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Abstract

We show that a simple mixing idea allows to establish a number of explicit formulas
for ruin probabilities and related quantities in collective risk models with dependence
among claim sizes and among claim inter-occurrence times. Examples include compound
Poisson risk models with completely monotone marginal claim size distributions that are
dependent according to Archimedean survival copulas as well as renewal risk models
with dependent inter-occurrence times.
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1. Introduction

Assume that the free surplus of an insurance company at time t is modeled by

R(t) = u + ct −
N(t)∑

k=1

Xk, (1)

where u is the initial surplus, the stochastic process N(t) denotes the number of claims up
to time t and the random variables Xk refer to the corresponding claim amounts. Here
c > 0 is a constant premium intensity and u ≥ 0 is the initial surplus in the portfolio.
The classical Cramér-Lundberg risk model assumes that N(t) is a homogeneous Poisson
process with intensity λ, which is independent of the claim sizes and the claim sizes
are independent and identically distributed. Under this assumption, various quantities
can be calculated explicitly for certain classes of claim size distributions, including the
probability of ruin ψ(u) = P(R(t) < 0 for some t > 0). However, the independence
assumption can be too restrictive in practical applications and it is natural to look for
explicit formulas forψ(u) and related quantities in the presence of dependence among the
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risks. Over the last decades a number of dependence structures have been identified that
allow for analytical formulas (see e.g. Chapter XIII of Asmussen and Albrecher (2010)
for a recent survey), but an exhaustive identification of this set of models is far from
complete.

The purpose of this paper is to provide an additional class of dependence models
for which explicit expressions for ψ(u) can be obtained. To that end, we start with
simpler models for which explicit solutions are available and subsequently mix over
involved parameters. This changes the marginal distributions and introduces dependence
among the risks. One can then balance the marginal distribution of the risks with their
dependence structure in such a way that properties like level crossing probabilities can
be studied without direct treatment of the dynamics of the process. In other words, the
mixing of the parameters can be carried over to the mixing of the final quantities under
study. This results in a new set of dependence models for which explicit results can be
obtained and may serve as a skeleton within larger model classes. For transparency of
exposition, the analysis of the paper will be in terms of the ruin probability ψ(u), but the
principle can be applied to many other quantities and also to applications beyond risk
theory.
We would like to note that mixing over parameter values of the risk process is a classical
tool (see for instance Bühlmann (1972), who considered this in the context of credibility-
based dynamic premium rules). In this paper we want to suggest such mixing procedures
as a general tool of dependence modeling in collective risk theory, as its potential does
not seem to be sufficiently explored yet.
The rest of the paper is organized as follows. Sections 2 and 3 work out the ideas in detail
and show how the Archimedean dependence structure naturally enters in this approach.
Examples for explicit ruin probability formulas are given. Section 4 then highlights a
number of further possible extensions of the method and Section 5 concludes.

2. Compound Poisson models with completely monotone claim sizes and Archimedean
dependence

Let Θ be a positive random variable with cdf FΘ and consider the classical compound
Poisson risk model (1) with exponential claim sizes that fulfill, for each n,

P (X1 > x1, . . . ,Xn > xn | Θ = θ) =

n∏

k=1

e−θxk . (2)

That is, given Θ = θ, the Xk (k ≥ 1) are conditionally independent and distributed as
Exp(θ). However, the resulting marginal distributions of the Xk’s will now in general not
be exponential any more and the claim sizes will be dependent. Letψθ(u) denote the ruin
probability of the classical compound Poisson risk model with independent Exp(θ) claim
amounts given by

ψθ(u) = min
{ λ
θc

exp{−(θ − λ
c

)u}, 1
}
, u ≥ 0. (3)
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Then, for the dependence model (2), the ruin probability is given by

ψ(u) =

∫ ∞

0
ψθ(u)dFΘ(θ). (4)

Since for θ ≤ θ0 = λ/c the net profit condition is violated and consequently ψθ(u) = 1 for
all u ≥ 0, this can be rewritten as

ψ(u) = FΘ(θ0) +

∫ ∞

θ0

ψθ(u)dFΘ(θ). (5)

An immediate consequence is that in this dependence model

lim
u→∞ψ(u) = FΘ(θ0), (6)

which is positive whenever the random variable Θ has probability mass at or below
θ0 = λ/c (and the latter is useful for the construction of dependence models as will be
seen below).

