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Abstract

Sitting between your past and
your future doesn’t mean you are
in the present.

Dakota Skye

Complex systems science is an interdisciplinary field grouping under the same umbrella dy-
namical phenomena from social, natural or mathematical sciences. The emergence of a higher
order organization or behavior, transcending that expected of the linear addition of the parts, is
a key factor shared by all these systems. Most complex systems can be modeled as networks that
represent the interactions amongst the system’s components. In addition to the actual nature
of the part’s interactions, the intrinsic topological structure of underlying network is believed to
play a crucial role in the remarkable emergent behaviors exhibited by the systems. Moreover, the
topology is also a key a factor to explain the extraordinary flexibility and resilience to perturba-
tions when applied to transmission and diffusion phenomena. In this work, we study the effect
of different network structures on the performance and on the fault tolerance of systems in two
different contexts.

In the first part, we study cellular automata, which are a simple paradigm for distributed com-
putation. Cellular automata are made of basic Boolean computational units, the cells, relying on
simple rules and information from the surrounding cells to perform a global task. The limited
visibility of the cells can be modeled as a network, where interactions amongst cells are governed
by an underlying structure, usually a regular one. In order to increase the performance of cellular
automata, we chose to change its topology. We applied computational principles inspired by Dar-
winian evolution, called evolutionary algorithms, to alter the system’s topological structure starting
from either a regular or a random one. The outcome is remarkable, as the resulting topologies find
themselves sharing properties of both regular and random network, and display similitudes Watts-
Strogtz’s small-world network found in social systems. Moreover, the performance and tolerance
to probabilistic faults of our small-world like cellular automata surpasses that of regular ones.

In the second part, we use the context of biological genetic regulatory networks and, in partic-
ular, Kauffman’s random Boolean networks model. In some ways, this model is close to cellular
automata, although is not expected to perform any task. Instead, it simulates the time-evolution
of genetic regulation within living organisms under strict conditions. The original model, though
very attractive by it’s simplicity, suffered from important shortcomings unveiled by the recent ad-
vances in genetics and biology. We propose to use these new discoveries to improve the original
model. Firstly, we have used artificial topologies believed to be closer to that of gene regulatory
networks. We have also studied actual biological organisms, and used parts of their genetic regu-
latory networks in our models. Secondly, we have addressed the improbable full synchronicity of
the event taking place on Boolean networks and proposed a more biologically plausible cascading
scheme. Finally, we tackled the actual Boolean functions of the model, i.e. the specifics of how
genes activate according to the activity of upstream genes, and presented a new update function
that takes into account the actual promoting and repressing effects of one gene on another. Our
improved models demonstrate the expected, biologically sound, behavior of previous GRN model,
yet with superior resistance to perturbations. We believe they are one step closer to the biological
reality.
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Synopsis

Que vous soyez assis entre votre
passé et votre futur n’implique
pas que vous soyez dans le
présent.

Dakota Skye

La science des systèmes complexes est un domaine interdisciplinaire regroupant sous une même
dénomination certains phénomènes dynamiques des sciences sociales, naturelles, de la physique ou
des mathématiques. L’émergence d’une organisation d’ordre supérieur ou de comportements tran-
scendants ceux attendus de l’addition linéaire des composants est une propriété cruciale partagée
par tous ces systèmes. La plupart des systèmes complexes peuvent être modélisés sous la forme de
réseaux qui représentent les interactions entre les composantes du système. Au delà de la nature
des interactions, c’est la structure topologique du réseau sous-jacent qui joue un rôle essentiel dans
l’émergence des comportements remarquables des systèmes. En outre, la topologie est également
un facteur expliquant l’extraordinaire flexibilité et la résilience aux perturbations des systèmes
complexes en réseaux appliqués à des phénomènes de transmission et de diffusion. Dans travail
présent, nous analysons l’effet de différentes structures de réseaux sur la performance et sur la
tolérance aux pannes des systèmes dans deux contextes différents.

Dans la première partie, nous étudions les automates cellulaires, qui sont un paradigme simple
de calcul distribué. Les automates cellulaires sont faits d’unités de calcul booléen, les cellules,
qui s’appuient sur des règles simples et l’information fournie par les cellules environnantes pour
accomplir une tâche globale. La visibilité limitée des cellules peut être modélisée par un réseau
où les interactions entre les cellules sont régies par la structure sous-jacente, habituellement celle
d’un graphe régulier. Afin d’accrôıtre les performances des automates cellulaires, nous avons choisi
d’adapter cette topologie. Nous avons appliqué des principes calculs inspirés de l’évolution dar-
winienne, appelés algorithmes évolutionnaires, afin de modifier la structure topologique du système
en partant soit d’un réseau régulier, soit un réseau aléatoire. Les résultats sont remarquables; les
topologies résultantes partager des propriétés empruntées aux deux types de réseaux, réguliers et
aléatoires, et montre des similitudes avec les réseaux “petits-mondes” de Watts-Strogtz inspirés de
réseaux sociaux. De plus, la performance et la tolérance aux fautes probabilistes de nos nouveaux
automates cellulaires surpasse celle des automates réguliers avec les règles artificielles.

Dans la seconde partie, nous utilisons le contexte des réseaux de régulation génétiques d’organi-
smes biologique et, en particulier, le modèle de réseaux booléen de Kauffman. À certains égards, ce
modèle est proche des automates cellulaires, mais n’a pas pour but d’accomplir une tâche. Au lieu
de cela, ce modèle simule l’évolution temporelle des réseaux de régulation génétiques d’organismes
vivants, sous des conditions strictes. Le modèle original, bien que très intéressante de par sa
simplicité, souffre d’importantes lacunes, dévoilées par les récentes avancées en génétique et en
biologie. Nous proposons d’utiliser ces nouvelles découvertes pour améliorer le modèle original.
Tout d’abord, nous avons utilisé des topologies artificielle potentiellement plus proche de celle des
réseaux de régulation géniques. Nous avons également étudié des organismes biologiques réels, et
utilisé des parties de leur réseau de régulation génétique dans nos modèles. Deuxièmement, nous
avons abordé l’improbable synchronicité des événement se déroulant sur les réseaux booléens et
avons proposé un schéma en cascade plus plausible biologiquement. Enfin, nous avons abordé les
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fonctions booléennes du modèle, à savoir les règles qui régissent l’activation des gènes en fonction
de l’activité des gènes en amont, et nous présentons une fonction de mise à jour originale qui
tienne compte du de l’effet promoteur et répresseur d’un gène sur un autre. Nos modèles améliorés
démontrent non-seulement le comportement attendu, déduit du modèle original, mais avec une
meilleure résistance aux perturbations. Enfin, nous pensons que ce modèle fait un pas important
vers plus de réalité biologique.
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Preface

Once you have eliminated the
impossible, whatever remains,
however improbable, must be the
truth.

Sir Arthur Conan Doyle

This Ph.D. dissertation differs from the usual standards adopted in Switzerland. This is the
reason why I offer some technical explanation about the format of this document and the inter-
national collaborations that allowed me obtain two Ph.D. degrees from two different European
universities.

Collection of Articles

This Ph.D. thesis dissertation is in the form of a collection of articles. Three out of the four
articles presented here have been published in international specialized journals. The fourth and
most recent one has been submitted and is under review. Besides the introduction (Part I) and the
final considerations (Part IV), each part of this document introduces novel concepts and original
ideas, and the related articles are included as annexes (identified by the letters A through D) within
the document, not at the end. To avoid as much repetition as possible, I do not present every single
publication we have produced over the five-year period of my Ph.D. The complete list of journal,
conference and workshop publications can be found at the end of this document. Nevertheless,
some degree of overlap between the articles and introductory parts remains inevitable as I have
not edited the content of the articles in any way. For this same reason, I ask for your indulgence
about the mismatching styles and formatting of the figures, tables, captions, etc.

This work consists of theoretical introductions to each topic investigated, original methods
are proposed and evaluated empirically using computer simulations. Results of simulations are
exclusively presented and analysis within each published article in each main parts of this disser-
tation. A unique bibliography has been compiled and included at the end of this document. This
bibliography contains all the publications cited or referenced in this work.

Finally, I also have participated to international collaborations on projects conducted in parallel
to my main Ph.D. thesis. Some of these collaborations have led to publications of their own, notably
on NK-Landscapes and interconnected random Boolean networks. Please refer to the complete
publications list at the end of this manuscript if you are interested in reading those particular
studies.

Preliminary Work

The Article A of this work, at the end of Part II, was published in 2005 and partially relies on
a model and results that we obtained during my Masters project in 2004. Technically, it was
published during my actual engagement as a Ph.D. student, although the study began prior to
that. Nevertheless, as the first year-and-a-half or so of my doctoral work and the Article B have
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been built on this preliminary work, I feel it is appropriate to include it in this document to help
make this dissertation self-contained.

Cotutelle

A cotutelle is a unique class of international dual-award program, defined under Swiss, Italian
and French law. Specific cotutelle agreements haave been signed by the conference of university
rectors of each country. The objectives of the cotutelle are to offer opportunities to facilitate in-
ternational research for doctoral candidates, including access to the latest research equipment in
two countries/institutions, and to put in place a mechanism to enhance cooperation and collabora-
tion between the researchers and institutions involved. Depending on the specifics of the cotutelle
agreement signed by the rectors of the two universities involved, the candidate will receive a single
joint doctorate title or one from each institution. I will personally fall into the latter category.

This Ph.D. project has been conducted as a cotutelle between the University of Lausanne, in
Switzerland, and the University of Torino, in Italy. The aim was to leverage the specific fields
of excellence of both parties. At the University of Lausanne, I was able to find the support I
needed in terms of dynamical modeling of Complex Systems and information systems, whereas the
University of Torino provided the biological and bio-comptutational knowledge that we lacked at
my home institution.
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Roadmap

We’ve heard that a million
monkeys at a million keyboards
could produce the complete works
of Shakespeare; now, thanks to
the Internet, we know that is not
true.

Robert Wilensky

From Abstract to Applied:
introducing current biological knowledge into computational
models

This work is an example of how one can introduce recent discoveries and technological advances
into computational models. In the first phase, we worked on improving the performance of a
simple paradigm for distributed computation. This was achieved by applying principles inspired
by Darwinian evolution to alter the distributed system’s topological structure. In the second phase,
we use the context of biological genetic regulatory networks and in particular a model proposed in
the late 60’s. Since then, biology has made tremendous progress and these new discoveries can be
used to improve the original model. From the structure of the regulatory network, to timing of the
event taking place on it, to the specifics of how gene activate, we have added a significant amount
of current knowledge into the original model, studying it, analyzing it and validating it on specific
real-life study cases.

Part I: Background & Definitions

This is an introductory part on the common topics we have developed throughout this work:
network based complex systems. We give the motivations of this project, and provide definitions
about the main tool used: modeling, and more specifically agent based modeling, network science
and graph theory.

Part II: Emergence of Real-Life Topologies

For the first step of this work into modeling, we have applied network science and graph theory
concepts to theoretical computational problems with cellular automata, a nature-inspired paradigm
of distributed computation, and how biologically inspired algorithms can help evolve real-life like
network structures. Cellular automata are usually set on regular structures, toroidal, or grid-like,
but in our case, we have used evolutionary algorithm, a biologically inspired heuristic, to evolve
and adapt the interconnections amongst the cells. Results are inspiring as we were able, with
very little bias, to obtain topological structures that are similar to those found in complex system
networks.
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In recent years, the study of network structures emerging from real-life phenomena, natural
or man-made, has become a new academic field known as network science. We are interested in
understanding if and how the topological structure of the network systems participates in their
tolerance to faults, which is usually above average. Indeed, robustness is a key factor of any social
or biological entity, and is oftentimes an intrinsic property of the system and can be related to the
specific way the components are linked to one another. Increased robustness is a well-studied phe-
nomenon in communication networks, which are reputed for superior resilience to random failures
with minimal links redundancy while very vulnerable to targeted attacks on highly connected hubs.
In our evolved topologies, which share properties of both regular and nature-found structures, we
obtain the same resistance to errors but also more reliability in case of attacks on nodes with higher
connectivity.

Part III: Improving Models of Genetic Regulatory Networks

In this part we progress towards current problems of systems biology, where we study the effect
of different artificial topologies on a dynamical model for genetic regulatory networks and its
response to failure. We work with the Kauffman’s original Boolean model, questioning the random
structure of the networks used in this model, and the completely synchronous or asynchronous
timing of events. We analyze, compare and contrast results on two types of structures: completely
random and scale-free. In addition, we introduce a novel, semi-synchronous dynamical behavior,
that we believe is closer to biological reality.

This work leads us into the final analytical part of this thesis, where we study how the model
operates when using real-life biological regulatory subnetworks. In recent years, small parts of
living organisms’ actual regulatory networks have been discovered using high-throughput sequenc-
ing technologies. This new information is crucial in order to validate our models and add more
biological realism.

Part IV: Discussion & Conclusions

Due to the article-based format of this dissertation, the intermediate discussions, conclusions and
future work ideas are located at the end of each article. Thus, final reflexions in Part IV are
centered around the theses proposed in Section 1.1, addressing each one specifically in the context
of the more general contributions of this work to the fields studied.

Connecting Thread

Throughout this work, there is a conscious desire to go from the abstract to the concrete, from
the theoretical to the applied, trying to input as much biological knowledge as possible into our
abstract dynamical models. There are biological and real-life components to every single part of
this thesis; from the evolutionary computation techniques and the type of nature-like topologies
resulting, to the type of failures studied in Part II, to the kind of problems tackled, and finally to
the real-life regulatory network topologies used in Part III. These biological components overlap
in the different parts of this work. This shows just how, observing from different angles, we always
find our way back to nature and how fields like computational and systems biology are central to
the study of different sociological, economical or scientific fields.
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Chapter 1

Motivation

To steal ideas from one person’s
work is plagiarism; to steal from
many is research

Albert Einstein

When trying to solve a new problem, mankind draws inspiration from its surroundings. We
have always tried at first to mimic how nature faces its challenges to address our own. This work is
no different. In fact, the very problems we study are posed by nature and we apply methodologies
inspired by nature to understand and to address them. To do just that, we build dynamical models.
We could have chosen to apply mathematical systems of differential equations, a strictly theoretical
option. Instead, we have chosen a more empirical method: agent-based models (ABMs) [Axe97]
that we will define in Section 2.3.

What problems do we address ? In general terms, we study what intrinsic properties of com-
plex network systems make them both evolvable, and yet stable to small perturbations. Beyond
the actual interaction amongst the components of the studied network systems, we analyze the
effect of the topology and how the structure of the network as a whole contributes to these out-
standing properties of evolvability and robustness. In order to study the importance of the global
structure beyond the particulars of each link, we have chosen to study two different, yet compa-
rable, examples of network based Complex Systems (CS). Firstly, we have used cellular automata
(CA) for computation (introduced in Section 4). These are very simple, yet powerful, instances of
distributed computation able to tackle prototypical problems. As these toy examples have been
thoroughly investigated and are very well understood, they are excellent tools we can use to val-
idate new paradigms. In a second phase, we have chosen a systems biology approach, modeling
regulatory networks of biological organisms (introduced in Section 6.1). Modeling biological phe-
nomena is much more challenging, as these systems are much more complex and thus less well
known. They offer however the advantage of providing an applied environment, where findings can
be used beyond their theoretical value.

Naturally, we do not compare directly these two systems. We merely use them as the contexts
in which we study the effect of the topology on the global dynamics and on the tolerance to faults
(introduced in Section 2.4). Nevertheless, both cellular automata and genetic regulatory networks
share two common attributes: they are instances of dynamic complex systems (introduced in
Section 2.1) and they are modeled as graphs (or networks).

1.1 Theses

Beyond the general motivation offered above, we detail hereafter the research questions and theses
that we will address and develop.

3



4 CHAPTER 1. MOTIVATION

First Thesis: In the context of structured cellular automata computation on prototypical tasks,
evolutionary algorithms (EA) have proven able to evolve rules that outperform hand-made rule for
the majority problem. We hypothesize that EAs can also evolve the structural topology of the cell
connections by rewiring their links to increase the performance using a basic majority-based rule.

Second Thesis: Complex network systems that have grown in an organic or unsupervised in-
cremental manner, such as telecommunication or social networks, show outstanding resilience to
random failures. The structures evolved using EAs as support for CA computation show numer-
ous topological similarities with these networks. We believe that they also share their exceptional
ability to continue functioning despite transient probabilistic faults.

Third Thesis: Models of biological systems are routinely improved by changes or additions that
bring them closer to reality. We hypothesize that Boolean models of genetic regulatory networks
(GRN) models can be enhanced further by refining the sequence of the events taking place with an
update timing that is more biologically plausible than that of fully synchronous or asynchronous
systems.

Fourth Thesis: Genetic regulatory networks are both flexible enough to sustain Darwinian
evolution and yet stable enough to sustain life after small perturbations, such as mutations or
transcriptional errors. We are of the opinion that this robustness is not only due to the physical
and chemical properties of biological compound, but also to an intrinsic stability provided by the
structural topology of the network. Models of biological systems ought to share this integrity and
can therefore be used to study the robustness.

Fifth Thesis: The recent developments in high-throughput genetic sequencing technologies have
provided important amounts of data of a quality never obtained in the past. From this data, parts
of regulatory networks of living organisms have been inferred. Additionally, the actual way genes
regulate each other is now more commonly known. We speculate that all this new information
can be included in the GRN models to ameliorate them to a point closer than ever to reality. We
also believe that state-of-the-art model should outperform all others in terms of robustness and
evolvability.
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Chapter 2

Introduction & Definitions

My mother always said, life was
like a box of chocolates, you never
know what you’re gonna get.

Forrest Gump

In this chapter, we introduce the concepts that are recurrent throughout the entire dissertation.
These fundamental notions oftentimes overlap and use each other in their definition, and are to be
considered a set of tool useful to understand the problems posed in the next chapters.

2.1 Complex Systems

A complex system (CS) is a dynamic system composed of (heterogeneous) interconnected con-
stituents, where the state, the interactions, or any other component of the system is susceptible to
change overtime. The behavior of CSs goes beyond that expected of the linear sum of its parts.
This characteristic of CSs is called emergence [Wea48]. The first examples that comes to mind are
ants and ants’ colonies. The prowess of the entire colony cannot simply be explained by the strict
addition of each individual ant’s contribution. Indeed, there are additional social and chemical
components that can explain the behavior of the group as an entity. CSs are used to model and
simulate human economy, social dynamics, biological and ecological phenomena, modern energetic
and telecommunication infrastructures.

The term complex is not to be confused with complicated. Some systems can be considered
as complicated because they are constituted of a great number of heterogeneous parts. However,
their are not complex as they do not exhibit any emergent behavior that cannot be explained by
the strict cumulated actions of these parts. Moreover, complicated systems are built according to
predefined blueprints and for a purpose. This a priori intention does not exist in complex systems.

Complex systems is also considered a transversal field, that is studied across many areas of nat-
ural, mathematical, as well as social sciences, and include disciplines such as cybernetics, systems
biology or ecology, network science and systems theory. A number of properties that are common
to all CSs are highlighted in a special issue of Science:

• A complex system is a highly structured system, which shows structure with variations [GK99];

• A complex system is one whose evolution is very sensitive to initial conditions or to small
perturbations, one in which the number of independent interacting components is large, or
one in which there are multiple pathways by which the system can evolve [WI99];

• A complex system is one that by design or function or both is difficult to understand and
verify [WBI99];

• Complex systems are systems in process that constantly evolve and unfold over time [Art99].
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6 CHAPTER 2. INTRODUCTION & DEFINITIONS

Complex systems go hand in hand with modeling and simulation (introduced in Section 2.3).
Simple phenomena, such as mechanical physics, can be explained and predicted using sets of equa-
tions, possibly differential. Models and simulation are used in CSs to predict patterns [vH78].
Additionally, CSs are in general associated with networks and graph theory (introduced in Sec-
tion 2.2), and they are composed of interconnected parts. Each vertex of the network represents
one of the components and each edge, possibly directed, represents the interaction between two
components, or the influence of one component on another.

A common misconception is that complex systems are equivalent chaotic systems from Chaos
theory described in Strogatz’s works [Str01a, Str01b]. Chaos can be seen as extremely compli-
cated information, rather than the absence of order, also both chaotic and complex systems are
extremely dependent on initial conditions. Nevertheless, chaotic systems are deterministic; with
perfect knowledge of the initial conditions and of the context of an action, the course of this action
can be predicted in chaos theory. On the contrary, complex systems have a non-deterministic com-
ponent [Pri97]. The emergence of complexity theory shows a domain between deterministic order
and randomness that is complex [Cil98]. This is referred as the critical or edge of chaos [Bak96].

2.2 Network Science

Networks are formally described by graph theory tools and properties, and are the essence of
incredibly numerous scientific, sociological and technological phenomena. Networks are used to
give an abstract representation of interacting objects or individuals, where each object is placed on
a node and links represent relationships between two objects. These representations, or models,
are in turn used to study the static and dynamic behavior of the system as a whole.

In this work, as we do not deal with theoretical graphs, we will be using the terms network and
graph interchangeably. Networks are composed of vertices or nodes that are linked to one another
by edges (see example in Figure 2.1a). Edges may be directed (Figure 2.1b), i.e. point from one
vertex to another without reciprocity.

1

2

5

3

4

1

2

3

45

(a) (b)

Figure 2.1: Examples of graphs. (a) Undirected graph and (b) directed graph.

We will use networks as support structures for our complex system models. This is an extremely
common manner of representing interaction amongst the components of a system. Therefore, when
considering a model for human social interaction, one way would be to place each individual on
a node and draw an undirected link between two nodes that hold people knowing each other.
In general human acquaintances, we can safely assume that we do not need directed edges as
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2.2. NETWORK SCIENCE 7

reciprocity is almost a given. Other phenomena, such as sexual attraction within human social
structures for instance, require extra information, for instance, the direction in which the attraction
goes. In fact, sociometry has emerged after Moreno’s work [Mor53], which contains a representation
of the social structure of a group of elementary school students. The boys were friends of boys
and the girls were friends of girls with the exception of one boy who said he liked a single girl.
The feeling was not reciprocated. This type of directed graphs does not intrinsically prevent or
forbid reciprocity or self-loops. Finally, extra information in the form of weighted edges, such as
the strength of a bond in chemical binding representation, shows how many electrons are shared
between to atoms within a molecule, or the distance in kilometers between two cities. Then
any combination of weights and direction is possible. Although not used in this particular work,
graphs can be inhomogeneous in the type of their vertices and/or edges. In the examples above,
each vertex was of the same type of every other. However, we can imagine a “pet ownership”
network, where there are two types or nodes (owners and pets) and two types of edges (ownership
and acquaintance).

A new scientific discipline, called network science has emerged in recent years, and is now
blossoming. Network science examines the interconnections among diverse physical or engineered
networks, information networks, biological networks, cognitive and semantic networks, and social
networks. This field of science seeks to discover common principles, algorithms and tools that
govern network behavior. The American Research Council defines Network Science as “the study of
network representations of physical, biological, and social phenomena leading to predictive models
of these phenomena.” In other words, it is the science that studies complex relational data as
network models. One of the earliest works in the field was Euler’s “Seven Bridges of Koenigsberg”
written in 1736, where he mathematically resolved the problem of crossing every bridge once only
by abstracting each bridge as a vertex and the path between two bridges as an edge. The resulting
mathematical structure is called a graph. This is believed to have laid the foundation of graph
theory, of static modeling, and introduced the idea of topology. In this work, we will use the words
network structure or topology interchangeably, although the strict mathematical meaning of the
two concepts may differ.

2.2.1 Formal Definitions

After giving a taste for what networks and graphs are, let us mathematically define a few notions
and terms from graph theory. Admittedly, a similar, yet shorter section exists in the first article A.2,
and we will add a few more definitions below. A more detailed account of graph properties can be
found for example in the works of Newman [New03], Watts [Wat99], and Albert-Barabási [AB02].

Graph: Let V be a nonempty finite set called the set of N vertices, and let E be a binary relation
on V (i.e. a set of unordered pairs of vertices). G = (E, V ) is called an undirected or directed
graph and V is the set of vertices of G. E is the set of undirected, respectively directed edges
between two vertices u, v ∈ E. When vertices (u, v) of an undirected graph form an edge they
are said to be adjacent or neighbors. If the graph is directed, the terms incoming-neighbors or
outgoing-neighbors are used to specify the direction.

The degree k of a vertex is the number of edges impinging on it (or, equivalently, the number
of its neighbors). The average degree k̄ (or 〈k〉) of a graph is the mean value of all the vertex
degrees in G. In the case of a directed graph, each vertex has two degrees: an in-degree kin
and out-degree kout, which are respectively the number of incoming-neighbors and the number of
outgoing-neighbors. Please note that the average degree of the graph is defined as k̄ = k̄in = k̄out.

A regular graph is defined as a graph where all the vertices have the same degree K. In this
case, the average degree is simply called the degree of the graph K = k̄.

The degree distribution is the probability distribution of the vertices degrees P (k) over the
whole network. In other words, it is the function that gives the probability that a vertex will
have a particular degree k. Regular graphs have a delta function peaking at K: P (K) = 1 and
P (k 6= K) = 0. Irregular directed graphs have two different degree distributions: Pin(k) and
Pout(k).

Towards Robust Network Based Complex Systems Christian Darabos



8 CHAPTER 2. INTRODUCTION & DEFINITIONS

A path from vertex u to vertex v in a graph is a sequence of edges that are traversed when going
from u to v with no edge traversed more than once. The length of a path is the number of edges
in it (see the distance below). The shortest path between two vertices u and v is the path with
the smallest length possible joining u to v. This definition is valid in both directed and undirected
graphs.

In graphs, the notion of distance does not always bear the Euclidian sense as graphs are non-
spatial mathematical objects. Instead, the distance luv between two vertices u and v of a network
is measured in terms of number of edges traversed on the shortest path between u and v.

A graph is connected if there is a path between any two vertices. A completely connected
undirected graph G with |V | = N vertices, usually labeled KN , has an edge between any two
vertices (Figure 2.2). Its total number of edges is |E| = N(N − 1)/2. A sparse graph is a graph
where |E| � N(N − 1)/2, as opposed to a dense graph where |E| ' N2/2. A subgraph of M < N
vertices that are completely connected is called a clique.

   

   

   

   

   

Figure 2.2: Example of a complete graph K5.

Clustering Coefficient: Informally, it is the probability that two nodes neighbors of a third
are also each other’s neighbors. Let us take a particular node j in a graph, and let us assume that
it has k edges connecting it to its k neighboring nodes. If all k vertices in the neighborhood were
completely connected the number of edges would be equal to k(k−1)/2. The clustering coefficient
Cj is defined as the ratio between the Ej edges that actually exist between the k neighbors and
the number of possible edges between these nodes:

Cj =
2Ej

k(k − 1)

Thus, the clustering coefficient C of the entire graph G is the mean of the Cj over all nodes
j ∈ V :

C =

∑N
j=1 Cj

N

The clustering coefficient of a random graph is simply the probability p of two edges u and v
to be connected. For a regular lattice, C is given by the following formula:

C =
3(K − 2)
4(K − 1)

C is thus independent of N for a regular lattice, and approaches 3/4 as K increases.
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2.2. NETWORK SCIENCE 9

Characteristic Path Length: The characteristic path length, or average path length, L is
defined in [Wat99] as the means of the shortest path lengths connecting each vertex v ∈ G to all
other vertices.

L =
2

N(N − 1)

N−1∑

i=1

N∑

j>i

lij

2.2.2 Network Structures

Regular Structures

Networks can be classified in three main categories: regular, irregular, and random structures.
Regular topologies (Figure 2.3) are commonly used in mathematical models and usually have a
constant connectivity K for all nodes, a high clustering coefficient and long characteristic path
lengths.

The mono-dimensional lattices (or ring) can have different values of constant connectivity, for
example, in Figure 2.3a and 2.3b) the networks show a connectivity K = 2, and K = 4 respectively.
Although it seems regular, the bi-dimensional lattice in Figure 2.3c exhibits several different degree
for different nodes: central nodes have degree of k = 4, nodes on the edges have k = 3, and nodes
in the corners of the structure have only a degree of k = 2. To obtain a regular structure from this
2D structure, the edges have to be wrapped around in order to obtain a torus (Figure 2.3d).

   

   
   

   

   

   
   

   

   

   
   

   

   

   
   

   

   

   

(a) (b)
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(c) (d)

Figure 2.3: Examples of regular graphs. (a) one-dimensional lattice with k = 2. (b) one-
dimensional lattice with k = 4. (c) two-dimensional regular lattice. (d) a torus.

Many more regular structures exist in networks, but do not exhibit the some of the properties.
For instance, a n-tree, which is a hierarchical directed network where each node has exactly 1
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incoming edge and n outgoing edges, or inversely. Because of this restriction, links only go from
“upstream” nodes towards “downstream” nodes, there can be no loopbacks and thus the clustering
coefficient of trees is zero.

Random Graph

A random graph is a graph in which pairs of nodes are connected at random. Different random
graph models with different construction methods result in various probability distributions. The
most commonly studied is the Erdös-Rényi that draws links given a probability p [ER59a]. Conse-
quently, the total number of edges in a random graph is a random variable |E| = p(N(N − 1)/2).
In this case, the clustering coefficient is the probability p, and the characteristic path length
L ∝ logN is much shorter than that of regular lattices with the same number of nodes, see for in-
stance [WS98]. The degree distribution of random graphs follows a binomial distribution centered
around k̄ = Np pictured in Figure 2.4 below.

degree

pr
ob
ab
ilit
y

Powered by yFiles

(a) (b)

Figure 2.4: Random graphs. (a) binomial degree distribution. The abscissa axis is the degree of
a node and the ordinate axis is the probability of that degree to occur within the graph. (b) an
example of random graph.

Alternatively, the binomial degree distribution of random graphs can be approximated with a
normal or a Poisson degree distribution P (k) ' k̄k e−k̄/k!, where k̄ is the mean degree, or a delta
distribution as in a fixed-degree random networks, same as that of regular graphs.

Irregular Networks

According to Watts and Strogatz’s [Wat99, WS98] observations on experimental data, most real-life
networks, in the biology, sociology, economy, as well as man-engineered networks, have mathemat-
ical properties that set them apart from both regular lattices and random graphs. Indeed, they
found that real-world networks tend to be highly clustered (like lattices), but have small average
path lengths (like random graphs). From their work, we will explore the Watts-Strogatz small-
world networks in the sections below.

Small-Worlds Phenomenon: The small-world theory states that everyone in the world can be
reached through a chain of social acquaintances that is approximatively 6 people. It gave rise to
the famous phrase: “six degrees of separation”.

The original idea can be attributed to Stanley Milgram and thoroughly described in [Mil67]
in which he conducted research among the US population at large. In his first “small-world”
experiment, Milgram sent 60 letters to various recruits in Wichita, Kansas, who were asked to
forward the letter to the wife of a student living at a specified location in Cambridge, Massachusetts.
The participants could only pass the letters by hand to personal acquaintances that they thought
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2.2. NETWORK SCIENCE 11

might be able to reach the target - whether directly or via a “friend of a friend”. While fifty
people responded to the challenge, only three letters eventually reached their destination. In
conclusion, one of the letters in this initial experiment reached the recipient in just four days, but
only 5% of the letters successfully “connected” to their target. In two subsequent experiments,
chain completion was so low that the results were never published. On top of this, researchers
have shown that a number of subtle factors can have a profound effect on the results of “small-
world” experiments. Studies that attempted to connect people of different races or incomes showed
significant asymmetries. Despite these complications, a variety of novel discoveries did emerge from
Milgram’s research. After numerous refinements of the apparatus (the perceived value of the letter
or parcel was a key factor in whether people were motivated to pass it on or not), Milgram was
able to achieve completion rates of 35%, and later researchers pushed this as high as 97%. If
there was some doubt as to whether the “whole world” was a small world, there was very little
doubt that there were a large number of small worlds within that whole. For those chains that
did reach completion the number 6 emerged as the mean average number of intermediaries and
thus the expression “six degrees of separation” (perhaps by analogy to “six degrees of freedom”)
was born. In addition, Milgram identified a “funneling” effect whereby most of the forwarding
(i.e. connecting) was being done by a very small number of “stars” with significantly higher-
than-average connectivity: even on the 5% “pilot” study, Milgram noted that “two of the three
completed chains went through the same people”. This was also the premises to the famous study
of the Hollywood actors study in which Kevin Bacon was established as a central pillar of the
network thanks his numerous collaborations.

