Figures S1: Analysis of the interaction between CpsD and Spr0895 (RocS)

(A) Protein-protein interaction between CpsD and RocS (Spr0895) assayed by yeast twohybrid. AD and BD refer to activating and DNA binding domain of Gal4 fused to either CpsD , $\operatorname{RocS}_{(50-163)}, \operatorname{RocS}_{(1-163)}$, or CpsC , and CpsD , respectively. The Spr0895 minimal interacting domain necessary for interaction with CpsD was delineated from residue 50 to 163. Proteinprotein interactions were assayed by the ability of the diploids to grow on SC-LUH selective media (without histidine). (-) indicates empty vectors, used as negative controls. Interaction between $\mathrm{BD}-\mathrm{CpsD}$ and $\mathrm{AD}-\mathrm{CpsC}$ or $\mathrm{AD}-\mathrm{CpsD}$ were used as positive controls as previously reported (10). (B) Protein purification. The chimera CpsC/D and RocS- $\Delta \mathrm{AH}$ (RocS devoid of the C-terminal amphipatic helix, see Fig. S10) were overproduced in E. coli as 6His-tagged fusion proteins. After purification using a Ni-NTA resin, $6 \mathrm{His}-\mathrm{CpsC} / \mathrm{D}$ and RocS- $\Delta \mathrm{AH}-6 \mathrm{His}$ were analyzed by SDS-PAGE. (C) Affinity measurements by Microscale Thermophoresis of labeled RocS binding to increasing concentrations of 6His-CpsC/D chimera. FNorm (normalized fluorescence) is plotted as a function of ligand concentration. Measurements are represented by blue dots and the fitted curve by a green line. Three independent experiments were performed.

Figure S2: Taxonomic distribution of RocS in Lactobacillales.
The number of species containing a RocS homolog compared with the total number of sequenced species in the genera are indicated. The relative proportion of genomes containing at least one copy of rocS are color coded using a green scale.

Figure S3: Production of capsular polysaccharides (CPS)
Detection of cell-associated CPS in the D39 strain and the $\Delta c p s D$ and $\Delta r o c S$ derivatives. The same volume of CPS prepared from culture grown until $\mathrm{OD}_{550}=0.3$ was loaded in each lane. The immunoblot was probed with a rabbit anti-serotype 2 CPS polyclonal antibody.

Figure S4: Growth and cell shape analysis of D39 and $\Delta r o c S$ strains
(A) Representative growth curves for the D39 strain and the $\Delta r o c S$ derivative. Strains were grown in $\mathrm{CH}+\mathrm{Y}$ medium at $37^{\circ} \mathrm{C}$ in a JASCO V-630 Biospectrophotometer. The OD_{550} was read automatically every 10 min . Shown curves are representative of three replicates. GT is for generation time. (B-C) Cell length (B) and width (C) distribution of D39 and $\Delta r o c S$ cells. n_{T} indicates the total number of cells analyzed from three independent experiments.

Figure S5: Impact of rocS deletion on nucleoid distribution, cell-growth and -shape of R800 cells
(A) Visualization of nucleoids in the R800 strain and the $\Delta r o c S$ derivative. Localization of nucleoids was analyzed using DAPI staining. Phase contrast (left column) and overlays between phase contrast and DAPI fluorescent signal (right column). Arrowheads indicate anucleate cells. Scale bar, $1 \mu \mathrm{~m}$. (B) Representative growth curves for the R800 strain, the $\Delta r o c S$ derivative and the complementation strain. Strains were grown in $\mathrm{CH}+\mathrm{Y}$ medium at $37^{\circ} \mathrm{C}$ in a JASCO V-630 Biospectrophotometer. The OD_{550} was read automatically every 10 min . They are representative of three replicates. GT is for generation time. (C-D) Cell length (C) and width (D) distribution of R800 and $\Delta r o c S$ cells. n_{T} indicates the total number of cells analyzed. Experiments were performed in triplicates.

Figure S6: Marker frequency analysis of the oriC and ter regions
Boxplot representing the ratio between the origin of replication (oriC) and the terminus region (ter) of the chromosome determined by real-time qPCR of chromosomal DNA isolated from exponentially growing $\Delta r o c S$ and $\Delta r o c S-P_{\text {comX }} r o c S$ cells. As controls, the oriC/ter ratio was determined for R800 cells and for a thermo-sensitive dnaA-T1193C(M398T) mutant (TS). Whiskers represent the 10th and the 90th percentile of data from Monte Carlo simulations.

