distance proof.

APPENDIX C
DATA-SET DETAILS

In this appendix, we give more statistics about the data-
sets we used in the evaluation of SecureRun. Figure 12 and
Figure 14 (top) depict, in the form of heatmaps, the densities
of FON access points in Brussels, London and Paris and the
densities of Free access points in Paris. Figure 14 (bottom)
depicts the densities of Garmin activities.
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Figure 12. Heat-map of the density of Free access points in Paris.

Figure 13 shows the elevation map of Paris, where we eval-
uated the performance of SecureRun for elevation proofs.
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Figure 13. Heat-map of the elevation in Paris.

Figure 15 show the distributions (experimental CDFs) of
the duration, length, elevation gain, density of APs along the
activity and the proportion of covered chunks (as defined



16 IEEE TRANSACTIONS ON MOBILE COMPUTING

 0

 1000

 2000

 3000

 4000

 5000

 6000

 0

 200

 400

 600

 800

 1000

 1200

 0

 1000

 2000

 3000

 4000

 5000

 6000

D
en

si
ty

 o
f 

A
P

s 
(A

P
s/

k
m

2
)

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

(a) Brussels
 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4000

 4500

 5000

(b) London
 0

 1000

 2000

 3000

 4000

 5000

 6000

 7000

 8000

 9000

D
en

si
ty

 o
f 

ac
ti

v
it

ie
s 

(a
ct

iv
it

ie
s/

k
m

2
)

(c) Paris

Figure 14. Heat-maps of the densities of FON access points (top) and of Garmin activities (bottom) in (a) Brussels, (b) London, and (c) Paris.
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Figure 15. Experimental CDF of the (a) duration, (b) length, (c) elevation gain (d) density of FON AP (along the activity) and (e) proportion of chunks
covered by FON APs, among the activities from the Garmin data-set.

in the data-set section) among the activities of the Garmin
data-set (after filtering using the parameters from Table 1).

Table 4
Summary of the statistics of the filtered data-sets (FON and Garmin

Connect) used in the evaluation (mean and standard deviation).

Brussels London Paris
Number of AP 92,280 39,776 87,521
Number of activities 107 294 437
Density of AP (AP/km2) 401±569 109±96.6 646±686
Density of AP along path (AP/km) 17.1±12.0 5.99±1.67 23.8±18.6
Proportion of covered chunks (%) 63.9±20.0 83.0±15.0 77.7±23.5

Table 4 gives some statistics on our (filtered) data sets of
access points and activities (i.e., FON and Garmin Connect).
It can be observed that the density of access points is lower
in London but they are more uniformly spread, especially
along activities (as illustrated by the relatively small stan-
dard deviation compared to Brussels and Paris).

APPENDIX D
INVESTIGATION OF THE CORNER CASES

In this appendix, we report on our manual inspection of
the paths of the activities for which SecureRun provides
low-accuracy summaries despite the high density of access
points along the path and the high proportion of covered
chunks. During our investigation, we found one typical case
of such situations, which we show in Figure 16 and explain
below. The general pattern is when a fraction of the path
is very densely covered by access points but the rest is
not; hence the average density over the whole path remains
relatively high. More specifically, the user typically runs in
a periodic fashion (e.g., around a stadium or back and forth
on a street) on the part that is not well covered by access
points, but this part is still covered by one or several APs
(very close to each other) in a single location; hence the user
cannot obtain any distance proofs (all the location proofs
come from the same set of access points located close to each
other) and almost all the chunks of the path are covered.

It can be observed in the sample case that the user first
runs to a stadium through a residential area and then runs
a dozen of times inside the stadium on the 400-meter track.
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1

Figure 16. Example of an activity for which proportion of covered chunks
is greater than 80% and the precision is smaller than 25% (planned
sampling, ∆T = 60 s). The path is shown as a dashed line and the
circles denote the communication ranges of the APs. The shaded areas
represent the combined location proofs obtained at the sampling points.

Because the stadium is covered by a single AP, all the chunks
of the activity are covered, but it is not sufficient to increase
the accuracy as all LPs are obtained from the same AP.