Since the social model of small worlds has received a great amount of attention, there have
been an important number of studies conducted on the topic of small world as a mathematical
model [New03, DM03]. We inspire our preliminary work from Watts’ book [Wat99], which is a
remarkably readable book where there is an interesting definition of a particular subset of the
random-like networks family, which Watts calls the small-world graphs. Watts and Strogatz’s
[Wat99, WS98] introduced the concept of small-world networks, in which most pairs of vertices
seem to be connected by a short path through the network thanks to shortcuts. The existence
of short paths between any pair of nodes has been found in networks as diverse as the Internet,
airline routes, and neural and metabolic pathways, among others. The presence of short paths
is also a characteristic of random graphs, but what sets these real networks apart is a larger
clustering coefficient than that of random graphs having a comparable number of nodes and links.
The low clustering coefficient tends to prove that there is more local structure in these networks
than in plain random graphs. Watts and Strogatz use an algorithm to synthetically build small-
world networks starting from a regular ring structure and “rewiring” to create shortcuts across
the network. As this method does not add or remove edges in the network, therefore, the average
degree k̄ of the networks remains identical to that of the original ring. A detailed algorithm to
construct small-world network starting from regular ring structure can be found at the end of
section A.2.

It is worth mentioning that small-world graphs as defined by Watts and Strogatz are not
actually structurally representative of networks found in the real world, which are often, but not
always, of the scale-free type, if anything. However, they are easy to construct and measure and,
for the purpose of the artificial CA problems with which we are concerned, they are a perfectly
legitimate choice for studying the influence of the network structure on the dynamics.

Scale-Free Networks: Scale-free topologies seem common in real-life [AB02]. They distinguish
themselves from both random and regular network by the presence a few highly connected vertices,
called hubs, and the vast majority of the remaining vertices have a low degree. Finally, if the degree
reaches k = 1 the nodes are called leaves, although these are more customary of tree or hierachical
networks [RB03]. Therefore, the degree distribution P (k) is very skewed, usually following a power-
law distribution: P (k) ∼ ck−γ , with c and γ positive constants typically between 2 < γ < 3, also
called Pareto distribution (see 2.6). In figure 2.6, the vertices’ size is proportional to their degree
so it is clear which are hubs and which are not.

This type of structure can be found in communication networks, such as telephone (cellular or
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Figure 2.5: Small-World Graph construction.(a) Regular one-dimensional lattice with k = 4. (b)
A small-world graph obtained by randomly rewiring some of the nearest-neighbor links.

landline), the Internet, or the World Wide Web, but also airline routes. They were first outlined
by de Solla Price in 1965 when he analyzed the patterns of citations within scientific publica-
tions [dSP65]. The term “scale-free” came about many years later, but he already discovered the
heavy-tailed degree distribution of citation networks. A few years later, he proposed an explana-
tion as why and how this phenomenon occurred [Pri76]. This idea is a pillar of Barabási-Albert’s
preferential attachment algorithm [AB02] that constructs an undirected scale-free graph. This
algorithm is detailed in the second article, section B.2.

Alternatively, the configuration model can be used to build network models of the scale-free
type. This is a top-down approach, detailed in the second article at the end of Section B.2, where
the degree distribution P(K)is defined beforehand:

P (k) =
1
Z
k−γ

where the normalization constant Z(γ) =
∑kmax

k=1 k−γ coincides with Riemann’s Zeta func-
tion [Rie92] for kmax →∞. In the same section, we also offer a refined version of the configuration
model that allows to obtain a specific average degree k̄.

Thus hubs are both the strength of scale-free networks and their weakness. The power-law
distribution influences not only the topology, but also the dynamics of the phenomena taking place
on them. A hierarchy exists between bigger and smaller hub, and in turn to leaves. This feature
renders the system highly tolerant to random failures. Indeed, for equally distributed random
failure in nodes, there is a much higher probability to hit a leaf, or at least a node with a low
degree. Therefore, the likelihood to affect a hub is almost negligible. And even if such an event
should occur, the graph will probably remain connected. On the contrary, if attacks are targeted
against hubs and even a few of them should fail, the whole system will break down, as it is turned
into a set of isolated sub-networks.

2.3 Modeling & Simulation

In sciences, a model is a simplified representation of a complex observable phenomenon using
assumptions and conditions to make predictions. The models can be mathematical, graphical
and/or conceptual, and are a way of understanding the broken down elements of a whole, focusing
on the components of interest to the observed phenomenon in their simplest form. Nowadays,
modeling is an inherent part of any scientific activity in any field. Models are usually generated for
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Figure 2.6: Power-law degree distribution. The abscissa axis is the degree of a node and the
ordinate axis is the probability of that degree to occur within the graph. (a) lin-lin axis system,
(b) log-log axis system. (c) an example of scale-free graph where the vertices’ size is proportionate
to their degree.

two different purposes: to predict beforehand or to study afterward the behavior of an empirical
objects, phenomena, and physical processes. Models are used to predict the weather, based on
previous experience and data, to study the airflow around an airplane’s wing without actually
constructing it, or to estimate the forces at work on the architecture of a dam.

Most models involve a certain amount of mathematics. They can be completely abstract
representations taking the form of sets of algebraic equations, but oftentimes, they are completed
by a visual aid such graphic figures and computer animations. Although not strictly necessary,
computation is becoming a deep-rooted commodity in models, and their use is proportionate
to the complexity of the phenomena and the level of details desired. Indeed, a set of linear
equations is sufficient to understand simple events in mechanical physics, such as a wooden cube
sliding down a slope at constant speed. Nevertheless, if the level of granularity is reduced, even
a common problem becomes highly dimensional, with an important number of variables, as in
the study of the aerodynamics of an accelerating object in a fluid. For the scientist, a model is
also a way in which the human thought processes can be amplified [Chu68]. Models rendered in
computer software allow scientists to leverage computer power to simulate, visualize, manipulate
and gain insight on the systems being represented. Moreover, they allow the study of phenomena
that would be impractical or impossible to observe otherwise, or under conditions impossible to
create experimentally. Measurements made directly on controlled experiments will always be more
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accurate that that of models, as they do no rely on assumptions. Therefore, models will never be
a complete substitution for direct measurements and experimentation. Nevertheless, models are
fundamental scientific tools that help study, gain insight, and understand complex reality.

The term simulation is used to designate the dynamic implementation of a model over time
[Uni01]. Simulation can be either executed in the real world or on computers, and bring the model
to life. It is then possible to study the behavior of a particular element or of the systems as a whole
under different sets of conditions and assumptions. Simulations are critical tools, especially when
dealing with complex systems that may have a non-deterministic component and are therefore
highly sensitive to initial conditions. Simulations are generally used in complex systems to explore
the set of parameters or initial conditions of the model. Repeating the same simulation can provide
statistically significant results. The amalgam of simulation and visualization is to be avoided.
Simulations are usually completely independent of visualization. On the other hand, visualization
oftentimes relies on one particular instance of simulation that is of particular interest in the results
or in the phenomena behavior. In these cases, visualization is used if it is believed that it will help
gain more knowledge or understanding of the results. The results and the models themselves are
evaluated primarily, but not only, on their consistency with empirical data, when available. When
results do not agree with the observations, the model is either adapted or rejected. When fitting
the data, the models are evaluated on their capacity to reproduce the results, on the quality of the
insight given, simplicity, efficiency, cost, etc.

In this work, we have focused our efforts on one type of modeling described in the next section.

2.3.1 Agent-Based Simulation

Agent-based modeling (ABM) or agent-based simulation (ABS), depending if we are talking of
the model itself as a theoretical entity or the dynamic implementation of the model in time, are
multiple systems used to computationally simulate the actions and interactions of autonomous
agents with a view to assessing their effects on the system as a whole. In this work, we are always
generating models in order to use them in simulation, the distinction between model and simulation
is therefore not important. Such methods are commonly used in fields such as game theory, complex
systems, emergence, computational sociology, multi-agent systems, and evolutionary computation.
The reason why they are so widely used is that they are extremely flexible. Indeed, the degree of
granularity with which one chooses to model a phenomenon is not a limiting factor for ABMs. The
number of constraints in term of timing, dimensionality or the agents’ behavior itself is virtually
limitless. With ABMs, one can always make a model more realistic.

ABSs use simple agents’ actions and interaction between agents to simulate complex system
behavior to study the objects modeled, and model the emergence of complex behavior and higher
order patterns. Single agents are by definition not incapable of reaching cognitive closure. In other
words, they are usually implemented as willing to perform a given task, but with a local view of
the problem and restricted interactions capabilities. The problems typically performed by these
distributed systems could often be solved by a system with central controls and a global view of
the problem or situation. For example, if agents are used to simulate the behavior of organisms
trying to escape a maze, each agent will be implemented with a restricted visibility and interaction
with others to make decisions on the direction to take. This fact results in suboptimal behavior,
yet realistic with respect to the organisms that are simulated. Naturally, a birds-eye view of the
problem would result in immediate and optimal solving of the problem.

The types of problems are usually dynamical in nature, where the global behavior of the system
prevails over that of the individual agents, with parameters or conditions that change overtime,
even during the simulation. This would be the case of simulating a flying plane with its mass
diminishing as the fuel is used up. ABSs are naturally well suited to simulate interacting entities,
even of different types, as in rumor spreading within a population. The interactions themselves or
the coupling strength among the agents can also vary dynamically during the simulation. As is any
complex systems modeling, some elements of randomness can be included. ABSs are especially
well adapted to problems with a spatial component, where the actual position and/or distance
of mobile agents matter and change overtime. Finally, the effect of how changing one individual
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impacts the entire system can be studied, with different scenarios, probability value, etc.
In ABSs, agents obey a set of rules that can be shared by all agent or that is unique to

each individual. ABSs are therefore extremely flexible as agents can behave, interact or move
independently. This makes it very easy to have one or more agent types, and one or more instances
of each agent types. Further simplifications commonly accepted in ABSs are discrete timing, where
agents can only act at given time-steps. Also, agents actions are oftentimes instantaneous events.
Nevertheless, examples of derogations to both of these conventions are frequent.

The major drawback is combinatorial explosion of the parameter space, thus the computational
power necessary to ABMs increases exponentially with the number of conditions. This is a problem
that no expansion of the computational power can solve. Sampling statistically relevant sub-
ensembles of all possible parameter values usually overcome this problem. Also, results are not
always individually reproducible, they are only statistically significant. Finally, the behavior of
individual agents, should it be of interest, is oftentimes difficult to identify and extract from the
population.

2.4 Disruption, Failures, Faults & Robustness

Failures in systems can occur in various ways, and the probability of some kind of error increases
dramatically with the complexity of the systems. They can range from a one-time wrong output
to a complete breakdown and can be system-related or due to external factors. Social structures,
incrementally grown man-made networks and living organisms are robust to a great variety of
changes, and since we study models of the dynamics of interactions within these systems, it is
interesting and legitimate to ask questions about their fault tolerance aspects. Moreover, in many
biological organisms, researchers use targeted attacks on designated components in order to un-
derstand their role in the system as a whole. A common example is the gene knockout experiment
used by geneticists (introduced in Section 8). The robustness, or fault tolerance, of a system is
a measurement of its ability to continue to perform its task in the presence of faults, failures or
disruptions.

2.5 Failure Types

Under the umbrella term of failure, we regroup all types of disruptions to the system. These can
be an actual malfunction within the system, or the voluntary and planned outage or removal of
a number of components. In this section, we briefly discuss a few properties of failures and their
opposite. Indeed, in general terms, faults and failures in complex systems models can be classified
using a combination of the properties hereafter. Each “category” below has an opposite and we
give a few intuitive examples of failure or disruption to illustrate cases. Gray areas where the fault
is classified between the two values, although not excluded a priori, are extremely rare.

Transient Vs. Permanent: This property designates the duration in time of the failure taking
place on the system. Transient failures are limited in their duration in terms of time in continuous
systems or time-steps in discrete ones, such as those studied in this work. On the other hand,
permanent faults those that once they occur, they remain indefinitely.

Reproducible Vs. Irreproducible: This type of failures refers usually to transient faults.
Reproducible failures can be replicated at will in order to be studied or understood as in most
scientific methods. Irreproducible failures occur without prompting and are usually impossible to
replicate, although this latter category would be the most interesting to analyze in order to be
avoided. They should not be confused with asynchronous or probabilistic failures, where the faults
itself can be replicated, only the timing of its occurrence is uncertain.
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Targeted Vs. Non-Targeted: The component of the system that suffers of a failure can the
victim of a random or probabilistic fault that has not been voluntarily targeted against it. On
the contrary, malignant entities can target attacks against the most important component(s) of
the system in order to cause maximal disruption to the entire system. Attacks can be planned
according to several criteria, but are usually limited to the nodes that have the most important
function within the system or, in the case or homogenous systems where all components are
identical and equally important, to the node that has the most connections.

Synchronous Vs. Asynchronous: This property of failures is closely linked to its repro-
ducibility. If the cause or the timing of the failure is clearly established, it becomes potentially
possible, although sometimes arduous, to reproduce and thus to study. When the timing of the
failure becomes unpredictable, and the cause impossible to reproduce, the failure can border non-
reproducibility, thus making it difficult to study.

Additive Vs. Suppressive: Suppressive failure is a clear deficiency of the system, where
a component or an interaction between components becomes missing or unavailable. An additive
disruption is also very common, but cannot strictly speaking be defined as a failure. An example of
additive disruption would be the addition of new nodes in a computer or communication networks.
The stress caused by the extra information flowing on the system can cause failure. This would be
the case at midnight on December 31, when an unusually high number of subscribers try to place
cell-phone calls simultaneously. The cellular network becomes saturated and cannot cope with the
increase in demand.

Structural Vs. Functional: In this case, we compare whether it is the integrity of the compo-
nents themselves that suffers a failure or if the structure of the system as a whole is compromised.
Failures are called functional when one of the components is not functioning normally. In contrast,
if an interaction fails, the fault touches the structure of the system.

Recoverable Vs. Fatal: Finally, this property describes if the system as a whole is still able to
perform this task despite the failure or if the failure is damaging to the system to the point where
it collapses and is not able to perform this task

2.5.1 Probabilistic Faults

Throughout this work, we will use probabilistic faults to study the behavior of the system and
its ability to perform its task. Unrelated faults imply that, for a network with N vertices, the
probability P (N,m) that m vertices are faulty at any given time step t is given by:

P (N,m) =
(
N
m

)
pmf (1− pf )N−m

where Pf is the probability of failure.

2.5.2 Measuring the Effect of Perturbations

In order to quantify the effect of a perturbation on a binary system, introduce the Hamming
distance (HD). The HD between two distinct binary strings is computed as follows: let us assume
two configurations of the same length N , the HD between the strings is the number of bits that
differ from one to the other (see example in Figure 2.7).

Further in this work, we’ll introduce more context-specific ways of measuring the effect of a
perturbation, especially with regards to biologically inspired systems and related failures (Section
8).
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by

P (N,m) =

(
N

m

)
pf

m (1− pf )N−m

i.e. it is binomially distributed.

In addition to that, we define the Hamming distance (HD) between two dis-
tinct configurations as follows: let us assume two configuration of the same
length N , the HD between the ICs is the number of bits that are different
from one IC to the other (see example in Figure 8.1).

c1

c2

Figure 8.1: Example of Hamming distance between two configurations of a CA. In this case the

HD is 5.
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Figure 8.2: Hamming distance (y-axis) vs fault probability (x-axis) for the density problem (full

line), and the synchronization problem (dashed line). The curves are averages over

103 distinct initial configurations.

To observe the effects of probabilistic updating on the CA dynamics, two
initially identical copies of the system are maintained. One evolves undis-
turbed with pf = 0, while the second is submitted to a nonzero probability
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Figure 2.7: Example of Hamming distance between two strings of bits (value are unimportant). In
this case the HD is 5.
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Chapter 3

Evolutionary and Genetic
Algorithms

Nothing in biology makes sense
except in the light of evolution.

Theodosius Dobzhansky

Evolutionary Algorithms (EAs) are family of stochastic search methods inspired by Darwin’s
evolution theory [Hol75, MFH91]. Such algorithms operate on a population of candidate solutions
to a considered problem, applying the principle of “survival of the fittest” to produce new solu-
tions approaching an optimum. In EAs, solutions are said to “evolve”. Evolution is divided in
generations that correspond to a population of candidate solutions. The initial population, at
the first generation, consists of man-made or arbitrary solutions. EAs rely on objective functions
that evaluate each candidate solution according to how well it solves the problem and respects the
constraints. A new generation is created by selecting individuals in the population according to
their adequacy towards the objectives (fitness level). We apply stochastic operators (i.e. mutation,
recombination) on the selected candidate solutions to generate offspring solutions to populate the
new generation. There exist several mutation and crossover schemes, depending on the encoding,
and several selection schemes to choose from. In Section 3.1, we detail the specific subcategory of
EAs we have used for this project, namely genetic algorithms. This process leads to the evolution
of a population of individuals that are better suited to their environment, i.e. the problem, than
the individuals they were created from at the previous generation. Usually, the size of the popu-
lation remains constant, with better-performing offspring replacing their parents. Multi-objective
EA methods rely on the non-domination criterion, also called Pareto-domination criterion [Coe99],
which compares different solutions according to all objective functions simultaneously. At any
time, the evolving population contains a set of solutions that represents a variety of trade-offs
between the different objectives. Evolution stops when the objective functions are adequately sat-
isfied, see Figure 3.1. When the amount of time and computational power are limited, EAs are
known to offer suboptimal, yet excellent solutions. The success of finding suitable solutions using
EA methods relies on two main factors: the encoding of the candidate solution in the population
and the definition of the objective functions. These factors are the main challenges faced by the
researcher. Other decisive components of EA performance in time and solution quality include the
size of the population, the genetic operators and the probabilities with which they are used, and
the quality of the initial population. Although very demanding in computer resources, EAs are
naturally suited for parallel or distributed implementation [AT02].
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Figure 2.2: Structure of a single population evolutionary algorithm

well on a broad class of problems (c.f. Figure 2.2). However, in some cases,
better results can be obtained by introducing many populations, called sub-
populations. Each evolves in isolation for a few generations (like the single
population evolutionary algorithm) before one or more individuals are ex-
changed between the sub-populations. The multi-population evolutionary
algorithm mimics the evolution of the species in a way more similar to na-
ture than the single population evolutionary algorithm.

Certainly, EAs differ substantially from more traditional search and opti-
mization methods. The most significant differences are:

• EAs search a population of points in parallel, not a single point, there-
fore exploring the solution space more efficiently.

• EAs do not require derivative information or other auxiliary knowl-
edge, only the objective function and corresponding fitness levels in-
fluence the directions of search.

• EAs use probabilistic transition rules, not deterministic ones.

• EAs are generally more straightforward to apply.

• EAs can provide a number of potential solutions to a given problem.
The final choice is left to the user. Thus, in cases where the particu-
lar problem does not have one single optimal solution, as in the case
of multi-objective optimization and scheduling problems, the evolu-
tionary algorithm is potentially useful for identifying these alternative
solutions simultaneously.
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Figure 3.1: Structure of a single population evolutionary algorithm

3.1 Genetic Algorithms

Genetic Algorithms (GAs) are EAs where the candidate solutions are customarily encoded in string
of binary values. This allows the use of very simple genetic operators, such as one or two-point
crossover, and random mutations. Definitions below remain valid for all EAs although specific
examples are presented in a binary form that is GA-compatible.

3.1.1 Encoding

Encoding both the problem and the individuals (i.e. the possible solutions) is a two-step process.
Firstly, the natural problem itself must be translated into a mathematical model. Now, we have to
convert this mathematical model into an EA-compatible form. Potential solution become chromo-
somes, also called genotypes, using the chosen encoding scheme. This is the mould out of which
all our individuals, or phenotypes, will be created. At all times, an individual can be translated
into a solution to the problem (i.e. to evaluate its fitness, see 3.1.3), and vice-versa. Therefore,
since the phenotype is problem-specific, there is no general encoding scheme that would suit every
problem. In addition to that, the phenotypes have to be compatible with all the chosen genetic
operators (c.f. 3.1.4), that is to say you must be able to perform crossover and mutation using the
individual’s genotype. GAs use a common and flexible schemes consisting of a chain of bits (0’s
and 1’s).

2 - Artificial Evolution and Evolutionary Algorithms

2.2.1 Encoding scheme

Before going any further, the issue of encoding both the problem and the
individuals (i.e. the possible solutions) must be raised. Firstly, the natural
problem itself has to be translated into the mathematical world, if it is not
already the case. Only then are we able to convert a potential solution into
chromosomes, also called genotypes, using the chosen encoding scheme (see
Figure 2.3). This is the mould out of which all our individuals, or phenotypes,
will be created.
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Figure 2.3: Transformation of a possible solution into a mathematical representation and then

into a chromosomic one

At all times, an individual keeps the ability to be translated into a solu-
tion to the problem (i.e. to evaluate its relevance to it, c.f. 2.2.2), and
vice-versa. Therefore, since the phenotype is problem-specific, there is no
general encoding scheme that would suit every problem. In addition to
that, the phenotypes have to be compatible with all the chosen genetic op-
erators (c.f. 2.2.4), that is to say you must be able to perform crossover
and mutation using the individual’s genotype. The most common and flexi-
ble schemes consist of a chain of bits (0’s and 1’s) or digits (usually integers).
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Figure 2.4: Possible encoding: binary (a) and Gray’s (b).

In the examples of Figure 2.4, the individual’s encodings which are used are
both binary, but Gray’s encoding (b) has the further advantage of keeping
the Hamming distance (c.f. 8.1) between two successive representations of
the individuals down to 1, therefore they remain close to each other in the
space of solutions by consecutive numbers, close in terms of the Hamming
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(a) (b)

Figure 3.2: Possible encoding: binary (a) and Gray’s (b).

In the examples of Figure 3.2, the individual’s encodings which are used are both binary,
but Gray’s encoding (b) has the further advantage of keeping the Hamming distance (defined in
Section 2.5.2) between two successive representations of the individuals down to 1, therefore they
remain close to each other in the space of solutions by consecutive numbers, close in terms of the
Hamming distance.
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3.1.2 Initial Population

In order to explore as much as possible of the space of possible solutions, the initial population
should be evenly scattered throughout the entire space. In the example of Figure 3.3, the initial
population generated in (a) has a much higher probability of finding the optimal solution than the
one generated in (b).

distance (c.f. section 8.1).

2.2.2 Individual evaluation

This stage is also called fitness assignment [Gol89]. It mainly consists of
submitting the evolved individual, or its representation (see 2.2.1), to the
problem and evaluating how well it performs at solving it. Clearly, this
will allow a classification and comparison of the individuals and will be
useful when the time comes for selecting the ones that will produce the next
generation (see 2.2.4).

2.2.3 Generating an initial population

In order to explore the whole of the space of possible solutions, the initial
population must be evenly scattered throughout the entire surface. Clearly,
if we take the example of Figure 2.5, the initial population generated in (a)
has a much higher probability of finding the optimal solution than the one
generated in (b).
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Figure 2.5: Example of a space of the possible solutions, the optimum is represented by a circle,

while individuals of the initial population by Xs

On the other hand, if the optimum is known to be in a precise zone of the
search space, the initial individuals ought to be grouped in that area. This
will favor exploitation instead of exploration (c.f. 2.2.4) in contrast with the
left case (a).
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Figure 3.3: Example of a space of the possible solutions, the optimum is represented by a circle,
while individuals of the initial population by Xs.

On the other hand, if the optimum is known to be in a precise zone of the search space, the initial
individuals ought to be grouped in that area. This will favor exploitation instead of exploration
(c.f. 3.1.4) in contrast with the left case (a).

3.1.3 Phenotype Evaluation

This stage, also called fitness assignment [Gol89], consists of submitting an individual, or more
precisely its representation (see 3.1.1), to the problem and evaluating its performance at solving
it. This will permit a classification and comparison of the individuals, useful at the selecting stage
of the EA to produce the next generation (see 3.1.4).

3.1.4 Genetic Operators

Countless different selection, mutation, recombination and replacement methods have been pro-
posed, matching more or less closely the ways of nature. Although many are very interesting and
accurate, here, we will describe the most common ones.

Selection

Selection determines which individuals are chosen for recombination. First, the fitness is assigned
(in 3.1.3), then the selection is performed. Parents are usually selected according to a function of
their fitness:

• roulette-wheel selection, also called stochastic sampling with replacement [Bak87], is a simple
and early selection scheme. This algorithm maps each individual on a roulette-wheel, with
share-size proportional to the individual’s fitness. Then, the roulette is “spun”, offering to
each individual a fair chance to be selected for recombination. The process is repeated until
the desired number of individuals is obtained (called mating population).

• ranking selection is very similar to the roulette-wheel selection, only this time share sizes on
the roulette-wheel are not proportional to the individual’s fitness but to its rank with respect
to the other individuals’ fitness values in the population.
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• tournament selection [BT95, GD91]: a number of individuals are chosen randomly from the
population and the best individual from this group is selected as a parent. This process is
repeated as often as necessary to fill the mating population. The size of the tournament
selection, i.e. the number of individuals involved, ranges from 2 (for binary-tournament) to
the number of individuals in the population.

Recombination

Recombination (or crossover) produces new individuals in combining the information contained in
the parents’ genotype. Depending on the representation of the individual’s encoding, there exist
both binary valued and real valued recombinations. Because of the rarity of the second case, we
will omit it. Several binary valued recombination methods exist, amongst which we will mention:

• single-point crossover, where only one position is selected uniformly at random and the
genotypes exchanged between the individuals from this point, two new offspring are produced.

• multi-point crossover, where several crossover positions are chosen at random with generally
no duplicates and sorted in ascending order. Then the genotypes between successive crossover
points are exchanged between the two parents. The resulting individuals produced are the
two new offspring. The first section is usually not exchanged between individuals. parents to
produce two new offspring. The idea behind multi-point crossover, and many of the variations
on the crossover operator, is that parts of the chromosome representation that contribute
the most to the performance of a particular individual may not necessarily be contained in
adjacent substrings. Furthermore, the disruptive nature of multi-point crossover appears to
encourage the exploration of the search space, rather than favoring the convergence to highly
fit individuals early in the search, thus making the search more robust ([DJS92]).

• uniform crossover [Sys89]. The scheme explained above is generalized to make every position
of the genotype a potential crossover point. A crossover mask, the same length as the indi-
vidual structure, is created at random and the parity of the bits in the mask indicates which
parent will supply the offspring with which bits. However in reality, uniform crossover results
in almost random offspring, similarly to mutation (see Section 3.1.4) but more disruptive.

Uniform crossover, like multi-point crossover, has been claimed to reduce the bias associated with
the length of the binary representation used and the particular coding for a given parameter set.
This helps to overcome the bias in single-point crossover towards short substrings without requiring
precise understanding of the significance of the individual bits in the individuals’ representation.

Mutation

In nature, in addition to recombination, a phenomenon called mutation is observed. In a few
words, it can be described as random alteration of living organisms’ genotype, where errors in the
process of DNA replication occur, leading to “mutants”. These variations are infinitesimal and
occur very frequently. Nevertheless, an effect on the phenotype are comparatively rare, due to
the important quantity of non-coding sequences in DNA. Nevertheless, in nature, they can have
devastating effects on living organisms; the mutated gene may cause its owner to become fitter
than ever or, on the contrary, to not be viable, or even not have any visible effect at all. This
phenomenon has a tendency to boost evolution. Therefore, it is commonly used in GAs too. It
has the further advantage of recovering from the loss of genotypes occurring during selection. As
in the case of recombination, there are two distinct mutation schemes used in EAs: the real-valued
mutation and the binary mutation. Again, as the real-valued representation is more complex, and
not used in this work, we will discuss only the binary mutation. As mentioned before, mutation is
ruled by the mutation probability or mutation rate. Two different approaches exist; this mutation
rate can either stay constant or change (i.e. increase or decrease) during the generations of the EA.
There is no general rule. In nature this depends mainly on environmental factors such as pollution
or radiation. In our case it depends on the chosen implementation, and both should be considered
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in order to better explore the solution space. For binary valued individuals mutation means the
flipping of variable values, because every variable has only two states, from 0 to 1 or vice-versa.
For every individual the variable value to change is randomly chosen. Of course, the mutation of
a position will depend on the previously defined mutation probability.

Replacement

Once the offspring have been produced by selection, recombination and mutation of individuals
from the previous population, the fitness of the offspring is determined. Depending on the means
used, fewer offspring than the size of the original population might be produced; then, to maintain
the size of the original population constant, parents might have to be reinserted into the population.
Similarly, if not all offspring are needed in each generation or if more are generated than the size
of the old population then a reinsertion scheme must be used to determine which individuals are
to exist in the new population. This, of course, is true only in fixed-size populations. The selection
method determines the reinsertion scheme: local reinsertion for structured EAs (c.f. 3.1.5) and
global reinsertion for all other selection methods (below).

Different schemes of global reinsertion exist:

• produce as many offspring as parents and replace all parents by the offspring (pure reinser-
tion);

• produce less offspring than parents and replace parents uniformly at random (uniform rein-
sertion);

• produce less offspring than parents and replace the worst parents (elitist reinsertion);

• produce more offspring than needed for reinsertion and reinsert only the best offspring
(fitness-based reinsertion). Parents with fitness that equals their offspring are generally
replaced anyway.

Pure reinsertion is the simplest scheme. Every individual lives for one generation only. This
scheme is, for instance, used in standard GAs. However, it is very likely that very good individuals
are replaced without producing better offspring and thus, good information is lost. To avoid this
situation, the elitist combined with fitness-based reinsertion is recommended: with each gener-
ation, a given number of the least-fit parents are replaced by the same number of the most-fit
offspring. Therefore, the best parent will live alongside the best offspring, lasting over generations
and combining their information in order to create better individuals (e.g. better solutions). De-
spite our efforts, parents may be replaced by offspring with a lower fitness, thus the average fitness
of the population can decrease. However, if the inserted offspring are extremely bad, they will be
replaced with new offspring in the next generations.

Exploration vs. Exploitation

All of the above schemes, crossover, mutation and selection, depend strongly on a reduced number
of parameters. Finding the right value and the right balance between all these is a matter of ex-
perimentation. Certainly, some basic rules and common sense apply to avoid steering evolution in
an unwanted direction. EAs have to find the right balance between exploration and exploitation.
On the one hand, we tend to want to thoroughly explore the space of solution by, for instance,
increasing the mutation rate. On the other hand, we would like to better exploit the good indi-
viduals we already have, by combining them more and not risk them leaving a good area of the
solutions’ space through too much mutation. The first method may miss the good solutions by
moving around too much and modifying good solutions more than necessary, whereas the second
one may remain cornered into exploring restricted areas in search for a local optimum, loosing
sight of the absolute optimum. Hence, a trade-off must be found between these two extremes.
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3.1.5 Structured Evolutionary Algorithm

The spatial dimension of EAs must be considered as it emerges in nature and bears interesting
properties. In nature, behaviors are usually locally restricted since selection, recombination and
replacement can usually only take place in a relatively confined neighborhood. As a result, crossing
between individuals from distant continents may be scarce. This can also be another constraint
EAs borrowed from nature and can definitely be seen as one of the trade-off between exploration
and exploitation [Tom05]. Consequently, we will try to take into account the spatial location of
our individuals with respect to each other. Again, there are several widely used representations
that involve placing the whole population on some sort of topology, thus restricting their possible
contact between individuals. As a consequence, the individuals’ interactions are confined into
neighborhoods and global communication can no longer take place. The most studied structure for
EAs is the 2-dimensional grid, where each individual is placed on a node of a toroidal structure
(see 2.2.2). Possible relationships are restricted to individuals directly connected by an edge. Of
course, the number of neighbors is variable, for instance 4, 8 or 12, but always much smaller than
the population size (see Figure 3.4).