Figure S7: Validation of strains expressing the ori localization system
Representative growth curves for the R 800 strain and $\mathrm{P}_{\text {comx }}$-rep C-gfp, par $S_{E f}$ and par $S_{E f} \mathrm{P}_{\text {comX }}{ }^{-}$ repC-gfp derivatives. Strains were grown in $\mathrm{CH}+\mathrm{Y}$ medium at $37{ }^{\circ} \mathrm{C}$ in a JASCO V-630 Biospectrophotometer. The OD_{550} was read automatically every 10 min . Curves are representative of three replicates. Overlays between phase contrast and GFP fluorescence signal are shown on the right to illustrate that the cell shape is not affected and that RepC-GFP localizes either in the cytoplasm or as 2 bright foci in the absence or presence of par $S_{E f}$ sites, respectively.

Figure S8: Growth curves and nucleoid distribution of cells producing GFP and Flag fusions.
(A) Growth curves of R800 (grey) and $\Delta r o c S$ cells (orange) and cells expressing either $g f p$-roc S (dark blue) or $g f p-r o c S-\Delta A H$ (light blue) or $g f p-\Delta H T H-r o c S$ (light orange) or flag-rocS (light grey) in $\mathrm{CH}+\mathrm{Y}$ medium at $37^{\circ} \mathrm{C}$. The OD550 was read automatically every 10 min . All fusion proteins are the only source of RocS, RocS- $\Delta \mathrm{AH}$ and $\Delta \mathrm{HTH}-\mathrm{RocS}$ in cells. The fusion genes encoding these proteins substitute the corresponding native genes at their chromosomal locus. (B) Percentage of anucleate cells in R800, $\Delta r o c S$ and $g f p-r o c S$ strains. n_{T} indicates the number of cells analyzed from $n=3$ independent experiments and standard errors are indicated with error bars. (Two population proportions test: $* * * * \mathrm{P}<0.0001$).

B

Figure S9: Expression of rocS fusions
The Western immunoblot was probed with specific anti-RocS antibodies (α RocS) to determine rocS expression in R800, gfp-rocS, gfp-rocS- $\triangle A H$, gfp- $\triangle H T H-r o c S$ and flag-rocS cells. To estimate the relative quantity of proteins in crude extract and to compare the different lanes, we used enolase (Spr1036) as an internal standard. The enolase was detected using specific antibodies (α Enolase) as described in (23) and is presented in the lower part of the figure.

Figure S10: Bioinformatic analysis of the amino acid sequence of RocS
(A) Secondary structure prediction of RocS using PSIPRED (40). The prediction of an Nterminal Helix-Turn-Helix domain (HTH) and a C-terminal amphipathic helix (AH) is shown in blue and green, respectively. a, b and c show the predicted secondary structure, the confidence of prediction and the RocS sequence, respectively. (B) Drawing of RocS with the N-terminal Helix-Turn-Helix in blue and the C-terminal amphipathic helix in green. The central predicted α-helix is shown in grey. Sequence alignment and helical representation of the amphipatic helices of RocS and MinD of E. coli (19) are shown on the right. Non-polar residues are shown in green. The dotted-lines show that the composition of the upper-side of each helix is amenable to interacting with the membrane.

Figure S11: Growth curves and cell viability of rocS- $\triangle A H$ and $\triangle H T H$-rocS mutants
(A) Growth curves of R800 (grey), $\Delta r o c S$ cells (orange), rocS- $\Delta A H$ (green), or $\Delta H T H$-rocS (dark blue) strains in $\mathrm{CH}+\mathrm{Y}$ medium at $37^{\circ} \mathrm{C}$. The OD_{550} was read automatically every 10 min . (B) Histogram showing cell viability of the same strains. The color code is the same as in A. The experiment was performed in triplicates. Standard errors are indicated with error bars.

B

Figure S12: RocS directly interacts with the DNA in vitro
Electrophoretic mobility shift assays (EMSA) on agarose gels stained with ethidium bromide and developed under UV light. The indicated concentrations of purified RocS- $\Delta \mathrm{AH}-6 \mathrm{His}$ were incubated with DNA fragments (50 ng) (A) of different lengths (50, 100, 200, 400 or 800 bp) and (B) GC contents (all fragments are 800 bp in length).