Proposition 2.1. The dependence model characterized by (2) can equivalently be described by
having marginal claim sizes X1,X2, . . . that are completely monotone, with a dependence structure

due to an Archimedean survival copula with generator φ =
(
F̃Θ

)−1
for each subset (X j1 , . . . ,X jn)

(for j1, . . . , jn pairwise different), where F̃Θ denotes the Laplace-Stieltjes transform of FΘ.

Proof. The proof is essentially due to Oakes (1989), who considered the case n = 2, see
also Denuit et al. (2005, p.229). In order to keep the paper self-contained, we give here a
rather direct line of reasoning. Due to (2), for each n, the joint distribution of the tail of
X1, . . . ,Xn can be written as

P (X1 > x1, . . . ,Xn > xn) =

∫ ∞

0
e−θ(x1+···+xn)dFΘ(θ) = F̃Θ(x1 + · · · + xn). (7)

At the same time, the representation with survival copula Ĉ is given by

P (X1 > x1, . . . ,Xn > xn) = Ĉ(FX(x1), . . . ,FX(xn)),

where FX(xi) = 1 − FX(xi) is the tail of the marginal claim size Xi (note that the Xi’s are
all identically distributed). If the survival copula is Archimedean with generator φ, then
it admits the representation Ĉ(FX(x1), . . . ,F(xn)) = φ−1

(
φ(FX(x1)) + · · · + φ(FX(xn))

)
, which

due to

FX(xi) =

∫ ∞

0
e−θxidFΘ(θ) = F̃Θ(xi), i = 1, . . . ,n, (8)

exactly matches with (7) when the generator is chosen to be φ(t) =
(
F̃Θ

)−1
(t). Note that as

the inverse of a Laplace-Stieltjes transform of a cdf, φ is a continuous strictly decreasing
function from [0,1] to [0,∞] with φ(0) = ∞ and φ(1) = 0 and φ−1 is completely monotone,
so that the Archimedean copula is well-defined for all n (see e.g. Nelsen (1999, Th.4.6.2).
At the same time, from (8) one sees that the marginal random variables Xi are necessarily
completely monotone. �
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Remark 2.2. The above mixing construction may be thought of as sampling a realisation θ of
Θ according to FΘ and then following a trajectory of the usual independent risk model with
parameter θ, so that the dependence is introduced through the common realized value of θ among
all possible values from the positive halfline. Correspondingly, the resulting dependence will be
stronger the more spread out the distribution of Θ is. However, this mixing construction is just
the tool to establish the explicit formula (3), but need not be the causal reason for the dependence
model. Having established this result, one may now equivalently start in two ways: For any risk
model with completely monotone marginal claim size random variable Xi, there is an expression
of the form (8) for some positive random variable Θ and then formula (3) holds for a dependence

structure with Archimedean survival copula and generator φ =
(
F̃Θ

)−1
. Alternatively, one may

start with specifying the Archimedean survival copula through its generator and then the above
relations give a corresponding marginal distribution for which the explicit formula (3) holds.
Note that for each choice of the generator φ, Kendall’s tau for each bivariate pair is given by
τ0 = 1 + 4

∫ 1
0 φ(t)/φ′(t) dt.

Let us now look at some particular examples.