2 - Artificial Evolution and Evolutionary Algorithms

2.3 Structured EA

Last but not least, the spatial dimension of EAs must be considered, as it
clearly emerges in nature and bears interesting properties. In fact, in nature
behaviors are usually locally restricted since selection, recombination and
replacement can only take place in a relatively confined neighborhood. As a
result, mixture between individuals from distant continents may be scarce.
This will be another constraint EAs borrowed from nature and can defi-
nitely be seen as one of the trade-off between exploration and exploitation
(c.f. 2.2.4).

Consequently, we will try to take into account the spatial location of our
individuals with respect to each other. Again, there are several widely used
representations which involve placing the whole population on some sort of
topology, thus restricting their possible contact with each other. As a con-
sequence, the individuals’ interactions are confined into neighborhoods and
global communication can no longer take place. The most studied structure
for EAs is the 2-dimensional grid, where each individual is placed on a node
of a toroidal structure. Possible relationships are restricted to individuals
directly connected by an edge. Of course, the number of neighbors is vari-
able, for instance 4, 8 or 12, but always much smaller than the population
size (see Figure 2.11).

Figure 2.11: Examples of different neighborhood structures with sizes 4 (also called von Neu-

mann), 8 (also called Moore) and 12.

Because of the restrictions described above, some adaptations of the previ-
ously defined genetic operators are necessary. In particular concerning the
selection and replacement schemes.
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Figure 3.4: Examples of different neighborhood structures with sizes 4 (also called von Neumann),
8 (also called Moore) and 12.

Because of the restrictions described above, some adaptations of the previously defined ge-
netic operators are necessary. In particular concerning the selection and replacement schemes. In
structured EAs, discussed in [GS91, VSKB92], every individual resides inside a constrained envi-
ronment called the local neighborhood in contrast to the other selection methods where the whole
population or subpopulation is the selection pool. In this case, individuals interact only with indi-
viduals inside their region. The neighborhood is defined by the structure in which the population
is distributed and can be seen as the group of potential mating partners. In order to generate a
new generation we consider each node of the structure simultaneously. In its neighborhood, in-
cluding the considered individual itself, two parents are selected according to a chosen scheme (see
section 3.1.4). These two mating partners are used to produce a single offspring that is possibly
mutated. This new potential solution, once evaluated, will replace the considered individual if it
happens to have a better fitness (see Figure 3.5).
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inside a constrained environment called the local neighborhood (see 2.3) in
contrast to the other selection methods where the whole population or sub-
population is the selection pool. In this case, individuals interact only with
individuals inside their region. The neighborhood is defined by the struc-
ture in which the population is distributed and can be seen as the group of
potential mating partners.

In order to generate a new generation we consider each node of the structure
simultaneously. In its neighborhood, including the considered individual
itself, two parents are selected according to a chosen scheme (see section
2.2.4). These two mating partners are used to produce a single offspring
that is possibly mutated. This new potential solution, once evaluated, will
replace the considered individual if it happens to have a better degree of
fitness (see Figure 2.12).

(a) (b)

Figure 2.12: For each individual in the population an offspring is produced (a) combining par-

ents selected in the individual’s neighborhood and the new offspring replaces it un

the next generation (b).

2.4 Limitations of EAs

As mentioned before, EAs are powerful tools for a broad class of problems.
Moreover, they allow us to treat also problems where the function to be
optimized are not continuous, thus cannot be derived.

Nevertheless, some limitations to EAs are to be highlighted:
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(a) (b)

Figure 3.5: For each individual in the population an offspring is produced (a) combining parents
selected in the individual’s neighborhood and the new offspring replaces it in the next generation
(b).
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Chapter 4

Cellular Automata for
Computation

Lately I’ve been working to
convince myself that everything is
a computation.

Rudy Rucker

Cellular automata (CAs) provide simple discrete deterministic mathematical models for phys-
ical, biological and computational systems. Despite their simple construction, cellular automata
have been proven to be capable of complicated behavior, and to generate complex patterns with
universal features [MOW84, Wol94]. They are therefore a typical example of emergence in complex
systems.

CAs are constituted of elementary parts called cells arranged on mono-dimensional or bi-
dimensional regular lattices. Each cell carries a value from a finite set of states. As a deterministic
entity, the cell’s state will change with discrete time-steps according a predefined set of rules (e.g.
look-up table, or a mathematical function) involving the state of the cell itself and of its nearest
(i.e. connected) neighbors. In the present work we will only handle the case of mono-dimensional
(linear) CA’s with binary values but, of course, any topology can be used to lay a CA on as well
as any alphabet different from the binary 0’s and 1’s.

CAs were introduced by von Neumann [vN66] as abstract models with embedded biological
properties, such as self-reproduction. Any system with many identical discrete elements undergo-
ing deterministic local interactions may be modeled as a cellular automaton. More complex CAs
are obtained using non-linear local evolution. Physical, biological and mathematical examples of
“useful” CA models englobe the aggregation phenomena in snowflakes’ growth or the organiza-
tion of simple entities by repeated application of a simple set of rules. The best-known example
of a two-dimensional CA is the game of “life” [Gar70, Gar71], which happens to be proven as
“computationally universal”, capable of evaluating any Turing computable function. According to
Church’s thesis in the formal theory of computation, such cellular automata may thus potentially
simulate any possible computational system.

In our case, Boolean automata for which the cellular state s ∈ {0, 1} are used. Its current state
and that of its neighborhood’s determine the state of a cell at the next time-step. The regular
cellular array (grid) is d-dimensional, where d = 1, 2, 3 is used in practice. For one-dimensional
grids, a cell is connected to r local neighbors (cells) on either side where r is referred to as the
radius (thus, each cell has 2r+1 neighbors, including itself), see Figure 4.1. The term configuration
refers to an assignment of ones and zeros to all the cells at a given time step. It can be described
by s(t) = (s0(t), s1(t), ..., sN−1(t)), where N is the lattice size. Often, CAs have periodic boundary
conditions sN+i(t) = si(t). Here we will consider an extension of the concept of CA in which, while
the rule is the same on each node, nodes can be connected in any way, that is, the topological
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structures are general graphs, provided the graph is connected and self and multiple links are
disallowed.

d-dimensional, where d = 1, 2, 3 is used in practice. For one-dimensional
grids, a cell is connected to r local neighbors (cells) on either side where r

is referred to as the radius (thus, each cell has 2r + 1 neighbors, including
itself), see Figure 3.3. The term configuration refers to an assignment of
ones and zeros to all the cells at a given time step. It can be described
by st = (st

0, s
t
1, . . . , st

N−1), where N is the lattice size. Often CAs have
periodic boundary conditions st

N+i = st
i. Here we will consider an extension

of the concept of CA in which, while the rule is the same on each node,
nodes can be connected in any way, that is, the topological structures are
general graphs, provided the graph is connected and self and multiple links
are disallowed.

Figure 3.3: 2-dimensional CA, with a radius r = 3 and a random (initial) configuration. Black

represents state

3.2 Density Classification Task

The majority (also called density classification) task is a prototypical dis-
tributed computational task for CAs. For a finite CA of size N it is defined
as follows: let ρ0 be the fraction of 1s in the initial configuration (IC) s0.
The task is to determine whether ρ0 is greater than or less than 1/2. If
ρ0 > 1/2 then the CA must relax to a fixed-point configuration of all 1s;
otherwise it must relax to a fixed-point configuration of all 0s, after a num-
ber of time steps of the order of the grid size N (N is odd to avoid the case
ρ0 = 0.5). The CA evolves following a lookup table (see example in Figure
3.4) at each time step. This computation is trivial for a computer having
a central control (e.g. fully connected CA). Indeed, just scanning the array
and adding up the number of 1 bits will provide the answer in O(N) time.
However, it is nontrivial for a small radius one-dimensional CA since such a
CA can only transfer information at finite speed relying on local information
exclusively, while density is a global property of the configuration of states
[MHC93].
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Figure 4.1: Linear CA, with a radius r = 3 and a random (initial) configuration. Black represents
state 1 and white is 0.

CAs are, as mentioned before, capable of universal computation. Nevertheless, they are usually
studied on prototypical tasks, such as the game of life, the density classification task (described in
the article section A.3.1, and the synchronization task (in article section A.3.2. The bi-dimensional
representation of the tasks in those section shows the temporal evolution of the linear CA. Each
line shows the state of the entire CA at successive discrete time-steps. Our models performance
on the density classification and the synchronization tasks is studied in details in the article A.
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Chapter 5

Articles in this Part

In Einstein’s general relativity the
structure of space can change but
not its topology. Topology is the
property of something that
doesn’t change when you bend it
or stretch it as long as you don’t
break anything.

Edward Witten

In Articles A and B we study complex network systems in the context of cellular automata for
distributed computation as described in Section 4 on real-world-like network topologies.

In Article A

In this first work, we evolve the underlying topology of CAs starting from regular and random
structures (see Section 2.2.2) using structured genetic algorithms (as described in 3.1). This work is
mainly inspired by two sources: Watts’ work [Wat99] where he uses hand-made small-world network
as the structure for CAs and Packard’s work [Pac88] and later Mitchell’s work [MCH94] where she
uses GAs to evolve the update rules of CAs. In both these works, the resulting CAs perform as
well as or better than “classical” CAs with hand-written majority rule on lattices. Using very little
bias, these newly evolved topologies fall in the small-world range and share many properties with
the real-world structures described in the background sections. Moreover, they show outstanding
performance while extraordinarily robust in the face of probabilistic failure. Interestingly, we show
that whether starting from a random graph or a regular lattice, the evolution in both cases give rise
to topologies that meet halfway between order and randomness. This article repeats somewhat
the formal definition about graphs, then describes the two different CA prototypical tasks. It
describes the GA in details, specific to the task and the starting point structure. It also evaluates
the performance of each cases and its ability to perform the other task.

In Article B

In this second publication, we propose to compare the performance of our evolved small-world-
like topologies as support for CA computation with that of several different hand-made real-world
networks: scale-free structures, introduced in section 2.2.2. Scale-free structures are common in
communication networks with an unplanned organic growth, such as the Internet, and in the
context of information flow, they show superior resilience to non-targeted failures when compared
to regular or random structures. On the other hand, scale-free networks are vulnerable to targeted
attacks on hubs. Strictly speaking, targeted attacks are essentially equivalent to random failure
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on homogenous systems where both the nodes type and their connection degree are comparable
or identical. We study the effect of transient and permanent failures (see 2.4) in CAs of different
structure. Interestingly, our evolved structures show comparable and even superior robustness
with respect to scale-free networks. Moreover, there is a clear difference in terms of fault tolerance
when comparing scale-free networks constructed with different methods. This hints that, although
both Barabási-Albert and configuration model scale-free networks show a long-tailed power-law
degree distribution, it is not a sufficient property to assume that their performance and robustness
in distributed computation will be comparable.
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Abstract

We study an extension of cellular automata to arbitrary interconnection topologies for the majority
and the synchronization problems. By using an evolutionary algorithm, we show that small-world
type network topologies consistently evolve from regular and random structures without being
designed beforehand. These topologies have better performance than regular lattice structures and
are easier to evolve, which could explain in part their ubiquity. Moreover, we show experimentally
that general graph topologies are much more robust in the face of random faults than lattice
structures for these problems.

Keyword

small-world networks, cellular automata, evolutionary computation, distributed computation

A.1 Introduction

Networks, which can be formally described by the tools of graph theory, are a central model for the
description of many phenomena of scientific, social and technological interest. Typical examples
include the Internet, the World Wide Web, social acquaintances, electric power networks, neural
networks, and many others. In recent years there has been substantial research activity in the
science of networks, motivated by a number of new results, both theoretical and applied. The
pioneering studies of Watts and Strogatz [WS98, Wat99] have been instrumental in initiating
the movement, and they have been followed by many others in the subsequent years. Their
key observation was that most real networks, both in the biological world as well as man-made
structures, have mathematical properties that set them apart from regular lattices and from random
graphs, which were the two main topologies that had been studied until then. In particular,
they introduced the concept of small-world networks, in which most pairs of vertices seem to be
connected by a short path through the network. The existence of short paths between any pair
of nodes has been found in networks as diverse as the Internet, airline routes, neural networks,
metabolic networks, among others. The presence of short paths is also a characteristic of random
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graphs, but what sets these real networks apart is a larger clustering coefficient than that of
random graphs having a comparable number of nodes and links. The clustering coefficient roughly
represents the probability that two nodes that are neighbors of a third one, are also neighbors of
each other, which means that there is more local structure in these networks than in plain random
graphs. In section A.2 we offer a brief quantitative introduction to relevant graph concepts that
are used in this work. An excellent recent review of the field is to be found in [New03].

The topological structure of a network has a marked influence on the processes that may take
place on it. Regular and random networks have been thoroughly studied from this point of view
in many disciplines. In computer science, for instance, variously connected networks of processors
have been used in parallel and distributed computing [Lei92], while lattices and random networks
of simple automata have also received a great deal of attention [Gar95, Kau93]. On the other
hand, due to their novelty, there are very few studies of the computational properties of networks
of the small-world type. One notable exception is Watts’ book [Wat99] in which cellular automata
(CAs) computation on small-world networks is examined in detail. However, there is no hint in
these works as to how such networks could arise in the first place, without being designed by a
prescribed algorithm. Many man-made networks have grown, and are still growing, incrementally
and explanations have been proposed for their actual shape. The Internet is a case in point,
for which a preferential attachment growth rule has given good results [AB02]. This rule simply
prescribes that the likelihood for a new node of connecting to an existing one depends on the
node’s degree: high-degree nodes are more likely to attract other nodes. However, there exist
many networks in nature for which some kind of Darwinian variation and selection in a population
of networks has surely taken place. This is the case, for instance, in the emergence of biological
neural networks.

Thus, how these automata networks might have come to be selected is an interesting yet
unanswered question. In this work, we let a simple artificial evolutionary process find “good”
network structures according to a predefined fitness measure, without prescribing the fine details
of the wiring. We take as prototypical problems the majority classification problem and the
synchronization tasks, which are the same that Watts discusses in [Wat99] as a useful first step.
This will also allow us to compare the products of artificial evolution with Watts’ results. We
will also investigate the effect of some structural constraints on the evolutionary process. Another
aspect of interest is how evolved networks compare with known lattice-CA solutions in terms of
robustness in the presence of noise. This point will be explored in some detail.

In the next section some background material on graphs is briefly discussed. Section A.3
describes the CA problems and previous results. Section A.4 presents our evolutionary search for
efficient networks. In section A.6 the fault-tolerance properties of the evolved networks are studied.
Section A.7 gives our conclusions and ideas for future work.

A.2 Useful definitions for graphs

For ease of reference, here we collect a few definitions and some nomenclature for graphs that are
used throughout this work. The treatment is necessarily brief: a more detailed account can be
found for example in [New03, Wat99].

Let V be a nonempty set called the set of vertices or nodes, and let E be a symmetric binary
relation on V , i.e. a set of unordered pairs of vertices. G = (E, V ) is called an undirected graph
and E is the set of edges or links of G. In directed graphs edges have a direction, i.e. they go
from one vertex to another and the pairs of vertices are ordered pairs. Here we only deal with
undirected graphs.

When vertices (u, v) of an undirected graph form an edge they are said to be adjacent or
neighbors. The degree k of a vertex is the number of edges impinging on it (or, equivalently, the
number of neighbors). The average degree 〈k〉 is the average of all the vertex degrees in G.

A path from vertex u to vertex v in a graph G is a sequence of edges that are traversed when
going from u to v with no edge traversed more than once. The length of a path is the number of
edges in it. The shortest path between two vertices u and v is the path with the smallest length
joining u to v.
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A graph is connected if there is a path between any two vertices. A completely connected
undirected graph G with |V | = N vertices has an edge between any two vertices. The total
number of edges is N(N − 1)/2.

A random graph is a graph in which pairs of nodes are connected with a given probability p.
Consequentely, the total number of edges in a random graph is a random variable whose expectation
value is p[N(N − 1)/2]. Several useful results on random graphs are described in [AB02].

Four statistics are particularly useful for small-world and random graphs: the average degree
described above, the clustering coefficient, the characteristic path length, and the degree distribu-
tion. They are briefly described below and in more detail in [AB02].

Let us take a particular node j in a graph, and let us assume that it has k edges connecting it
to its k neighboring nodes. If all k vertices in the neighborhood were completely connected then
the number of edges would be equal to k(k − 1)/2. The clustering coefficient C is defined as the
ratio between the E edges that actually exist between the k neighbors and the number of possible
edges between these nodes:

C =
2E

k(k − 1)

The clustering coefficient of a random graph is simply 〈k〉/N = p, where N is the total number
of vertices. For a regular lattice, C is given by the following formula:

3(k − 2)
4(k − 1)

,

where k is the (constant) number of nodes that are connected to a given node. C is thus
independent of N for a regular lattice, and approaches 3/4 as k increases.

The characteristic path length L is defined in [Wat99] as the median of the means of the shortest
path lengths connecting each vertex v ∈ G to all other vertices.

The degree distribution P (k) of a graph G is a function that gives the probability that a
randomly selected vertex has k edges incident on it. For a random graph P (k) is a binomial
peaked at P (〈k〉). But most real networks do not show this kind of behavior. In particular, in scale-
free graphs which seem to be common in real-life [AB02], P (k) follows a power-law distribution:
P (k) = c k−γ , with c and γ positive constants.

According to Watts and Strogatz [Wat99, WS98], a small-world graph can be constructed
starting from a regular ring of nodes in which each node has k neighbors (k � N) by simply
systematically going through successive nodes and “rewiring” a link with a certain probability p.
When the edge is deleted, it is replaced with an edge to a randomly chosen node. This procedure
will create a number of shortcuts that join distant parts of the lattice. Shortcuts are defined to
be edges that join vertices that would be more than two edges apart if they were not connected
directly. These shortcuts are the hallmark of small worlds and, while L scales logarithmically in
the number of nodes for a random graph, in small-world graphs it scales approximately linearly for
low rewiring probability and tends to the random graph limit as the probability increases. This
is due to the progressive appearance of shortcut edges between distant parts of the graph, which
obviously contract the path lengths between many vertices. However, small worlds typically have a
higher clustering coefficient than random graphs. Small-world networks have a degree distribution
P (k) that is close to binomial for intermediate and large values of the rewiring probability p, while
P (k) tends to a delta function for p→ 0.

Following Watts [Wat99], we will show our results as a function of the parameter φ, which is
the fraction of edges in a graph that are shortcuts. The range of φ is [0, 1], where a value of 0 (no
shortcuts) corresponds to a perfect regular lattice, and 1 corresponds to the random graph limit
(every link is a shortcut on the average). In between lies the small-world range, with the typical
small-world behavior already present for low φ values (around 0.01-0.1). For higher φ values, the
graphs tend to be more random-like.

Small-world graphs as defined by Watts and Strogatz are not really structurally representative
of networks found in the real world, which are often, but not always, of the scale-free type, if
anything [ASBS00]. However, they are easy to construct and measure and, for the purpose of
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the artificial CA problems with which we are concerned, they are a perfectly legitimate choice for
studying the influence of the network structure on the dynamics.

A.3 The cellular automata problems

CAs are dynamical systems in which space and time are discrete. A standard CA consists of an
array of cells, each of which can be in one of a finite number of possible states. Here we will
only consider boolean automata for which the cellular state s ∈ {0, 1}. The regular cellular array
(lattice) is d-dimensional, where d = 1, 2, 3 is used in practice. In one-dimensional lattices, the
topology used here, a cell is connected to r local neighbors (cells) on either side, where r is referred
to as the radius (thus, each cell has 2r + 1 neighbors, including itself).

CAs are updated synchronously in discrete time steps, according to a local, identical rule.
The state of a cell at the next time step is determined by the current states of a surrounding
neighborhood of cells, including the cell itself:

st+1
i = f(sti−r..., s

t
i, ...s

t
i+r), f : k2r+1 → k

where sti denotes the value of site i at time t, f(.) represents the local transition rule, and r is the
CA radius. The term configuration refers to an assignment of ones and zeros to all the cells at a
given time step. It can be described by st = (st0, s

t
1, . . . , s

t
N−1), where N is the lattice size. Often

CAs have periodic boundary conditions stN+i = sti. Configurations evolve in time according to a
global update rule Φ which applies in parallel to all the cells st+1 = Φ(st).

Here we will consider an extension of the concept of CA in which the rule is the same on each
node but nodes can be connected in any way, that is, the topological structures are general graphs,
provided the graph is connected and self and multiple links are disallowed.

A.3.1 The majority task

The majority (also called density) task is a prototypical distributed computational task for CAs.
For a finite CA of size N it is defined as follows. Let ρ0 be the fraction of 1s in the initial
configuration (IC) s0. The task is to determine whether ρ0 is greater than or less than 1/2. If
ρ0 > 1/2 then the CA must relax to a fixed-point configuration of all 1s; otherwise it must relax to
a fixed-point configuration of all 0s, after a number of time steps of the order of the lattice size N
(N is odd to avoid the case ρ0 = 0.5). This computation is trivial for a computer having a central
control. Indeed, just scanning the array and adding up the number of, say, 1 bits will provide
the answer in O(N) time. However, it is nontrivial for a small radius one-dimensional CA since
such a CA can only transfer information at finite speed relying on local information exclusively,
while density is a global property of the configuration of states [MHC93]. Figure A.1 shows the
operation of one of the best CAs obtained through artificial evolution.

It has been shown that the density task cannot be solved perfectly by a uniform, two-state
CA with finite radius [LB95], although a slightly modified version of the task can be shown to
admit perfect solution by such an automaton [CST96]. The performance P of a given rule on the
majority task is defined as the fraction of correct classifications over 104 randomly chosen ICs. The
ICs are sampled according to a binomial distribution (i.e., each bit is independently drawn with
probability 1/2 of being 0). Clearly, this distribution is strongly peaked around ρ0 = 1/2 and thus
it makes a difficult case for the CA to solve.

The lack of a perfect solution does not prevent one from searching for imperfect solutions of
as good a quality as possible. In general, given a desired global behavior for a CA (e.g., the
density task capability), it is extremely difficult to infer the local CA rule that will give rise to
the emergence of a desired computation due to possible nonlinearities and large-scale collective
effects that cannot in general be predicted from the sole local CA updating rule. Since exhaustive
evaluation of all possible rules is out of the question except for elementary (d = 1, r = 1) automata,
one possible solution of the problem consists in using evolutionary algorithms, as first proposed by
Mitchell et al. [MCH94, MHC93] for uniform CAs, and by Sipper for nonuniform ones [Sip97].
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Figure A.1: The operation of an evolved one-dimensional, radius three CA for the density task.
The CA cell states are represented horizontally (black stands for 1 and white is 0). Time increases
down the page. The CA rule has been obtained through artificial evolution by Mitchell et al
[MCH94]. The density ρ0 is 0.416 and the lattice size N is 149.

Watts [Wat99] studied a general graph version of the density task. Since a CA rule table depends
on the number of neighbors, given that a small-world graph may have vertices with different degrees,
he considered the simpler problem of fixing the rule and evaluating the performance of small-world
graphs on the task. The chosen rule was a variation of the majority rule (not to be confused with
the majority problem). The rule simply says that, at each time step, each node will assume the
state of the majority of its neighbors in the graph. If the number of neighbors having state 0 is
equal to the number of those at 1, then the next state is assigned at random with equal probability.
When used in a one-dimensional CA this rule has performance P ' 0 since it gives rise to stripes
of 0s and 1s that cannot mix at the borders. Watts, however, has shown that the performance
can be good on other network structures, where “long” links somewhat compensate for the lack
of information transmission of the regular lattice case, in spite of the fact that the node degrees
are still low. Indeed, Watts built many networks with performance values P > 0.8, while the best
evolved lattices with the same average number of neighbors had P around 0.77 [MCH94, MHC93]
and were difficult to obtain.

In a remarkable paper [SR97], Sipper and Ruppin had already examined the influence of dif-
ferent connectivity patterns on the density task. They studied the co-evolution of network archi-
tectures and CA rules, resulting in non-uniform, high-performance networks, while we are dealing
with uniform CAs here. Since those were pre-small world years, it is difficult to state what kind
of graphs were obtained. However, it was correctly recognized that reducing the average cellular
distance, i.e. the characteristic path length, has a positive effect on the performance.

A.3.2 The synchronization task

The one-dimensional synchronization task was introduced in [DCMH95]. In this task the CA, given
an arbitrary initial configuration, must reach a final configuration, within M ' 2N time steps,
that oscillates between all 0s and all 1s on successive time steps. Figure A.2 depicts the space-time
diagram of a CA that solves the task.

As with the density task, synchronization also comprises a non-trivial computation for a small-
radius CA, and it is thus extremely difficult to come up with CA rules that, when applied syn-
chronously to the whole lattice produce a stable attractor of oscillating all 0s and all 1s configu-
rations. Das et al. were able to automatically evolve very good ring CAs rules of radius three for
the task by using genetic algorithms [DCMH95]. Sipper did the same for quasi-homogeneous CAs,
i.e. CAs with a few different rules instead of just one [Sip97], attaining excellent performance for
radius one CAs. The performance of a CA on this task is evaluated by running it on randomly
generated initial configurations, uniformly distributed over densities in the range [0, 1], with the
CA being run for M ' 2N time steps. Figure A.2 is an illustration of the space-time operation
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Figure A.2: The operation of an evolved one-dimensional CA for synchronization (source: [Sip97]).
The ring size N is 149.

of a typical evolved ring CA that solves the synchronization task. Evolved CAs for this task have
performance P close to 1.

Watts [Wat99] also has a brief section on the synchronization task on small worlds. Watts
finds that a simple variant of the majority rule used above for the density task, works also for the
synchronization task. The rule is called the “contrarian” rule, and it operates in the same way as
the majority rule, except that it gives the opposite state as output. We adhered to this rule in
order to be able to compare our results with Watts’. The synchronization task is probably less
interesting than the density in a small world because, while the ordinary lattice CA have less than
optimal performance on the density task, they are near-perfect for synchronization. Nevertheless,
the task is a difficult one as it requires precise coordination among many elementary agents, and
it is thus representative of distributed cooperative problem solving and worth studying.

A.4 Artificial evolution of small worlds

Evolutionary algorithms have been successfully used for more than ten years to evolve network
topologies for artificial neural networks and several techniques are available [TT01]. As far as
the network topology is concerned, the present problem is similar, and we use an unsophisticated
structured EA with the aim of evolving small-world networks for the density and synchronization
tasks. Our EA is spatially structured, as this permits a steady diffusion of good solutions in the
population due to a less intense selection pressure [GATT04]. The population is arranged on a
20 × 20 square grid for a total of 400 individuals. Each individual represents a network topology
and it is coded as an array of integers denoting vertices, each one of which has a list of the vertices
it is connected to, as the graph is undirected. The information is redundant (e.g. if X is connected
to Y, then both have the other in their own connections list). The automaton rule is the generalized
majority rule described above for all cases. During the evolution the network nodes are constrained
to have a maximum degree of 50. The termination condition is reached after computing exactly
100 generations.

A.4.1 Evolution of graphs for the density task

The fitness of a network of automata in the population is calculated by randomly choosing 100 out
of the 2N possible initial configurations (ICs) with uniform density—i.e. any initial density has
the same probability of being selected— and then iterating the automaton on each IC for M = 2N
time steps, where N = 149 is the automaton size. The network’s fitness is the fraction of ICs for
which the rule produced the correct fixed point, given the known IC density. At each generation
a different set of ICs is generated for each individual. Selection is done locally using a central
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individual and its north, east, south and west first neighbors in the grid. Binary tournament
selection is used with this pool. The winner is then mutated (see below) and evaluated. It replaces
the central individual if it has a better fitness.

Mutation is designed to operate on the network topology and works as follows. Each node of
an individual is mutated with probability 0.5. If chosen, a vertex (called target vertex) will have
an edge either added or removed to a randomly chosen vertex (called destination vertex) with
probability 0.5. This will only happen if all the requirements are met (minimum and maximum
degree are respected). If the source vertex has already reached its maximum degree and should
be added one edge or its minimum degree and should be removed one edge, the mutation will not
happen. If the same case happens with the target, another one is randomly chosen. This version
of the algorithm does not use recombination operators.

Evolution from regular lattices

In this first series of experiments we started from regular rings, which is the customary way for
constructing small-world graphs [Wat99]. In order not to unduly bias the evolution, the initial
population was composed by individuals that are regular rings with node degree k = 4, i.e. each
vertex is connected to its four nearest neighbors in the ring, instead of rings with k = 6, which is
the case treated by Watts. Moreover, we slightly modify each of them by adding an edge with a
probability of 0.1 applied to each vertex.

Figure A.3 (a) shows the population entropy, φ (see section A.2), fitness, and performance of
the best individual (as defined in sections A.3.1 and A.4) as a function of the generation number.
The curves represent data from a typical run out of 50 independent runs of the EA.
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Figure A.3: A typical evolutionary run starting from a perturbed ring population (a). The φ -
performance values of the 50 best individuals found in the 50 evolutionary runs (b).

We see that fitness quickly reaches high levels, while performance, which is a harder measure
of the generalization capabilities of the evolved networks on the density task, stays lower and
then stabilizes at a level greater than 0.8. The population entropy remains high during all runs,
meaning that there is little diversity loss during evolution. Note that the entropy refers to the
“genotype” and not to fitness. This is unusual and probably due to the spatial structure of the
evolutionary algorithm, which only allows slow diffusion of good individuals through the grid
[GATT04]. The φ curve is particularly interesting as it permits a direct comparison with Watts’
hand-constructed graphs [Wat99]. The results fully confirm his measurements, with networks
having best performance clustering around φ values between 0.6 and 0.8. This is clearly seen in
figure A.3 (b) where the 50 best networks found are reported as a function of their φ, which is
to be compared with figure 7.2, p.190, in [Wat99]. The mean degree 〈k〉 of the evolved networks
is around 7, which compares well with the ring case and Watts’s (see table A.7). Therefore, we
see that even a simple EA is capable of consistently evolving good performance networks in the
small-world range. This is not the case for the standard ring CAs for the majority task, where
good rules are notoriously difficult to evolve. In fact, while we consistently obtain networks having
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performance around 0.8 in each evolutionary run, Mitchell et al. [MCH94] found that only a
small fraction of the runs lead to high-performance CAs. As well, our networks and Watts’ reach
higher performance: 0.82 against 0.77 for the lattice. Evidently, the original fitness landscape
corresponding to the 2128 possible ring CAs with radius three is much more difficult to search
than the landscape corresponding to all possible graphs with N vertices. To this we may add that
the performance of the small-world solutions are better than those of the original lattices as N
increases, as was observed by Watts and confirmed by our study (not shown here for lack of space).
Work is under way to study the basic statistics of the above landscapes in order to obtain a better
understanding of their structures.

The operation of a typical evolved small-world network can be seen in the space-time diagram
of figure A.4. Although a direct comparison with the previous figure A.1 is difficult due to the
very different network connections, still, one can see that the information transfer is much faster
thanks to the distant connections, and the problem is thus solved in fewer steps.

(a) (b)

Figure A.4: The operation of an evolved small-world CA for the density task. The density ρ0 is
0.470 in (a) and 0.523 in (b).