Figure S13: Interaction between RocS and ParB
(A) Immunoprecipitation of ParB-sfGFP (10) with FLAG-RocS in flag-rocS-parB-sfgfp and flag-rocS strains using anti-FLAG antibodies. Samples were analyzed by immunoblotting using either anti-FLAG antibodies (lower panel) to check that the same amount of RocS was loaded, or anti-GFP antibodies (upper panel) to determine the presence of co-immunoprecipitated ParBsfGFP. (B) Protein purification. ParB and RocS-AH were overproduced in E. coli as 6Histagged fusion proteins. After purification using a Ni-NTA resin, ParB-6His and RocS- $\Delta \mathrm{AH}-$ 6His were analyzed by SDS-PAGE. (C) Affinity measurements by Microscale Thermophoresis of labeled RocS binding to increasing concentrations of ParB-6His. FNorm (normalized fluorescence $=$ fluorescence after thermophoresis / initial fluorescence) is reported on the y axis and ligand concentrations on the x -axis are plotted in Molar. Measures are represented by blue dots and fitted curves by green lines. Three independent experiments were performed.

Table S1: Strains and plasmids

Strains	Genotype and description	Reference	Primers
S. pneumoniae strains			
R800	R800	23	
\triangle rocs	R800 rpsL::rpsL1; 4 rocS	This study	5-6; 7-8
Δ rocs $-P_{\text {comx- }}$ rocS		This study	9-10-11-12
\triangle Nter-rocS	R800 rpsL::rpsL1; rocS:: Δ nter-rocS	This study	3-14-13-4
rocs- \triangle Cter	R800 rpsL::rpsL1; rocS::rocS 4 cter	This study	3-15-16-4
gfp-rocs	R800 rpsL::rpsL1; rocS::gfp-rocS	This study	3-17-18-4
gfp- Δ Nter-rocS	R800 rpsL::rpsL1; rocS::gfpDnter-rocS	This study	3-17-19-4
gfp-rocs- \triangle Cter	R800 rpsL::rpsL1; rocS::gfp-rocSDcter	This study	3-17-18-4
parB-sfgfp-spc	R800 rpsL::rpsL1; parB::parB-sfgfp-spec	This study	22-23
hlpa-mKate2	R800 rpsL::rpsL1; hlpa::hlpa-mKate2-cm	9	
hlpa-mKate2- rocS $^{\text {ras }}$	R800 rpsL::rpsL1; hlpa::hlpa-mKate2-cm; 4 rocS	This study	3-4
flag-rocs	R800 rpsL::rpsL1 ; rocS::FLAG-rocS	This study	25-26
flag-rocs-parB-sfgfp-spc	R800 rpsL::rpsL1; rocS::FLAG-rocS; parB::parB-sfgfp-spc	This study	22-23
$\operatorname{parS}_{\text {Ef }}$	R800 rpsL::rpsL1; thmA-IS1167 :: parS $_{\text {E.f }}$	This study	30-31
PcomX-repC-gfp	R800 rpsL::rpsL1; DIS1167::P1::PcomR::comR; cpsN-O::PcomX::repC-gfp	This study	$\begin{gathered} 10-12-28- \\ 29-36-37 \end{gathered}$
parSEf	R800 rpsL::rpsL1; DIS1167::P1::PcomR::comR;	This study	9-28-29-
PcomX-repC-gfp	cpsN-O::PcomX::repC-gfp; thmA-IS1167 :: parSE.f	This study	$12-30-31$
DrocS parSEf	R800 rpsL::rpsL1; DrocS; DIS1167::P1::PcomR::comR;	This study	9-28-29-
PcomX-repC-gfp	cpsN-O::PcomX::repC-gfp; thmA-IS1167 :: parSE.f	This study	12-30-31
R800 dnaA TS	R800 rpsL::rpsL1; dnaA ${ }^{\text {ts }}$	This study	54-55
D39	virulent strain	10	
D39 4 rocs	D39 rpsL::rpsL1; 4 rocS	This study	3-4
Δ rocS $-\mathrm{P}_{\text {comx }}-$ rocs	D39 rpsL::rpsL1; 4 rocS; Δ IS1167:::P1::P comR $^{\text {::comR; }}$ $b b g A:: P_{\text {comx }}:: r o c S$	This study	9-10-11-12
D39 ${ }^{\text {cheps }}$	D39 rpsL::rpsL1; 4 cpsD	10	
D39 cpsD-3YF	D39 rpsL::rpsL1 ; cpsD::cpsD-3YF	10	
D39 cpsD-3YF- \triangle rocs	D39 rpsL::rpsL1 ; cpsD::cpsD-3YF; 4 rocS	This study	3-4
D39 cpsD-3YE	D39 rpsL::rpsL1 ; cpsD::cpsD-3YE	10	
D39 cpsD-3YE- \triangle rocS	D39 rpsL::rpsL1 ; cpsD::cpsD-3YE; 4 rocS	This study	3-4
E. coli strains			
XL1-Blue	supE44 hsdR17 recA1 endA1 gyrA46 thu reIA1 lac $F^{\prime}\left[p r o A B^{+}\right.$lac] ${ }^{q}$ IacZ $\Delta M 15 \operatorname{Tn} 10\left(T c^{R}\right)$	25	
BL21 (DE3)	F-ompT gal dcm lon hsdS ${ }_{B}\left(r_{B}-m_{a}-\right)$	26	
BL21 (DE3)			
Plasmids			
pT7.7	pT7.7 derivative, encoding a His-tag for C-terminal fusions	29	
pT7.7 parB	pT7.7 derivative, encoding par, from Met1 to Lys252	10	
pT7.7 rocs \triangle Cter	pT7.7 derivative, encoding rocS, from Met1 to Gln150	This study	32-33
pQE30	pQE30 derivative, encodinf a his-tag for N-termal fusion	Qiagen	
pQE30 cpsC/D TIGR4	pQE30 derivative, encoding CpsD, from Met1 to Lys227, fused to the C-terminal part of CpsC, from Leu200 to Lys230	10	
pGBDU-C1	pGBDU derivative, encoding binding domain of gal4 for N -terminal fusions, ura3	31	
pGBDU-C1-cpsD	pGBDU derivative, encoding $c p s D$, from Met1 to Lys226	10	
pGAD-C1	pGAD derivativ, encodind activation domain of gal4 for N -terminal fusion, leu2	31	
pGAD-C1-cpsD	pGAD derivative, encoding cpsD, from Met1 to Lys226	10	