Example 2.3 (Pareto claims with Clayton copula dependence).
If Θ is Gamma(α, β) distributed with density

fΘ(θ) =
βα

Γ(α)
θα−1e−βθ, θ > 0,

the resulting mixing distribution for the marginal claim size Xk is

FX(x) =

∫ ∞

0
e−θx fΘ(θ)dθ =

(
1 +

x
β

)−α
, x ≥ 0

(see e.g. Klugman et al. (2008)). That is, the Xk’s are Pareto(α, β) distributed and due to
Proposition 2.1 they follow a dependence structure according to an Archimedean survival
copula with generator

φ(t) = t−1/α − 1,

which is the Clayton copula with parameter α (see also Yeh (2007)). Consequently, the
upper tail dependence index between two claim amounts is

λU = 2 − 2−1/α

(the asymptotic behavior of P(X1 +X2 > x) in this situation is for instance studied in Alink
et al. (2004)). From (5) it now follows that for this model

ψ(u) = 1 − Γ(α, βθ0)
Γ(α)

+ θ0eθ0uβ

(
1 +

u
β

)−(α−1) Γ(α − 1, (β + u)θ0)
Γ(α)

,

where Γ(α, x) =
∫ ∞

x wα−1e−wdw is the incomplete Gamma function and θ0 = λ/c. In
particular (also from (6)),

lim
u→∞ψ(u) = 1 − Γ(α, βλc )

Γ(α)
. (9)
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Using limx→∞
Γ(s,x)

xs−1e−x = 1, one can further deduce that the convergence towards this con-
stant is of asymptotic order u−1. Finally, for u = 0 we obtain the simple formula

ψ(0) = 1 − Γ(α, βθ0)
Γ(α)

+ βθ0
Γ(α − 1, βθ0)

Γ(α)
.

�
Example 2.4 (Weibull claims with Gumbel copula dependence).
If Θ is stable (1/2) distributed (also called Lévy distributed) with density

fΘ(θ) =
α

2
√
πθ3

e−α
2/4θ, θ > 0,

then the resulting marginal distribution tail of the claim size random variable X is

FX(x) =

∫ ∞

0
e−θx fΘ(θ)dθ = exp{−αx1/2}, x ≥ 0,

so that the claim sizes are Weibull distributed with shape parameter 1/2. Since F̃Θ(s) =

e−α
√

s, one obtains that the generator of the Archimedean copula is in this case given by
φ(t) = (− ln t)2 (for all values of α). Hence the underlying survival copula is a particular
Gumbel copula, and consequently the claim sizes are asymptotically independent. Note
that the marginal distribution varies according to the choice of α, whereas the copula
stays invariant.
From (5) we now get

ψ(u) = FΘ(λ/c) +

∫ ∞

λ/c

λ
θc

e−θueλc/u α

2
√
πθ3

e−α
2/4θdθ,

which can be expressed through the error function Erfc(z) = 1−Erf(z) = 2√
π

∫ ∞
z e−w2

dw =

2Φ(−z
√

2) as

ψ(u) = Erfc
(

α

2
√
λ/c

)
+
λ

α2c
e−α

2c/4λ
[
− 2α√

πλ/c
+e(cα−2

√
uλ)2/4cλ(1+α

√
u) Erfc

(√
uλ/c − α

2
√
λ/c

)

+ e(cα+2
√

uλ)2/4cλ(−1 + α
√

u) Erfc
(√

uλ/c +
α

2
√
λ/c

) ]
.

Note that for z > 0, Erfc(z) = Γ(1/2, z2)/
√
π. For u = 0 we have

ψ(0) = Erfc
(

α

2
√
λ/c

)
− 2
√
λ/c

α
√
π

e−cα2/4λ +
2λ
cα2 Erf

(
α

2
√
λ/c

)

and

lim
u→∞ψ(u) = Erfc

(
α

2
√
λ/c

)
. (10)

�
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Whenever FΘ(a) = 0 for some a > 0 (i.e. there is no probability mass in the neigh-
borhood of the origin), the resulting marginal claim size distribution will be light-tailed.
The following example illustrates this for a resulting marginal (completely monotone)
Gamma distribution.