Evolution from random graphs

Although the results of artificial evolution from rings are appreciable, giving rise to networks
of automata with small-world topology and good performance, the way the initial population is
generated might nevertheless contain a bias towards such graphs. In order to really assess the
power of this artificial evolution, we designed a second series of experiments in which all the
parameters are the same except that the initial population is now formed by arbitrary random
graphs. A random graph having N vertices can be constructed by taking all possible pair of
vertices and connecting each pair with probability p, or not connecting it with probability 1 − p.
In the experiments p = 0.03 and there is no constraint on the minimum node degree, which means
that disconnected graphs are also possible. However, we discarded such graphs and ensure that all
the networks in the initial population are connected with average degree 〈k〉 = Np of 4.47.

Figure A.5 (a) depicts the same curves starting from random graphs as figure A.3 (a) does for
the perturbed ring initial population. Here too, 50 independent runs have been performed and a
typical one is plotted in the figure.

We see again that genotypic diversity is maintained through evolution as the entropy is always
high. Likewise, fitness rises quickly and stays near the maximum. Performance has a different
behavior initially. While it starts low and rapidly and steadily increases in the previous case, here
it has an approximate value of 0.4 at the beginning. The difference is due to the fact that, in the
perturbed ring case, the initial population is still mainly constituted by regular rings, which we
know are uncapable of performing the density task using the majority rule as CA rule. In the
random graph case, a fraction of the networks in the initial population does a better job on the
task. The same conclusion can be reached by looking at the φ curve. While in the perturbed ring
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Figure A.5: A typical evolutionary run starting from a random graph population (a). The φ -
performance values of the 50 best individuals found in the 50 evolutionary runs (b).

case φ starts low (φ is 0 for a lattice) and then slowly increases toward values around 0.7, in the
random graph case the contrary happens: φ is rather high at the beginning because truly random
graphs predominate during the first part of the evolution, i.e. about 20 generations. After that,
graphs are more of the small-world type and converge toward the same φ region in both cases.
This can be clearly seen in figure A.5 (b), where the best 50 individuals of all runs for both initial
rings and random graphs are plotted together. It should be noted that in both figures A.3 and A.5
performance does not stop improving even though fitness has reached its maximum value. This is
an indication of the good learning and generalization capabilities of the evolved networks.

The following figure A.6 shows the degree distribution of the best networks found by evolution
in the ring case (a), and the random graph case (b). Although the number of vertices is too small
for a rigorous statistical treatment, it is easily seen that the distribution is close to binomial in
both cases, which is what was expected.
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Figure A.6: Degree distribution of best evolved networks. Initial ring population (a); initial random
graph population (b).

Finally, figure A.7 summarizes the graph-theoretical statistical properties of the five best evolved
individuals for the ring case (left), and for the random graph case (right). It is interesting that,
although no provision was explicitly made for it, the average number of neighbors 〈k〉 ended up
being around seven, very close to six used by construction in Watts [Wat99] (remember that his
construction for small-world graphs leaves the initial 〈k〉 for a ring unchanged). Measured average
path lengths L and clustering coefficients C have expected values, given the corresponding φ values
which, without being in the random graph regime, are nevertheless not far from it for both for
initial rings and initial random graphs. In other words, the networks with good performance
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Net. Type 〈k〉 C L Φ P
ring 7.906 0.053 2.649 0.654 0.823
ring 7.611 0.053 2.703 0.670 0.820
ring 7.409 0.048 2.750 0.685 0.813
ring 7.342 0.049 2.736 0.669 0.807
ring 7.450 0.057 2.730 0.679 0.807
rand. 7.798 – 2.695 0.664 0.821
rand. 7.543 – 2.736 0.585 0.812
rand. 7.355 – 2.729 0.686 0.800
rand. 7.422 0.062 2.736 0.631 0.798
rand. 6.778 – 2.858 0.748 0.797

Figure A.7: The ten best evolved networks. 〈k〉 is the mean node degree. C is the clustering
coefficient. L is the characteristic path length. φ is the percentage of shortcuts, and P is the
network performance on the density task. Left part: ring-based evolved individuals. Right part:
random-based evolved individuals (a – in random-based graphs means that the clustering coefficient
is not computable since those graphs are allowed to have vertices with a degree smaller than 2).

constructed by Watts as well as those artificially evolved have many links rewired. It is worth
noticing that, although the evolutionary algorithm does not limit the node degree other than
establishing a maximum allowed value km = 50, all the evolved networks have a much smaller 〈k〉.
The operation of graph-CAs evolved from random conditions is qualitatively indistinguishable from
those originated from rings (see figure A.4).

A.4.2 Evolution of automata graphs for the synchronization task

To artificially evolve automata networks for the synchronization task, we have used exactly the
same genetic algorithm setting as for the density task (see section A.4), except for the fitness
function, which is the same as the one used by Das et al. [DCMH95]. We have again two starting
points for the initial population: either a population of slightly perturbed radius-two rings, or
arbitrary connected random graphs with the same number of vertices.
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Figure A.8: The φ vs performance values of the 50 best individuals found in the 50 evolutionary
runs on the synchronization task. (a) starting from rings, (b) starting from random graphs.

The results are perfectly in line with those obtained by Watts [Wat99]. Both the φ range and
the performance are wholly comparable, as can be seen comparing his figure 7.10 (p.197) and figure
A.8 in this section. For reasons of space, we omit the curves representing the evolution of φ, fitness,
and performance through generations, which show behaviors very similar to those seen in the case
of the density task (section A.4.1).
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A.5 Limiting the number of shortcuts

The network evolutions described in the previous section lead to small-world graphs with a com-
paratively high proportion of shortcuts, in agreement with the automata built by Watts. Since
our systems are just a paradigm for coordinated distributed task solving by simple automata, we
do not take into account real-world constraints such as wire length and other engineering consid-
erations that would be essential for the actual construction of the network. Nevertheless, it would
be interesting to study the evolution of the same graphs with the added requirement that φ is as
low as possible.
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Figure A.9: Density task results. (a): φ and performance curves vs. generation number for an
initial population of perturbed rings and a population of random graphs. (b): φ vs performance
values of the 50 best individuals found in the 50 evolutionary runs starting from rings and starting
from random graphs. Fitness function is f

′
.
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Figure A.10: Degree distribution of best evolved networks for the density task, using f
′

as a fitness
function. Initial ring population (a); initial random graph population (b). Mean degrees 〈k〉 are
11.76 in (a) and 9.72 in (b).

An easy way to implement this criterion is to include a term in the fitness function which, for
a given network fitness, favors networks having a lower φ value. A similar approach was used by
Sipper and Ruppin [SR97] with the aim of minimizing the wire length of their inhomogeneous CAs.
Obviously, the most general way to solve the problem would be to use multi-objective optimization.
However, the simpler technique will prove sufficient for our exploration. The new fitness function
is thus:

f
′

= f + (1− φ)× w,
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where f is the usual CA fitness, w is an empirical weight factor with w ∈ [0, 1], and f
′

is the
effective fitness. After experimenting with a few different w values, we finally used w = 0.6 in the
experiments described here, although the precise w value only makes a small difference.

As depicted in figure A.9 for the density task, we see that the introduction of a selection
pressure favoring networks with smaller φ values is effective in evolving graph-CAs that keep high
performance, equal to or better than those previously found using unconstrained evolution (see
figures A.3 and A.5 in section A.4.1 for comparison). Here also, starting from a population of
perturbed rings or random graphs does not make a big difference although, as expected, starting
from slightly perturbed rings, which have low φ, tends to favor slightly lower φ values of the
evolved networks. The φ values are around 0.3 (see figure A.9), while they are about 0.7 in the
previous case (figures A.3 and A.5). The average degrees are somewhat higher however: 11.76 and
9.72 for ring-based and random graph-based respectively. This compares favorably with Watts’
hand-constructed networks (figure 7.4, p. 192 in [Wat99]), where one can see high-performance
networks with φ around 0.3 but with average degree 〈k〉 equal to 12. It is clear thus that, to some
extent, having more neighbors on the average compensates for the reduced number of shortcut
links. The degree distribution for evolved networks is shown in figure A.10 and confirms that the
degree distribution P (k) is approximately Poissonian.

Experiments of the same type on the synchronization task (not shown here for reasons of space),
give similar results, in the sense that high-performance graph-CAs are obtained easily by artificial
evolution. The average values of φ starting from perturbed rings and random graphs are 0.19 and
0.34 respectively. The degree distribution is again approximately binomial and the mean degrees
〈k〉 are 13.06 for ring-based individuals, and 10.04 for random-based ones.

A.5.1 Task flexibility of the evolved networks
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Figure A.11: Performance vs φ of networks evolved for the density task on both density and
synchronization. Ring-based networks (a), random graph-based networks (b).

As we have seen, it is much easier to evolve small-world networks rather than regular lattices
for both tasks. This is also manifest in the fact that networks evolved specifically for one task
yield good performance when used for the other one. As noted by Watts [Wat99], the two tasks
are nearly identical and thus this finding is not surprising. Furthermore, this remains true for the
whole range of φ values for which automata have been evolved or generated by hand.

For instance, Figure A.11 shows how networks evolved for the density task using φ as a second
objective (see previous section) are also well-suited for synchronization (of course, upon changing
the rule). The opposite is also true: namely, that networks evolved for the synchronization task
can be used for solving the density problem.
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A.6 Robustness in the presence of random faults

Noisy environments are the rule in the real world. Since these automata networks are toy examples
of distributed computing systems, it is interesting and legitimate to ask questions about their fault-
tolerance aspects. A network of automata may fail in various ways when random noise is allowed.
For instance, the cells may fail temporarily or they may die altogether; links may be cut, or both
things may happen. In this section, we will compare the robustness of standard lattice-CAs and
small-world CAs with respect to a specific kind of perturbation, which we call probabilistic updating.
It is defined as follows: the CA rule may yield the incorrect output bit with probability pf , and
thus the probability of correct functioning will be (1 − pf ). Furthermore, we assume that errors
are uncorrelated. This implies that, for a network with N vertices, the probability P (N,m) that
m cells (vertices) are faulty at any given time step t is given by

P (N,m) =
(
N

m

)
pf
m (1− pf )N−m

i.e. it is binomially distributed. It should be noted that we do not try to correct or compensate for
the errors, which is important in engineered system but very complicated and outside our scope.
Instead, we focus on the “natural” fault-tolerance and self-recovering capabilities of the systems
under study.
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Figure A.12: Hamming distance (y-axis) vs fault probability (x-axis) for the density problem (full
line), and the synchronization problem (dashed line). The curves are averages over 103 distinct
initial configurations.

To observe the effects of probabilistic updating on the CA dynamics, two initially identical
copies of the system are maintained. One evolves undisturbed with pf = 0, while the second
is submitted to a nonzero probability of fault. We can then measure such things as Hamming
distances between unperturbed and faulty configurations, which give information on the spreading
of damage (e.g., [STB96] where the case of synchronous, nonuniform CAs is examined). Figure A.12
shows that, for the density task, the amount of disorder is linearly related to the fault probability.
This is an excellent result when compared with ring CAs where already at pf = 0.001 the average
Hamming distance is about 20 [STB96], and tends to grow exponentially. At pf = 0.1 it saturates
at about 95, while it is still only about 20 for the small-world CA.

This striking difference is perhaps more intuitively clear by looking at figures A.13 and A.14.
The faulty CA depicted is figure A.14 is the best one obtained by artificial evolution in [MCH94,
MHC93] and it is called EvCA here. It is clear that even small amounts of noise are able to
perturb the lattice CA so much that either it classifies the configuration incorrectly (c), or it
cannot accomplish the task any longer (d) as pf increases further. For the same amount of noise
the behavior of the small-world CA is much more robust and even for pf = 0.01 the fixed point
configuration is only slightly altered. Note also that the EvCA configuration has ρ0 = 0.416
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(a) (b)

(c) (d)

Figure A.13: Typical behavior of a small-world CA under probabilistic updating. The density ρ0

is 0.490 and the probabilities of fault pf in (a), (b), (c), and (d) are, respectively, 0, 0.0001, 0.001,
and 0.01.

whereas the one used in the small-world CA has ρ0 = 0.490, and it is thus more difficult to classify.
For completeness, we note that in a previous study [TV01] we investigated the behavior of evolved
asynchronous lattice CAs for the density task under probabilistic noise. We found that, while
asynchronous CAs are much more fault-tolerant than synchronous ones, their robustness is not as
good as that of small-world CAs and their performance is significantly lower.

Looking again at figure A.12 we see that the behavior of the synchronization task (dashed line)
under noise is poorer. In fact, it is not possible to maintain strict synchronization in the presence of
faults. The system manages to limit the damage for low fault probabilities but it goes completely
out of phase over pf = 0.2. For higher probabilities the distance stabilizes around 75 (i.e. half of
the cells on the average are in the wrong state). In spite of this, the behavior is still much better
that the one observed for ring CAs, where at pf = 0.01 the Hamming distance is already about 55
[STB96], while it is only about 8 in the small-world CA.

A.7 Conclusions

Starting from the work of Watts on small-world cellular automata, we have used an evolutionary
algorithm to evolve networks that have similar computational capabilities. Without including
any preconceived design issue, the evolutionary algorithm has been consistently able to find high-
performance automata networks in the same class of those constructed by Watts. In addition, by
giving some evolutionary advantage to low-φ networks, the evolutionary process has been able to
find networks with a low-φ and excellent performance for both tasks.

These results have been easy to find even though the evolutionary algorithm is an unsophis-
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(a) (b)

(c) (d)

Figure A.14: Typical behavior of EvCA [MHC93] under probabilistic updating. The density ρ0 is
0.416 and the probabilities of fault pf in (a), (b), (c), and (d) are, respectively, 0, 0.0001, 0.001,
and 0.01.

ticated one. This means that the space of small-world networks is “solutions rich”, which is the
contrary of what one obeserves in the rule space for standard ring CA, where evolving good rules
has proved difficult. The power of artificial evolution is seen in the fact that, even starting from
a population of completely random graphs, the algorithm finds automata in the same class. This
result is an indication that small-world network automata in this range have above average dis-
tributed computation capabilities, although we only studied two problems of this type and any
generalization would be unwarranted at this stage. Not only are these networks extremely efficient,
they also feature above-average robustness against transient probabilistic faults. A comparison
with standard lattice CAs shows that small-world CA are much less affected by random noise.
The difference is striking, and could be one of the reasons that explain the ubiquity of irregular
“natural” collective computational systems with respect to regular structures.

It is also clear at this point that we have not used the power of artificial evolution at its best.
In particular, we adopted the fixed rules of Watts and let the networks evolve. It would probably
pay if we would let the rule evolve together with the network topology. This has been suggested by
Watts [Wat99] and has previously be attempted by Sipper and Ruppin with good results [SR97].
Further work along these lines is needed. We also plan to study the collective computational
capabilities of other small-world graph structures, especially scale-free networks.
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Abstract

We investigate the performances of collective task-solving capabilities and the robustness of com-
plex networks of automata using the density and synchronization problems as typical cases. We
show by computer simulations that evolved Watts–Strogatz small-world networks have superior
performance with respect to several kinds of scale-free graphs. Besides, we show that Watts–
Strogatz networks are as robust in the face of random perturbations, both transient and perma-
nent, as configuration scale-free networks, while being widely superior to Barabási–Albert networks.
This result differs from information diffusion on scale-free networks, where random faults are highly
tolerated by similar topologies.

B.1 Introduction

Following the pioneering investigation of Watts and Strogatz [WS98], in recent years there has
been substantial research activity in the science of networks, motivated by a number of innovative
results, both theoretical and applied. For our purposes in this paper, a network is simply a
connected graph G = (V,E), where V is a set of vertices (nodes) and E is a set of undirected
edges (links) between nodes in V . Networks are a central model for the description of countless
phenomena of scientific, social and technological interest. Typical examples include the Internet,
the World Wide Web, social acquaintances, electric power supply networks, biological networks,
and many more. The key idea is that most real networks, both in the natural world as well as
in man-made structures, have mathematical properties that set them apart from regular lattices
and random graphs, which were the two main topologies studied until Watts and Strogatz’s work.
Inspired by previous qualitative observations made by social scientists, in their 1998 paper [WS98],
Watts and Strogatz introduced an algorithmic construction for small-world networks in which pairs
of vertices are connected by short paths through the network. The existence of short paths between
any pair of nodes has been found since then in real networks as diverse as the Internet, airline
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routes, the World Wide Web, neural, genetic, and metabolic networks, citation and collaboration
networks, and many others [New03]. The presence of short paths is also a property of standard
random graphs as those constructed according to the Erdös-Rényi model [ER59b], but what sets
real networks apart from random graphs is a larger clustering coefficient, a measure that reflects
the locality of a structure.

The topological structure of a network has a marked influence on the dynamical processes that
may take place on it. Regular and random networks have been thoroughly studied from this point
of view in many disciplines. For instance, the dynamics of lattices and random networks of simple
automata have received a great deal of attention [Gar95, Kau93]. On the other hand, there are very
few studies of the computational properties of automata networks of the small-world type. Notable
exceptions are Watts’ book [Wat99], and a few recent articles on automata on scale-free and other
complex networks [AC03a, ADGM+04, MMT05, GTRP06]. In these works the automata networks
were designed by a prescribed algorithm. Recently, we have shown that evolutionary algorithms
can be an effective way for obtaining high-performance computational networks in the small-world
region without explicit prior design [DGT06, TGD04, TGD05].

In this work we study in detail some computational behaviors of automata networks of the
small-world and scale-free types, extending the results presented in [TGD04, TGD05]. As a typical
example of collective computational tasks we take the density task and the synchronization task,
to be described below. As natural computational systems often have a degree of stochasticity, it is
particularly important to investigate their behavior in a noisy environment. In the present work we
shall thus focus on the study of the dynamical properties of those generalized automata networks
when faulty behavior can arise. We shall see the behavior in the presence of perturbations strongly
depends on the network topology, and we shall draw some conclusions on the suitability of these
topologies for collective computation.

In the following section we give a brief account of Watts–Strogatz small-world and scale-free
networks. Then an introduction to generalized cellular automata is presented, followed by a de-
scription of the computational tasks and their performance measures. Next we discuss the exper-
imental performance of generalized automata networks on the tasks, with an emphasis on their
fault tolerant aspects. Finally, we present our conclusions and ideas for future extensions.

B.2 Small-World and Scale-Free Graphs

Although the following material should be well known, we include a succinct description for the
sake of completeness so as to make the paper more self-contained. For more details, the reader is
referred to the original works.

The Watts–Strogatz Model. Following Watts and Strogatz [WS98], a small-world graph can
be constructed starting from a regular ring of N nodes in which each node has k neighbors (k � N)
by simply systematically going through successive nodes and “rewiring” each edge (also called link
here) with a certain probability β. When an edge is deleted, it is replaced by an edge to a randomly
chosen node. If rewiring a link would lead to a duplicate edge, it is left unchanged. This procedure
will create a number of edges, called shortcuts, that join distant parts of the lattice. Shortcuts
are the hallmark of small worlds. While the average path length, i.e. the average value of all
pairs shortest paths between nodes scales logarithmically with the number of nodes in a random
graph, in Watts-Strogatz graphs it scales approximately linearly for low rewiring probability but
decreases very quickly and tends towards the random graph limit as β increases. This is due to
the progressive appearance of shortcut edges between distant parts of the graph, which obviously
contract the path lengths between many vertices. However, small world graphs typically have a
higher clustering coefficient than random graphs, and a degree distribution P (k) close to Poissonian.
The clustering coefficient C of a node is a measure of the probability that two nodes that are its
neighbors are also neighbors among themselves. The average 〈C〉 is the average of the Cs of all
nodes in the graph.
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The Barabási–Albert Model (BA). Albert and Barabási were the first to realize that many
real networks grow incrementally and that their evolving topology is determined by the way in
which new nodes are added to the network. They proposed an extremely simple model based on
these ideas [AB02]. One starts with a small clique, a cluster of fully connected vertices, of size m0.
At each successive time step a new node is added such that its m ≤ m0 edges link it to m nodes
already in the graph. When choosing the nodes to which the new nodes connect, it is assumed that
the probability π that a new node will be connected to node i depends on the current degree ki of
i. This is called the preferential attachment rule. Nodes with already many edges are more likely
to be chosen than those that have few. The probability π(ki) of node i to be chosen is given by
π(ki) = ki/

∑
j kj , where the sum is over all nodes already in the graph. The model evolves into

a stationary network with power-law probability distribution for the vertex degree P (k) ∼ k−γ ,
with γ ∼ 3, which justifies the name scale-free. As for Watts–Strogatz small-worlds, scale-free
graphs have short average path length and clustering coefficients that are higher than those of the
corresponding random graphs with comparable number of vertices and edges.

The Configuration Model (CM). Tackling the generation of scale-free graphs top-down, the
Configuration Model defines beforehand the power-law P (k) = ak−γ + c according to which the
degrees will be distributed in the graph [BC78, MSA03]. Clearly, the degree distribution now
depends on the γ values set for the experiment, in our case γ ∈ {1.5, 2.0, 2.5, 3.0}. In this manner,
we know before generating the graph how many vertices of each degree we will have. This model has
the advantage over the Barabási–Albert model that it will tend to minimize the degree correlations
between sets of nodes due to the sequential manner in which the nodes are connected in the
algorithm above.

In order to compare results with the performance and fault tolerance of Watts–Strogatz small-
worlds and BA scale-free graphs, these CM scale-free networks must have comparable average
degrees of 〈k〉 ∈ {6, 12}. This is achieved by attributing a number of stubs e (the end of an
edge) to each vertex following the power-law degree distribution described above. A small number
of stubs will be left unattributed, compared to the 〈k〉 × N to be attributed. Then, following
[MSA03], we randomly attribute the unallocated stubs to the remaining vertices, thus achieving
the desired average degree. This allocation process may lead to duplicated edges, therefore it
is sometimes necessary to reallocate some stubs, thus derogating significantly with the degree
distribution. Figure B.1 (a) shows a typical degree distribution of scale-free graphs obtained with
this algorithm. Clearly, the intended power-law distribution is partially lost in favor of the fixed
average degree 〈k〉.

The Modified Configuration Model (MCM). In order for the degree distribution to remain
as close as possible to the predefined power-law, we introduce here a slight modification to the
previous algorithm. The first step of distributing stubs is identical, but instead of distributing the
remaining ones at random, we try to increase only by one at a time the number of nodes with
a degree k, making sure it remains below the number of nodes with a degree k − 1 according to
the given power-law distribution. Figure B.1 (b) shows typical degree distribution of scale-free
graphs obtained with this Modified Configuration Model algorithm. Clearly, the distribution is
now closely following a power-law.

B.3 Cellular and Networked Automata

Cellular Automata (CAs) are dynamical systems in which space and time are discrete. A standard
CA consists of a finite or infinite d-dimensional regular lattice of cells, each of which can take on a
value from a finite, typically small, set of values. The value of each cell at time step t is a function
of the values of a small local neighborhood of cells at time t − 1. The cells update their states
simultaneously according to a given local rule.1

1Asynchronous CAs can also be considered, though they will not be treated in this paper.
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(a) (b)

Figure B.1: Degree distribution of scale-free graphs with γ = 2.5, averaged out over 50 networks.
(a) graphs built using the original Configuration Model algorithm 〈k〉 = 12 and (b) graphs gener-
ated with the Modified Configuration Model algorithm 〈k〉 = 12. The dashed line represents the
power-law curve to be fit as closely as possible.

Formally, a cellular automaton A is a quadruple

A = (Σ, G, d, f),

where Σ is a finite set of states, G is the cellular neighborhood, d ∈ Z+ is the dimension of A, and
f is the local cellular interaction rule, also referred to as the transition function.

Given the position of a cell, i, i ∈ Zd, in a regular d-dimensional uniform lattice, or grid (i.e., i
is an vector of integers in a d-dimensional space), its neighborhood G is defined by:

Gi = {i, i + r1, i + r2, . . . , i + rn−1},

where n is a fixed parameter that determines the neighborhood size, and rj is a fixed vector in the
d-dimensional space.

The local transition rule f : Σn → Σ maps the state si ∈ Σ of a given cell i into another state
from the set Σ, as a function of the states of the cells in the neighborhood Gi. In uniform CAs
f is identical for all cells, whereas in non-uniform ones f may differ between different cells, i.e., f
depends on i, fi.

For a finite-size CA of size N (such as those treated herein) a configuration of the grid at time
t is defined as

C(t) = (s0(t), s1(t), . . . , sN−1(t)),

where si(t) ∈ S is the state of cell i at time t. The progression of the CA in time is then given by
the iteration of the global mapping, also called evolution operator F

F : C(t)→ C(t+ 1), t = 0, 1, . . .

through the simultaneous application in each cell of the local transition rule f . The global dynamics
of the CA can be described as a directed graph, referred to as the CA’s phase space.

In this paper we focus on one-dimensional binary CAs, i.e. Σ = {0, 1}. In this case f is a
function f : {0, 1}n → {0, 1} and the neighborhood size n is usually taken to be n = 2r + 1 such
that:

si(t+ 1) = f(si−r(t), ..., si(t), ..., si+r(t)),

where r ∈ Z+ is a parameter, known as the radius, representing the standard one-dimensional
cellular neighborhood. The domain of f is the set of all 2n n-tuples. For finite-size grids, spatially
periodic boundary conditions are frequently assumed, resulting in a circular grid; formally, this
implies that cellular indices are computed modulus N .

To visualize the behavior of a one-dimensional CA one can use a two-dimensional space-time
diagram, where the horizontal axis depicts the configuration C(t) at a certain time t and the
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vertical axis depicts successive time steps, with time increasing down the page (for example, see
Figure B.2).

We now extend the previous concepts and introduce the term of Generalized Automata Networks
(GANs). With respect to standard CAs, the most important change concerns the network topology:
whereas in CAs this topology is a d-dimensional regular lattice, GANs can be built on any connected
graph. Let G = (V,E) be a graph, where V is a set of vertices and E is a set of edges. E is a
binary relation on V ; it is either symmetric if edges are unordered pairs, as in undirected graphs,
or asymmetric if edges are ordered pairs, as in directed graphs. Both cases arise in GANs. With
these definitions, a GAN on V is a triple (G,Σ, {fi|i ∈ V }). The only change with respect to
lattice synchronous CAs is in the local transition function f which now depends on the degree ki of
vertex i, i.e. the number of neighbors can be different for different i ∈ V . This can be formalized
as: fi : Σki → Σ. As in the case of CAs, non-uniform GANs can be defined by allowing fi to
depend not only on the degree ki of vertex i, but also on the position of i in the graph G. Likewise,
asynchronous GANs can be defined by explicitly stating a sequence of vertex updates, including
random sequences. In this paper we deal exclusively with two-state, uniform, synchronous GANs.

B.4 Generalized Automata Networks Computations

The design, evolution, and performance evaluation of one-dimensional CAs that approximately
perform the density and the synchronization tasks has a long history; an excellent review appears
in [CMD03].

The density Task. The density task is a prototypical distributed computational problem for
binary CAs. For a finite one-dimensional CA of size N it is defined as follows. Let C(0) be the
initial configuration of the CA, i.e. the sequence of bits that represents the state of each automaton
at time 0, and let ρ0 be the fraction of 1s in the initial configuration. The task is to determine
whether ρ0 is greater than or less than 1/2. If ρ0 > 1/2 then the CA must relax, after a number
of time steps of the order of the grid size N , usually 2N , to a fixed-point configuration of all 1’s,
otherwise it must relax to a fixed-point configuration of all 0’s. Here N is set to 149, the value
that has been customarily used in research on the density task (if N is odd one avoids the case
where ρ0 = 0.5 for which the problem is undefined); for a pictorial example, see Figure B.2 (a).

This computation is trivial for a computer with a central control: just scanning the cell array
and adding up the number of, say, 1 bits will provide the answer in O(N) time. However, it is
nontrivial for a small radius one-dimensional CA since such a CA can only transfer information
at finite speed relying on local information exclusively, while density is a global property of the
configuration of states. It has been shown that the density task cannot be solved perfectly by a
uniform, two-state CA with finite radius [LB95], although a slightly modified version of the task
can be shown to admit perfect solution by such an automaton [CST96], or by a combination of
automata [Fuk97].

The performance of a CA rule on the density task is defined as the fraction of correct classifi-
cations over n = 104 randomly chosen initial configurations (ICs). These are sampled according to
a binomial distribution among the 2N possible binary strings i.e., each bit is independently drawn
with probability 1/2 of being 1. Clearly, this distribution is strongly peaked around ρ0 = 1/2
and thus making a difficult case for the CA to classify. The best CAs found to date either by
evolutionary computation or by hand have performances around 0.8 [CMD03].

CAs performing the density task classify each given initial configuration (IC) in one of the
following categories: correctly classified, incorrectly classified or not converged, if the CA has not
relaxed to a fixed point.

Using his small-world construction, and thus relaxing the regular lattice constraint, Watts
[Wat99] has been able to easily obtain GANs with performance around 0.85, with the same mean
connectivity 〈k〉 as in the regular CA case. He used a majority rule for the automata: at each time
step, each node will assume the state of the majority of its neighbors in the graph. In case of a
tie, when the degree is even, the next state is assigned at random with equal probability. When
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used in a one-dimensional CA this rule has performance P ' 0 since it gives rise to stripes of 0s
and 1s that cannot mix at the borders.

In [TGD04] we showed that such high-performance small-world networks can be obtained au-
tomatically and easily with a simple evolutionary algorithm, starting from either regular or com-
pletely random graphs (see Section B.4.1).

(a) (b)

Figure B.2: Time evolution of two binary CAs: cell states are represented horizontally (black
stands for 1). Time increases down the page. The initial density of ones is 0.416. (a) Solving the
density task. (b) Solving the synchronization task. The size of the automata is N = 149.

The Synchronization Task. The one-dimensional synchronization task was introduced in
[DCMH95]. In this task the CA, given an arbitrary IC, must reach, within M ' 2N time steps,
a final configuration that oscillates between all 0s and all 1s on successive time steps. Figure B.2
(b) depicts the space-time diagram of a CA that solves the task.

As with the density task, synchronization also comprises a non-trivial computation for a small-
radius CA, and it is thus extremely difficult to come up with CA rules that, when applied syn-
chronously to the whole lattice produce a stable attractor of oscillating all 0s and all 1s configu-
rations. Das et al. [DMC94] were able to automatically evolve very good ring CA rules of radius
three for the task by using genetic algorithms. Sipper [Sip97] did the same for quasi-uniform CAs,
i.e. CAs with a few different rules instead of just one, attaining excellent performance for radius-
one CAs. The performance of a CA on this task is evaluated by running it on randomly generated
ICs, uniformly distributed over densities in the range [0, 1], with the CA being run for M ' 2N
time steps. Evolved CAs for this task have performance P close to 1 (see Section B.4.1).

A simple variant of the majority rule used above for the density task works also for the syn-
chronization task. The rule is called the “contrarian” rule [Wat99], and it operates in the same
way as the majority rule, except that it gives the opposite state as output.

This time, CAs performing the synchronization task classify each given IC in one of the fol-
lowing 2 categories: converged or not converged. Compared to the density task, this problem is
less complex because the CA only has to relax to a fixed point, there is no correct or incorrect
classification.

B.4.1 Tasks Performance on Generalized Automata Networks

Tasks Performance on Evolved Small-World Networks. In previous work [TGD04, TGD05]
we used an evolutionary algorithm to evolve GANs of size N = 149 that have similar computational
capabilities as those found by Watts [Wat99]. Using the majority rule for the nodes (see above), we
evolved network topologies starting from populations of slightly modified regular one-dimensional
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lattices and from populations of random graphs. For the evolutions, we have used two different
fitness functions in order to obtain two different classes of networks, with low and high number of
shortcuts (captured by the measure of the φ value, which is the fraction of edges in a graph that are
shortcuts), and with different average degrees. Without including any preconceived design issue,
the evolutionary algorithm was consistently able to find high-performance automata networks in
the same class of those constructed by Watts (see Figure B.3). For details of the evolutionary
algorithm, see [TGD05]. Figure B.4 depicts the performance of Evolved Small-World CA networks
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Figure B.3: The φ - performance values on the density task of the 50 best individuals found by
evolution starting from rings and random graphs using a fitness function that favors low φ networks,
thus obtaining networks comparable with Watts’ hand-constructed networks with 〈k〉 = 12.

on the density and the synchronization tasks (performance is defined in section B.4). We can see
the performance of networks evolved with pressure on the φ. In the robustness studies of section
B.5 of the present article, we only investigate the low-φ networks.