Forward and reverse primers are represented by plus (+) or minus (-), respectively

Number	Name	Sequence 5'-3'
1	Janus cassette (+)	CCGTTTGATTTTTAATGGATAATG
2	Janus cassette (-)	AGAGACCTGGGCCCCTTTCC
3	Upstream of rocS (+) JPL1	GTCTGCTATGAGTGTGGCGATTTTGGC
4	Dowstream of rocS (-) JPL4	CTACTTTCTGTCTCTAACAATTCCCTAG
5	Upstream of rocS / Janus (-)	CATTATCCATTAAAAATCAAACGGAATATCCTCTGAAACGTTTTCTAGC
6	Janus / Dowstream of rocS (+)	GGAAAGGGGCCCAGGTCTCTTCAAGGAGCTGTTTAGGTTAAATGC
7	$\Delta \mathrm{rocS}$ (+)	TCAAGGAGCTGTTTAGGTTAAATGC
8	Δ rocS (-)	GCATTTAACCTAAACAGCTCCTTGAAATATCCTCTGAAACGTTTTCTAGC
9	$\operatorname{cpsN} / \operatorname{rocS}(+)$	ATTTATATTTATTATTGGAGGTTCAATGAGTATTGAAATGACC
10	$\operatorname{cps} N-\mathrm{O}(-)$	TTTCTAATATGTAACTCTTCCCAAT
11	rocs / $P_{\text {comx }}(-)$	ATTGGGAAGAGTTACATATTAGAAATTATCCTCCAAATAAACGAGCAA
12	$P_{\text {comxs.ther }}(+)$	TGAACCTCCAATAATAAATATAAAT
13	Δ Nter-rocS (+)	GTTTCAGAGGATATTATGAGTATTGAATTACCAGAAGAAGACACAGATAAAAAT
14	Δ Nter-rocs (-)	AATACTCTAAATATCCTCTGAAACGTTTTGACCTAG
15	rocS- Δ Cter (+)	GCAAAAGAAGAAGTCCAATCCACTTAATCAAGGAGCTGTTTAGGTTAAATG
16	rocS- Δ Cter (-)	AGTGGATTGGACTTCTTCTTTTGC
17	gfp-rocS (-)	CTTCACCTTTAGAAATCATAATATCCTCTGAAACGTTTTC
18	gfp-rocS (+)	CTCGAGGGATCCGGAATGAGTATTGAAATGACC
19	gfp- Δ Nter-rocS (+)	CTCGAGGGATCCGGAATGAGTATTGAAATGACC
20	gfp (+)	AAACTAGACATCGAGTTCCTGCAGATGATTTCTAAAGGTGAAGAATTG
21	gfp (-)	TTATTTATACAATTCATCCATACC
22	Upstream of parB (+)	CTGACACTTTCTCTGATATTGC
23	Downstream of parB JN119 (-)	GGGATATATTTAACACGCGCATTAGG
24	Upstream of hlpa (+)	CGAAGTTAGCTCAAGAAG
25	Downstream of hlpa (-)	CAGGTTGATATTATCG
26	Flag-rocS (+)	GACTACAAAGACCATGACGGTGATTATAAAGATCATGATATCGACTACAAAGATGACGACGA TAAACTCGAGGGATCCGGAATGAGTATTGAAATGACC
27	Flag-rocS (-)	TCCGGATCCCTCGAGTTTATCGTCGTCATCTTTGTAGTCGATATCATGATCTTTATAATCACCG TCATGGTCTTTGTAGTCAATATCCTCTGAAACGTTTTC
28	$\operatorname{cpsN} / \mathrm{repC}(+)$	ATTTATATTTATTATTGGAGGTTCAATGAGTAAGTATACATTTC
29	repC / $\mathrm{P}_{\text {comx }}(-)$	ATTGGGAAGAGTTACATATTAGAAATTATTTATACAATTCATC
30	parS E.f (+)	GTTCATTGTAAATACGGTTTAC
31	parS E.f (-)	CTTCCCAACGCCGCCTTTG
32	pT7-7 rocs (+)	TATCATATGGAAGACACAGATAAAAATGACAAAGGG
