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Abstract.3

Approximate models (proxies) can be employed to reduce the computa-4

tional costs of estimating uncertainty. The price to pay is that the approx-5

imations introduced by the proxy model can lead to a biased estimation. To6

avoid this problem and ensure a reliable uncertainty quantification, we pro-7

pose to combine Functional Data Analysis and Machine Learning to build8

error models that allow us to obtain an accurate prediction of the exact re-9

sponse without solving the exact model for all realizations. We build the re-10

lationship between proxy and exact model on a learning set of geostatisti-11

cal realizations for which both exact and approximate solvers are run. Func-12

tional principal components analysis (FPCA) is used to investigate the vari-13

ability in the two sets of curves and reduce the dimensionality of the prob-14

lem while maximizing the retained information. Once obtained, the error model15

can be used to predict the exact response of any realization on the basis of16

the sole proxy response. This methodology is purpose-oriented as the error17

model is constructed directly for the quantity of interest, rather than for the18

state of the system. Also, the dimensionality reduction performed by FPCA19

allows a diagnostic of the quality of the error model to assess the informa-20

tiveness of the learning set and the fidelity of the proxy to the exact model.21

The possibility of obtaining a prediction of the exact response for any newly22

generated realization suggests that the methodology can be effectively used23

beyond the context of uncertainty quantification, in particular for Bayesian24

inference and optimization.25
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1. Introduction

The major challenge in hydrogeology is to deal with an incomplete knowledge of aquifer26

properties, which are usually measured only at few, discrete locations. This lack of infor-27

mation makes it impossible to address hydrogeological problems in a deterministic sense.28

The problem is typically stated in a stochastic framework and Monte Carlo simulations29

are used to propagate the uncertainty on aquifer properties to the quantities of interest30

[Dagan, 2002]. A typical example is the prediction of the fate of a contaminant, which de-31

pends on the heterogeneity structure of the aquifer. The uncertainty on the contaminant32

breakthrough curve at a given location is estimated by solving the transport problem in33

a set of realizations, which represent the uncertainty on the permeability of the aquifer.34

The ensemble of the responses in the different realizations provides a sample of reference35

of the breakthrough curves.36

Despite the appealing conceptual simplicity of this approach, problems arise when many37

realizations have to be considered and a large number of expensive flow and transport sim-38

ulations have to be performed: computational cost quickly becomes prohibitive. To avoid39

this computational bottleneck, the problem is approximated either by coarsening the40

description of aquifer properties (standard upscaling techniques can be used to this end41

[Wen and Gómez-Hernández , 1996; Renard and de Marsiliy , 1997; Christie, 1996; Durlof-42

sky , 2005]) or by simplifying the description of the physical processes, thus employing an43

approximate model or proxy (e.f., Scheidt and Caers [2009a]).44

The price to pay for these simplifications is that inference based on the computed45

responses could lead to a wrong uncertainty quantification. If the approximation is phys-46
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ically motivated, the bias can be safely ignored. Effective computational gains, however,47

usually require very crude approximations whose effects on the uncertainty quantification48

is difficult to assess beforehand. To avoid this problem, the proxies are typically employed49

only to identify a representative subset of realizations for which the exact model is solved.50

This is the strategy of ranking methods [McLennan and Deutsch, 2005; Ballin et al.,51

1992], or distance kernel methods [Scheidt and Caers , 2009a]. In such case, it is crucial52

to evaluate to which extent the proxy is informative of the exact model response.53

While it is generally acknowledged that an error analysis is necessary [Christie et al.,54

2005], it is rarely performed. Although approaches that entail a systematic analysis and55

the construction of error models have been applied to flow in porous media (e.g., to cor-56

rect fluid-properties approximations O’Sullivan and Christie [2005, 2006] or approximate57

numerical solvers Josset and Lunati [2013]), in most cases the appraisal of approximate58

methods is performed for a very limited number of test cases, and it is assumed that they59

behave similarly for a wider range of applications. This approach is not exempt from60

problems because the informativeness of the proxy also depends on flow regimes and on61

the specific quantities of interest.62

In this paper, we propose a novel methodology to systematically build statistical error63

models that describe the discrepancy between exact and approximate responses. Once64

the error model is constructed, it is used to correct the approximate responses and predict65

the responses expected from the exact model for all realizations. A characteristic of our66

approach is that the error model is purpose oriented, that is, it is established directly for67

the quantities of interest (in our case the breakthrough curve of a contaminant) and not68

for the state of the system (for instance, the full saturation -or concentration- and pressure69

D R A F T March 20, 2015, 7:27am D R A F T



JOSSET ET AL.: FUNCTIONAL ERROR MODELING X - 5

fields). This reduces the complexity of the data to be handled (e.g., time-dependent curves70

rather than time-dependent fields) while retaining all the relevant information.71

Despite some similarities with the error models proposed by Josset and Lunati [2013],72

two additional key features characterize the present approach: the description of sparse73

data as continuous variables (time-dependent breakthrough curves), and the reduced di-74

mensionality of the problem that is solved to construct the error model. To this end75

we employ Functional Principal Component Analysis (FPCA [Henderson, 2006]), which76

is a functional extension of PCA. The theoretical background is provided by Functional77

Data Analysis (FDA), a discipline that gathers mathematical tools to construct and treat78

continuous data. The description of continuous variables from sparse data is a problem79

faced in many fields of research and not only in environmental applications. While func-80

tional analysis is well established, FDA has been integrated as a whole only recently and81

promoted by Ramsay [2006]; Ramsay et al. [2009]. It has since been applied in various82

areas such as biomedical science, biomechanics, medicine or linguistic among others. We83

refer to Ullah et al. [2013] for a recent review of the application of FDA over the last 2084

years. More specifically to the domain of groundwater protection problem, FPCA has85

been applied to interpret various contaminant concentrations in river quality [Henderson,86

2006].87

The paper is organized as follows. After a general problem statement (Sec. 2), we88

introduce the formalism used and describe the methodology in detail (Sec. 3). Then, the89

methodology is evaluated for a synthetic test case that represents a typical groundwater90

problem (Sec. 4). The paper ends with a discussion of the performance and of prospective91

applications (Sec. 5).92
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2. Problem statement

We consider a contamination problem in which a non-aqueous phase liquid (NAPL) is93

accidentally released and forms a plume that contaminates the fresh water. We are inter-94

ested in predicting the breakthrough curve of the pollutant at a given location (typically a95

drinking well or a river that can be contaminated). Examples of NAPL contamination are96

hydrocarbons spills, or leakage of chlorinated solvents such as TCE. As the NAPL is not97

miscible with water and forms a separate phase, the evolution of the contamination plume98

is governed by a set of nonlinear transport equations (Appendix A), which complicates99

both the contaminant behaviour and the numerical resolution of the equations.100

Due to sparse measurements, the properties of the aquifer are only partially known.101