The difference in performance between the two tasks is explained by the fact that where the
CA has reached a fixed point but with the wrong value on the density task, this case is correct
for the synchronization task and is counted in the performance. Clearly, the two tasks are very
similar in their rules, performance of these evolved structures is nevertheless excellent considering
the fact that the rules for both tasks are extremely simple and do not allow regular lattice CAs to
perform the tasks at all.

Tasks Performance on Scale-Free Networks. In accordance to the Barabási–Albert model,
we constructed networks of size N = 149 to be used as support for CA computations. Knowing
that the average degree must remain comparable to our work on the small-world graphs [TGD05],
we generated scale-free graphs with 〈k〉 = {6, 12}. Following the model, we then defined the range
of m0 values for each k using the derived equation for m. These values of m0 must respect the
constraints m ≤ m0 and m ≥ 1 to ensure the graph is connected. For 〈k〉 = 6, m0 ∈ [4, 25] and for
〈k〉 = 12, m0 ∈ [7, 40]. We assure that even though m is not always an integer, the exact global
number of edges in the graph, thus 〈k〉, is respected in all cases.

Results as represented in Figure B.5 show that performance on the density task of CAs mapped
on BA networks are above 0.7 for networks with a smaller m0. When a certain threshold is reached
(m0 about 14 for 〈k〉 = 6 and about 35 for 〈k〉 = 12), performances drop dramatically. This means
that the more the structure of the scale-free network become star-like, with a unique oversized
cluster and only small satellites weakly connected (m → 1), the information circulates with more
difficulties. One can conclude from these results that scale-free network topologies are less suitable
than Watts–Strogatz small worlds as a substrate for the density task. The results are even worse
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Figure B.4: The φ - performance values on the synchronization task of the 50 best individuals found
by evolution starting from rings. (a): using a fitness function that does not favor low φ networks,
thus obtaining networks comparable with Watts’ hand-constructed networks with 〈k〉 = 6. (b):
using a fitness function that favors low φ networks, thus obtaining networks comparable with
Watts’ hand-constructed networks with 〈k〉 = 12.

than those obtained in rings [CMD03] using specialized rules.
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Figure B.5: (a) Performance vs cliquesize of scale-free networks (build on the BA) on the density
task. The circles represent the performance of networks with an average connection 〈k〉 = 6
and triangles 〈k〉 = 12. On the right, the average percentages of correctly classified ICs (black),
incorrectly classified ICs (dark gray) and unclassified ICs (light gray) for sizes of the initial clique
in [5,20] by scale-free networks with (b) 〈k〉 = 6 and (c) 〈k〉 = 12. Results are averages over 50
graph realizations.

Figure B.6 shows the performance of the BA scale-free CA networks on the synchronization
task. As expected, the performance (in black) is very close to that obtained on the density task,
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it is approximately the sum of the proportion of correctly (black) and incorrectly (dark gray)
classified showed in Figure B.5 (b) and (c).
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Figure B.6: BA scale-free graphs on the synchronization task. Average percentages of classified
ICs (black) and unclassified ICs (light gray) for sizes of the initial clique in [5,20] with (a) 〈k〉 = 6
and (b) 〈k〉 = 12. Results are averages over 50 graph realizations.

In the case of the BA scale-free CA networks, the performance on both tasks does not reach
that of our evolved Watts–Strogatz small-world CA networks, where the performance is constantly
above 0.8.

The performance on the density task of scale-free CA networks obtained using the CM algorithm
with respect to different values of γ ∈ {1.5, 2.0, 2.5, 3.0} is shown in Figure B.7. To compare
results with previous small-world and scale-free networks, we constructed networks with 〈k〉 = 6
and 〈k〉 = 12 (see Figure B.7). Similarly to Figure B.7, Figure B.8 shows the performance of
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Figure B.7: Configuration Model CA networks on the density task. Average percentages of clas-
sified ICs (black), wrongly classified ICs (dark grey), and unclassified ICs (light gray) for values
of γ ∈ {1.5, 2.0, 2.5, 3.0} with (a) 〈k〉 = 6 and (b) 〈k〉 = 12. Results are averages over 50 graph
realizations.

scale-free CA networks obtained using the MCM algorithm with respect to different values of
γ ∈ {1.5, 2.0, 2.5, 3.0} in the case of the density task. We note that in both cases of CM scale-free
CA networks, performance remains below that of the Barabási–Albert scale-free networks. More
importantly, we see that for an average degree of 〈k〉 = 6 performance of networks with γ = 1.5
and γ = 2.0 are very poor, whereas it remains roughly constant for 〈k〉 = 12 and all values of γ.

All the same performance measurements were performed on the synchronization task, and, as
expected, performance in all cases are closely comparable to the sum of correctly and incorrectly
classified ICs on the density task as shown in Figures B.7 and B.8. To save space, we do not show
these results in this work.

Towards Robust Network Based Complex Systems Christian Darabos



58
ARTICLE B. PERFORMANCE AND ROBUSTNESS OF CELLULAR AUTOMATA

COMPUTATION ON IRREGULAR NETWORKS

0%

20%

40%

60%

80%

100%

1.5 2.0 2.5 3.0

gamma

cl
as
si
fi
ca
ti
o
n

0%

20%

40%

60%

80%

100%

1.5 2.0 2.5 3.0

gamma

cl
as
si
fi
ca
ti
o
n

(a) (b)

Figure B.8: Modified Configuration Model CA networks on the density task. average percentages
of classified ICs (black), wrongly classified ICs (dark grey), and unclassified ICs (light gray) for
for values of γ ∈ {1.5, 2.0, 2.5, 3.0} with (a) 〈k〉 = 6 and (b) 〈k〉 = 12. Results are averages over 50
graph realizations.

B.5 The Effects of Noise and Failures

Noisy environments are the rule in the real world. Since automata networks are toy examples of
distributed computing systems, it is interesting and legitimate to ask questions about their fault
tolerance aspects. A network of automata may fail in various ways when random noise is allowed.
For instance, the cells may fail temporarily or they may die altogether; edges may be cut, or both
things may happen. In this section, we shall compare the robustness of standard lattice-CAs to
that of small-world and scale-free CAs with respect to a specific kind of transient perturbation and
permanent failures, which we respectively call probabilistic updating and edge failure.

B.5.1 Probabilistic Updating Perturbations

Probabilistic faults are defined as follows: the rule of each cell of a GAN may yield the incorrect
output bit with probability pf , and thus the probability of correct functioning will be (1 − pf ).
Furthermore, we assume that errors are uncorrelated. This implies that, for a network with N
vertices, the probability P (N,m) that m cells (vertices) are faulty at any given time step t is
binomially distributed. It should be noted that we do not try to correct or compensate for the
errors, which is important in engineered system but very complicated and outside our scope.
Instead, we focus on the “natural” fault tolerance and self-recovering capabilities of the systems
under study.

To observe the effects of probabilistic updating on the CA dynamics, two initially identical
copies of the system are maintained. One proceeds undisturbed with pf = 0, while the second
is submitted to a nonzero probability of fault. We can then measure such things as Hamming
distances between unperturbed and faulty configurations, which give information on the spreading
of damage [STB96].

Evolved Small-World Networks. As described in Section B.4, caption of Figure B.3, we have
extracted the best individual of 50 independent evolutionary runs for both considered starting
points (ring-based and random-based). Individuals had evolved towards shortcut proportions φ
between 0.15 and 0.35. We have studied the performance (or classification abilities) variation
of these networks under probabilistic updating for fault probabilities fp evenly scattered over [0,
0.3]. Figure B.9 shows how percentages of initial configurations that are correctly classified (in
black), incorrectly classified (in dark gray), and not classified at all (in light gray) change as the
fault probability increases. These percentages are averaged out over all contributing individuals
to that classification category. Figure B.9(a) depicts the behavior of networks having evolved
from perturbed rings, whereas Figure B.9(b) shows that of networks having emerged from random
networks.
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As pictured in Figure B.9 although the fault probability increases rapidly, our evolved networks
show interesting fault tolerance capabilities on the density task up to 10% of faulty outputs. More-
over we note that the proportion of correctly classified ICs compared to the incorrectly classified
ones is around 10:1, and this ratio remains almost constant despite the increase in the fault proba-
bility. This is especially interesting considering that identifying unclassified ICs is trivial (2N steps
and no convergence to a steady state) whereas distinguishing correct from incorrect classification
is impossible without knowing the solution beforehand. We conclude that although an increasing
number of ICs will not reach a fixed point, the ratio between correctly classified and misclassified
ICs remains comparable.
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Figure B.9: Small-world CAs on the density task. Percentages of correctly classified (black),
incorrectly classified (dark gray) and unclassified (light gray) ICs with increasing fault probability
for (a) ring-based networks and (b) random-based networks evolved using a fitness function favoring
low φ values (φ(a) = 0.26 and φ(b) = 0.34), thus 〈k〉 = 12. Results are averages over 50 graph
realizations.

Ring-based Random-based
pf correct steps wrong steps correct steps wrong steps
0.0 5.33 [0.27] 8.11 [0.41] 6.35 [0.53] 9.43 [0.73]
0.05 5.78 [0.56] 9.03 [0.92] 6.88 [0.90] 10.78 [1.25]
0.10 6.46 [0.95] 10.89 [1.73] 7.40 [1.56] 13.14 [2.82]
0.15 7.23 [1.68] 12.04 [2.79] 7.98 [2.50] 15.03 [5.63]
0.20 7.34 [2.28] 14.29 [7.52] 11.66 [14.03] 26.86 [20.55]
0.25 20.33 [33.15] 31.94 [38.75] 19.35 [23.82] 41.67 [32.49]
0.30 53.60 [66.11] 81.71 [63.57] 84.05 [70.58] 120.98 [79.07]

Figure B.10: On the density task, the number of time steps necessary to relax to a fixed point for
increasing values of fault probability. Column 2 and 3 represent data for ring-based networks and
column 4 and 5 for random-based networks 〈k〉 = 12. The value in square brackets is the standard
deviation over the 50 networks of the evaluation.

Table B.10 shows that faultless systems converge in average to a solution in less than ten time
steps. This fast convergence is mainly due to the presence of shortcuts through the network. We
also see that the number of time steps necessary to reach a fixed point increases exponentially as
the fault probability grows. We note in Table B.10 that correctly classified ICs are consistently
found in significantly less times steps than incorrectly classified ones. As shown by the standard
deviation (in square brackets), this difference is significant for values of fault probabilities up to
pf = 0.1, whereas for higher values the results loose their significance. In other words, it would be
safe to assume for faults up to 10% that by taking all the converged solutions and discarding the
1/10 that had the slowest convergence, we would be left with almost all correctly classified ICs.

For the synchronization task, results are almost the same and, exactly as expected, the perfor-
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mance of our evolved networks under probabilistic faults is approximately the sum of the correctly
and incorrectly classified ICs for the density problem. Results are shown in Figure B.11. In addi-
tion, the number of steps necessary to relax to a fixed point, although it follows the same tendency
as for the density task, is not relevant here to differentiate between correctly and incorrectly clas-
sified ICs, as there is no such case anymore. Lastly, we wish to point out for completeness that
regular lattice CAs are extremely fragile, and show almost no fault tolerance [TGD05].
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Figure B.11: Evolved small-world CAs on the synchronization task. Percentages of ICs for which
the CA solved the task as the fault probability increases for networks starting from a regular
structure and starting from random structures. In both cases, 〈k〉 = 12. Results are averages over
50 graph realizations.

Barabási–Albert Scale-Free Networks. To investigate the effects of noise on scale-free au-
tomata networks we have used populations of 50 scale-free networks to perform the density task
for 7 values of fault probability fp ∈ [0.0, 0.3] equally scattered over the interval.

The performance under noise of the above scale-free automata networks is shown in Figure B.12.
Figure B.12(a) shows classification details for scale-free networks with an average degree of 〈k〉 = 6
and an initial clique size m0 = 5 and Figure B.12(b) for m0 = 10 and 〈k〉 = 12 , for increasing fault
probability. These clique size have been chosen because they offer the maximum performance in
a noiseless environment (see Section B.4.1). The two cases present the same qualitative behavior.
The ratio of correctly to incorrectly classified ICs is close to 1:5. Figure B.12 shows that as the
fault probability increases, the ability of performing the collective task is lost. When one compares
these results to the small-world case in the above section, we conclude that the fault tolerance is
significantly lower in the scale-free case.

These results raise an interesting issue concerning the fault tolerance of scale-free graphs. In-
deed, a recent well known result states that scale-free graphs are extremely robust against random
node failures, while they have been shown to be fragile when the failures concern highly connected
nodes (hubs), a fact that is particularly relevant for the Internet [AJB00]. Thus, scale-free networks
are good for information dissemination, i.e. when what counts is that alternative paths remain
available in spite of random noise. However, we find that the same structures do not offer such
resilience when a task is to be solved in a collective, coordinated way, such as the density task
studied here; the results would be even worse if the faults were unrecoverable. We have performed
similar computer experiments with scale-free graphs starting from larger cliques. The results, not
shown to save space, confirm the findings described above. Again, for fault of small magnitude
(pf < 0.1) the number of steps necessary to reach a fixed point is significantly different in the
case of correctly and incorrectly classified ICs, thus this measure can help determine whether the
classification is correct or not. The qualitative conclusion that we reach from this result is that
certain topologies, here Watts–Strogatz networks, perform better and are more robust under fluc-
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Figure B.12: BA CAs on the density task. Percentages of correctly classified (black), incorrectly
classified (dark gray) and unclassified (light gray) ICs as the fault probability increases for (a) an
initial clique size of 5 and 〈k〉 = 6 and (b) and initial clique size of 10 and 〈k〉 = 12. Results are
averages over 50 graph realizations.

tuating noise than BA scale-free graphs for collective tasks such as the two problems used here.
Whether this result generalizes to other similar tasks is currently unknown but would be certainly
interesting to investigate.

The fault tolerance of these networks on the synchronization task is comparable to that of the
density task described above, as previously the performance in this case evolves as the sum of the
correctly and incorrectly classified ICs. Those results are shown in the Figure B.13 below.
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Figure B.13: BA CAs on the synchronization task. Percentages of ICs for which the CA solved the
task as the fault probability increases for an initial clique size of 5 and 〈k〉 = 6 and initial clique
size of 10 and 〈k〉 = 12. Results are averages over 50 graph realizations.

Configuration Model. As shown above, BA scale-free CA networks have a relatively poor tol-
erance to probabilistic updating perturbation when solving a collective task. In order to determine
if this fact is due to an intrinsic property of scale-free graphs or to the algorithm used to con-
struct them and to the correlations that are present in the BA model, we have built 50 networks
using the CM algorithm described in Section B.2 with values of γ ∈ {1.5, 2.0, 2.5, 3.0} for both
〈k〉 = 6 and 〈k〉 = 12. We evaluate the fault tolerance of the CA networks on both the density
and the synchronization task following the scheme used for the BA scale-free networks and the
evolved small-worls networks. Although we have evaluated the complete set of γ values, topologies
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obtained with a value of γ = 1.5 and 2.0 offered a performance and a tolerance to probabilistic
updating perturbation that was close to null. Therefore the Figure B.14 (a) and (c) only show the
performance of Configuration Model scale-free networks with values of γ = 2.5 and (b) and (d)
with γ = 3.0 for both 〈k〉 = 6 and 〈k〉 = 12.

0%

20%

40%

60%

80%

100%

0 0.05 0.1 0.15 0.2 0.25 0.3

fault probability

cl
as

si
fi
ca

ti
o
n

0%

20%

40%

60%

80%

100%

0 0.05 0.1 0.15 0.2 0.25 0.3

fault probability

cl
as

si
fi
ca

ti
o
n

(a) (b)

0%

20%

40%

60%

80%

100%

0 0.05 0.1 0.15 0.2 0.25 0.3

fault probability

cl
as

si
fi
ca

ti
o
n

0%

20%

40%

60%

80%

100%

0 0.05 0.1 0.15 0.2 0.25 0.3

fault probability

cl
as

si
fi
ca

ti
o
n

(c) (d)

Figure B.14: Configuration model CAs on the density task. Percentages of correctly classified
(black), incorrectly classified (dark gray) and unclassified (light gray) as the fault probability
increases. The left hand side column (a, c) groups graphs with an average value of 〈k〉 = 6,
respectively 〈k〉 = 12 for the right hand side column (b, d). With each pair of graphs, the γ values
increases: for (a) and (b) the γ(a),(b) value is 2.5 and γ(c),(d) = 3.0

Whereas we have previously underlined in Section B.4.1 the performance of CM scale-free CA
networks consistently remains below that of Barabási–Albert scale-free and our evolved small-world
CA networks, we note that these scale-free automata networks offer a tolerance to transient prob-
abilistic faults that is comparable to that of evolved small-world networks and significantly higher
that the tolerance of the BA scale-free networks for the computation of a collective task. Finally, we
note that results for the synchronization task , not shown here to save space, are completely similar.

Modified Configuration Model. The previous section details the fault tolerance of CA net-
works built using the Configuration Model algorithm, and we have highlighted the fact that the
degree distribution of these networks do not follow as strictly as required the predefined power-law
curve because of the constraint on the average degree 〈k〉 (see Section B.2). Again, Figure B.15
shows the evolution of the performance for an increasing fault probability for γ = 2.5 only.

In Figure B.15 (a) and (b), scale-free CA networks constructed using the Modified Configuration
Model algorithm with γ = 2.5 demonstrate outstanding tolerance to transient probabilistic faults
when compared to all other models we have studied so far in this work. For the synchronization
task results shown in Figure B.16 are very similar.

From the results in this section, we can draw the conclusions that, although performance of
our evolved small-world networks on both tasks remains by far the highest, scale-free CA networks
that have been carefully built by (1) minimizing the degree correlations between the nodes due to
the Barabási–Albert model and (2) closely following a power-law curve for the degree distribution,

Towards Robust Network Based Complex Systems Christian Darabos



B.5. THE EFFECTS OF NOISE AND FAILURES 63

0%

20%

40%

60%

80%

100%

0 0.05 0.1 0.15 0.2 0.25 0.3

fault probability

cl
as

si
fi
ca

ti
o
n

0%

20%

40%

60%

80%

100%

0 0.05 0.1 0.15 0.2 0.25 0.3

fault probability

cl
as

si
fi
ca

ti
o
n

(a) (b)

Figure B.15: Modified configuration model CAs on the density task. Percentages of correctly clas-
sified (black), incorrectly classified (dark gray) and unclassified (light gray) as the fault probability
increases. (a): graphs with an average value of 〈k〉 = 6; (b): 〈k〉 = 12. The γ value is 2.5.
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Figure B.16: Modified CM CAs on the synchronization task. Percentages of ICs for which the CA
solved the task as the fault probability increases for 〈k〉 = 6 and 〈k〉 = 12. In both cases, γ = 2.5.

reveal remarkable tolerance to transient probabilistic updating faults for the resolution of a global
task. The exact reasons for this behavior are not yet entirely clear to us.

B.5.2 Permanent Link Failures Perturbations

Failures in systems can occur in different ways. The more complex the system, the more failure
types and the greater the likelihood. They can range from a one-time wrong output to a complete
breakdown. The previous section dealt with transient probabilistic faults that came and went but
did not impact the structure of the network in any way. This section describes experiments we
have conducted with a much more drastic form of failure, that is the definitive disappearance of
an edge between two vertices of the graph, called permanent edge failure.

To simulate this kind of irreversible system fault, we have sabotaged the networks used all
along this work. Establishing a fault probability, we have randomly removed the corresponding
number r of edges from the graph, that is for networks with an average degree of 〈k〉 = 6 the
values of r ∈ {25, 50, 75, 100, 125, 150, 175, 200} and r ∈ {50, 100, 150, 200, 250, 300, 350, 400} for
networks with 〈k〉 = 12 (which represent roughly 6%, 12%, 18%, 25%, 31%, 37%, 43%, and 50%
in each case. This notation will be used in Figures B.18, B.20, and B.22, to compare 〈k〉 = 6 with
〈k〉 = 12). In other words, we delete up to almost half of the existing links between the cells of our
graphs and evaluate its ability to still performed the requested tasks. To compare with previous
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results, we have used an identical scheme to assess the fault tolerance of our CA networks, over
104 ICs, allowing a maximum of 2×N = 298 time steps.

Evolved Small-World Networks. Evolved structures have so far proven to possess the best
performance in a fault-free environment and have shown high fault tolerance with respect to any
CA on regular structures. Figure B.17 shows the behavior of evolved small-world CA networks on
the density task in the presence of permanent link failure.
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Figure B.17: Permanent faults on evolved Watts–Strogatz graphs. Percentages of correctly classi-
fied (black), incorrectly classified (dark gray) and unclassified (light gray) as the number of failed
links increases. Left (a): ring based networks; Right (b): random-based networks. The mean
degree 〈k〉 = 12 and φ ≈ 0.3.

Looking at Figures B.17 (a) and (b) we notice that the ring-based evolved networks have a
much higher tolerance to permanent link failures, keeping an almost constant performance until
approximately a quarter of the links have failed. In this case, we can conclude that the more
organized evolved networks show better robustness for small-world CA networks.

Similar results were obtained on the synchronization task, but, as there is no incorrectly clas-
sified IC in this case, the performance curve is approximately the sum of correctly and incorrectly
classified ICs in the density task, results are shown in Figure B.18.
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Figure B.18: Evolved Small-World CAs on the synchronization task. Percentages of ICs for which
the CA solved the task as the fraction of failing links increases for networks starting from a regular
structure and starting from random structures. In both cases, 〈k〉 = 12. Results are averages over
50 graph realizations.
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Barabási–Albert Scale-Free Networks. We have also explored the tolerance to permanent
link failure of Barabási–Albert scale-free networks. In Section B.5.1 we have shown that the
tolerance to transient faults of such structures is below that of other irregular CA networks. Figure
B.19 depicts the evolution of the performance of scale-free CA networks as the number of failed
links increases. The clique size m0 for each average degree 〈k〉 has been chosen so as to have the
highest performance in a faultless environment.
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Figure B.19: Barabási–Albert scale-free graphs on the density task. Percentages of correctly
classified (black), incorrectly classified (dark gray) and unclassified (light gray) as the number of
failed links increases. (a) is a 〈k〉 = 6 population, with a clique size m = 5. (b) is a 〈k〉 = 12
population with m = 10.

Results as shown in Figure B.19 demonstrate that, if the tolerance to permanent faults of
networks with a lower average degree is lower than that of evolved small-world networks, for
higher average degree, the results are comparable.

We have run the full set of experiments on tolerance to permanent link failure for the syn-
chronization task, results are shown in Figure B.20 and are very similar to those obtained for the
density task.
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Figure B.20: BA CAs on the synchronization task. Percentages of ICs for which the CA solved
the task as the fraction of failing links increases for an initial clique size of 5 and 〈k〉 = 6 and and
initial clique size of 10 and 〈k〉 = 12. Results are averages over 50 graph realizations.

Configuration Model Scale-Free Networks. This section will detail the behavior of CA
networks built by both Configuration Model algorithms described in Section B.2. We only show
the results for the Modified Configuration Model because of their similarity. Although the whole
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set of γ values has been numerically simulated, here we only show the case γ = 3.0, because it
is closest to the Barabási–Albert γ value. Figure B.21 shows the evolution of the performance of
scale-free CA networks with average degrees of 〈k〉 = 6 and 〈k〉 = 12.
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Figure B.21: Modified Configuration Model scale-free CA networks on the density task. Percent-
ages of correctly classified (black), incorrectly classified (dark gray) and unclassified (light gray)
as the number of failed links increases. (a) with an average value of 〈k〉 = 6, and (b) 〈k〉 = 12.
γ(a),(b) value is 3.0

In this case, Figure B.21 (a) shows that Configuration Model scale-free CA networks with a low
average degree have an inferior tolerance to permanent faults when compared to other complex
structures. Figure B.21 (b) shows that for higher average degrees, Configuration Model scale-free
CA networks and other structures display comparable fault tolerance capabilities. The results for
the synchronization task, shown in Figure B.22, are analogous.
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Figure B.22: Modified CM CAs on the synchronization task. Percentages of ICs for which the CA
solved the task as the proportion of failing links increases for 〈k〉 = 6 and 〈k〉 = 12. In both cases,
γ = 3.0.

B.6 Conclusions

In this work we have empirically investigated the performances and collective task-solving capabil-
ities of complex networks of automata using the density and synchronization problems as typical
cases. We have shown by computer simulations that previously evolved small-world networks have
superior performance with respect to scale-free graphs of the Barabási–Albert type, and those built
according to the configuration model.
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Then we have investigated in detail the fault tolerance capabilities of these network families
against, on the one hand, transient uniformly random errors and, on the other hand, permanent
link failures. Several interesting conclusions can be drawn. With respect to probabilistic transient
faults, the best results are those obtained with evolved small-world networks and Modified Con-
figuration Model scale-free graphs. The latter is even slightly better, except for faultless systems.
The worst results are those of Barabási–Albert graphs, which offer virtually no resistance to that
kind of perturbation. This is relatively surprising, as it is well known that scale-free networks
similar to the Barábasi–Albert type offer remarkable fault tolerance against random errors in in-
formation transmission contexts, e.g. the Internet. Turning now to permanent link failures, we
observe that again, our evolved small-world graphs show outstanding robustness against this more
drastic system failure. Configuration model scale-free networks are also good, especially with the
higher average degree 〈k〉 = 12. In this case Barabási–Albert graphs show comparable performance
degradation. This is understandable as it is related to random link suppression in a context where
hubs play a major role. Finally, we point out that all the irregular networked automata studied in
this paper are much more tolerant to all kinds of faults than standard regular lattice CAs for both
the density and synchronization tasks.

Although, strictly speaking, one cannot generalize these results to other collective problem
solving automata tasks, our conclusions should apply, at least in their general qualitative aspects,
to other similar collective computational systems. In future work we shall address the problem of
trying to explain in more detail the reasons that are behind the widely different behaviors observed
here, reasons that are at present not all well understood. We also intend to numerically explore
other problems and extend the evolutionary search to the automata rules themselves in the hope
that systems with even higher computational performance and robustness will self-organize and
emerge.
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Chapter 6

The Biology Behind It

God, our genes, our environment,
or some stupid programmer
keying in code at an ancient
terminal - there’s no way free will
can ever exist if we as individuals
are the result of some external
cause.

Orson Scott Card

Life’s information is encoded in genes [Pea06, Pen07]. In modern biology, a gene is defined as
the basic unit component encoding the heredity in living organisms. Genes contain the genetic
information to build and maintain the cells of an organism. A gene is made of a sequence of
nucleic acid (usually Deoxyribonucleic acid or DNA). Nucleic acids are macromolecules formed by
the basic nucleotides: adenine (A), cytosine (C), guanine (G), and thymine (T). This sequence of
DNA is composed of both coding parts, i.e. the actual information on what the gene does, and
non-coding parts that determine whether the gene is active, i.e. expressed or not. This second part
is also called the regulating part. Finally, there is a certain amount of extra DNA that is neither
coding nor regulating.

To clarify, a chromosome is an organized form of DNA encoding several genes, along with
regulating information and other non-coding sequences of nucleotides. Figure 6.1 gives an idea as
to which elements of the genetic material is a building block of the next.}Adenine Guanine Thymine Cytosine

...ATCGATTGAGCTCTAGCG...

...TAGCTAACTCGAGATCGC...

Nucleotides

DNA double strands }

Nanog homeoboxGene }

Chromosome

Figure 6.1: Genetic material: how they all fit together.
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In living organisms’ cells, when a gene is active or activated, both the coding and the non-coding
sequences of the gene are copied during a process called transcription. The copy resulting from
transcription is ribonucleic acids (RNA); more precisely messenger ribonucleic acid (mRNA). RNA
is very similar to DNA, but differs in a few important structural details: in the cell, RNA is usually
single-stranded, while DNA is usually double-stranded; RNA nucleotides also differ slightly with
respect to nucleotides of DNA. In eukaryotic cells mRNA is then transported outside the nucleus,
which is the central control of the cell containing the genetic information. In both prokaryotic cells
(i.e. cells without a nucleus) and eukaryotic cells, mRNA directs enzymes during the production
of proteins.

The molecules resulting from gene expression, whether RNA or protein, are known as gene
products, and are responsible for the development and functioning of all living things. They are
also a central element of the regulation of downstream genes later during the life of the cell (see
Figure 6.2). The physical development and phenotype of organisms can be thought of as a product
of genes interacting with each other and with the environment [Now06]. Some proteins serve
only to activate other genes, and these are the transcription factors. By binding to the promoter
region at the start of other genes transcription factors activate a gene. On the other hand, some
transcription factors are inhibitory.

genes (DNA)

transcription

RNA / mRNA

translation enzymes

proteins

expression 
regulation

Figure 6.2: Gene regulation: how they regulate each other and themselves.

6.1 Genetic Regulatory Networks

In recent years, high throughput sequencing techniques, such as microarrays, have allowed biologists
no only to sequence the entire genome of living organisms, but also to shed some light on the
interactions between these genes and how they regulate each other. Nevertheless, the regulation
aspect between genes can oftentimes only be inferred by gene co-expression data, but not directly
witnessed. In a few words, co-expression and co-regulation data compare the expression level of
genes at consecutive time intervals, and these time-series are analyzed to find emerging patters in
expressions of genes, which in turn reveals possible regulatory interactions amongst genes.

Gene regulatory networks are formed by genes, messenger RNA (mRNA), and proteins. The
interactions between these elements include transcription, translation, and transcriptional regu-
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lation [Alb04]. Usually, vertices represent genes and directed edges are the regulating influence
(promotion or inhibition) of a gene on another via a protein or an mRNA sequence, as described
above. These networks have particular structural topologies that help maintain the stability of
the system, while allowing it to evolve. Figures D.1 in the second article below shows two genetic
regulatory subnetworks of biological organisms: yeast and mouse stem cell.

The dynamic processes taking place in regulatory networks are extremely complex and we are
just beginning understanding them in detail. However, it is possible, and useful, to abstract many
details of the particular kinetic equations in the cell and focus on the system-level properties of the
whole network dynamics. This complex systems biology approach, although usually not strictly
applicable to any given particular case, may still provide interesting general insight.
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Chapter 7

Modeling Genetic Regulatory
Networks

Essentially, all models are wrong,
but some are useful.

George E. P. Box

Models, as mentioned earlier are simplified representations of the reality submitted to con-
straints and conditions. In the case of genetic regulatory networks there are essentially four types
of models [BB01]. Boolean networks that we will describe in details in the next section, and three
more:

• differential equations systems used to describe the reaction kinetics of the constituent parts.
These models usually involve an in-depth understanding of the temporal variation of the
concentration of the network’s substances. The functions are ultimately derived from basic
principles of chemical or enzymatic kinetics [EG06];

• continuous networks are an extension of the Boolean model described below, only this time
the genes expression level is assumed to be a continuous function of time. It has been argued
that using a continuous representation captures several properties of gene regulatory networks
not present in the Boolean model [Voh01];

• stochastic gene networks are GRNs models reflecting recent experimental results [BKCC03,
ELSS02] hinting that gene expressions are stochastic processes. Some formalisms of this
phenomenon have been proposed [ARM98], and several works on single genes and small
synthetic networks have been canducted [GCC00, EL00, RO05].

The structural topology of the GRNs, and consequently of models thereof, is still open to
discussion, but one property has been agreed by all parties that GRNs are sparse networks (see
Section 2.2.1) and that the upstream-regulator per gene is less than two [Lec08]. In the early
random Boolean network model [Kau69], the network topology was random. Later, more complex
network topology with different input and output degree distributions were proposed [Ald03] (see
next section).