33	pT7-7 rocS (-)	TATCTGCAGTTAAGTGGATTGGACTTCTTCTTT
34	bggA (+)	GGTTTTGACTCTATCTCGCTTATTTAATTG
35	bgga (-)	GCCGGCTGTATCTACGATACC
36	repC E.f (+)	CCATTATTTTAACACACGAGGTGCTACCATGAGTAAGTTATACATTTCA
37	repC E.f (-)	CTGCAGGAACTCGATGTCTAGTTTTTTTTGTTTCTTTTTGTCTCG
38	DNA $50 \mathrm{pb}(+)$	TGTTGCCATTGCTACAG
39	DNA $50 \mathrm{pb}(-)$	GCCATACCAAACGACG
40	DNA $100 \mathrm{pb}(+)$	CGCCAGTTAATAGTTTGCG
41	DNA $100 \mathrm{pb}(-)$	TCGTTGGGAACCG
42	DNA $200 \mathrm{pb}(+)$	CGCCTCCATCCAGTCTATTAATTG
43	DNA $200 \mathrm{pb}(-)$	GAGCTAACCGCTTTTTTTGCAC
44	DNA $400 \mathrm{pb}(+)$	CAATGATACCGCGAGACCCACG
45	DNA $400 \mathrm{pb}(-)$	TACGGATGGCATGACAGTAAG
46	DNA $800 \mathrm{pb}(+)$	CTAGATCCTTTTAAATTAAAAATG
47	DNA $800 \mathrm{pb}(-)$	TCGAACTGGATCTCAACAG
48	DNA P.aeruginosa (+)	GCTGGCCAGCCCGCGCGAGC
49	DNA P.aeruginosa (-)	GAACGGCTGCAGGTAGCTGAG
50	qPCR_parB (+)	ACGGTCTATCCCAGCTGTTG
51	qPCR_parB (-)	ATAGGCGCGTGCTTCTTCTA
52	qPCR_ter (+)	GAAAAGTACCATCCCCAGCA
53	qPCR_ter (-)	AGCCTTGGTGCCTATCATTG
54	dnaA forward	TAGAAGGGCTCGAGGAGAGG
55	dnaA reverse	CTTGCAGCAAAGGCTGTTTC

Movie S1: Nucleoid segregation in wild type R800 cells

Time-lapse analysis of HlpA-mKate2 in WT cells. The video shows an overlay of mKate2 (red) and phase-contrast (gray) images. Scale bar: $1 \mu \mathrm{M}$. Time interval: 3 min .

Movie S2: Absence of chromosome segregation in $\mathrm{Aroc} S$ cells

Time-lapse analysis of HlpA-mKate2 in $\Delta r o c S$ cells. The video shows an overlay of mKate 2 (red) and phase-contrast (gray) images. Scale bar: $1 \mu \mathrm{M}$. Time interval: 3 min.

Movie S3: Chromosome pinching in $\mathbf{\Delta r o c S}$ cells

Time-lapse analysis of HlpA-mKate2 in $\Delta r o c S$ cells. The video shows an overlay of mKate2 (red) and phase-contrast (gray) images. Scale bar: $1 \mu \mathrm{M}$. Time interval: 3 min .

Movie S4: Localization of GFP-RocS

Time-lapse analysis of GFP-RocS in wild-type cells. The video shows an overlay of GFP (green) and phase-contrast (gray) images. White head arrows highlight bright clusters that remain stationary for at least 3 consecutive frames. Scale bar: $1 \mu \mathrm{~m}$. Time interval: 100 ms .