Their uncertainty is represented by a set of Nr geostatistical realizations of the per-102

meability and porosity fields {Ri}i=1,...,Nr . In brute force Monte Carlo approaches, this103

uncertainty is propagated by solving the nonlinear multiphase transport model (here-104

after “exact model”) and computing the NAPL breakthrough curve in each realization.105

Here it is assumed that the resulting set of curves, {yi(t)}i=1,...,Nr , provides an accurate106

representation of the uncertainty on the travel time.107

Our goal is to find an approximation of the uncertainty without computing the full108

set of exact curves {yi(t)}i=1,...,Nr . To this end we use a simplified model based on109

the linear single-phase transport equations (hereafter “approximate model” or “proxy”),110

which allows a relatively inexpensive calculation of the approximate breakthrough curves,111

{xi(t)}i=1,...,Nr . To provide an accurate approximation of the uncertainty, we need to learn112

the relationship between the proxy and the exact responses, such that an exact response113

can be predicted from each proxy response.114
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We formulate this step in a standard machine learning framework: a statistical model115

relating the exact response curves (treated as outputs of the statistical model) to the116

proxy response curves (treated as inputs of the statistical model) is postulated. The117

parameters are estimated based on a learning set (or training set), i.e., a collection of pairs118

of response curves obtained with the two models for Nl < Nr geostatistical realizations,119

{(xi(t), yi(t))}i=1,...,Nl
.120

The statistical model relating the two sets of response curves (exact and proxy) is here121

restricted to the class of functional linear models [Ramsay , 2006], in which the relation-122

ships between the responses is123

yi = T (xi) + εi i ∈ [1, . . . , Nr], (1)

where T is a bounded linear operator from the Hilbert space L2 to itself, and the error124

functions εi are centered, independent, and typically assumed to meet further technical125

conditions [Cuevas et al., 2002].126

Since the identification of such statistical model is ill-posed, in practice further restric-127

tions on the form of T are made introduced to enable inferring T from the learning set.128

Two methods are suggested by Ramsay [2006]; Ramsay et al. [2009]: the full functional129

regression model and the Concurrent model. The full functional regression model allows130

capturing complex behaviours, but it is costly and requires the fine tuning of several131

smoothing parameters. The Concurrent model consists of a simpler functional linear132

regression. This method is fast, but quite rudimentary because the model uses only con-133

current features of the curves (additional details about the two models can be found in134

Appendix B).135
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In this paper, we follow a slightly different strategy: we appeal to a spectral approach136

and decompose the elements of the learning set on two ad hoc bases, one for the proxy137

and one for the exact responses. The response curves are then described in two spaces138

of dimensions Dex < Nl for the exact responses and Dapp < Nl for the proxy responses.139

A statistical model is constructed to relate the coefficients of the elements of one space,140

yi(t), to the coefficients of the elements of the other space, xi(t), as illustrated in Fig. 1.141

Once the approximation T̂ of T is obtained from the learning-set, it is used to predict

the exact responses of all realizations from of the approximate responses, i.e.,

{ŷi = T̂ (xi)}i=1,...,Nr , (2)

and the uncertainty is quantified from the ensemble of predicted curves.142

3. Methodology

The construction of the error model consists of four steps: first, functional objects143

are built from the data in the learning set; second, the dimensionality of the problem is144

reduced by decreasing the dimensions of the two functional spaces; third, the relationship145

between the approximate and exact responses is constructed; fourth, the error model is146

used to predict the exact responses from the proxy responses. These steps are illustrated147

in the flowchart in Fig. 2.148

3.1. Recasting discretized curves as functional data

Both exact and proxy responses are obtained from numerical simulations and are rep-149

resented by contaminant breakthourgh curves defined at discrete times. Therefore, we150

recast the time-discrete curves into time-continuous functions. This has two practical ad-151

vantages: first, it allows us to use the formalism of functional data analysis and the tools152
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that have been developed in this context; second, it permits to work with asynchronous153

information about the curves, i.e., curves that have been sampled at different times. Note154

that this step is essential in applications in which analytic solutions are used as proxies155

or if the exact responses are provided by field measurements, which are typically acquired156

with different temporal resolution.157

158

Many functional bases are available to recast discretized curves into functional data.

Here, we use a K-dimensional B-spline basis denoted by {ϕk(t)}k∈[1,K]. To determine the

coefficients, a linear combination of the elements of this basis is fitted to the data, which

are represented as time dependent functions of the form

f(t) =
K∑
k=1

ckϕk(t) (3)

Ramsay [2006] suggests two strategies to choose the basis and fit the coefficients to159

data: either a low-dimension basis is used and the data are plainly projected (e.g., by160

ordinary least squares), or a high-dimension basis is used with a roughness penalty to161

mitigate overfitting. Both strategies allow not only to distinguish noise from information162

but also to impose various constraints on the functional objects, e.g. positivity and/or163

monotonicity. As our data (contaminant breakthrough curves) are typically fairly smooth,164

a standard B-spline basis of small dimension can be used. We refer the readers to [Ramsay ,165

2006; Ramsay et al., 2009] for more details about the notions of roughness penalty and166

incorporation of constraints.167
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3.2. Functional reduction of the dimensionality

The previous step allows representing each exact response and each proxy response168

as a continuous function, i.e., yi(t) and xi(t), respectively. To decrease the dimension169

of the response spaces and the size of the regression problem, we employ Functional170

Principal Component Analysis, which is a functional extension of standard PCA and171

allows highlighting the main modes of variability in a sample of functions. Beside a small172

computational advantage, using spaces of lower dimension reduces the risk of over-fitting173

and allows us to visualize the data to assess the informativeness of the proxy response174

with respect to the exact response.175

We apply FPCA to the exact and proxy responses in the learning set. Given the sample

of proxy functions in the learning set, {xi(t)}i=1,...,Nl
, with average x̄(t) = 1

Nl

∑Nl

i=1 xi(t)

and estimated covariance function

ν(t′, t) =
1

Nl − 1

Nl∑
i=1

[xi(t
′)− x̄i(t′)][xi(t)− x̄i(t)], (4)

FPCA constructs a non increasing sequence of eigenvalues of the estimated covariance

function, µ◦1 ≥ µ◦2 ≥ · · · ≥ µ◦Nl−1, by solving the functional eigenequation∫
ν(t′, t)ζ◦i (t)dt = µ◦i ζ

◦
i (t′). (5)

The sequence of eigenfunctions (or harmonics) of the covariance function,

{ζ◦1 , . . . , ζ◦Nl−1}, satisfies the condition∫
ζ◦i (t)ζ◦j (t)dt = δij, (6)