Example 2.5 (Dependent Gamma claims).
Since the Gamma(α, β) distribution with shape parameter α ≤ 1 is completely monotone, it
can be obtained as a marginal claim distribution with the above method. Correspondingly,
if

FX(xi) = Γ(α, βxi)/Γ(α) with α < 1, (11)

then due to (8) we need to identify the mixing distribution by inverse Laplace transfor-
mation. This can be done by complex analysis techniques in an analogous way as in
Albrecher and Kortschak (2009) and one arrives at the mixing density

fΘ(θ) =
sin(απ)
πθ

(
θ
β
− 1

)−α
, θ > β,

i.e. the mixing distribution has a Pareto-type tail. Formula (4) now gives the ruin
probability for a risk model with marginal claim size distribution (11) and Archimedean
dependence structure among claims with generatorφ(t), which is the inverse with respect
to x of the normalized incomplete Gamma function Γ(α, βx)/Γ(α). Although this generator
can not be determined explicitly, it is clear that it does not depend on β (since the generator
is invariant with respect to multiplication by a constant). Correspondingly, varying over
β, (4) gives an explicit representation of ψ(u) for a whole class of marginal Gamma
distributions with the same dependence structure. The result can be compared with the
exact ruin probability for the same marginal claim distribution, but with independent
claims (see e.g. Grandell (1992, p.14)). �

Note also that if the support of Θ is the interval [θ1,+∞) for a θ1 > θ0, then the
probability of ruinψ(u) decays exponentially fast with u and is upper-bounded byψθ1(u),
where ψθ1(u) = λ

θ1c exp{−(θ1 − λ
c )u} is the ruin probability of the independent Cramér-

Lundberg model with parameter θ1.

Remark 2.6. From the general construction of Archimedean copulas (see e.g. Joe (1997, p.86)), it
is clear that the principle outlined in this section can be extended to conditionally independent tails
beyond the used exponential tails in (2), still preserving the Archimedean dependence structure.
In particular, whenever the conditional tail of the marginals can be written in the power form
P(Xi > xi|Θ = θ) = (G(xi))θ for some distribution function G(x) and

P (X1 > x1, . . . ,Xn > xn | Θ = θ) =

n∏

k=1

(G(xk))θ
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for all n, i.e. θ is the common mixing parameter, then

P(X1 > x1, . . . ,Xn > xn) =

∫ ∞

0
[G(x1)]θ · · · [G(xn)]θ dFΘ(θ)

= F̃Θ

(
− log G(x1) − · · · − log G(xn)

)

= F̃Θ

(
F̃−1

Θ (FX(x1)) + · · · + F̃−1
Θ (FX(xn))

)
.

Hence, the dependence structure is again Archimedean with generator φ(t) = (F̃Θ)−1(t), where
now FX(xi) = F̃Θ(− log G(xi)) (in the context of survival analysis, θ is often interpreted as the
frailty parameter). One concrete example would be to choose the claim size distribution in the
independent risk model to be Pareto(α, β) distributed, where αwould now be the mixing parameter
θ (so that G(x) would be the tail of a Pareto(1, β) random variable). Then (4) applies and one
still has the freedom to choose the mixing distribution of Θ to identify a number of formulas for
different dependence structures and marginals. However, this is only of limited usefulness, as for
Pareto distributed claims there is no fully explicit formula for ψθ(u) available (but see Ramsay
(2003) and Albrecher and Kortschak (2009) for integral representations of ψθ(u)).

Remark 2.7. In fact, the construction of dependence through a common factor is not as restrictive
as it may appear at first sight: due to a generalization of De Finetti’s Theorem by Bühlmann
(1960), an exchangable family of random variables (and exchangability may be seen as a natural
assumption in the risk model context) can in great generality be generated as a mixture over a
common parameter of an i.i.d. sequence (see also Feller (1970, p.229)).

3. Renewal risk models with completely monotone inter-occurrence time distributions
and Archimedean dependence

In much the same way as in Section 2, one can also use ruin probability formulas
of the Cramér-Lundberg risk model (which are explicit for certain classes of claim size
distributions, see e.g. Asmussen and Albrecher (2010)) and mix over the Poisson param-
eter λ. If the mixing cdf is denoted by FΛ, then the resulting ruin probability in the new
dependence model is

ψ(u) =

∫ ∞

0
ψλ(u)dFΛ(λ), u ≥ 0. (12)