Another subject of discord in the community is the timing of events in the models, more specifi-
cally, the fact that most models assume that the regulation, activation, and expression of the genes
is taking place instantaneously and that these phenomena take the same time for all genes. Al-
though the order of magnitude is comparable amongst, biologists feel this approximation might be
a real weakness of the models. Alternate models were proposed where these reactions were delayed
reactions in order to account for the time it takes for the entire process to be complete [RZ06].
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7.1 Random Boolean Networks

Introduced by Kauffman in the late 60’s, Random Boolean Networks (RBNs) are early models
of genetic regulatory networks [Kau69]. RBNs have been studied in detail by analysis and by
computer simulations of statistical ensembles of networks and they have been shown capable of
surprising dynamical behavior. An excellent review on the topic can be found in [Dro08].

In Kauffman’s RBNs (known today as Classical RBNs) with N nodes, a node represents a
non-discriminate gene and is modeled as an Boolean on/off device, meaning that a gene can only
either be expressed if it is on (1), and it is not expressed otherwise (0). Each gene receives exactly
K randomly chosen inputs from other genes (see Figure 7.1).

g1

g2

gK

g

Figure 7.1: Gene interaction in RBN: the activation state of genes g1, g2, ..., gK have an influence
on gene g.

From a simplistic viewpoint, the combined effect of proteins produced by genes g1 to gK at-
taching to an mRNA binding site, thus either promoting or repressing the activity of the target
gene g, can be seen as a direct effect of a function f(g1, ..., gK , g, t)→ gt+1. In this case, we allow
g to be one of the arguments of the gene update function f , thus permitting self-regulation. If we
assume all genes are Boolean nodes, we can define the activity of any gene at time t + 1 as the
result of a Boolean function of each of the gene’s entries at time t. The bias, or probability p for a
node to be expressed at the next time-step is the only variable parameter of the Boolean function.

Each gene’s Boolean function is chosen arbitrarily and can be seen as a randomly generated
lookup table with 2K+1 entries. The model evolves through time by discrete time-steps and changes
to the genes state of activations are instantaneous. Every gene updates its state at every time-step.

The state of a gene gi at any given time t is gi(t) ∈ {0, 1}. For a RBN with N genes, the
state or configuration C(t) of the entire RBN at time t is defined by the binary string C(t) =
(s0(t), s1(t), . . . , sN−1(t)). A finite size RBN with N genes has a total of 2N possible configurations
called the state/phase space. As states are binary strings, they can be identified by a unique integer
i represented by the binary string: i =

∑N
j=0 sj2

j .
The time-evolution of RBN is fully deterministic. Once the Boolean functions have been at-

tributed to the genes, an initial configuration/state is set to the RBN at time t = 0. In this initial
state, each gene is given a random expression value, either on or off . At each time-step, each
gene potentially updates it own state according to its Boolean function and the RBN find itself in
a potentially different state C(t) → C(t + 1). Independently of its initial condition, a RBN will
travel through a number of states before relaxing into a subset of configurations called an attractor
and cycle through the states of the attractor. The number of states forming an attractor is called
the attractor’s cycle length l. The length of an attractor varies in: 1 ≤ l ≤ 2N . The state-space of
a RBN can contain more, but no less, than one attractor. The ensemble of configurations leading
to an attractor is called the basin of this attractor.

A basin of attraction is made of three types of configurations: garden-of-Eden, transitory, and
attractor states. Garden-of-Eden states cannot be reached by the dynamics of the systems itself,
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it can only be set as an initial configuration. Transitory states are traversed only once. Finally,
attractor states are part of the cycle the system goes through once it has relaxed to stability.

Figure 7.2 shows the possible time evolution of an example of RBN of size N = 4 and K = 3.
This system has therefore 24 = 16 possible configurations. In this example, we do not specify the
Boolean functions, but instead show how the RBN transitions from any possible state. Garden-of-
Eden states are a darker shade of grey, transitory states are light gray and double lines delimit the
attractor states are. In this particular example, the entire state-space belongs to the same basin
of attraction leading to the unique attractor of this specific system. One can assume that if the
Boolean function were different, the entire state-space transitions would be completely different as
well.

1
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0
g0

g1

g2g3

C0
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C10
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C3C12

C14

C9

C2

C13
C6

C5C7

C1
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C15

state space of a RBN RBN in configuration C5

Figure 7.2: state-space of a RBN. An example with N = 4, and all 24 = 16 states of the state-space
belong to the same attractor of length 3.

RBN systems evolve dynamically over time in either the ordered regime or ordered phase or
the chaotic regime/phase. The regime in which the RBN has been set can be identified according
to the proportion of nodes that are actively participating in an attractor by flipping their states
“often”. In other words, assume that we can define two categories for the nodes of a system in an
attractor: frozen and twinkling [Kau00]. Frozen nodes are those whose state remains unchanged
for a long time, say fifty time steps. On the contrary, twinkling ones change their state frequently.
In the ordered regime, the proportion of frozen nodes grows linearly with the network’s size N ,
and a vast majority of the nodes are frozen. In the chaotic regime a majority remain twinkling.
Finally at the critical regime, or so-called edge-of-chaos, the number of twinkling and frozen nodes
is comparable. Another critical feature distinguishing the ordered form the chaotic regime is that
in the first one, the length of the attractors scales as a polynomial or superlinear [Dro08] function
with the size of the network, whereas in the chaotic regime, it grows exponentially.

In Kauffman’s original RBN systems, the edge between order and chaos is achieved when K = 2
and the bias p = 0.5. Kauffman speculates that living organisms operate at this critical regime,
at the edge between the ordered and the chaotic phase. This condition helps organisms to achieve
a tradeoff between the stability of order and the robustness of chaos. See Section C.2 for more
details.

7.2 Extension of Random Boolean Networks

With the considerable advances in molecular biology that we have witnessed within recent years,
some aspects of the original RBN have been questioned. For each of these aspects, one or more
new models, or adaptations of the RBN model, have been proposed. Here, we mention a few:
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• the topological structure: as more and more details are unveiled about GRNs, the certitude is
that their structure is not that of a random graph. Recent findings hint to a network topology
with asymmetrical input and output degree distributions. Indeed, Aldana proposes a RBN
model with scale-free topologies, that is, with a power-law (see Section 2.2.2) output degree
distribution and a Poisson or normal input degree distribution [Ald03, SVA04]. This new
model shows singular robustness that can directly be attributed to the topological properties
of the underlying network [AC03b].

• the synchronicity : when considering biological phenomena, the synchronicity of the events
taking place in organisms is a questionable assumption. Nevertheless, it was an understand-
able simplification of Kauffman’s original model. More recently, asynchronous models have
been proposed and display dynamical behaviors that are in agreement with previous results,
yet more biologically interesting [MT03, Ger04].

• the instantaneity : in real life, gene activation time is in the order of seconds or minutes,
protein decay time is between minutes and hours, and those time are dependent on the
gene or protein in question. Approximating those times to instantaneous happenings is a
gross oversight of biological reality. On the other hand, in order for time delays to actually
be an asset to the model, a deeper understanding of the biochemical properties of genes,
proteins and mRNA is crucial, and we only now begin to have access to these data. Several
models that account for the time it takes biochemical reactions to occur, notably by taking
an arbitrary chosen number of time-steps to refresh a gene’s expression state [RZ06].

• the Boolean state of expression: continuous models have been mentioned at the beginning of
this chapter.

• the random Boolean update function: although the exact combined effect of the proteins
and/or mRNA is still unclear, and thus the actual Boolean update function is unknown, it
is safe to assume that these function are not random. We already have mentioned stochastic
networks as an alternative. Another interesting scheme was suggested that takes into account
the actual promoting or repressing effect of genes known today, and combining them in an
additive way [LLL+04].

These shortcomings of the original RBN model have been at the center of our work on Boolean
model for genetic regulatory networks. The detail of this work will be presented in Articles C and
D.
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Biologically Inspired Faults

All sorts of computer errors are
now turning up. You’d be
surprised to know the number of
doctors who claim they are
treating pregnant men.

Isaac Asimov

Living organisms are robust to a great variety of genetic changes, and since RBNs are simple
models of the dynamics of biological interactions, it is interesting and legitimate to ask questions
about their fault tolerance aspects.

Kauffman defines a one type of perturbation to RBNs as “gene damage” [Kau00], that is the
transient reversal of a single gene in the network. These temporary changes in the expression of
a gene are extremely common in the normal development of an organism. The effect of a single
hormone can transiently modify the activity of a gene, resulting in a growing cascade of alternations
in the expression of genes influencing each other. This is believed to be at the origin of the cell
differentiation process and guides the development.

The effect of a damaged gene can be measured by the size of the avalanche resulting from that
single gene changing its behavior from active to inactive or vice-versa. The size of an avalanche
is defined as the number of genes that have changed their own behavior at least once after the
perturbation happened. Naturally, this change of behavior is compared to an unperturbed version
of the system that would be running in parallel. The size of the avalanche is directly related
to the regime in which the RBN is; in the ordered regime, the cascades tend to be significantly
smaller than in the chaotic regime. In real cells, where the regime is believed to lie on the edge of
chaos, the cascades tend to be small too. Moreover, the distribution of the avalanche sizes in the
ordered regime follows a power law curve [Kau00], with many small and few large avalanches. In
the chaotic regime, in addition to the power law distribution, 30-50 % of all avalanches are huge.
The distribution of avalanches size of RBNs in the ordered regime roughly fits the expectations
of biologists, where most of the genes, if perturbed, are only capable of initiating a very small
avalanche, if any. Fewer genes could cause bigger cascades, and only a handful can unleash massive
ones.

Another measurement of the effect of transient gene reversal, is to compare the change in the
configuration of the RBN between two consecutive time steps on an unperturbed system and on
one where a single gene has been perturbed. The difference between two consecutive states st and
st+1 of the system is measured in terms of Hamming distance, that is the number of genes that
have changed their expression between st and st+1, normalized over the network size.

Naturally, one can imagine more sophisticated failure schemes on models of genetic regulatory
networks such as RBNs. These failures are usually inspired by scientific experiments conducted
on biological organisms. For example the gene knockout experiment measures the expression level
of all genes, in cells which a knockout gene and in normal cells, using cDNA microarray data.
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Serra and coauthors [SVS04, SVGK07] used this type of failure on RBNs to predict the size of
real avalanches on microarray data. They showed that a very simple model with few inputs and
random topologies can approximate the distribution of perturbation in gene expression levels with
respect to microarray data. Moreover, they present a theoretical study showing that this simple
model is actually valid in a particular type of network topologies.

Another notable perturbation inspired by real biological regulatory networks applied to RBNs
is the gene duplication phenomenon suggested in by Aldana and coauthors [ABKR07]. They study
the robustness of genetic regulatory networks using RBNs and explore their behavior when exposed
to nature-inspired genetic perturbations: gene duplications. They show that an intrinsic property
of such networks is to tend to preserve and multiply previous phenotypes, encoded in the attractor
state-space of the network.
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Articles in this Part

Life emerged, I suggest, not
simple, but complex and whole,
and has remained complex and
whole ever since.

Stuart Kauffman

Articles C and D deal with improving Boolean models of genetic regulatory networks inspired
by Kauffman’s random Boolean networks. We focused on finding modern biological discoveries to
include in the model in order to overcome some of the shortcomings that we draw attention to at
the end of Section 7.1. We worked on the topological aspects, the functional aspects and on the
dynamical aspects of Boolean models. We have included recent biological findings at each step
and each iteration of our new models, and compared them with original RBN both in terms of
performance (i.e. qualities of the attractors) and robustness in the face of small perturbations.

In Article C

In this work we focus on the structural and dynamical aspects of Boolean models for GRNs.
Indeed, we propose the use generalized Boolean networks, a broadening of the random Boolean
model, where the topology does not have to be a based on a random graph. Instead, we apply
the concepts coined by Aldana and generate networks of the scale-free type as substrate for our
Boolean models. These scale-free Boolean networks (SFBNs) have a long-tailed power-law output
degree distribution and a Poisson-like input degree distribution, close to that of random graphs.
These topologies are believed to be much closer to biological reality, where a handful of genes (i.e.
hubs) produce proteins that regulate a large number of genes, and most of the genes only have
an extremely limited regulating effect (i.e. leaves). Nevertheless, in order for a network to be
scale-free, its degree distribution ought to cover several orders of magnitude, and Aldana’s original
ones were limited to a maximum of 19 genes. In our case, we build SFBNs with a maximum of
200 genes. This tenfold scaling offers interesting insight on the scaling capabilities of the model, it
however makes the model very demanding in computational resources. Therefore, we had to resort
to statistical sampling.

As a second improvement we have fitted the model with is a more biologically plausible timing
of events. Indeed, as argued in the previous chapter, the full synchronicity is clearly a biological
improbability. Thanks to microarray experiment data, biologists believe that the activation of a
gene induces a change of activation status in a subset of genes, and so on. Therefore, the regulating
effect of genes could tend to impact regions of the genetic regulatory network, instead of the whole
system simultaneously. This can be seen as a cascading effect, and therefore we introduce a novel
update timing we call Activated Cascade Update (ACU). This update scheme is explained in
details in the article, and mimics the phenomenon witnessed in real-life. The dynamical behavior
and robustness of Boolean networks with both random and scale-free topologies using ACU are
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compared to those of synchronous classical RBNs and SFBNs. We run extensive simulations, and
thoroughly study all different scenarios. Results detailed in the article are generally favorable to
our new, more biologically relevant model.

In Article D

In the final chapter of this work, we have studied the possibility of using sub-networks of GRNs of
biological organisms. We faced several challenges when selecting candidate GRNs. The portions
we needed had to be as self-standing as possible, with minimal external output, and the confidence
in the gene interaction and their kind had to be acceptable. We finally opted for two portions of
GRN, one of the yeast cell-cycle and one of mouse embryonic stem cells, details are in SectionD.2.
The straightforward use of these networks is to replace the nodes by Boolean models of gene
expression values, and use them as Boolean model. Although, using real-life biological GRN
structures overcomes in a new way the topological flaw of the original RBN model, it raises a new
problem. Until now, the critical regime was achieved by tuning the gene expression probability
p in the Boolean function, the network average degree, or the power-law exponent. This latter
parameter is now a constant fixed by the network. Therefore, we have an empirical method to
derive the regime from the systems dynamics using Derrida plots (described in Section D.3.1) and
we propose a new numerical metric that measures the system’s distance to criticality: the criticality
distance in Section D.3.2. This new measure has, in turn, allowed us to tune the p value so that
our systems operate indeed in the critical regime.

Additionally, we worked on closing another gap of Kauffman’s original model by proposing an
alternative Boolean function that is closer to current biological knowledge. From the literature
and our collaboration with biologists, we were able to leverage the extra information in the studied
GRNs presented above. Indeed, the yeast and stem cell partial GRNs we used not only provided
us with the existence of gene on gene influence, but also their kind: promoting or repressing. We
propose a Boolean function that adds the combined effect of the genes, and uses a threshold T
value for gene activation or deactivation, the Activator Driven Additive function detailed in Section
D.4. In every case we were able to determine a T value that makes our systems critical. Results
analyzed in the article are very encouraging, both in terms of the kind of attractors found, that
agree with our expectations according to the regime, and in terms of robustness, which has not
suffered from the biological input to the model.

Finally, we use a third GRN sub-networks (in Section D.5.1), this one from plant biology, where
the actual function of each gene model in the network has been established. This new case study
clearly shows it operates in the critical regime. We use this more complete case study to validate
our ADA model. The results are excellent, and prove than in this particular case, ADA functions
are much closer to real-life than random Boolean function with an overlap of approximately 92%.

In this last part of the work, we took some liberties with the term “real-life”. The three genetic
regulatory networks we use in this article are parts, or sub-networks, of biological organisms. These
sub-networks are composed of genes that have been identified as playing a key role in a specific
process within the entire organism: pluripotency in the case of mouse embryonic stem cells, cell-
cycle in yeast, and finally plant guard cell abscisic acid (ABA) signaling. The systems studied suffer
some obvious limitations, mainly that none of the networks is actually completely self-sufficient,
thus some degree of interaction with the rest of the organism has been omitted. If we believe the
methodologies can be generalized to bigger/different systems, we are aware that the results are
limited to the studied organisms, under the strict conditions specified in the work, and do not
reflect the complexity of “real-life” in every aspects.
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Abstract

For years, we have been building models of gene regulatory networks, where recent advances in
molecular biology shed some light on new structural and dynamical properties of such highly
complex systems. In this work, we propose a novel timing of updates in Random and Scale-
Free Boolean Networks, inspired by recent findings in molecular biology. This update sequence is
neither fully synchronous nor asynchronous, but rather takes into account the sequence in which
genes affect each other. We have used both Kauffman’s original model and Aldana’s extension,
which takes into account the structural properties about known parts of actual GRNs, where the
degree distribution is right-skewed and long-tailed. The computer simulations of the dynamics of
the new model compare favorably to the original ones and show biologically plausible results both
in terms of attractors number and length. We have complemented this study with a complete
analysis of our systems’ stability under transient perturbations, which is one of biological networks
defining attribute. Results are encouraging, as our model shows comparable and usually even
better behavior than preceding ones without loosing Boolean networks attractive simplicity.

Keyword

Random Boolean Networks, Complex Networks, Boolean Dynamics, Scale-Free Networks, Genetic
Regulatory Networks, Perturbations

C.1 Introduction

Gene regulatory networks comprising genes, proteins and other interacting molecules, are extremely
complex systems and we are just beginning understanding them in detail. However, it is possible,
and useful, to abstract many details of the particular kinetic equations in the cell and focus on the
system-level properties of the whole network dynamics. This Complex Systems Biology approach,
although not strictly applicable to any given particular case, may still provide interesting general
insight.
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Random Boolean Networks (RBNs) have been introduced by Kauffman more than thirty years
ago [Kau69] as a highly simplified model of gene regulatory networks (GRNs). RBNs have been
studied in detail by analysis and by computer simulations of statistical ensembles of networks and
they have been shown to be capable of surprising dynamical behavior. We summarize the main
results in the next section.
In the last decade, a host of new findings and the increased availability of biological data have
changed our understanding of the structure and functioning of GRNs. In spite of this, the original
view of Kauffman has been used to predict gene expression patterns observed experimentally [BS01,
ABCA+08]. Today, this model is still valid provided that it is updated to take into account the
new knowledge about the topological structure and the timing of events of real-life gene regulatory
networks without loosing its attractive simplicity. Following these guidelines, our aim in this work
is to describe and test a new model that we call Generalized Boolean Networks (GBNs), which
includes, at a high level of abstraction, structures and mechanisms that are hopefully closer to
the observed data. Adhering to the original Kauffman’s view that attractors of the dynamics of
RBNs are the important feature and that they roughly correspond to cell types, we will discuss
the results of the systems ability to relax into stable cycles or fixed points, and their tolerance to
local perturbation.
The organization of this work is the following. In the next section we briefly review the main
assumption implied in Kauffman’s RBNs and their possible limitations. Changes to both the
randomness and the synchrony assumptions will be proposed in section C.3 leading to generalized
boolean networks. In sections C.4 and C.5 the new model is studied by statistical sampling using
numerical simulation. Then we introduce the concept of perturbation in section C.6 and we
investigate numerically the stability properties of GBNs. Finally, in section C.7 we present our
conclusions and discuss possible future work.

C.2 Classical Random Boolean Networks

Random Boolean Networks (RBNs) have been introduced by Kauffman [Kau69] as a highly sim-
plified model of gene regulatory networks. In Kauffman’s RBNs with N nodes, a node represents
a gene and is modeled as an on-off device, meaning that a gene is expressed if it is on (1), and it is
not otherwise (0). Each gene receives K randomly chosen inputs from other genes. Initially, one of
the 22K

possible Boolean functions of K inputs is assigned at random to each gene. The network
dynamics is discrete and synchronous: at each time step all nodes simultaneously examine their
inputs, evaluate their Boolean functions, and find themselves in their new states at the next time
step.
More precisely, the local transition rule φ is one of the 22K+1

possible Boolean functions of K inputs
from the neighboring nodes plus that of the node itself, thus possibly implementing a biological
situation where a gene regulates itself:

φ : ΣK+1 → Σ.

This function maps the state si ∈ Σ = {0, 1} of a given node i into another state from the set
Σ, as a function of the state of the node itself and of the states of the nodes that send inputs to i.
For a finite-size system of size N (such as those treated herein) a configuration C(t) of the RBN
at time t is defined by the binary string:

C(t) = (s0(t), s1(t), . . . , sN−1(t)),

where si(t) ∈ Σ is the state of node i at time t. The progression of the RBN in time is then
given by the iteration of the global mapping, also called evolution operator Φ:

Φ : C(t)→ C(t+ 1), t = 0, 1, . . .

through the simultaneous application at each node of the non-uniform local transition rule φ.
The global dynamics of the RBN can be described as a directed graph, referred to as the RBN’s
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phase space. Over time, the system travels through its phase space, until a point or cyclic attractor
is reached whence either it will remain in that point attractor forever, or it will cycle through the
states of the periodic attractor. Since the system is finite and deterministic, this will happen at
most after 2N time steps.
This extremely simple and abstract model has been studied in detail by analysis and by computer
simulations of statistical ensembles of networks and it has been shown to be capable of surprising
dynamical behavior. Complete descriptions can be found in [Kau93, ACK03]. We summarize the
main results here.
First of all, it has been found that, as some parameters are varied such as K, or the probability p
of expressing a gene, i.e. of switching on the corresponding node’s state, the RBN can go through
a phase transition. Indeed, for every value of p, there is a critical value of connectivity:

Kc(p) = [2p(1− p)]−1

such that for values of K below this critical value Kc(p) the system is in the ordered regime,
while for values of K above this limit the system is said to be in the chaotic regime. In classical
RBNs Kc(0.5) = 2 corresponds to the edge between the ordered and the chaotic regime, systems
where K < 2 are in the ordered regime, and K > 2 means that the system is in the chaotic phase
for p = 0.5.
In his original work, Kauffman discovered that the mean cycle length scales are at most linear
with N for K = 2. He also believed that the number of attractors scales with the square root of
the number of genes in the system, which has an interesting analogy with the number of different
cell types for genomes in multicellular organisms. In fact, this last hypothesis has been proven to
be an artifact of under-sampling by Bilke and Sjunnesson [BS01] who showed that the number of
attractors scales linearly with N . In addition, Kauffman found that for K = 2 the size distribution
of perturbations in the networks is a power-law with finite cutoff that scales as the square root
of N . Thus perturbations remain localized and do not percolate through the system. Kauffman’s
suggestion was that cell types correspond to attractors in the RBN phase space, and only those
attractors that are short (between one and a few tens or hundreds of states) and stable under
perturbations will be of biological interest. Thus, according to Kauffman, K = 2 RBNs lying
at the edge between the ordered phase and the chaotic phase can be seen as abstract models of
genetic regulatory networks. RBNs are interesting in their own as complex dynamical systems
and have been throughly studied as such using the concepts and tools of statistical mechanics (see
[DP86, ACK03]).
For the sake of completeness, let us mention that the “discrete” approach to the high-level de-
scription of genetic regulatory networks is not the only possible one. A more realistic description
is obtained through the use of a “continuous-state” model. In the latter, the levels of messenger
RNA and proteins are assumed to be continuous functions of time instead of on/off variables. The
system evolution is thus represented by sets of differential equations modeling the continuous vari-
ation of the components concentration. Here we focus on the discrete approach, but the interested
reader can find more information on the continuous models in [EG06], for instance.

C.3 From Random to Generalized Boolean Networks

In this section we describe and comment on the main assumptions implied in Kauffman’s RBNs.
Following this, we propose some modifications that, in our opinion, should bring the model closer
to known facts about genetic regulatory networks, without loosing the simplicity of classical RBNs.
Kauffman’s RBN model rests on three main assumptions:

1. Discreteness: the nodes implement Boolean functions and their state is either on or off;

2. Randomness: the nodes that affect a given node in the network are randomly chosen and are
a fixed number;

3. Timing: the dynamics of the network is synchronous in time.
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C.3.1 Discrete State Approach

The binary state simplification could seem extreme but actually it represents quite well “threshold
phenomena” in which variables of interest suddenly change their state, such as neurons firing or
genes being switched on or off. This can be understood since the sigmoidal functions one finds in
the continuous differential equation approach [EG06] actually do reduce to threshold gates in the
limit, and it is well known that Boolean functions can be constructed from one or more threshold
gates [Has95]. So, in the interest of simplicity, our choice is to keep the discrete Boolean model for
the states of the nodes and the functions implemented at each node.

C.3.2 Random vs Scale-Free Networks

RBNs are directed random networks. The edges have an orientation because they represent a
chemical influence from one gene to another, and the topologies of the graphs are random because
any node is as likely to be connected to any other node in an independent manner. There are
two main types of RBNs, one in which the connections are random but the degree of each node is
fixed, and a more general one in which only the average connectivity is fixed. Random graphs with
fixed connectivity degree were a logical generic choice in the beginning, since the exact couplings
in actual genetic regulatory networks were largely unknown. Today it is more open to criticism
since it does not correspond to what we know about the topology of biological networks. In fact,
many biological networks, including genetic regulatory networks, seem to have a scale-free type or
hierarchical output distribution (see, for example,[VDS+04, Alb05, CGMA07]) but not random,
according to present data, as far as the output degree distribution is concerned 1. The input degree
distributions seem to be close to normal or exponential instead. A scale-free distribution for the
degree means that p(k) follows a power-law p(k) ∼ k−γ , with γ usually but not always between
2 and 3. In contrast, random graphs have a Poisson degree distribution p(k) ' k̄k e−k̄/k!, where
k̄ is the mean degree, or a delta distribution as in a classical fixed-degree RBN. Thus the low
fixed connectivity suggested by Kauffman (K ∼ 2) for candidate stable systems is not found in
such degree-heterogeneous networks, where a wide connectivity range is observed instead. The
consequences for the dynamics may be important, since in scale-free graphs there are many nodes
with low degree and a small, but not vanishing, number of highly connected nodes (see, for instance,
[AB02, New03]).
For the sake of completeness, we also wish to point out that the degree distribution is only one
statistical aspect of a given network and the attribution of a scale-free nature to some genetic
regulatory networks has been challenged [DBCV05, TYD05]. Indeed, it has been recently shown
that a random sample of networks with different degree distributions may give subgraphs with
similar degree distributions. Conversely, networks with identical degree distributions may have
different topologies [HBNP07, DBCV05]. The issue is still far from being settled due to the
insufficient amount of analyses. However, we believe that it doesn’t fundamentally change the
nature of high-level models such as those discussed here. In particular, everybody seems to agree
on the fact that the distributions are, if not scale-free, at least broad-scale, i.e they have a longer
tail to the right for the output degree distribution.
The first work that we are aware of, using the scale-free topology for modeling Boolean networks
dynamics is [OS02]. Oosawa and Savageau took Escherichia coli as a model for their scale-free
nets with an average input degree k̄ of two. Interesting in this particular case, the model is a
little too specialized as most other known networks or network fragments have higher connectivity
levels. What is needed are models that span the range of observed connectivities.
Along this line, Aldana presented the first detailed analysis of a model Boolean network with scale-
free topology [Ald03, AC03b]. Using the power-law exponent γ as a critical parameter instead of
the mean degree, he has been able to define a phase space diagram for scale-free boolean networks,
including the phase transition from ordered to chaotic dynamics, as a function of γ where, if

1The degree distribution function p(k) of a graph represents the probability that a randomly chosen node has
degree k [New03]. For directed graphs, two distributions may be defined, one for the outgoing edges pout(k) and
another for the incoming edges pin(k).
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p = 0.5, then γc(p) = 2.5 is the critical value for which systems rest on the edge between order
and chaos, if γc(p) > 2.5 and the system is in the ordered regime and if γc(p) < 2.5 it lies in
the chaotic phase. He also made exhaustive simulations for several small values of the network
size N (N ≤ 20). The scale-free distribution was the input distribution pin(k) while pout(k) was
Poissonian. We now know these distributions are actually inverted when compared to known
GRNs. In our model we have thus adopted networks with a scale-free output distribution, and a
Poissonian input distribution, as this seems to be at least close to the actual topologies. However,
from the mathematical point of view the results in terms of different regimes as a function of γ are
the same in both cases [Ald03, AC03b].
One problem with Aldana’s networks was their small size since he wanted to explore the phase
space exhaustively, and this can only be done for small N . However, scale-free network statistics
cannot be accurate unless the network size is large enough and k ranges, which should span at
least a few orders of magnitude, are suitably binned or the cumulative distribution function is used
instead of p(k) [DM03]. In another recent work, RBNs of various topologies and of larger size have
been studied using statistical sampling and numerical simulation by Iguchi et al. [IKY07]. They
used standard synchronous updating of network nodes and various graph topologies: random with
Poisson distribution, exponential, and scale-free. Iguchi et. al focused on the distribution of phase
space attractors and on their lengths and as such their work is closely related to the one presented
here. However, most of their results concern the directed networks in which the input and output
distributions are the same (pin(k) = pout(k)) and, as said, above the timing of node update is
synchronous. They focused their analysis on the mean degree k̄. While k̄ is a significant parameter
for random and exponential degree-distributed graphs, it is much less meaningful for graphs having
a scale-free degree distribution. For a continuous power-law distribution defined in (0,+∞) the
mean becomes infinite for γ ≤ 2 and the variance diverges for γ ≤ 3 [Sor03]. Although k̄ can
always be computed given a finite arbitrary degree sequence {kj}, j = 1, . . . , N , it still looses its
meaning when the distribution is such that a non-negligible number of extreme values exist, as in
scale-free networks which are highly degree-heterogeneous. In this case, the average is controlled
by the few largest degrees and not by the numerous small ones. These differences make it difficult
to directly compare their results with ours but we shall nevertheless comment on our respective
findings as their study is related in many ways to the present one.

Construction of input and output degree networks distributions

Here we present the methodology for constructing our model networks, starting with the input and
output degree distributions. As said above, Kauffman’s RBNs are directed graphs with connectivity
K. In fact, as anticipated in the preceding section, according to present data many biological
networks, including GRNs, suggest an inhomogeneous output distribution and a Poissonian or
exponential input distribution [VDS+04, CGMA07]. Whether pin(k) is Poissonian or exponential
both distributions have a tail that decays quickly, although the Poissonian distribution does so
even faster than the exponential, and thus both have a clear scale for the degree. On the other
hand, pout(k) is very different, with a fat tail to the right, meaning that there are some nodes in
the network that influence many other nodes.
In our model we have thus adopted networks with a scale-free output distribution, where pout(k)
is the probability a node n will have a degree k:

pout(k) =
1
Z
k−γ

where the normalization constant Z(γ) =
∑kmax

k=1 k−γ coincides with Riemann’s Zeta function
for kmax → ∞. The input distribution approximates a normal function centered around k̄. We
call our model scale-free boolean networks (SFBNs). Figure C.1 offers a taste of what such distri-
butions look like. Naturally, p(k) being defined over the positive integers only, an approximation
is necessary to define how many nodes of the network have a given input degree. Namely, in a
first pass, we use the integer value bp(k)c as the number of nodes that will have a degree k ,
for each degree k ∈ {kmin, kmax}. In a second pass, we use the decimal value p(k) − bp(k)c as
the probability that one more node will have a degree k until the degree of all nodes has been
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Figure C.1: Networks degrees distributions. Actual output degrees distributions on a log-log scale
(a) and input degrees distributions on a lin-lin scale (b) of a sample generated networks of size
N = 1000 and γ = 2.0, γ = 2.5 and, γ = 3.0. Distributions are discrete and finite; the continuous
lines are just a guide for the eye.

specified. This non-deterministic process causes slight differences in the distributions, which is
especially important around the critical regime to explore the solution space since the previously
mentioned approximation leaves each scale-free distributions slightly off the power-law. Once the
exact output degree distribution of a given network is known, we use the average connectivity
k̄ to produce a matching discrete Poisson input distribution. Finally, each node i of the system
is assigned an input degree kiin and an output degree kiout, and nodes are randomly connected
according to these, avoiding edge repetitions.