(where δij is the Kronecker delta), and, together with the average x̄(t), form an or-176

thonormal basis for the space of the sampled approximate responses. The eigenvalue µi is177

also denoted as the probe score variance and the eigenfunction ζ◦i (t) as harmonic [Ramsay178
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et al., 2009]. The dimensionality of the response space can be optimally reduced consider-179

ing only the first Dex and Dapp for the exact response space and the proxy response space,180

respectively. The fact that the sequence of eigenvalues is non increasing guarantees that181

no other basis of size Dapp can describe better the data; the total squared error introduced182

by discarding the eigenfuncions (ζ◦i (t))i>Dapp is
∑Nl−1

i=Dapp+1 µ
◦
i .183

The basis allows us to approximate each proxy response as184

xi(t) ≈ x̃i(t) = x̄(t) +

Dapp∑
j=1

b◦ijζ
◦
j (t) (7)

where

b◦ij =

∫
[x̄(t)− xi(t)]ζ◦j (t)dt (8)

is the projection of the deviation from the mean of the ith approximate curve on the jth185

harmonic (x̃i(t) denotes the approximation of xi(t) in terms of the first Dapp harmonics).186

As in standard PCA, these coefficients are typically referred to as scores.187

Although it offers an optimal dimensionality reduction with respect to the total mean

squared error, the orthonormal basis might not be ideal to represent the information. The

varimax algorithm [Kaiser , 1958] can be applied to find a suitable rotation that improve

data interpretation while preserving the optimality of the result in terms of explained

variance [Richman, 1986; Ramsay et al., 2009]. Therefore, without any further loss of

information, the approximate curves can be written as

x̃i(t) = x̄(t) +

Dapp∑
j

bijζj(t), (9)

where

bij =

∫
[x̄(t)− xi(t)]ζj(t)dt (10)
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is the projection of the deviation from the mean of the ith curves on the rotated harmonic188

ζj(t).189

An analogous procedure is applied to the sample of exact responses in the learning set,

{yi(t)}i=1,...,Nl
, which is approximated as

ỹi(t) = ȳ(t) +
Dex∑
j

cijηj(t), (11)

where ȳ(t) is the average, ηj(t) the jth harmonic of the (varimax) rotated orthonormal

basis {ηi(t)}i=1,...,Dex , and

cij =

∫
[yi(t)− ȳ(t)]ηj(t)dt (12)

the score with respect to ηj(t). (As for the proxy curve, the tilde denotes the restriction190

to the first Dex harmonics).191

3.3. Regression and error model

Once the problem dimensionality has been reduced by FPCA, we investigate the rela-192

tionships between the two sets of curves in the learning set approximated by considering193

the first Dapp and Dex harmonics, {x̃i(t), ỹi(t)}i=1,...,Nl
. The goal is to find a transforma-194

tion between the spaces of exact and proxy responses. (Notice that the varimax rotation195

does not affect the representation of the curves, but might affect the quality of the trans-196

formation).197

Here, we restrict ourselves to functional linear regression models of the form given in

Eq. 1. Training such a functional linear model in full generality is not straightforward. A

simple choice to restrict the class of linear regression models is to postulate that, at any

time t, ỹi(t) depends on x̃i(t) solely through its value at that time t. This assumption
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leads to the Concurrent model

ỹi(t) = β0(t) + x̃i(t)βi(t) + εi(t), (13)

which is a particular case of the functional linear model in Eq. 1 and corresponds to198

T (xi)(t) = β0(t) + xi(t)βi(t). The Concurrent model will be used as baseline in our nu-199

merical application, and compared to our FPCA-based prediction approach.200

201

To simplify the exposition, in the following we assume that the same number of har-202

monics is retained for the two spaces, i.e., D = Dex = Dapp. However, the number of203

harmonics depends on the inherent variability of the learning set, which can be different204

for the exact and proxy responses. Ultimately, the number of harmonics to be employed205

depends on how rapidly the eigenvalues of the FPCA decomposition decrease for the spe-206

cific problem. It has to be chosen large enough to guarantee an exhaustive representation207

of the variability of the response curves, but small enough with respect to the number of208

elements in the learning set to avoid over-fitting when the regression model is constructed.209

Given Nl ≤ Nr pairs of accurate and proxy responses, {(x̃i(t), ỹi(t))}i=1,...,Nl
, we pos-

tulate that there exists a (D + 1) × D matrix of real-valued coefficients β (with line

index starting at 0, by convention) and a Nl × D error matrix E, such that for any

(i, j) ∈ [1, Nl]× [1, D],

cij = β0j +
D∑
`=1

bi`β`j + eij, (14)

where βij and eij are the components of β and E, respectively. The errors, eij, are

implicitly assumed to be Gaussian with zero mean and variance σ2
j , which depends only
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on j. In matrix notation, the statistical model reads

C = Bβ + E, (15)

where C is the Nl×D matrix containing the scores of the exact responses, cij, and B is210

the Nl × (D + 1) with elements of the first column bi0 = 1 by convention, and containing211

the scores of the proxy responses bi(j−1).212

In the statistics literature, solving Eq. 15 for the coefficient matrix β is referred to as a

multivariate multiple regression problem ([Fox and Weisberg , 2011; Hastie et al., 2009]).

A simpler regression problem can be obtained by separating the regression models for the

D responses, hence solving D independent regression problems

C(j) = Bβ′(j) + E′(j) (1 ≤ j ≤ D), (16)

where C(j) is the jth column of the score matrix C. A very convenient fact is that

the columns of the Ordinary Least Squares (OLS) estimator of β coincides with the

concatenated OLS estimators of β′(j) [Hastie et al., 2009], that is

β̂(j) = β̂′(j) (1 ≤ j ≤ D), (17)

where β̂(j) are the columns of the OLS estimator β̂ (hereafter, the hat denotes the213

OLS estimator of the quantity). However, test statistics and confidence bands of the214

multivariate regression model cannot be directly derived from those obtained for the215

multiple linear regressions in Eq. 16 and have to be computed for the general regression216

model in Eq. 15. The formula of the simultaneous confidence bands is given in appendix217

C, together with a brief outline of the derivation.218
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3.4. Prediction of the exact response from the proxy response

Once the OLS estimator β̂ has been obtained, the regression model is used to predict

the exact response for all Nr geostatistical realizations on the basis of the corresponding

proxy responses x̃i(t). The predicted exact response for the ith realization is

ŷi(t) = ȳ(t) +
D∑
j=1

ĉijηj(t). (18)

where

ĉij = β̂0j +
D∑
`=1

β̂j`bi`, (19)

are the estimates of the scores with respect to the rotated harmonics.219

The estimator of the linear regression model allows us to predict the ĉij scores solely220

from the scores bij of the proxy responses, hence predicting ỹi(t) without solving the221

exact model. We emphasize the difference between the proxy response xi(t) (or x̃i(t),222

which is the projection onto the lower dimensional space defined by the first D harmonics,223

{ζj}j=1,...,D), and the predicted exact response ŷi(t): they both approximate the “true”224

response yi(t), but, while xi(t) is simply the result of the proxy model and lives in the225

space defined by the basis of the proxy curves, ŷi(t) results from applying the error models226

to the proxy response and lives in the space of the exact responses (more precisely: in the227

subspace defined by the orthonormal basis formed by the first D harmonics, {ηj}j=1,...,D).228