Note that this formula was already given by Bühlmann (1972, Eq. (3)), where the mixing
procedure was used in the context of dynamic credibility-based premiums for the risk
process (see also Dubey (1977), Bühlmann and Gerber (1978) and Gerber (1979, Section
5 of Chapter 9)). Proposition 2.1 now still holds by replacing θ with λ, i.e. the resulting
dependence structure between the inter-occurrence times T1,T2, . . . (and each subset of

them) will be described by an Archimedean copula with generator φ =
(
F̃Λ

)−1
, where

F̃Λ is the Laplace-Stieltjes transform of FΛ. Note that the resulting (dependent) inter-
occurrence times are marginally not exponential any more, but are completely monotone
with distribution tail P(Ti > t) = F̃Λ(t). Now the net profit condition will be violated
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whenever the realisation of Λ is larger than the threshold value λ0 = c/E(Xi). Hence, a
refined version of (12) is

ψ(u) =

∫ λ0

0
ψλ(u)dFΛ(λ) + FΛ(λ0), u ≥ 0.

Correspondingly,
lim
u→∞ψ(u) = FΛ(λ0),

which is positive whenever Λ has a positive probability to be larger or equal to λ0.

Example 3.1 (Pareto inter-occurrence times with Clayton copula dependence).
As in Example 2.3, if Λ is Gamma(α, β) distributed, the resulting mixing distribution for
the marginal inter-occurrence times Tk is Pareto distributed with tail

FT(t) =

∫ ∞

0
e−λt fΛ(λ)dλ =

(
1 +

t
β

)−α
, t ≥ 0.

and their dependence structure is described by a Clayton survival copula with generator

φ(t) = t−1/α − 1.

Note that at the same time it is a classical result that the number N(t) of claims up to
a fixed time point t under the Gamma mixing distribution follows a negative binomial
distribution.
If one considers the special case of exponentially distributed claim sizes with (now fixed!)
parameter θ, then clearly

ψλ(u) = min
{ λ
θc

exp{−(θ − λ
c

)u}, 1
}
, u ≥ 0.

With (12) and λ0 = cθ, this leads to the explicit formula

ψ(u) =
βαe−θu

θc
(β − u/c)−1−α

(
α − Γ(α + 1, cθβ − θu)

Γ(α)

)
+

Γ(α, βcθ)
Γ(α)

, u ≥ 0. (13)

In particular, we have

ψ(0) =
1
βcθ

(
α − Γ(α + 1, cθβ)

Γ(α)

)
+

Γ(α, βcθ)
Γ(α)

and

lim
u→∞ψ(u) =

Γ(α, βcθ)
Γ(α)

.

In view of limx→∞ Γ(s, x)/(xs−1e−x) = 1, the convergence towards this constant is again of
asymptotic order u−1. �

8



Example 3.2 (Weibull inter-occurrence times with Gumbel copula dependence).
As in Example 2.3, if Λ is stable (1/2) distributed with density

fΛ(λ) =
α

2
√
πλ3

e−α
2/4λ, λ > 0,

then the resulting marginal distribution tail of the inter-occurrence times Tk is

FT(t) =

∫ ∞

0
e−λt fΛ(λ)dλ = exp{−αt1/2}, t ≥ 0.

That is, the inter-occurrence times are Weibull distributed with shape parameter 1/2 and
their dependence structure is described by a Gumbel survival copula with generator
φ(t) = (− ln t)2. From (12), the ruin probability for such a model is given by

ψ(u) =
αi e−iα

√
u/c−uθ

4θ
√

cu

(
− 1 + Erf

( α

2
√

cθ
− i
√

uθ
)

+ e2i
√

u/cαErfc
( α

2
√

cθ
+ i
√

uθ
))

+ Erfc
(

α

2
√

cθ

)
, (14)

where i =
√
−1. It can be shown that the resulting imaginary part of the right-hand side

of (14) is zero, so the expression is indeed real. For u = 0 we obtain the limit

ψ(0) =

(
1 − α2

2cθ

)
Erfc

(
α

2
√

cθ

)
+

α√
θπc

e−α
2/4cθ

and for large u we have limu→∞ ψ(u) = Erfc
(

α
2
√

cθ

)
. �

Remark 3.3. Since for heavy-tailed inter-occurrence times the usual techniques such as exploiting
certain Markovian conditioning arguments do not work, there does not seem to be any explicit
formula for ψ(u) available in the literature. Consequently, formulas (13) and (14) may be the
first instances of an explicit ruin probability formula for heavy-tailed identically distributed inter-
occurrence times, albeit dependent according to a Clayton and Gumbel copula, respectively.