APPENDIX E
DP CALCULATION WITH NEGATIVE INFORMATION

In Equation 1, we consider only the set Ci and do not take
into account the fact that the user was not in the regions de-
fined by the access points in the set C\Ci (hereafter, we call
this negative information). Intuitively, if negative information
is considered, the region that the user is inside at time ti
could be redefined as the intersection of Ai (as defined in
Equation 1) and the complements of the regions defined by
the APs in C\Ci. Therefore, the negative information would
provide a tighter estimate of the area the user was in at time
ti. This would provide better accuracy for the system, as the
refined region is included in Ai, but it would also enable
the user to cheat by selectively reporting only a subset of
the collected LPs (i.e., omitting some of the collected LPs
to unduly increase the resulting distance proofs). For this
reason, in our evaluation of SecureRun, we do not consider
the negative information when calculating the lower-bound
distance.
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Figure 17. The lower-bound distance w/ and w/o considering negative
information. The figures on the left show the case that using negative
information improves the tightness of the lower-bound distance. The
figures on the right show that using negative information can enable
the users to unduly increase their lower-bound distance. The location
samples of the user are shown with a dot.

These situations are illustrated in Figure 17: It can be
observed on the left-most figures that, when the user is
not in the intersection of the communication ranges of two
or more APs, considering negative information (bottom)
increases the accuracy of the distance proof compared to
the base case (top). It can also be observed on the right-most
figures that, when the user is in the intersection, by omitting
to report one of the LP she collects (bottom), she can unduly
obtain a larger distance proof (potentially higher than the
actual distance) compared to the base case (top).

APPENDIX F
SURVEY DETAILS

In this appendix, we give more details about our online
survey. First, we give the complete transcript of our survey
questionnaire (Figures 19 and 20). Long lists of options have
been truncated for the sake of conciseness. Our online ques-
tionnaire was designed with the LimeSurvey system and
interfaced with the HealthGraph API in order to access the
participants’ RunKeeper account data. We used this data for
screening purposes. Second, we give more detailed statistics
about the survey participant’s responses. In Figure 18, we
show the repartition of the participants’ concerns regarding
the authenticity and the privacy implications of the activity
data shared with activity-tracking applications.

Extremely

36.0%Very

12.0%

Moderately

26.0%

Slightly

14.0%

Not at all

12.0%

(a) authenticity concerns

Extremely

48.0%

Very

34.0%

Moderately

14.0%

Slightly
4.0%

(b) privacy concerns

Figure 18. Survey participants’ concerns regarding (a) the authenticity of
the activity data shared by their friends and (b) the privacy implications
of the activity data they share.
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Demographics

1) What is your gender?

© Male
© Female

2) How old are you?

3) What is your primary area of employment?

© Retired
© Unemployed
© Student
© Arts, entertainment, or recreation
© Agriculture, forestry, fishery, or hunting
© [. . . ]
© Transportation
© Other:

4) Besides RunKeeper, which of the following fitness applications are you a member of?

� Strava
� Runtastic
� GarminConnect
� Moves
� Endomondo
� MapMyFitness
� Other:

Fitness data sharing on online social networks

5) How often do you share your fitness activities with your friends?

© Always
© It depends
© Never

6) When do you share your location-based fitness activities with your friends?
[shown only if the answer to the previous question is “It depends”]

� When I take a new path
� When I break a record
� When I want to compete with myself or with my friends
� Other:

7) Applications such as digitalEPO.com and Fake Track enable users to claim a performance that they did not actually achieve.
Were you aware of this fact?

© Yes
© No

8) Knowing this fact, how important to you is the authenticity of the fitness activities your friends share?

© Extremely
© Very
© Moderately
© Slightly
© Not at all

9) Sensitive information can be inferred from the data you upload on RunKeeper (e.g., home/work locations, medical conditions).
Moreover, it has been shown that some popular fitness applications pass personal details about their users to insurance companies,
e.g., to set premiums (Click here for more details*)
Were you aware of this fact?

© Yes
© No

10) Knowing this fact, how important to you are the privacy implications of the data you upload on RunKeeper?

© Extremely
© Very
© Moderately
© Slightly
© Not at all

*http://www.dailymail.co.uk/news/article-2409486/

Figure 19. Transcript of our survey questionnaire (1/2).
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Secure and private activity summaries

11) We designed a system, named SecureRun, that provides you with two main features:

• It protects your privacy. Specifically, the GPS traces of your activities is known only to you. You share only the summaries of
your performance (e.g., the covered distance), and the coarse-grained information about the region where you perform your
activities.

• It guarantees the authenticity of a fraction of the performance you report. For example, if you run 10 miles and report it,
SecureRun can certify (based on cryptographic techniques) that you indeed ran at least 8 miles out of the 10 miles you ran.

We illustrate the differences between RunKeeper and SecureRun in the images below.

Assuming that you have run 10 miles, please choose your levels of satisfaction for the different values for which you would
receive certification from SecureRun.

Very low Low Medium High Very high
5 miles © © © © ©
6 miles © © © © ©
7 miles © © © © ©
8 miles © © © © ©
9 miles © © © © ©

Figure 20. Transcript of our survey questionnaire (2/2).