Surrogating y(t) by ŷ(t) is prone to errors: first, {ηi(t)}i=1,...,Nl
depends on the quality of229

the learning set; second, the subspace of the prediction is further reduced by considering230

only the first D harmonics; third, the coefficients ĉij are predicted through the OLS esti-231

mator of a linear regression model, and thus entails statistical uncertainties and possibly232

systematic errors due to the choice of a simple linear model.233
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4. Numerical test case: An idealized NAPL pollution problem

We consider an idealized groundwater pollution problem in which the fate of a NAPL234

plume has to be predicted. We model a portion of aquifer as a vertical 2D domain of235

length 10.8m and depth 5.1m discretized into cells of size 10cm×10cm. Gravity effects are236

neglected, which implies that the density of the NAPL phase is equal to the water density.237

No-flow boundary conditions are imposed at the upper and lower boundaries, whereas the238

pressure is fixed at the right boundary. The contaminant is released at the left boundary239

(a constant influx is assigned) and displaces the water initially present in aquifer. We are240

interested in the time evolution of NAPL saturation at the right boundary. Two cases are241

investigated; first, we estimate the uncertainty on the contaminant breakthrough curve242

computed by averaging the saturation along the right boundary; then, we consider a243

single-point breakthrough curve obtained by sampling the saturation in a single cell (Sec.244

4.5.2). As the NAPL is immiscible with water, the exact model solves the multiphase flow245

and transport equations, which require solving a pressure equation and a highly nonlinear246

phase-transport equation [see, e.g., Marle, 1981; Helmig , 1997]. The two equations are247

highly coupled and characterized by fluxes that exhibit a non-linear dependence on NAPL248

saturation. (The full system of equations is described in Appendix A.)249

The uncertainty on the transport properties of the aquifer (permeability and porosity)250

is represented by a set of Nr = 1000 geostatistical realizations that are generated by a251

multipoint geostatistical method (DeeSse) [Mariethoz et al., 2010] with a training image252

obtained from data of facies-distribution collected at the Herten site (Germany) [Bayer253

et al., 2011]. As an example, three realizations are shown in Fig. 3.254
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4.1. The proxy model

The proxy model simplifies the physics of the problem by treating the NAPL as an ideal255

tracer, thus solving a linear transport problem. Although it is possible to further improve256

the computational efficiency by simplifying the description of the heterogeneity (e.g., by257

some upscaling or multiscale methods [see, e.g., Josset and Lunati , 2013]), here we do not258

approximate the aquifer properties.259

In practical situations, replacing a multiphase flow problem by a single-phase (tracer-260

transport) problem considerably reduces the computational costs. Indeed, a large part of261

the cost of solving the flow and transport system stems from the solution of the elliptic262

(or parabolic) equation that governs the pressure. Due to the effects of the saturation on263

the fluxes, this equation has to be solved at every time step in multiphase problems. In264

contrast, if the pollutant is considered as an ideal tracer, the saturation does not impact265

the velocity, and the pressure equation has to be solved only once. The NAPL transport266

equation becomes linear and can be solved very efficiently by streamline methods (here, we267

use a Finite-Volume upwind scheme that can be seen, in some sense, as a very rudimentary268

streamline method without sub-grid interpolation of the velocity field).269

4.2. The learning dataset

After the proxy responses have been obtained by solving the ideal transport problem270

and computing the contaminant breakthrough curves for the whole sample of 1000 real-271

izations, we construct the learning set by identifying a subset of Nl = 20 realizations. The272

realizations can be selected in several ways, including a simple random choice. Here, we273

use a clustering technique to group the proxy responses based on their l2-distance, and274

we choose the k-medoid curves as representative of the clusters (Distance Kernel Method275
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[Scheidt and Caers , 2009a]). The medoids define the subset of realizations, {Ri}i=1,...,Nl=20,276

for which the exact responses are computed by solving the multiphase transport problem.277

Additional tests (not reported here) with learning sets consisting of Nl = 50 and Nl = 100278

realizations did not show a significant improvement of the quality of the learning set. This279

suggests that only 20 realizations are sufficient to obtain a satisfactory error model for280

the present test case. Cross validation tests can be performed to identify the optimal size281

of the learning set.282

As the numerical NAPL breakthrough curves are discrete in time, a spline basis is283

defined to interpolate the discrete data and construct the functional objects. In the present284

test case, data points are fairly smooth and a rather small number of basis functions is285

necessary for an accurate representation of the data (here, only 50 splines are used as basis286

functions). The 20 pairs of spline-interpolated proxy and exact curves in the learning set,287

{(xi(t), yi(t))}i=1,...,Nl=20, are shown in Fig. 4.288

4.3. Understanding the data using FPCA

To extract the relevant information from the data and to reduce the problem dimension-289

ality, we apply FPCA independently to both sets of approximate and exact curves in the290

learning set. As in standard PCA, if all the components (harmonics) are considered, no291

approximation is made and the data are represented exactly. However, the eigenvalues of292

higher order harmonics decrease so fast that the first three components describe more than293

97% and 99% of the variability of proxy and exact curves, respectively. In the subspaces294

defined by the first three harmonics, each curve is described by the corresponding three295

scores and by the sample means. To improve the interpretability of the data, a rotation296
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is sought with the varimax algorithm [Ramsay et al., 2012]. The rotated harmonics for297

both sets of curves are shown in Fig. 5.298

In the subset of the exact responses, the first rotated component explains the devi-299

ation from the mean behavior measured at late time. The second rotated component300

describes the variation at the beginning of the breakthrough curve, thus enlightening high-301

connectivity paths. The third component explains the variation observed at intermediate302

time. In the proxy subset, the first rotated component describes the initial variability; the303

second component highlights the variation at high saturation; and the third component304

explains the variation observed at intermediate time. By analyzing the projection of the305

curves on these components, it is possible to gain information about the data, for instance306

about the link between the early-time responses and the late-time variations. We refer to307

Henderson [2006] for an example in hydrology.308

4.4. Regression model and evaluation of the proxy

The linear regression model is built between the scores of proxy and exact curves, which309

represent their coordinates with respect to the two orthonormal bases formed by the first310

three harmonics. Three linear regression problems (one for each exact-response score,311

j = 1, 2, 3) are solved to establish a relationship with the three proxy-response scores.312

The resulting coefficients of the three regression models are313

β0j β1j β2j β3j R2 p-value
j = 1 −2.3 · 10−16 0.42 0.18 −0.37 0.99 < 2 · 10−16

j = 2 4.4 · 10−17 0.82 −0.02 0.37 0.99 < 2 · 10−16

j = 3 1.6 · 10−16 0.51 0.03 0.08 0.97 1.3 · 10−12

(20)