4. Further extensions of the method

The mixing idea outlined in this paper can be developed further in many directions.
We list here a couple of examples.

Example 4.1 (Independent parallel mixing). One can mix both inter-occurence times and
claim sizes independently at the same time, leading to the above-described Archimedean
copula structure for each. The ruin probability is then

ψ(u) =

∫ ∞

0

∫ ∞

0
ψ(θ,λ)(u) dFΘ(θ)dFΛ(λ),
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where ψ(θ,λ) is the conditional probability of ruin given that Θ = θ and Λ = λ. Whenever
there is an explicit expression for ψ(θ,λ), this leads to an explicit expression for ψ(u) in
renewal models with both dependent inter-occurrence times and dependent claim sizes.
�
Example 4.2 (Comonotonic mixing). One can also consider Archimedean dependence
between inter-occurence times and claim sizes and at the same time dependence among
claim sizes and among inter-occurence times. One way to do this is comonotonic mixing,
where the realization λ of Λ is a deterministic function of the realisation θ of Θ in the
form

λ(θ) = F−1
Λ (FΘ(θ)) .

The ruin probability in this model then is

ψ(u) =

∫ ∞

0
ψ(θ,λ(θ))(u) dFΘ(θ),

where ψ(θ,λ) is the conditional probability of ruin given that Θ = θ and Λ = λ. �
Example 4.3 (Independent light-tailed and dependent heavy-tailed claims). Recall
that in Example 2.3, in order to obtain a ruin probability formula for a certain (completely
monotone) marginal claim distribution, the dependence structure needed to be fixed.
There is in fact a way to vary the dependence structure while leaving the asymptotic tail
of the marginal claim distribution unchanged and still receive explicit formulas. Let the
surplus process be given by

R(t) = u + ct −
N(t)∑

k=1

Xk −
N′(t)∑

l=1

Yl,

where there are two independent Poisson processes: N′(t) with intensity λ′ generates
(independent) Exp(ν) claims Y1,Y2, . . ., where ν is a fixed constant. On the other hand,
N(t) with fixed intensity λ generates a dependent claim stream X1,X2, . . . as in (2), where
Θ is a positive random variable. If the distribution of Θ is for instance as in Examples 2.3
and 2.4, then these dependent claims X1,X2, . . . are heavy-tailed. Equivalently, we may
view the resulting risk process as

R(t) = u + ct −
N′′(t)∑

k=1

Zk,

where N′′(t) is a Poisson process with intensity λ + λ′ and the marginal density of the
claim sizes Z1,Z2, . . . is given by

fZ(x) =
λ

λ + λ′
θe−θx +

λ′

λ + λ′
νe−νx, x ≥ 0. (15)

That is, given the realisation ofθ, the claim size distribution is a mixture of two exponential
distributions, but mixed over θ, the marginal tail of X1,X2, . . . will determine the tail
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behavior if it is heavy-tailed. Since for fixed θ the ruin probability ψθ(u) in the classical
risk model with a claim size density of the form (15) has an explicit form as a weighted
sum of two exponential terms in u (see for instance Gerber (1979)), one again obtains an
explicit expression for ψ(u) by virtue of (4). Note that mixing the claim stream X1,X2, . . .
with independent (in this case exponential) claims reduces the resulting dependence
among the claims. In particular, if Kendall’s tau of two arbitrary claims Xi,X j is τ0, the
value of Kendall’s tau of two arbitrary claims Zi,Z j in the new model is τ1 = ( λ