In Table C.1 below, we show the average input and output degrees k̄ over 100 different networks,
including their standard deviation. This is only given as an information, because, as it has been
mentioned in section C.3.2 of this work and according to Aldana’s model [Ald03], the regime of a
SFBN cannot be defined by its average connectivity but by the γ exponent of its output degree
distribution function.

k̄order k̄critical k̄chaos
N = 100 1.36±0.06 1.82±0.14 3.25±0.35

N = 150 1.39±0.05 1.81±0.11 3.42±0.42

N = 200 1.38±0.04 1.81±0.11 3.68±0.40

N = 500 1.37±0.02 1.84±0.07 3.78±0.29

N = 750 1.37±0.02 1.84±0.06 3.85±0.24

N = 1000 1.37±0.02 183±0.05 3.98±0.23

Table C.1: Networks mean degrees. Average input and output degrees k̄ over 100 networks includ-
ing the standard deviation in all three different regimes.

Iguchi et al. [IKY07] have explored Boolean networks where both the output and the input dis-
tribution are of the scale-free type and used the average degree as an indicator of differentiation.
Although an interesting metric, the average degree allows one to distinguish regimes only in Kauff-
man’s classical RBNs with random topologies. Instead, they have used a modified Barabási-Albert
preferential attachment model which allows one to tune the networks average degree k̄. However,
the k̄ factor has no effect on the regime, as the preferential attachment model [AB02] produces a
single value of γ ∼ 3 well into the chaotic regime. When dealing with the attractors cycle lengths,
they have used systems where the average degree was either k̄ = 2 or k̄ = 4 which, according to our
calculations, would essentially place all of their systems more or less deeply in the chaotic regime.
In addition, they show examples of SFRBNs with an average degree of k̄ = 1, which does not seem
possible if all nodes are connected. Thus, a direct comparison of our results with those of [IKY07]
is hardly meaningful for SFRBNs.
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C.3.3 Timing of Events

Standard RBNs update their state synchronously (SU). This assumption simplifies the analysis,
but does not agree with results on gene activation experiments if the network has to be biolog-
ically plausible [EG06]. Rather, genes seem to be expressed in different parts of the network at
different times, according to a strict sequence (see, for instance, [De02]). Thus a kind of serial,
asynchronous update sequence seems to be needed. Asynchronous dynamics must nevertheless be
further qualified, since there are many ways for serially updating the nodes of the network.
Two types of asynchronous updates are commonly used. In the first, a random permutation (RPU)
of the nodes is drawn and the nodes are updated one at a time in that order. At the next update
cycle, a fresh permutation is drawn and the cycle is repeated. In a second often used policy, the
next cell to be updated is chosen at random with uniform probability and with replacement. This
is a good approximation of a continuous-time Poisson process, and it will be called Uniform Update
(UU).
Several researchers have investigated the effect of asynchronous updating on classical RBN dynam-
ics in recent years [HB97, MT03, Ger04]. Harvey and Bossomayer studied the effect of random
asynchronous updating on some statistical properties of network ensembles, such as cycle length
and number of cycles, using both RPU and UU [HB97]. They found that many features that arise
in synchronous RBN do not exist, or are different in non-deterministic asynchronous RBN. Thus,
while point attractors do persist, there are no true cyclic attractors, only so-called “loose” ones
and states can be in more than one basin of attraction. Therefore attractor lengths, which is one
of the main features in RBNs, are not well defined in the asynchronous case. Also, the average
number of attractors is very different from the synchronous case: even for K = 2 or K = 3, which
are the values that characterize systems at the edge of chaos, there is no correspondence between
the two dynamics.
Mesot and Teuscher [MT03] studied the critical behavior of asynchronous RBNs and concluded
that they do not have a critical connectivity value analogous to synchronous RBNs and they be-
have, in general, very differently from the latter, thus confirming in another way the findings of
[HB97].
Gershenson [Ger04] extended the analysis and simulation of asynchronous RBNs by introducing
additional update policies in which specific groups of nodes are updated deterministically. He
found that all types of networks have the same point attractors but other properties, such as the
size of the attractor basins and the cyclic attractors do change.
Considering the above results and what is known experimentally about the timing of events in
genetic networks we conclude, with [MT03], that neither fully synchronous nor completely random
asynchronous network dynamics are suitable models. Synchronous update is implausible because
events do not happen all at once, while completely random dynamics does not agree with experi-
mental data on gene activation sequences and the model does not show stable cyclic attractors of
the right size. For this reason, in the following section C.3.3 we propose a new quasi-synchronous
node update scheme, which is closer to that observed in natural systems [De02, OD04].

Semi-Synchronous Update Scheme

As we have seen above, in GRNs, the expression of a gene depends on some transcription fac-
tors, whose synthesis appears to be neither fully synchronous nor instantaneous. Moreover, in
some cases like the gene regulatory network controlling embryonic specification in the sea urchin
[De02, OD04], the presence of an activation sequence of genes can be clearly seen. We concluded
that neither fully synchronous nor completely random asynchronous network dynamics are suit-
able models. Thus the activation/update sequence in a RBN should be in some way related to
the topology of the network, i.e. on the mutual chemical interaction structure of proteins, RNA,
genes, and other molecules which is abstracted in the network.
Aiming at remaining faithful to biologically plausible timing of events without introducing unnec-
essary complexity into the model, we considered the influence of one node on another as biological
activating or repressing factors: only when the state of the node is turned or stays on has this node
an effect on the subsequent nodes in the activation sequence. In contrast, nodes changing their
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state to or remaining off have no impact on nodes they are linked to, thus breaking the cascade. In
other words, only the activation of an activator or a repressor will have a repercussion on the list of
nodes to be updated at the next time-step. This update scheme, which has been briefly described
previously in [DGT07] is called the Activated Cascade Update (ACU) . As a consequence of this
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Figure C.2: A possible Activated Cascade Update sequence. At time t = 0 a node N0 is chosen at
random and updated according to its inputs, if the new state of N0 is inactive, another starting
node N0 is chosen at random. At time t = 1 all the nodes receiving an input from N0 are updated
according to their own inputs, those becoming or remaining active (state on) decide which node
will be updated at the next time step. The cascade continues according to this scheme.

novel update procedure, the definition of point or cyclic attractors changes slightly, because the
state of a network at any give time t is, from now on, not only determined by the individual state
sti ∈ {on, off } of each node but also by the list lt+1 of nodes to be updated at the next time step.
The concept of loose attractor has, in this context, no relevance.

C.4 Methodology and Simulations

In this work we investigate the effect of the new ACU update scheme presented in Section C.3.3 vs.
the previous SU on SFBNs for a set of γ exponents of the scale-free distribution γ ∈ {2.0, 2.5, 3.0}.
The results will be compared to classical RBNs and all three sizes mentioned above will be
studied. In order to explore their behavior in the three different regimes, we propose to vary
k̄ ∈ {1.8, 2.0, 2.2}, thus keeping the probability p of the node update functions to p = 0.5. In
an effort to probe the network scaling properties, we have simulated ensembles of graphs with
N ∈ {100, 150, 200} which, although still comparatively small, is closer to the observed GRNs sizes
and still computationally feasible.
For each combination of topology, update and size, we produce 50 networks. To each network,
we associate 20 randomly generated sets of Boolean update functions. A network-function pair is
called a realization. Subsequently, for each realization we create 500 different initial configurations
(ICs) with equal probability for each gene to be expressed or not. Starting from each IC, we let
each realization run over a number of initial steps depending on the size N of the network (10000
for N = 100, 20000 for N = 150, and 30000 for N = 200). This allows the system to possibly
stabilize after a transient period, reaching the basin of an attractor. After this primary period,
we determine over another 1’000 time steps if the system has relaxed to an attractor. If so, we
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define the length of that attractor as the minimum number of steps necessary to cycle through the
attractor’s configuration. In other words, we run 50 networks × 20 update functions ×500 ICs
= 5× 105 simulations for all combination of 3 sizes, 3 regimes and 2 updates for a total of 9× 106

simulations. Very often in this work, we will omit to show figures of all three different sizes as this
parameter does not always have an impact on the results, that are in turn very similar for all sizes.
Nevertheless, all sizes and cases have been thoroughly simulated and studied.

C.5 Finding Attractors

During the simulations, we have analyzed for each IC of each realization whether the system
has relaxed to a single state (point attractor) or cycled through the configurations of a periodic
attractor. According to Kauffman’s estimate [Kau93], the median lengths of attractors l ∝

√
N

or linear at most for k̄ critical. For k̄ well into the chaotic regime, the median length grows
exponentially with N . Biologically speaking, very long attractors are unlikely to have any meaning
due to the actual gene expression time which is in the order of seconds to minutes. Therefore we
investigate in depth only attractors with lengths ranging from 1 to 100 states. Admittedly, the
maximum length is arbitrary but remember that, according to Kauffmann, we are mostly interested
in attractors that are short and stable in the “critical” regime (or “edge of chaos”). In natural
systems, point and periodic attractors may have different significations. As an example periodic
attractors can be interpreted as a model of the genetic regulatory system during the cell cycle,
whereas point attractors can refer to the end of the differentiation cycle of a stem cell. Although it
has been shown that point attractors may play a fundamental role outside the stem cell context, as
in the works of Albert et al. [AO03] and more recently of Álvarez-Buylla and coauthors [ABCA+08],
we will often present simulation results and statistics both with and without point attractors. The
reason for this is that in some instances under ACU, the scheer number of point attractors tend
to bias the statistics and to make the results more difficult to interpret (see Fig. C.4).

C.5.1 Number of Attractors

In Fig. C.3 we show the frequencies at which networks of size (a) N = 100 and (b) N = 200 find
attractors of any length. Since the simulations for networks with N = 150 nodes behave similarly
to larger and smaller ones, we do not show them here. Fig. C.3 shows that almost all instances
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Figure C.3: Number of attractors of any length. Comparing the frequency at which simulations
have found an attractor of any length for realizations with (a) N = 100 and (b) N = 200 genes.
We compare all network topologies and update schemes.

under ACU we find an attractor, except for scale-free systems in a chaotic regime, which tend to
produce 10 to 50 times less attractors. On the contrary, GRNs under SU struggle to relax to an
attractor. In both RBNs and GBNs, we observe that the number of attractors does not seem to
be impacted by the scaling.
Frequencies and length concerning simulations of shorter and more biologically plausible attractors
are shown below in Fig. C.4 and in Fig. C.5 respectively. On the right-hand sides, point attractors
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have been removed from statistics. When comparing Figs. C.3(a) with C.4(a) and C.3(b) with
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Figure C.4: Number of attractors of biologically plausible lengths. Comparing the frequency at
which simulations have found attractors of length (a)(c) between 1 and 100 and (b)(d) between 2
and 100. We consider networks of size (a)(b) N = 100 and (c)(d) N = 200.

C.4(c) respectively, there is virtually no difference, as over 95% of the attractors are in fact below
a length of 100 states. As for attractors of length between 2 and 100 in Fig. C.4(b) and (d), we
see that ACU systems, whether scale-free or random, find more attractors than those under SU.
We note that SFBNs in a critical regime under ACU have a peak in finding attractors, compared
with other regimes, which are exactly the attractors we are interested in. In RBNs and GBNs, we
observe that the number of attractors does not seem to be impacted by the scaling either. Using
ACU almost every IC of every realization leads to an attractor, no matter what the regime is. On
the contrary, under SU the overall number of attractors tends to decrease as the system goes from
order to chaos.

C.5.2 Variety of the Attractors

Table C.2 shows how many times on average the same attractor has been found for each update
scheme, regime and topology over the 500 ICs the system has been submitted to. We divided the
results for attractors including and excluding point attractors (PA). We can summarize in Table
C.2 a few observations as follows: the topology type does not seem to have a drastic effect on
how often the system relaxes to the same attractor. On the other hand, the update scheme affects
the total number of times the same attractor is found, and so does the regime, but in a much
milder manner. In fact, we can see that SU tends to find much more often the same attractor than
ACU does. In addition, we see in Figures C.3 and C.4 that this SU also tends to find many fewer
attractors overall. Alternatively, systems under ACU find a greater number of different attractors,
only in the chaotic regime, where the overall number of distinct attractors is already very small
compared with the other ones. We witness an increase in the average number of the times the
same attractor is found. Note that in the chaotic regime for systems where N = 200 under SU,
the low repetition value is due to the fact that very few attractors are found.
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N=100 N=200
w PA w/o PA w PA w/o PA

SFBN ACU order 1.01 1 1 1
critical 1.03 1.13 1.01 1.01

chaos 4.42 10.44 2.16 1.68
SU order 121.16 73.37 46.55 78.77

critical 104.26 95.82 60.54 65.46
chaos 5.08 43.60 1 1

RBN ACU order 1.01 1 1 1
critical 1.01 1.01 1 1

chaos 1.03 1.07 1.01 1.01
SU order 44.90 39.39 22.24 26.33

critical 58.01 53.26 30.34 33.93
chaos 61.01 58.75 24.69 30.04

Table C.2: Attractors diversity. The average time each attractor has been found over 500 ICs.
Cases with (w PA) and without (w/o PA) point attractors are segregated. In this case, N = 100
and 200, and the attractors length is limited to a maximum of 100 states.

C.5.3 Length of the Attractors

Fig. C.5 shows statistics on the length of attractors. We exclude point attractors for figures on
the right-hand side (figures (b) and (d)). The bar at the center of the box is the median of the
attractors lengths, the upper and lower box delimiters are the third and first quartile respectively.
The whiskers show extreme minimal and maximal values. Results are shown only for the case
where the networks size N = 200, as results for smaller sizes are very similar. Once more we see
that scaling does not have a significant impact on the length of the attractors that are found by
the systems. It is mostly the regime the system evolves in and, in a lesser manner, the update
scheme that defines the attractors average length. We note in Fig. C.5(a) and (c) that, although
under-represented, attractors under SU seem to be the longest, especially in the chaotic regime.
When focusing on the more interesting part of the attractors population in Fig. C.5(b) and (d), we
see that the lengths remain comparable, though slightly shorter when considering systems under
ACU. We also know from the section C.5.1 above that those attractors are much more frequent in
systems under ACU. A global conclusion concerning the attractors distribution is that the update
model has a prominent effect on the number and length of attractors over the networks topologies.
Fig. C.6 shows the distribution of the number of attractors according to their length on a log-log
scale. Interestingly, the distribution of attractors lengths for SFBNs shows a long-tail for both
updates, which is especially marked for systems in the chaotic regime. But this distribution does
show comparable tendencies on SFBNs under any update, whereas for RBNs, the tail under ACU
is much less pronounced than it is under SU. So we see that now, regime has a greater influence on
attractors length for SFBNs and not the update scheme. It is the opposite for RBNs, where the
timing of update has a greater impact. All cases compare favorably with Aldana’s work [Ald03]
where he clearly shows that SFBN systems, although he had the input and the output distribution
swapped, exhibit a long tailed distribution of the attractors lengths in the chaotic regime. This
phenomenon is much less pronounced in the ordered and critical regime. Although we observe a
difference in the case of RBNs, the different regimes are difficult to tell apart. Nevertheless, the
distributions also show a power-law-like curve for all regimes, with a tail longer than that of SFBNs
in the ordered and critical regime. This second observation is in line with Iguchi et al. [IKY07]
where, in the case of smaller RBNs, both in the critical and chaotic regime, attractors lengths
distributions show a long tail. We also notice that ACU has the unexpected effect to help tell
apart regimes, as distribution is much easier to distinguish than under SU.
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Figure C.5: Attractors lengths. Comparing the length of the attractors found by simulations. In
the left-hand side column (a)(c) we show statistics of attractors of size up to 100 states and the right
hand-one (b)(d) also excludes point attractors. Horizontally, the upper row (a)(b) corresponds to
SFBNs and the lower row (c)(d) to RBNs. All systems have N = 200 nodes.

C.5.4 Scaling

Modern high throughput technologies for genetic analysis have tremendously contributed to the
unveiling of ever bigger parts of GRNs in living organisms. Present sub-networks sizes range
from a few tens to a few hundreds of genes. In the section above, we thoroughly investigated the
attractor’s dynamics of systems of sizes ranging from 100 to 200 nodes, and have noticed the size
of the system mainly affects the number of attractors that are found. This fact was expected as
the state space grows with the number of nodes N as 2N , making it harder for the system to relax
in a cycle. For other properties such as the length distribution or mean length, although sightly
different, the general tendencies are not impacted by the scaling.
In order to study the effect of scaling on Boolean systems and its effect on both different topologies
and both updates, we have extended the above analysis to networks of size N = 25, 50, 75, 100,
125, 150, 175, 200. Due to extreme computational resources necessary, we have unfortunately
not been able to increase N to greater sizes and obtain sufficiently reliable data. Indeed, as the
number of node grows, the transient period before the system reaches an attractor and length of the
attractors themselves increases dramatically, especially in the chaotic phase. Aldana [Ald03] shows
the increase in the transient time and also shows trends on the expected length of the attractors
as N grows.
Fig. C.7 shows the trends followed by the attractors lengths as the size of the systems grows
for both topologies, updates and all three regimes. The size of the attractors for SFBN systems
under both update strategies, scales as expected form Aldana’s work [Ald03]. He exhaustively
studied SFBNs under SU of sizes N ∈ {8, . . . , 20}. We witness, both for SU and ACU, a similar
and expected trend, where only the length of attractors found by systems in the chaotic phase
increase significantly with N . The mean attractor length of systems under ACU is much shorter
than that of systems under SU, which is in line with the thorough analysis conducted in Section
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Figure C.6: Attractors lengths distribution. Distribution of the attractors’ lengths between 1 and
100 states. The left-hand side column represents systems under (a)(c) Activated Cascade Update
and the right-hand side on (b)(d) Synchronous Update. Figures in the upper row (a)(c) show
results for SFBN, the lower one (b)(d) for RBN networks of size N=100. Note that the vertical
axis in the four figures have different scales. The continuous lines are power regressions to be used
as a guide for the eye.

C.5.3. In the case of classical RBNs, the differences in size between the regimes, although existing,
is much less pronounced. The range average size is yet again much greater with SU. Under both
updates, lengths for ordered and critical regimes remain relatively close whereas for the chaotic
regime, the difference with the other regimes augments significantly. We have unfortunately not
been able to compare the number of attractors to Aldana’s work because we are only sampling
much bigger systems, up to ten times larger, that cannot be exhaustively analysed in a reasonable
amount of time. Nevertheless, this comforts us in the idea that our model, while in our eyes is
more realistic, still it has behaviors that are in accordance with our predecessors validated work.
Iguchi et al. [IKY07] have conducted similar experiment on a limited sample of scale-free input and
output distribution networks of very lage size under SU. Though their results seem in agreement
with our own findings, their model is too different to draw direct parallels.

C.6 Fault Tolerance of Random Boolean Networks

Failures in systems can occur in various ways, and the probability of some kind of error increases
dramatically with the complexity of the systems. They can range from a one-time wrong output to
a complete breakdown and can be system-related or due to external factors. Living organisms are
robust to a great variety of genetic changes, and since RBNs are simple models of the dynamics of
biological interactions, it is interesting and legitimate to ask questions about their fault tolerance
aspects.
Kauffman [Kau00] defines one type of perturbation to RBNs as “gene damage”, that is the transient
reversal of a single gene in the network. These temporary changes in the expression of a gene are
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Figure C.7: Attractors average cycle length with respect to the network size. Scaling of the average
length of attractors compared to the networks size N for (a)(b) SFBNs and (c)(d) RBNs under
(a)(c) ACU and (b)(d) SU. Note that the vertical axis in the four figures have different scales.
Continuous lines are only added as a guide for the eye.

extremely common in the normal development of an organism. The effect of a single hormone
can transiently modify the activity of a gene, resulting in a growing cascade of alternations in
the expression of genes influencing each other. This is believed to be at the origin of the cell
differentiation process and guides the development.
The effect of a gene damage can be measured by the size of the avalanche resulting from that
single gene changing its behavior from active to inactive or vice-versa. The size of an avalanche
is defined as the number of genes that have changed their own behavior at least once after the
perturbation happened. Naturally, this change of behavior is compared to an unperturbed version
of the system that would be running in parallel. The size of the avalanche is directly related
to the regime in which the RBN is; in the ordered regime, the cascades tend to be significantly
smaller than in the chaotic regime. In real cells, where the regime is believed to lie on the edge
of chaos, the cascades tend to be small also. Moreover, the distribution of the avalanche sizes in
the ordered regime follows a power-law curve [Kau00], with many small and few large avalanches.
In the chaotic regime, in addition to the power-law distribution, 30-50 percent of the avalanches
are huge. The distribution of avalanche sizes of RBNs in the ordered regime roughly fits the
expectations of biologists, where most of the genes, if perturbed, are only capable of initiating a
very small avalanche, if any. Fewer genes could cause bigger cascades, and only a handful can
unleash massive ones. Perturbing an arbitrary gene is reasonable in RBNs where all genes have
the same average number of interactions. In scale-free nets however, this is no longer true due
to the presence of a high degree inhomogeneity. Even for values of γ around 3.5 there will be
nodes that have many more output connections than the average value. A transient perturbation
of a gene that has few interactions will have moderate or no effect, while perturbing a highly
connected node will have larger consequences. Several studies dealing with various kinds of system
perturbation have been recently published. Aldana’s approach [Ald03] is similar to the one taken
here except that he deals with small scale-free networks in which N , the number of nodes, is
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19. Ribeiro and Kauffman [RK07] exhaustively studied the state space of small (N < 20) RBNs
under probabilistic errors in gene state searching for ergodic sets, i.e. sets of states such that
once the system is in one of them, it cannot leave it subject to internal noise. They find that if
noise may affect all nodes of an attractor then multiple ergodic sets are unlikely. However, when
noise is limited, multiple ergodic sets do exist which means that attractors are stable. Serra et
al [SVGK07] present a study of the distribution of avalanches in unperturbed RBNs and in RBNs
in which one gene has been “knocked-out”, i.e. a state 0 has been permanently changed to 1. They
show that the standard model readily explains the distribution of the resulting avalanches. They
also examined the influence of a scale-free topology for the outgoing links on the system. Aldana
et al. [ABKR07] examine the effect of more complex and biologically plausible perturbations of the
attractor landscape of both standard RBNs and scale-free RBNs. Genes undergo duplication and
mutation which cause topological changes that in general maintain the original attractors and may
create new ones. Near the critical regime robustness and evolvability are found to be maximum.

C.6.1 The Effect of Perturbation

In this work we have submitted all systems that have reached biologically plausible attractors to
“gene damage”, the simplest failure amongst those previously described. That is, when the system
is cycling through the configurations of the attractor, the whole system is duplicated. The original
will continue unperturbed. On the other hand, a node of the copy is chosen at random and will
give the opposite output value a single time step. This usually knocks the system out of the course
of its attractor. Now we let both systems evolve over time and record at each time step how many
more nodes have a different value in the copy compared to the original. This value usually reaches
a maximum that represents the number of nodes that have ever had a behavior different than those
of the original. This number is the size of the avalanche. There are only three possible senarios for
the copy: it will return to the same attractor as the original, it will reach a different attractor or
diverge and reach no attractor within the maximum number of configurations allowed (1000). Each
system in an attractor is copied 10 times, and each copy will have a different avalanche starting
point. We record separately these informations in order to compare the re-convergence capabilities
of systems in each regime, with different topologies and update schemes.
Fig. C.8 shows the frequency at which systems that have already converged to an attractor re-
converge. We show separately whether systems re-converge to any attractor or to the same one
as before the perturbation. In particular, Fig. C.8 depicts results for attractors before pertur-
bation (original attractors) of sizes between 2 and 100. We show systems that used networks of
size N = 200. Results for smaller systems are comparable and are not shown in this work. Re-
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Figure C.8: Re-convergence frequency. Frequency at which perturbed systems re-converge to either
the same attractor (light grey) or another one (dark grey). Left-hand (a) side figure shows results
for SFBNs and right-hand (b) side figure shows results for RBNs. All systems have N = 200 nodes.
We purposefully omit point attractors.

convergence seems to mostly depend on the regime the system evolves in, rather than its degree
distributions, update scheme, or size. On Fig. C.8 we note that only networks in the chaotic
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regime do not re-converge to an attractor in every case. It also seems that ACU performs a little
better at helping systems to find a stable state. However, this tendency seems inverted when taking
into account only cases where the same attractors are found. In this case, under ACU, the same
attractor as the original one is found about half of the time. Under SU, the same one is found
about 75% of the time. This could be explained by the fact that the number of attractor lying in
the state spaces of systems under ACU is much greater.
As expected when dealing with random failure, the information traveling through a structure with
regular output distribution is more vulnerable to faults compared to structures with hubs and
leaves. This fact is well known in various examples such as computer networks which are very
resistant to random failure as long as they are failures and not targeted attacks on highly intercon-
nected nodes. Especially under SU, SFBNs tend to re-converge to the same attractor more than
RBNs, although overall, both topologies perform well. The chaotic case will be explained below
in details. Under ACU, critical and ordered SFBNs systems are again performing as able as or
better than their counter parts in RBNs, recovering as often to any attractor but more often to
the same as the original one. The counter-performance of chaotic systems, especially SFBNs, can
be explained by the “spike of huge avalanches” described by Kauffman [Kau00] and visible in Fig.
C.9. Indeed, SFBN systems and, in a lesser manner, RBN under SU have a surge of very long
avalanches when in the chaotic regime. This characteristic explains why these systems are not as
well able to re-converge to an attractor, let alone the same one.
Fig. C.9 shows the distribution of the avalanches’ size. Again we distinguish networks that have
re-converged at all in Fig. C.9(a) and those that have re-converged to the original attractor Fig.
C.9(b). For readability reasons and, since results are very similar, we show only results for systems
of size N = 100 and N = 200. As mentioned in Section C.6, the size of the avalanche varies
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Figure C.9: Mean avalanche lengths. Average avalanches length of cases where systems re-converge
to (a)(c) any attractor and (b)(d) the same attractor.

mainly due to the regime. Smaller systems with N = 100 react as expected, with the size of their
avalanches increasing as the systems grows chaotic. However, this does not seem to always be the
case, and this relationship between avalanche size and regime is changed in bigger networks. Under
ACU networks where N = 150 or N = 200, it is the systems that evolve in the critical regime that
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clearly show the longest avalanches. This is true for ACU only, SU systems still corroborate Kauff-
man’s conjecture. Although in the case where systems return to the original attractor, avalanche
sizes are much smaller, the tendencies observed in the more general case stand. This time we
observe an obvious impact of the networks size on the systems dynamics. Further investigations
are necessary as to define why larger systems in critical regime under ACU are more impacted by
perturbations.
Fig. C.10 shows the distribution of the avalanches’ sizes for different systems. Although values
are discrete, we used continuous lines as a guide for the eye. In Fig. C.10, we see that tendencies
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Figure C.10: Avalanche length distributions. Distribution of the avalanche lengths for all three
regimes and N = 100. Upper row (a)(b): For SFBNs. Lower row (c)(d): For RBNs. Left-hand
side column (a)(c): Systems under ACU. Right-hand side column (b)(d): Systems under SU.

are the same and are anticipated from Kauffman’s work [Kau00]. SFBNs under both (a) SU and
(b) ACU exhibit a steady long tailed decrease in the number of avalanches as their length grows
for ordered and critical regime, and there is an increase for long avalanches in the case of chaotic
systems. This tendency is the same for synchronous RBNs in (d). Interestingly, this does not seem
to apply to RBNs under ACU, where no increment is to be noted.
Lastly, Fig. C.11 illustrates the average output degree of the node that represents the damaged
gene. For clarity reasons, we show results only for bigger systems as they are similar when net-
works are scaled down. Although predictable, we clearly see the effect of the hubs in SFBNs, where
failing nodes in systems that do not re-converge had a much higher output degree on average than
those of systems that did recover. Another interesting observation, is that there seems to be a
direct relationship between the degree of the wrongful node and the regime, the more ordered the
system, the higher the degree to allow the system to recover. This difference is toned down in
ACU systems. Naturally this does not hold for classical RBNs, where all nodes have comparable
output degrees.
As a general conclusion on gene-damage failures of Boolean Networks, we can highlight the promi-
nent effect of the topology on distribution of the lengths of the avalanches and its ability to
re-converge to an attractor over the networks update and regime.
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Figure C.11: Faulty nodes average degree. Average degree of the nodes that have failed for both
re-converged and not re-converged avalanches. RBNs are shown on the right hand side (b) and
SFBNs left one (a). Size N = 200.

C.6.2 Derrida Plots

In this section we compare Derrida plots of our models with those of Kauffman [Kau00] and Iguchi
et al. [IKY07]. These representations are meant to illustrate a convergence versus a divergence in
state space that can in turn help characterize the different regimes. These plots show the average
Hamming distance 2 H(t) between any two states sa and sb and the Hamming distance H(t+ 1)
of their respective consecutive state s′a and s′b at the next time step. Derrida plots of systems in
the chaotic regime will remain above the main diagonal H(t) = H(t+ 1) longer, crossing the main
diagonal earlier and remaining closer to it as the systems near the critical regime. Systems in the
critical regime remain on the main diagonal before diverging beneath it. Ordered systems remain
under the main diagonal at all times. These results are already known for RBNs under SU and,
to some extent as the regimes are not defined explicitly by Iguchi et al. [IKY07], for SFBNs under
SU.
Figure C.12 shows the Derrida plots for systems under ACU on the right and SU on the left. This
plot concerns networks of size N = 100. The system under SU on the right-hand side has a fairly
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Figure C.12: Derrida plot of the Hamming Distance H at time t vs. t+1. The right-hand side figure
represent systems under Activated Cascade Update and the left-hand side one under Synchronous
Update. All systems are SFBNs of size N = 100.

typical behavior, where the chaotic systems remain clearly above the main diagonal, critical ones
remain close to and then diverge below the main diagonal. The ordered curve, although clearly
remaining below the main diagonal, is somewhat irregular. This is probably due to the fact that
the number of attractors is the lowest of all in the ordered SFBN systems under SU, thus making
the curve less smooth. In the case of SFBNs under ACU, the chaotic curve shows the expected
behavior, though it remain closer to and crosses the main diagonal earlier than in the SU case.

2The normalized number of positions that are not identical when comparing two (binary) strings.
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It can still be considered a reliable indication that the system is indeed in a chaotic regime. In
the ordered and critical regimes, the curves are literally on the main diagonal all the way through,
and show no sign of convergence or divergence whatsoever. So in this case, the update method
has a major impact on the Derrida plots, making the ordered and critical systems impossible to
distinguish under ACU.