Notice that the R2 values are quite high and that β0j ≈ 0, which suggests that the linear314

regression model preserves the mean. The dependency among scores is illustrated in Fig.315
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6. The relationships between the scores of the three harmonics of the exact curves and the316

scores of the first harmonic of the proxy curves are rather well approximated by the linear317

regression. The scores of the second harmonic of the proxy curves are less important as318

it is indicated by the low values of β22 and β23. This might be due to the fact that the319

proxy second harmonic explains the variability of the curves for saturations close to one,320

a situation that is not observed in the two-phase responses.321

4.5. Performance of the regression model as error model

In general, the proxy-curve scores are informative of the exact-curve scores, at least322

for the curves pairs in the learning set. This suggests that, despite the rather primitive323

physical model employed, the regression model can be effectively used to predict the324

exact responses of the realizations for which only the proxy solution is available. The325

exact response is predicted on Eqs. 18 and 19.326

4.5.1. Prediction of the average breakthrough curve at the outlet327

We start by considering the prediction of the breakthrough curve calculated by averaging328

the saturation at the right-hand boundary. Examples of two predicted curves are shown in329

Fig. 7a and b. Despite the fact that the curves are very different for the two realizations,330

both predictions are in good agreement with the exact responses. In general, the behaviour331

of the exact response is well predicted, with the exception of some fluctuations at early332

times. The error model greatly improves the proxy solution and provides a much better333

prediction than the Concurrent model, which is unable to significantly modify the shape334

of the curves due to the use of only concurrent information.335

The differences between predicted and exact curves are illustrated in Fig. 7c for all336

Nr = 1000 realizations, together with the mean error. The maximum differences in the337
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saturation are observed at early time and are about 10%; later, the saturation discrepancy338

remains below ±1.8% for 68% of the realizations and below ±4% in the worst cases. The339

mean error is very close to zero, which shows that the predicted curves conserve the340

mean behaviour of the exact curves, and that the subset of 20 realizations selected in the341

learning set is representative of the whole sample to describe the mean behaviour.342

Fig. 8a shows the histograms for the l2-norm and the l∞-norm of the errors. We compare343

the performance of the error model based on FPCA with the Concurrent functional linear344

regression model. The histogram of the l∞-norm shows that on average the maximum345

deviation is 4.5% for FPCA, and about 8% for the Concurrent model. The l2-error is on346

average more than three times lower for the FPCA-based model.347

In many applications, the uncertainty is quantified in terms of the quantiles of the348

responses. Fig. 7d displays the quantile curves obtained using the different models. The349

Concurrent model fails to reproduce the 90th percentiles, because it is unable to modify350

the plateau of the proxy curves close to saturation one; it performs better for the other351

quantiles. The quantiles curves computed using only the learning set of exact responses352

(as suggested by [Scheidt and Caers , 2009a, b]), are slightly biased estimates of the exact353

quantiles. An excellent estimate is obtained with the functional error model, which is able354

to correct the approximate responses and predicts quantiles close to the exact ones.355

4.5.2. Prediction of single-point breakthrough curve356

In this second test case, we are interested in predicting the breakthrough curve of the357

contaminant at a precise location, defined by a single cell of the numerical grid, which is358

located at mid-depth at the outlet. In contrast to the breakthrough curves averaged over359

the whole outlet, in which the effects of extreme permeability structures (flow barriers360

D R A F T March 20, 2015, 7:27am D R A F T



X - 22 JOSSET ET AL.: FUNCTIONAL ERROR MODELING

or preferential pathways) are smoothed, the single-point breakthrough curves display a361

variety of shapes. The large contrast in permeability and in connectivity at the sampling362

location leads to important differences, particularly in the first arrival time.363

In this case, it is useful to apply a translation in time to redefine the origin, which is364

chosen to be the first arrival time. This procedure is referred to as registration in the365

FDA literature Ramsay [2006]; Ramsay et al. [2009]. For the translated responses in the366

learning set FPCA is then applied and the dimensionality is reduced as described above.367

Again, we use the first three harmonics, which describe more than 98% of the variability368

of the shape of the curves after the registration. An example of proxy, predicted and exact369

curves after registration is shown in Fig. 9a for a realization that does not belong to the370

learning set.371

Beside the prediction of the shape, it is now necessary to predict the first arrival time372

and translate back the predicted curves. The first arrival time is predicted jointly to the373

scores of the harmonics by solving a 4 × 4 regression model, where the 4th dimension is374

the first arrival times of the proxy responses, which have been used for the registration.375

Fig. 9b compares the proxy and exact curves with the predicted curve after translation376

by the predicted arrival time (these curves correspond to the registered curves in Fig. 9a).377

For the whole sample of realizations, the mean saturation error is close to zero and with378

a standard deviation that remains below 0.04 (Fig. 9c).379

The predicted quantile curves (shown in Fig. 9d) are in good agreement with the exact380

quantile curves for P50 and P90, but P10 is biased. As the concurrent model would381

perform very poorly in this case because it is unable to deal with curves characterized by382

different arrival times, we compare our methodology with the quantile curves obtained383
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directly from the exact response in the learning set (this procedure corresponds to the384

classical DKM). As both the functional error model and the DKM estimates depend on385

the clustering, we have applied both methodologies 200 times. The example shown in Fig.386

9 is representative of the typical behaviors of the methods (i.e., the quantiles are close to387

the average quantiles obtained form the 200 applications of the methods shown in Fig. 9e388

and d. In average, the functional error model is more robust than DKM and provides a389

better prediction of the P10 quantile curve.390

4.5.3. Effects of the number of harmonics391

Here, we investigate the effects of the number of harmonics on the prediction of single-392

point breakthrough curves. In order to increase the difficulty of the problem, we do393

not apply the registration as in the previous section (i.e., the breakthrough curves are394

not translated by their first arrival times). On one hand this requires more harmonics395

to describe the variability of the curves; on the other hand it allows us to demonstrate396

that the functional error model is able to correct for different arrival times also without397

registration.398

We consider 200 different learning sets, which are selected by DKM clustering with399

different initialization. For each learning set we apply FPCA and then construct the400

functional error models by employing a different number of harmonics. The quality of the401

prediction is measured by the l2 distance between the predicted and exact responses for402

all 1000 realizations.403

The performance of the method (expressed as median error and confidence interval404

of the responses of the 200 learning sets) is presented in Fig. 10 as a function of the405

number of harmonics. The error exhibits a minimum around 5-7 harmonics. Indeed,406
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when the number of harmonics is increased from 2 to 5, the variability of the learning set407

represented increases from 92% to 99%, leading to an improved error model. If the number408

of harmonics is increased further, the error increases quite rapidly. For 12 harmonics409

errors are very large and fluctuate greatly depending on the choice of the learning set.410

This behavior is a clear signature of over-fitting, as the large number of harmonics is411

not balanced by the size of the learning set (consisting of 20 pairs of curves) and the412

parameters of the regression model are not constrained enough by the data.413

5. Conclusions

We have presented a novel methodology that combines elements of Functional Data414