λ+λ′ )
2τ0,

because the only way to get positive correlation between two randomly selected claim
amounts is to pick two claims coming from the thinned process N(t), and because the
probability that a claim generated by N′′(t) comes from N(t) is λ

λ+λ′ . Hence we identified a
computational vehicle to determine an explicit ruin probability formula, if the dependence
among claim sizes should be weakened, but the marginal tail behavior should stay in the
way described by N(t), and by choosing the parameter λ′ accordingly, one can generate
explicit formulas for models with any value of τ1 between 0 and τ0. Note that this is done
at the expense of losing the explicit Archimedean type dependence structure that was
available for λ′ = 0. Instead, the joint distribution tail of Z1, . . . ,Zn is obtained as follows.
Each of the occurred claims Zi is of the type Xi with probability λ/(λ + λ′) and of type Yi
else. The joint distribution is then the corresponding mixture of the independent Yi-types
with the Archimedean dependence structure of the Xi-types.
In complete analogy, one can vary the dependence structure of the inter-occurrence times
in the above fashion, still leading to explicit ruin probability formulas. �
Remark 4.4. The resulting risk model in the above example eventually comprised two types
of claims: independent light-tailed claims, and dependent heavy-tailed claim amounts (under
suitable assumptions on θ). In terms of practical interpretation, this may indeed describe a
realistic portfolio situation: the dependence between heavy-tailed claim amounts may come from
parameter uncertainty, or from other sources of correlation like environmental risk, climate change
and legal risk. In fact, a number of internal models for Solvency II work with regularly varying
random losses that are aggregated by a Clayton survival copula.

Remark 4.5. Inspired by Example 4.3, it is clear that one can generate many more examples
of explicit formulas for risk models with dependence by replacing the exponential distribution
(given Θ in (2)) by a more general distribution for which ψθ(u) can be determined explicitly (for
instance phase-type random variables). The resulting dependence structure and marginal claim
size distribution will be a result of the interplay between this choice and the distribution of Θ (see
Remark 2.6 when to still expect an Archimedean dependence structure).

5. Conclusion and Outlook

In this paper we utilized a simple mixing idea over values of involved parameter to
enlarge the class of collective risk models for which explicit representations of the ruin
probability are possible. In that way we developed a recipe how to identify explicit so-
lutions for certain combinations of dependence structures and marginal distributions of
the involved risks, both for claim sizes and the times of their occurrence. In addition,
the method can also be used to derive explicit formulas for dependence between claim
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sizes and their inter-occurrence times. It should be noted that the computational vehicle
to obtain these explicit formulas need not be the causal reason for the dependence in the
model. One may as well find different interpretations of the resulting dependence model
and then just use the statistical equivalence to identify the explicit formula. This fact was
illustrated in the Examples of Section 2 and 3, where the dependence was introduced
through the common factor Θ (Λ, respectively), but the resulting dependence structure
was an Archimedean copula, which itself may be motivated as an appropriate model by
other means. Apart from dependence modeling, the mixing can also be motivated by
parameter uncertainty, so that the results can alternatively be interpreted as ruin proba-
bilities when we only have a distribution of an involved parameter available (which for
the uncertainty about the Poisson parameterλwas already exploited for credibility-based
dynamic premium rules in Bühlmann (1972) and Dubey (1977)).
The approach proposed in this paper can be pushed forward to more general risk models
including Markov-additive processes and those Lévy processes for which explicit expres-
sions for the ruin probability exist (see Chapter I.4b of Asmussen and Albrecher (2010)
for a list of risk models for which this is the case).

As outlined in the introduction, this versatile recipe can easily be extended beyond
the study of ruin probabilities, including Gerber-Shiu functions, the maximum severity
of ruin and the expected time-integrated negative part of the risk process (see e.g. Loisel
(2005)). Whenever in an independence model an explicit formula for a quantity related
to the risk process is available, one can mix over involved parameters and obtain ex-
plicit formulas for related models that exhibit a certain degree of dependence among the
risks. The resulting skeleton of models for which exact expressions of such quantities are
available may help to increase the understanding of the effects of dependence for risk
management purposes in general.
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