Analysis and Machine Learning to construct error models that improve uncertainty quan-415

tification. The approach is purpose-oriented as it is formulated directly on the quantity416

of interest (in the case considered here, the contaminant breakthrough curve) rather than417

on the state of the system (e.g., the entire saturation and pressure fields).418

The core idea of the method is to construct an error model from a learning set containing419

pairs of proxy and exact responses of a subset of realizations, and to predict the exact420

responses of the entire sample without solving the exact model for all realizations. FPCA421

is employed to separately reduce the dimensionality of the spaces of exact and proxy422

responses in the learning set. The advantage is twofold: on one hand, the small dimension423

allows a diagnostic of the regression model on scores to assess the informativeness of the424

proxy for the application at hand; on the other hand, using spaces of lower dimension425

reduces the risk of over-fitting when the regression model is constructed.426

The method has been tested for a synthetic contamination problem, in which the break-427

through curve of a NAPL contaminant is predicted with the help of a tracer transport428

D R A F T March 20, 2015, 7:27am D R A F T



JOSSET ET AL.: FUNCTIONAL ERROR MODELING X - 25

simulation (as proxy model). We have obtained excellent results with a learning set con-429

sisting of 20 pairs of curves (corresponding to 20 realizations out of a sample of 1000) and430

considering only the first three harmonics, which describe more than 97% of the variabil-431

ity. Visual inspection of the score scatter plots shows that the proxy is indeed potentially432

very informative of the exact response (this is confirmed by a linear determination coef-433

ficient R2 = 0.97). Notice that this is not necessarily an indication of the quality of the434

predictions as the size of the learning set and the number of harmonics also influence the435

accuracy of the prediction. For both test case, the error model allows us to solve a two-436

phase problem only for the 20 realizations, whereas a simple tracer transport problem is437

solved for all realizations in the sample. The gain in computational efficiency is evident as438

multiphase transport requires solving the pressure problem at every time step, in contrast439

to ideal tracer transport, which requires solving the pressure equation only once.440

In comparison to the Concurrent model (an existing methodology used to correct proxy441

responses), we have demonstrated an error reduction by a factor 3 when the functional442

error model is employed. Also, the error model improves the uncertainty quantification443

with respect to the estimate obtained solely on the basis of the 20 exact responses in the444

learning set (this approach corresponds to the DKM, which uses the proxy responses only445

to cluster the realizations). Beside an increase in accuracy, the methodology presents two446

advantages over the DKM. First, the error model allows us to use the proxy response to447

predict the exact response for any new geostatistical realization that might be successively448

generated; this clearly opens new possibilities to use the model beyond the context of449

uncertainty quantification, and in particular for Bayesian inference, model calibration450

and optimization. Second, simultaneous confidence bands of the predicted curves can be451
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defined by propagating the errors of the multivariate regression model. Notice that the452

residual uncertainty due to the size of the learning set and to the truncation of the basis453

should be taken into account.454

Combining FPCA and machine learning can be seen as a general framework in which455

each component can be modified and improved, if it is required to improve accuracy. For456

instance, the rather crude linear regression model between the three-dimensional spaces457

of exact and proxy responses can be made more complex by increasing the dimensions458

(possibly with different truncations for the proxy and the exact model) or by refining459

the mathematical form of the statistical model to predict the scores. Possible enhance-460

ments include linear regression models with more complex basis functions (polynomials or461

others), but may also entail kernel methods like co-kriging. Almost any multivariate pre-462

diction may be adapted to this problem once the dimensionality reduction is performed.463

Another potential improvement is to perform the dimensionality reduction jointly for the464

proxy and the exact spaces, in order to optimize the informativeness of the proxy rather465

than the description of the variability of each response space independently. Indeed, in466

very complex test cases, it might occur that some small-eigenvalue harmonics of the proxy467

response might explain large-eigenvalue characteristics of the exact curves. This can be468

done by replacing FPCA by Functional Canonical Correlation Analysis [Ramsay , 2006]469

or by Functional Partial Least Squares [Cuevas , 2014].470

Finally, we observe that the proposed framework can be applied far beyond the con-471

tamination example that we have presented. It can be useful in virtually any situation472

in which the most reliable technique has to be surrogated by an approximate method.473

Applications are not limited to the case in which evaluating exact response involves the474
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solution of a complex numerical model, but also to situations in which the proxy or the475

exact responses consist of experimental data. The FDA framework would be then impor-476

tant to compare information with different temporal resolutions. Also, the error model477

can potentially be very useful in the context of Bayesian inference, when the number of478

responses that have to be evaluated (e.g., in Metropolis-Hastings algorithms and alike)479

is typically of the order of 105. In this case, a functional error model capable to predict480

the exact responses only on the basis of the proxy responses can substantially speed up481

MCMC algorithms, as it reduces the cost of likelihood estimation. This would improve482

the efficiency of the calibration and optimization algorithms, which are often used in483

hydrogeological applications.484
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Appendix A: Multiphase and single-phase transport equations

Assuming that both phases are incompressible and neglecting gravity and capillary485

effects, the saturation of the NAPL, S, is governed by the following system of equations:486

∇ ·
[(

kn(S)
µn

+ kw(1−S)
µw

)
k∇p

]
= 0, (A1)

∂

∂t
(φS)−∇ ·

(
kn(S)
µn

k∇p
)

= 0, (A2)

where the absolute permeability, k, and the porosity, φ, are aquifer properties; p is the487

pressure; µn and µw are the viscosities of NAPL and water, respectively; and kn and kw are488

the relative permeabilities of NAPL and water, respectively, which are nonlinear functions489

of the saturation. Together with the constitutive relationships for the permeabilities (here,490

they are assumed quadratic i.e., kn(S) = S2 and kw(S) = (1 − S)2), the two equations491

above form a complete system of equations that can be solved for p and S to calculate492

the NAPL breakthrough curves. These curves are the responses of the exact (multiphase)493

model.494

Due to the nonlinearity of the relative permeability, the system above is computationally495

expensive because the two equations are coupled and the pressure equation has to be496

solved at any time step. This problem can be avoided by neglecting the nonlinearity of497

the permeabilities, hence approximating the system above as498

∇ ·
(

k
µw
∇p
)

= 0, (A3)

∂

∂t
(φS)−∇ ·

(
S k
µw
∇p
)

= 0, (A4)

which corresponds to a simple tracer transport problem without mechanical dispersion.499
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Appendix B: Linear models for functional responses with functional

predictors

A simple class of linear models is the Concurrent model [Ramsay , 2006]. The value of

the response variable y(t) is predicted solely by the value of the functional covariate at

the same time t

yi(t) = α(t) + xi(t)β(t) + εi(t), (B1)

where εi(t) are the functional errors and the functions α(t) and β(t) are estimated by500

minimizing the sum of squares under some penalty on the roughness of the functions to501

avoid overfitting and loose predictability power. Despite the rather arbitrary choice of502

the degree of smoothness of the functional parameters, this method is quite fast but also503

rudimentary because there is a priori no reason to assume that only concurrent features504

of the curves are relevant (this is well illustrated by the synthetic test to predict the505

single-point breakthrough curve in Sec. 4.5.2).506

507

A generalized formulation is when the functional variable contributes to the prediction

for all possible time values

yi(t) = α(t) +

∫
xi(s)β(s, t)ds+ εi(t) (B2)

which allows the predicted response to depend on the functional covariate at all times,508

but β(s, t) is now bivariate. The application of this model is known to be particularly509

challenging as the smoothing constraints to be imposed is of paramount importance.510

Appendix C: Simultaneous confidence bands for multiple multivariate linear

regression
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To take into account the uncertainty stemming from the linear regression, we derive

simultaneous confidence bands for the predicted curve ŷ = b′β̂η(t), where 1 − α is the

level of confidence that the exact curve ỹ(t) = b′βη(t) is within the confidence bands for

all t, that is

Pr
(
ỹ(t) ∈ [ŷ(t)− wα(t), ŷ(t) + wα(t)] for all t

)
= 1− α (C1)

and, following the sketch of proof below, where Dex +Dapp < Nl is assumed,511

wα(t) =
√

Dex(Nl−Dapp−1)
Nl−Dex−Dapp

FDex,Nl−Dex−Dapp(α)

×
√

(1 + b′(B′B)−1b) Nl

Nl−Dapp−1η
′(t)Σ̂η(t), (C2)

where η(t) the values of the exact harmonics; F (α) Fisher’s α-quantile; and Σ̂ the512

covariance matrix of the errors estimated on the learning set.513

The key step of the derivation is the use of Scheffe’s Lemma that states that, for a

symmetric and positive definite matrix Γ ∈ Rp×p, the following statements are equivalent

for any vector v ∈ Rp and constant c > 0(
v′Γv 6 c2

)
⇐⇒

(
|ψ′v| 6 c

√
ψ′Γ−1ψ ∀ψ ∈ Rp

)
(C3)

Sketch of proof

The residuals Ê = Ĉ−C are centred and with covariance E[Ê′Ê] = (Nl −Dapp − 1)Σ,

where (Σ)jk = σjk. Assuming that E is Gaussian entails that β̂ is Gaussian, whereof c ∼

NDex

(
b′β, (1+b′(B′B)−1b′)Σ

)
. Then

(
b′β̂−b′β√

1+b′(B′B)−1b

)′(
1

Nl−Dapp−1Σ
)−1(

b′β̂−b′β√
1+b′(B′B)−1b

)′
follows a Chi-squared distribution χ2

Dex
. On the other hand, the usual estimator Σ̂ of Σ

follows a Wishart distribution independently from β̂. We then obtain the following

t2 =

(
b′β̂ − b′β√

1 + b′(B′B)−1b

)′( Nl

Nl −Dapp − 1
Σ̂
)−1( b′β̂ − b′β√

1 + b′(B′B)−1b

)
∼ T 2

Dex,Nl−Dapp−1.

(C4)
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As the Hotelling T 2-distribution can be expressed in term of the F -distribution, we can

write that, with probability 1− α,

t2 6
Dex(Nl −Dapp − 1)

Nl −Dex −Dapp

FDex,Nl−Dex−Dapp(α), (C5)

where Fp,q(α) stands for the α-quantile of the Fisher-Snedecor distribution with parame-514

ters p and q.515

Using Scheffe’s Lemma (eq. C3) for v = b′β̂ the vector of predicted scores and ψ the516

vector of the exact harmonics values η(t), the second statement gives us the simultaneous517

confidence bands on the prediction.518
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Céline Scheidt for sharing her DKM code. Many thanks are due to L. Dmbgen for his527

teachings, to V. Demyanov and A.H. Elsheikh for many useful discussions and to the528

reviewers for their suggestions and careful editing.529

This project is supported by the Swiss National Science Foundation as a part of the530

ENSEMBLE project (Sinergia Grant No. CRSI22-132249/1). David Ginsbourger ac-531

knowledges support from the Institute of Mathematical Statistics and Actuarial Science,532

D R A F T March 20, 2015, 7:27am D R A F T



X - 32 JOSSET ET AL.: FUNCTIONAL ERROR MODELING

University of Bern. Ivan Lunati is Swiss National Science Foundation (SNSF) Professor533

at the University of Lausanne (SNSF grant numbers PP00P2-123419/1 and PP00P2-534

144922/1).535

References

Ballin, P., A. Journel, and K. Aziz (1992), Prediction of uncertainty in reservoir perfor-536

mance forecast, Journal of Canadian Petroleum Technology, 31 (4).537

Bayer, P., P. Huggenberger, P. Renard, and A. Comunian (2011), Three-dimensional538

high resolution fluvio-glacial aquifer analog: Part 1: Field study, Journal of Hydrology,539

405 (1), 1–9.540

Christie, M. (1996), Upscaling for reservoir simulation, Journal of Petroleum Technology,541

48 (11), 1004–1010.542

Christie, M. A., J. Glimm, J. W. Grove, D. M. Higdon, D. H. Sharp, and M. M. Wood-543

Schultz (2005), Error analysis and simulations of complex phenomena, Los Alamos544

Science, 29 (6).545

Cuevas, A., Febrero, M., and Fraiman, R. (2002). Linear functional regression: the case546

of fixed design and functional response, Canadian Journal of Statistics, 30(2), 285-300.547

Cuevas, A. (2014), A partial overview of the theory of statistics with functional data,548

Journal of Statistical Planning and Inference, 147, pp. 1–23.549

Dagan, G. (2002), An overview of stochastic modeling of groundwater flow and transport:550

From theory to applications, Eos, Transactions American Geophysical Union, 83 (53),551

621.552

Durlofsky, L. (2005), Upscaling and gridding of fine scale geological models for flow sim-553

ulation, in 8th International Forum on Reservoir Simulation Iles Borromees, Stresa,554

D R A F T March 20, 2015, 7:27am D R A F T



JOSSET ET AL.: FUNCTIONAL ERROR MODELING X - 33

Italy, pp. 20–24.555

Fox, J., and Weisberg, S. (2011). Multivariate Linear Models in R.556

Hastie, T., R. Tibshirani, and J. Friedman (2009), The Elements of Statistical Learning,557

Springer558

Helmig R. (1997) Multiphase Flow and Transport Processes in the Subsurface, Springer559

Verlag, Berlin-Heidelberg560

Henderson, B. (2006), Exploring between site differences in water quality trends: a func-561

tional data analysis approach, Environmetrics, 17 (1), 65–80.562

Josset, L., and I. Lunati (2013), Local and global error models to improve uncertainty563

quantification, Mathematical Geosciences, pp. 1–20.564

Kaiser, H. (1958), The varimax criterion for analytic rotation in factor analysis, Psy-565

chometrika, 23 (3), 187–200, doi:10.1007/BF02289233.566

Künze, R., and I. Lunati (2013), Adaptive multiscale simulations of density-driven insta-567

bilities, Journal of Computational Physics, 255, 502–520, 10.1016/j.jcp.2012.02.025.568

Künze, R., and I. Lunati (2012), MaFloT - Matlab Flow and Transport. Published under569

the GNU license agreement on www.maflot.com570

Mariethoz, G., P. Renard, and J. Straubhaar (2010), The direct sampling method to571

perform multiple-point geostatistical simulations, Water Resources Research, 46 (11),572

W11,536.573

Marle, C.M. (1981), Multiphase flow in porous media, Institut Francais du Petrole, Paris,574

France.575

McLennan, J., and C. Deutsch (2005), Ranking geostatistical realizations by measures576

of connectivity, in SPE International Thermal Operations and Heavy Oil Symposium,577

D R A F T March 20, 2015, 7:27am D R A F T



X - 34 JOSSET ET AL.: FUNCTIONAL ERROR MODELING

98168, Alberta, Canada.578

O’Sullivan, A., and M. Christie (2005), Error models for reducing history match bias,579

Computational Geosciences, 9 (2-3), 125–153.580

O’Sullivan, A., and M. Christie (2006), Simulation error models for improved reservoir581

prediction, Reliability Engineering & System Safety, 91 (10), 1382–1389.582

R Core Team (2013), R: A Language and Environment for Statistical Computing, R Foun-583

dation for Statistical Computing, Vienna, Austria, ISBN 3-900051-07-0.584

Ramsay, J. J. O., G. Hooker, and S. Graves (2009), Functional data analysis with R and585

MATLAB, Springer.586

Ramsay, J. O. (2006), Functional data analysis, Wiley Online Library.587

Ramsay, J. O., H. Wickham, S. Graves, and G. Hooker (2012), fda: Functional Data588

Analysis, r package version 2.3.2.589

Renard, P., and G. de Marsiliy (1997), Calculating equivalent permeability: a review,590

Adv. Water Res., 20 (5-6), 253–278.591

Richman, M. B. (1986), Rotation of principal components, Journal of climatology, 6 (3),592

293–335.593

Scheidt, C., and J. Caers (2009a), Representing spatial uncertainty using distances and594

kernels, Mathematical Geosciences, 41 (4), 397–419.595

Scheidt, C., and J. Caers (2009b), Uncertainty quantification in reservoir performance596

using distances and kernel methods–application to a west africa deepwater turbidite597

reservoir, SPE Journal, 14 (4), 680–692.598

Ullah, S., C. F. Finch, et al. (2013), Applications of functional data analysis: A systematic599

review, BMC medical research methodology, 13 (1), 43.600

D R A F T March 20, 2015, 7:27am D R A F T



JOSSET ET AL.: FUNCTIONAL ERROR MODELING X - 35
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a) Proxy space b) Exact space 

error model 

Training set 
Proxy responses 
Exact responses 

Learning set 
Proxy responses 
Exact responses 

Figure 1. A statistical model is built on the learning set to relate the coefficients of

the elements xi(t) in the proxy-response space to the coefficients of the elements yi(t) in

the exact-response space. It is used as error model to predict the exact response from the

proxy response.

D R A F T March 20, 2015, 7:27am D R A F T



JOSSET ET AL.: FUNCTIONAL ERROR MODELING X - 37

learning set of
realisations

construction of the
regression model

run approx. flow
simulations

construction of
functional object

dimension reduc-
tion using fPCA

run exact flow
simulations

construction of
functional object

dimension reduc-
tion using fPCA

new realisation

4. Prediction

3. Evaluation

1. Construction

2. Reduction

run approx.
flow simulation

prediction of the
exact response

Figure 2. Flowchart of the methodology. After a learning set of realization has been

constructed by selecting a subset of realizations and calculating pairs of proxy- and exact-

response curves, the exact responses for the realizations that are not in the learning set

can be predicted in four steps: 1. first, the functional objects are constructed by spline

interpolation, 2. then, the dimensions of the subspaces of exact and proxy responses are

reduced by means of FPCA, 3. next, a regression model is constructed between the proxy

and the exact scores; 4. finally, the regression model is used to predict the exact responses

of the realizations that are not in the learning set.
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c) 
Hydraulic conductivity in m/s Porosity

I 2.2 · 10−5 0.21
II 1.2 · 10−3 0.32
III 6.1 · 10−5 0.13
IV 2.4 · 10−4 0.16
V 8.4 · 10−2 0.25

d) 

Figure 3. (a), (b) and (c): three examples of geostatistical realizations generated by

a multipoint methods (DeeSSe, [Mariethoz et al., 2010]) with training image from the

Herten site (Germany) [Bayer et al., 2011]. The different colors correspond to 5 different

facies, whose properties are reported in (d). The three realizations belong to the set of

realizations used to construct the learning set; the corresponding NAPL breakthrough

curves obtained with the exact and with the approximate models are highlighted in Fig.

4.
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Figure 4. The learning set: (a) proxy curves and (b) exact curves recast as functional

objects for the Nl = 20 realizations in the learning set. The thicker blue curves correspond

to the realization in Fig. 3a), the red curves to 3b), and the green curves to 3c).
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Figure 5. The three first rotated functional principal components (harmonics) extracted

from the learning set are plotted for the proxy curves (top) and for the exact curves

(bottom). The solid line is the mean curve and the dotted lines represent the variability

around the mean described by the corresponding harmonic.
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Figure 6. The scores, with respect to the first three harmonics {ηi(t)}i=1,2,3, of the

exact curves are plotted as functions of the scores for the approximate curves with respect

to the harmonics {ζi(t)}i=1,2,3. The filled (black) circles correspond to the exact score,

the empty circles (green) to the prediction of the scores by the OSL linear regression.

The visualization is helpful to assess whether the linear regression model describes the

relationship between proxy and exact curves in the learning set.
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Figure 7. (a and b) the predicted responses (with 2σ-confidence intervals) of two real-

izations that are not in the learning set. (c) Prediction error of all Nr = 1000 realizations

(gray curves), the mean error (continuous line), and the mean ± one standard deviation

(dotted lines) are represented. (d) P10, P50 and P90 quantiles curves obtained with the

different models and compared to the reference quantile curves computed using the whole

set of exact responses (solid black line).
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Figure 8. Histograms of the distribution of the l2 error (left) and l∞ error (right),

(a) for the predictions of the FPCA model and (b) for the predictions of the concurrent

model. The mean (continuous line) together with the mean ± one standard deviation

(dotted lines) are represented.
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Figure 9. (a and b) predicted responses (before and after translation) of a realization

that is not in the learning set. (c) Prediction error of all Nr = 1000 realizations (grey

curves), the mean error (continuous line), and the mean ± one standard deviation (dotted

lines) are represented. (d) P10, P50 and P90 quantiles curves obtained with the different

models and compared to the reference quantile curves computed using the whole set of

exact responses (solid black line). (e), respectively (f), shows the P10 FPCA, respectively

DKM, predictions of the P10 quantile for the 200 clusterings.
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Figure 10. Boxplots of the prediction error (calculated as mean l2 norm of the error

of the predicted curves) as a function of the number of harmonics used to describe the

proxy and exact curves in the learning set. The boxplots represent the statistics of the

prediction errors over 200 clusterings in function of the number of harmonics. The thick

line indicates the median error; the box the 1σ interval; the bars the 2σ interval; and the

circles are the outliers (for 12 harmonics they are out of scale).
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