C.7 Conclusions and Future Work

Although a long way from a fully functional model of GRNs, we are moving closer to one by aggre-
gating modern findings obtained with recent high throughput techniques. These refinements to the
original RBN model by Kauffman and the subsequent ones by Aldana help us understand some
key details of the complex interactions that are taking place between the different components
and the role that the topological structure plays in the dynamics. In this paper, we have made
some progress towards an understanding of what structural and dynamical properties make GRNs
highly stable and adaptable to mutation, yet resistant to perturbation.
This work suggests one structural property, namely the scale-free output distribution, and a dy-
namical one, the semi-synchronous updating, to try to improve the standard RBN model and to
account in an abstract way for recent findings in system-level biology. We have used computer
simulations to reflect the impact of these changes on original RBN models. Results are encourag-
ing, as our SFBNs model shows comparable or better performance than the original one with more
attractors and smaller avalanches. This leads us to believe that the models are pointing in the
right direction. Nevertheless, from the results of this analysis, we also see that neither model is the
absolute optimum in this problem. Indeed, if we focus on maximizing the number of attractors,
the prominent effect is that of the update, with ACU combined with original RBNs achieving the
best results in finding the most attractors with a biologically relevant cycle length. On the other
hand, when considering maximizing the fault tolerance, we witness the highest resilience with SF-
BNs under SU, that achieve the highest rate of re-converging to the same attractor as observed
originally. This demonstrates that no combination is optimal on all problems and that compromise
is necessary if we are looking to build a model that will perform well in a realistic situation.
In the future, we intend to expand the range of analysis conducted on perturbed systems, in the
hope of shedding some light on GRNs. Also, we would like to explore different degree distribution
types and combinations, including the use of some actual GRNs as high-throughput molecular
genetics methods make real-life data available like never before.
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Abstract

Background: The gene-on-gene regulations are key components of living organisms. Dynamical
abstract models of genetic regulatory networks, such as Kauffman’s Random Boolean Networks,
may explain the genome’s evolvability and resilience to faults by the structural topology of the
graph formed by genes, as vertices, and regulatory interactions, as edges. We use two real-life
instances of sub-networks as support for Boolean network models, and propose a novel threshold-
based dynamic update function. In this new update function the inductive or repressive effect of
each edge is taken into consideration and makes it more biologically plausible than the original
random update function.

Results: In order to investigate the dynamical behavior of this new model, we visualized the
phase transition between order and chaos into the critical regime using Derrida plots. We also
proposed a new measure, the criticality distance, that allows to discriminate between different
regimes in a quantitative way. Moreover, the state spaces of the two real-life GRNs is portrayed
using RBN-specific statistical measurements. Simulation results on two real-life genetic regulatory
networks, the yeast cell-cycle and the mouse embryonic stem cell, show that there exist parameter
settings in both update functions that allow the systems to operate in the critical region, and that
these values are comparable in the two case studies. Finally, we use a third real-life regulatory
network that comes with actual update functions to validate the results obtained.

Conclusions: Our new Boolean models for genetic regulatory networks includes a great deal of
experimentally derived biological information, which we believe makes it more biologically relevant
and potentially useful to guide experimental research. The new update function confers additional
realism to the model, while actually reducing the solution space, thus making it easier to investigate.
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D.1 Introduction

Genes are the central pillar of biological evolution, and therefore of life as we know it. The various
genome projects provided us with lists of genes which for many organisms, including humans, are
thought to be fairly complete, at least for protein-coding genes. Much less is known about genes
as part of a dynamical biological system, that is about the complex regulatory interactions among
genes allowing the genome to shape the organism and its interaction with the environment.

These interactions can be represented as genetic regulatory networks (GRNs) representing the
regulatory effects of a gene on the others. However interactions within these networks are very
subtle, intricate, and ill understood. While GRN sections of a few tens to a few hundreds of genes
are known in detail for several organisms, the quality of the data drops dramatically as the network
size grows.

Nevertheless, GRNs are the next big thing, and are at the center of tremendous research efforts
from the biological community. The quantity and quality of results in the field, thanks to modern
high-throughput molecular genetics methods, are bound to follow the same exponential trend as
the gene sequencing did in its time. In the meantime, however, it is possible, and useful, to abstract
many details of the individual GRNs in the cell and focus on the system-level properties of the
whole network dynamics. This Complex Systems Biology approach, although not immediately
applicable to any given particular case, still provide interesting general insight.

An early dynamical model for GRNs was proposed in the late 60’s by Kauffman [Kau69] and
is known as Random Boolean Networks (RBNs). This abstraction is very attractive due to its
simplicity, yet unveils interesting dynamical phenomena about how the network structure and
the gene-gene interactions are at the center of the resilience to transcriptional errors, and yet
evolvability of GRNs. The dynamics of RBNs can be discriminated in two regimes: the ordered
regime, where the system tends towards less changes in the gene activations, thus more stability
to transient faults, and the chaotic regime, where gene activation changes frequently, thus less
stability and more evolvability. It has been suggested, that biological cells operate at the border
between order and chaos, a regime called critical or edge of chaos [Lan90, BTW88, Kau93]. Systems
in this regime are capable of exceptional behavior: they show robustness to small perturbations,
and yet remain flexible enough to integrate external signals allowing the system to adapt to new
conditions in its environment. This is true for both organic [LT03, Kitnt] and non-organic systems
[SDMnt] and it is a signature feature of Complex Systems in general. A way to visualize this phase
transition into the critical regime makes use of Derrida plots [DP86], which provide a visual way
of classifying RBN systems according to their dynamical behavior.

In a previous works [DGT07, DTG09], we highlighted the main weaknesses of Kauffman’s
original assumptions, that is, the random topology of the networks and the total synchronicity of
events. Then, we proposed a novel update scheme based on gene activation and we used scale-free
topologies as proposed by Aldana [Ald03]. That new model, although more faithful to present
knowledge about biological networks, still suffered from one of the flaws of the original one, that
is, that gene-gene interactions are drawn at random according to a scale-free degree distribution.

In the present work, we remedy this situation by using three subnetworks of real-life GRNs. In
the cases studied here the interactions between the genes are known with a good level of confidence.
In a related work, Ballenza et al. [BABC+08] use microarray data and canalizing functions to
infer the nature of the gene regulatory network interactions in several organisms. In this work, we
take advantage of extra information contained in real-life GRNs, that is the actual activating or
repressing effect of the genes on one another, to propose an extension to the RBN update function
proposed by Li et al. [LLL+04]. This novel, more biologically sound update function, along with
real-life network topologies, fills another gap of the original model where the nodes’ update function
are completely random.

Some very preliminary results along this line have been presented at the conference [DGT+09].
Here we deepen and complete the investigation of the new model, propose a numerical way of
discriminating the system’s regimes that is more accurate than straightforward Derrida plots. We
also conduct a full study of the systems’ attractor space, and we validate the model using a third
real-life instance of regulatory network proposed by Li et al. [LAA06].
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This work is structured as follows: first, we describe the two real-life regulatory networks
tackled in our model in the next section. Then in section D.3, we give a short introduction to RBN
models, with particular attention to the identification of their dynamical regime. We also propose
a new measure, the criticality distance, that allows to numerically discriminate between systems’
regimes by analytically capturing the visual-only Derrida plots. The last part of this section is
devoted to the description of the different measures that have been proposed in the literature to
characterize the state space of RBNs. Section D.4 presents the new Activator Driven Additive node
function, an extension of the RBN update function propose by Li et al. [LLL+04]. The regime
characterization of this update function applied to the two real-life regulatory network substrates
is discussed in sections D.5 and D.6. Section D.5.1 focuses on validating the new update function
using a regulatory network where the actual Boolean update functions are known. The state space
of new RBN models dynamical behavior is described in section D.7. In section D.8 the resilience
of the two systems to small perturbations is investigated. Finally, the last section discusses the
results obtained and outlines possible future lines of research.

D.2 Yeast and Embryonic Stem Cells Regulatory Networks

In this section, we give details on the two cases of real-life regulatory networks used in our model.
The first one, proposed by Chen et al. [CXY+08], is a part of the transcriptional regulatory
network of embryonic stem (ES) cells inferred from ChIP-seq binding assays and from gene ex-
pression changes during differentiation. We added activating informations (+ and − signs on the
figure D.1(a)) inferred from gene co-expression and sightly compacted this network. The second
one, described by Li et al. [LLL+04] and as used by Stoll et al. [SRN07], is the regulatory network
underlying cell cycle in yeast. Both networks have eleven genes. Figure D.1 shows these networks,
while Table D.1 shows some of their statistical properties.

(a) (b)

Figure D.1: Genetic Regulatory Networks. A representation of (a) the transcriptional regulatory
network in ES cells and (b) the yeast cell-cycle regulatory network. Arrows point from transcription
factor to the target gene. Signs + (respectively −) represent activating (respectively repressing)
links.

Although the networks have too few nodes for a reliable statistical study of their degree distribu-
tion, we concluded that neither the input nor the output degree distributions show any similarities
with original RBN’s random topologies, where the connectivity K = 2 was fixed, or with Aldana’s
scale-free input, Poisson output distributions. To reliably establish these degree distributions, one
would need to sample at least several tens of nodes for random graphs and many more over several
orders of magnitude for scale-free ones, due the long tail of the distribution. However, these data
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ES cell Yeast
N 11 11

mean degree 3.72 3.09
enhencer proportion 0.71 0.44

Table D.1: Properties of real life gene regulatory network used in this study.

are not currently available. Thus the need to use Derrida plots to determine the regime of our
models. In this work, we abstract details of the genes themselves, as their individual properties do
not have any consequences on the systems dynamics, beyond their activating or repressing effect.

D.3 Random Boolean Networks Modeling

Random Boolean Networks were introduced by Kauffman [Kau69, Kau93] more than thirty years
ago as a highly simplified model of GRNs. Over the years, numerous other different models have
been introduced [BB01, SBB00, HMICnt], but RBNs remain very attractive in their simplicity and
ability to include novel concepts. In RBNs, each node represents a gene whose state is a Boolean
variable Si and each directed edge, the influence of a gene on another.

The interconnection topology is considered to be a regular random graph with exactly K
incoming and K outgoing edges for each gene. A distinct function is given to each node in order to
decide state changes according to the state of all in-neighboring genes (i.e. those nodes having an
edge directed to the considered target gene). The lookup table describing the update function is
randomly generated according to a parameter p capturing the probability that a gene’s state at the
next time-step is active. The state S(t) of the system at time t is defined as the ensemble of all the
nodes states {Si(t)}Ni=1. The state changes are fully deterministic, synchronous and instantaneous.

Therefore, these systems, when starting from an arbitrary state S at time t = 0, will go
through a set of transient states before eventually cycling in a subset of one or more states called
an attractor. According to Kauffman [Kau69, Kau93], only attractors that are short and stable to
perturbations are of biological interest. In our research, we aspire to inject modern knowledge into
the original RBN model, making it more biologically plausible.

A questionable assumption of the original RBNs model is the totally random interaction
amongst genes with a fixed connectivity K [Kau69] or following a predefined degree distribu-
tion, such as scale-free or Poisson [Ald03]. In this work, we will take advantage of the real-life
topologies defined in the previous section and use them as the substrate for our Boolean networks.
Each gene of the GRN will be replaced by a Boolean variable which specifies whether or not the
gene is expressed. In addition, we attach an update function to each node as described above, but
in this work we compare the effect and performance of two different update function types, the
random update function of the original RBN model, and a biologically inspired additive function
described in the section D.4.

D.3.1 Regimes of RBNs and how to identify them

Original RBNs go through a phase transition at certain values of the fixed degree K of the nodes
and the probability p of expressing a gene in the random update function. The critical regime can
be achieved by satisfying the equation: Kc(p) = [2p(1− p)]−1. Thus, when the parameter p is set
to 0.5, the critical connectivity is achieved as Kc(0.5) = 2. If Kc > [2p(1− p)]−1, the system will
tend to be chaotic, and ordered otherwise. Considering current knowledge about GRNs, some of
Kauffman’s properties of the model are now subject to criticism.

In Aldana’s scale-free model [Ald03], where the output degree distribution follows a power-law
p(k) ∼ k−γ , where k is the variable node degree, this phase transition is obtained by setting γ
around 2.5. In our case, we use real-life networks and not hand-made ones, and thus, we cannot
tune any property of the network topologies to obtain the desired critical regime, or even to identify
the regime of one of our network. Instead we use a dynamical property of the whole system which
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is graphically represented by Derrida plots, proposed by Derrida et al. [DP86], used by Kauffman
[Kau03], and widely accepted as a visual way of discriminating the regime in which RBN-like
dynamical systems evolve.

This representation is meant to illustrate a convergence versus a divergence in state space that
can in turn help characterizing the different regimes. It uses the Hamming distance H, defined
as the normalized number of positions that differ when comparing two (binary) strings. These
plots show the average Hamming distance H(t) between any two states Sa(t) and Sb(t) and the
Hamming distance H(t+1) of their respective subsequent states Sa(t+1) and Sb(t+1). Figure D.2
shows a typical instance of Derrida plots and curves for all three regimes. Derrida plots of systems
in the chaotic regime will remain above the main diagonal H(t) = H(t+1), i.e. their distance tends
to increase during a certain time, then cross the main diagonal from above. Systems in the critical
regime remain on the main diagonal at the beginning and then stay below the main diagonal.

Ordered systems remain under the main diagonal at all times. In other words, systems in
the critical regime we are interested in, which lies in the ordered regime at the edge of chaos,
are characterized by Derrida curves that remain as close as possible to the main diagonal before
diverging.
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Figure D.2: Derrida plot of the original RBN model (see text).

For the two real-life regulatory network models in this work, it is obviously not possible to tune
the connectivity parameter K, since the interconnection topology is fixed by experimental data.
However, when the systems’ dynamics are driven by the original nodes’ random update functions
(RUFs), the probability p could still allow the two models to be in different regimes. The number
of all possible states for a given RBNs, i.e. with a single set of RUFs, is 2N , where N is the
number of genes in the system. In our case, N = 11, therefore there are 211 = 2048 possible
states. The set of possible RUFs, even for a reasonably small subset of genes like the present,
makes exhaustive enumeration impossible for original RBNs. Therefore, we resorted to statistical
sampling by performing numerical simulation of 100 different sets of RUFs for each value of p. At
first, p varies in the interval [0.1, 0.9] by steps of 0.1. Having identified the values of interest pi,
we narrowed the interval to [pi − 0.05, pi + 0.05] with a finer step of 0.01 to identify the values pc
that are closest to the critical region.

Figures D.3 and D.4 show Derrida plots with steps of 0.1 (a) and the finer version (b), where
we adapted the scale to best show the regions of interest with a step of 0.01. As there are only
211 possible states, we computed average Hamming distances over exhaustive enumeration of all
possible states. In other words, we identified all pairs of states {Sa;Sb} that are at a distance
H(Sa, Sb) = 1 and computed the average Hamming distance of their subsequent states H(S′a;S′b),
and then moved on to a distance H = 2, H = 3, . . . , H = 11.

For the two regulatory network models, figures D.3 and D.4, depict the Derrida curves according
to their values of p, as the RUF functions are symmetrical for values of p ≡ 1−p. If not for sampling
reasons, pairs of curves would superimpose, and therefore, to facilitate the interpretation of the
results, we only plot curves for values of p = {0.5, 0.6, 0.7, 0.8, 0.9}. As shown in the figure D.3(a)
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for transcriptional regulatory network in ES cell, the interesting values of pi ≈ 0.8 − 0.9, and
symmetrically, pi ≈ 0.1−0.2. These are the values we chose to investigate with finer steps in figure
D.3(b), revealing that in the case of ES cells the critical threshold value is close to pc ≈ 0.87, and
symmetrically pc ≈ 0.13.
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Figure D.3: Derrida plots of RUFs for ES cell, (a) p ∈ {0.5, 0.6, 0.7, 0.8, 0.9} (curves for p ∈
{0.1, 0.2, 0.3, 0.4} are not reported as RUF rules are symmetrical), and (b) only values close to the
critical gene expression value pc are investigated with refinement steps of 0.01. Please note the two
different scales in the axes.

Also for the case of the yeast cell-cycle regulatory network in figure D.4(a), we identified pi to
approximately the same values, more finely investigated in Figure D.4(b), where again pc ≈ 0.83,
symmetrically pc ≈ 0.17.

0 0.1 0.2 0.3 0.4 0.5
H(t)

0

0.1

0.2

0.3

0.4

0.5

H
(t+
1)

H(t+1)=H(t)
p=0.5
p=0.6
p=0.7
p=0.8
p=0.9

0 0.05 0.1 0.15 0.2
H(t)

0

0.05

0.1

0.15

0.2

H
(t+
1)

H(t+1)=H(t)
p=0.82
p=0.83
p=0.84

(a) (b)

Figure D.4: Derrida plots of RUFs for yeast cell, (a) p ∈ {0.5, 0.6, 0.7, 0.8, 0.9} (curves for p ∈
{0.1, 0.2, 0.3, 0.4} are not reported as RUF rules are symmetrical), and (b) only values close to the
critical gene expression value pc are investigated with refinement steps of 0.01. Please note the two
different axes scales in the figures.

D.3.2 Criticality Distance

Originally, Derrida plots are a visual-only tool to define a system’s regime. Nevertheless, as they
are obtained as averages of experimental values of Hamming distance H ′ between two states s′1 and
s′2 over a finite set of discrete values of Hamming distances H of their previous steps s1 and s2, we
propose a single numerical value that characterizes the distance of a system’s Derrida plot to the
main diagonal. This new normalized criticality distance (D) takes into account that the closeness
to the main diagonal is more important for smaller values of H. The normalized criticality distance
is obtained as follows:
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The closer D is to zero, the closer our system is to the critical regime, and therefore, the more
interesting it is for in the context of this work. We use this new metric, in addition to the visual
Derrida plot, to determine for which parameter sets the investigated systems are in the critical
regime. Figure D.5 below shows how the minimal value D evolves with respect to the probability
of gene expression p of each nodes’ internal update function.
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Figure D.5: Minimal Criticality Distances of Random Update functions. Criticality distances
computed for each gene expression probability of RUF for both ES cells and Yeast from the
Derrida plot/HD data.

For both networks the results obtained for pc using the Derrida plots agrees with that found
using the criticality distance.

D.4 Modeling the Yeast and the Embryonic Stem Cells Reg-
ulatory Networks

In the original RBN model, each node was assigned a deterministic distinct random update function
(RUF). Even if their exact values are unknown, it is clear that gene update functions should
not be random. Recent results suggest that genes expression rests on the combined effect of
regulatory inputs that can have either an activating (+) or repressing (−) action on their target
genes. Nowadays, we believe that the Boolean function should be closer to an additive function
to better match real-life regulation mechanisms, where the influence of the genes upstream of the
target, along with its own current activity state, could be summed in a way that takes into account
the activating or repressing effect of each influencing node.

Li et al. [LLL+04] proposed a simple additive dynamical rule that characterizes the temporal
evolution of the state variable. They consider that both the activating and repressing factors have
the same weight, and thus, the state of a target gene at the next time-step Si(t + 1) will be:
active (1) if it receives a majority of activating components from already active genes, inactive
(0) it receives a majority of repressing components, or the state of the target gene will remain
unchanged in the case the number of activating and repressing inputs are equal. Inspired by their
work, we propose an update function shared by all genes that takes into account the fact that
activating and repressing components could have uneven effects. In this case, a gene could require
a majority by more than one active input to switch states. Therefore we introduce a threshold
value T which has to be reached in order for a gene to become active. A gene’s activation state at
the next time-step t+ 1 is now given by:
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Si(t+ 1) =





active (1) if
∑
j S

+
j > T × (

∑
j S

+
j +

∑
j S
−
j )

inactive (0) if
∑
j S

+
j < T × (

∑
j S

+
j +

∑
j S
−
j )

S (t) otherwise

Where S+
j (S−j ) is the state of an activator (repressor) of the target gene. Moreover, as some

genes of our model might not have any repressors, and, if activated, should not remain in that
state permanently, we add a decay component. In the case where an active gene has no repressor
at all, we switch it to inactive manually at the next time-step. This update function is equivalent
to Li’s in the case where T = 0.5. We call our model for update function the Activator Driven
Additive function (ADA).

It can be easily proven that all rules in this class correspond to a subset of the RUFs [Has95].
In fact, once given, for each node, the activating and repressing effects of its neighbors, for each
possible configuration of the neighborhood, the lookup table of the corresponding additive rule
of the node can be constructed. In this form it can be easily recognized as an instance of the
RUFs in the original Kauffman’s RBN model. Therefore, by using ADA functions with different
T -parameter values in a RBN model, we are exploring the behaviors of a subset of classical RBNs.

Another interesting implication of this update function is that under this assumption the syn-
chronous timing of the events coincides with the semi-synchronous topology driven update scheme
we recently investigated in [DTG09]. This update sequence is neither fully synchronous nor asyn-
chronous, but rather takes into account the sequence in which genes affect each other. In this
scheme, only the activation of an activator or a repressor will have an effect on the list of nodes to
be updated at the next time-step. Thus, the set of all nodes that have to be updated in each time
step is formed by those genes that have at least an in-neighboring active gene, even when a RUF is
used to evolve the model. On the other side, when an ADA function is employed, in a synchronous
timing of the update events, a node is actually updated only if it has at least an in-neighboring
active gene.

D.5 Regimes Characterization in Real-Life Networks

Just as the probability p can change Kauffman’s original systems’ regime from chaotic to ordered
for a given connectivity K and set of RUFs, the T -parameter in our ADA model can change its
regime. In the following section, we show for which values of T our model of real-life topology
based Boolean networks using ADA exhibit a phase transition, and compare the dynamics of the
two update functions.

As discussed in section D.3.1, the space of all possible states for a given RBNs is 2N , where
N is the number of genes in the system. In our case, N = 11, therefore there are 211 = 2048
possible states. In the case of ADA, where all nodes share the same Boolean update function,
exhaustive enumeration is possible. At first, we let the threshold T parameter vary in the interval
[0.1, 0.9] by steps of 0.1. After identifying the values of interest Ti, we narrowed the interval to
[Ti−0.05, Ti+0.05] with a finer step of 0.01 to identify as precisely as possible the values Tc that are
closest to the critical region. As there are only 211 possible states, and thus the maximum Hamming
distance Hmax = 11, we computed average Hamming distances over exhaustive enumeration of all
states. In other words, we identified all pairs of states {Sa;Sb} that are at a distance H(Sa, Sb) = 1
and computed the average Hamming distance of their subsequent states H(S′a, S

′
b), and then moved

on to a distance H = 2, H = 3, . . . , H = 11.
The left-hand sides of figures D.6 and D.7 show Derrida plots with steps of 0.1. The regions of

interest for the T values are Ti ≈ 0.7 for ES cells. Let us note that in the ADA case, contrary to
RUF, update rules are not symmetrical with respect to T and 1 − T . For yeast cell-cycle, we see
two regions worth investigating Ti ≈ 0.2 − 0.3 and Ti ≈ 0.7. The in-depth examination of ADA
simulation results for values of the Ti parameter demonstrate that results become undistinguishable
(thus, figures are not shown) when the step between T values becomes small. This is due to the
fact that the ADA function is less sensitive to T for genes with a low input degree. In the case of
ES cells, Tc ≈ 0.68 and in the case of yeast Tc ≈ 0.25 or Tc ≈ 0.6. In this last value of Tc = 0.6,
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RUF p values ADA T values
order critical chaos order critical chaos

ES cell 0.1, 0.9 0.13, 0.87 0.5 0.2 0.68 N/A
yeast cell 0.1, 0.9 0.17, 0.83 0.5 0.9 0.25, 0.6 0.4

Table D.2: Real life network critical values. For systems under RUF, we show the function’s gene
expression probability p values for all three regimes, for both ES cells and Yeast cell-cycle. In the
case of ADA, we give threshold values T also for all three regimes and both studied networks.

curves for several very close values of T coincide. This observation, derived from visual analysis
of Derrida plots (figures D.6(a) and D.7(a)), is supported by the measurement of the criticality
distances. These are reported on the right-hand sides of the two figures D.6(b) and D.7(b).
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Figure D.6: Derrida plots and Criticality Distances of Activator Driven Additive functions for the
mouse embryonic stem cell regulatory network.
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Figure D.7: Derrida plots and Criticality Distances of Activator Driven Additive functions for the
yeast cell-cycle regulatory network.

We summarize the results described above in the table D.2. From these results, we observe
that the ADA-thresholds T have comparable values in the two GRNs studied in this paper: TESc ≈
T yeastc . The same applies to the probabilities pc of gene expression in RUF.

D.5.1 Validation of the Model on a Network with Known Update Rules

The two partial GRNs presented in section D.2 are practical RBN models of dynamical regulatory
interaction networks as they are small enough to study exhaustively all 211 possible states of the
system. Therefore, we can fully define the update functions for each node and every possible input
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combination. Yet, in these particular cases, we have nothing to compare these functions against. In
order to validate ADA update functions, we used another regulatory network presented in [LAA06].

In this work, Li et al. define a dynamic Boolean model of plant guard cell abscisic acid (ABA)
signaling. This hormone allows plants to adjust water conservation within the organism. In the
original model presented, the regulatory network is made of 42 cellular components. For each of
these components, in addition to their connections, the authors defined the Boolean function that
decides the state of each component at the next time-step. This new information can help us assess
the validity of the ADA update function.

ABA Network Reduction

Another helpful feature of the ABA regulation network is that 4 of the components have a prede-
fined Boolean value and those do not have an update function attached to them. This allows us to
replace these constant components (i.e. that are assigned a boolean value) in the update function
of the 38 remaining ones, and then to replace some more that become constant. For example:

ABA = ABH1 = ERA1 = AGB1 = True
SphK = ABA
S1P = SphK
GPA1 = (S1P or not GCR1) and AGB1

becomes after simplification:

ABA = ABH1 = ERA1 = AGB1 = True
SphK = True
S1P = True
GPA1 = (True or not GCR1) and True = True

Following this logic, the fully simplified ABA network becomes:

NOS = Ca2+c
NO = NOS
GC = NO
ADPRc = NO
cADPR = ADPRc
cGMP = GC
PLC = Ca2+c
InsP3 = PLC
CIS = (cGMP and cADPR) or InsP3
Ca2+ATPase = Ca2+c
Ca2+c = CIS and (not Ca2+ATPase)
KAP = not Ca2+c
KEV = Ca2+c

This new simplified network is reduced to only 13 components and it is therefore possible to
enumerate all possible 213 states.

Determining the ADA model’s regime

In order to determine the regime in which the ABA model evolves, we used the Derrida plots, shown
in figure D.8. The criticality distance is not as useful in this instance, as there is no comparison
to be made.

The Derrida plot of the ABA model with real-life update functions depicted in figure D.8 clearly
shows that the system evolves near the critical regime. Therefore, we use the Derrida plots and
criticality distance D to determine the critical values pc of RUF, respectively Tc for ADA, when
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Figure D.8: Derrida plot of the simplified ADA model with the original real-life update functions.

each of these function families is substituted in the simplified ABA model. In the case of RUF, we
average out the results over 100 sets of different update functions. Derrida plots for ABA system
with ADA update over the full scope of T ∈ [0.1, 0.9] values together with the corresponding
evolution of the criticality distance are shown in figures D.9(a) and D.9(b). The plot for RUFs
over the same range of p values is depicted in figures D.9(c) and D.9(d).

From the analysis of the figures above, we observe that in the case of ADA (figure D.9(b)),
there are only two values of the criticality distance, one for T = 0.5 and a larger one for T 6= 0.5.
The first one is the closest to the original ABA model critical regime when Tc = 0.5. In the case
of RUF (figures D.9(c)-(d)), the closest gene expression value to the regime of interest is pc = 0.6.

Comparing ADA, RUF and real-life functions

Using the ABA network described above, we have fully defined each node’s lookup table according
to its real-life function. Subsequently, we have replaced the original update functions of each node
with ADA functions and Tc = 0.5 to define the new lookup tables. This allows us to compare
in a very straight forward manner how close ADA is to this specific case real-life activations. In
addition, we have also replaced the set of node functions by a sample of 100 RUFs and pc = 0.6,
and averaged out the results. In order to keep the measurements simple, we have computed the
normalized Hamming distance between the real-life ABA function and ADA, or respectively RUF.
Each node’s lookup table size is 2kin+1, where kin is the node’s incoming degree. Therefore, the
added size of all nodes lookup tables is 11× 22 + 13 + 14 = 68.

The Hamming distance H(ABA,ADA) = 6/68 = 0.088 and H̄(ABA,ADA) = 17.1/68 = 0.251.
These results show that in this particular case, ADA is significantly closer to the real-life ABA
function than a random function. Although this finding cannot be generalized at this time, it
suggests that at least in some cases, the ADA function ought to be closer to the real-life update
function of a regulatory network system.

D.6 Enhancer Proportion vs. Threshold of Critical ADA
Networks

One legitimate question one could ask is whether the distribution of the enhancer and repressor
over the gene interaction links has an effect on the critical threshold T of the ADA update function,
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Figure D.9: Derrida plots (a)(c) and criticality distance vs. the threshold (b), respectively gene
expression probability (d). The upper row (a)(b) shows the ABA system where the original rules
have been replaced by ADA update function. In the lower row (c)(d), rules have been replaced by
RUF and results are averaged over 100 random rules sets.
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Figure D.10: Threshold and Criticality Distance with respect to Enhancer Proportion of Critical
ADA Networks. On the left-hand side (a) the evolution of the threshold T . On the right-hand side
(b) the evolution of the minimal criticality distance.

ES cell Yeast

real-life
Penhancer 0.71 0.44

Tc 0.17/0.83 0.25
Dmin(Tc) 0.29 0.11

man-made
Penhancer 0.5 0.8

Tc 0.5 0.7
Dmin(Tc) 0.33 0.16

Table D.3: Real life network properties.

i.e. the threshold for which the criticality distance is minimal, and on the minimal critical distance
D itself, therefore on the criticality of the system itself. In order to answer this question, we ran
simulations on both real-life GRN topologies, assigning the enhancer/repressor values of the links
at random, with enhancer proportions pe ranging from 1/10 enhancers to 9/10. For each value
of pe we generated 1000 different distributions and averaged our results over this number. Figure
D.10 shows the evolution of the T values and of the minimum value of D for each discrete value
of pe for both network topologies.

Results in Figure D.10 show that the proportion of enhancers/repressors does have a major
influence on how close the systems can get to the critical regime. In Figure D.10 (a) we notice that
the same trend of increasing T is necessary in both system types in order to keep D to a minimum,
although there are plateaus in the yeast case when T ≥ 0.6. Table D.1 in Section D.2 shows that
the real-life ES cell and Yeast cell-cycle have enhancer proportions of 0.71 and 0.44 respectively.
These values agree with close to minimal, although not absolute minimal, values of D found in
Section D.5.

Table D.3 shows the values of enhancer proportion Penhancer and critical threshold Tc that offer
the minimal criticality distance Dmin(Tc) in both the original networks and the man-made ones
described in this section.

Interestingly the criticality distance is smaller in the real-life case both for ES cells and yeast.
This indicates that the right proportion of enhancer/repressor does not suffice to get close to the
critical regime: the actual individual identity links does have an indubitable importance.

D.7 Dynamical Behaviors of Real-Life Regulatory Networks

A key notion underlying the behavior of deterministic discrete dynamical networks is that they
organize their state space into a set of basins of attraction. When a discrete dynamical network
perspective is used to investigate genetic regulatory networks behaviors, understanding how the
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range of stable cell types can exist with identical genes becomes clearer. Different attractors or
basins of attraction into which network dynamics settles from various initial states can be seen as
cell types or modes of growth for unicellular organisms, while the trajectories leading to attractors
can be seen as the pathways of differentiation.

To better understand real-life regulatory networks, it is not enough to qualify their regime. It is
therefore useful to portray their state space. Several measures have been proposed to characterize
the state space of a dynamical network by Wuensche [Wue89]. Of particular interest are the number
and lengths of the attractors in the state space, together with the sizes of the basins of attraction.
Directly connected to this latter characteristic is the basin entropy H. H is maximum if each
state is its own basin of size one, and minimum when there is a single basin. Because it takes
into account the relative basin sizes, it is quite insensitive to appearance of small and biologically
irrelevant basins. Finally, according to Wuensche [Wue89]: ‘high leaf density, high branching, short
transients, and small attractor cycles indicate order”. Leafs are states of the state space that do
not have any predecessor, while transient times and branch lengths are the time steps (i.e. number
of states) necessary from a state and a leaf respectively to reach its attractor.

In the following sections, we study the dynamical behavior of ES cells and yeast cell-cycle
separately. In both cases we compare results obtained using the ADA update function and those
obtained using random update functions found in classical RBN. In the case of ADA, where the
update function is unique, we exhaustively enumerate the entire state space a single time. On the
contrary, in the case of RUF, we sample 1000 different sets of rules unique to each gene. This is
the reason why there is standard error information only in the RUF case.

D.7.1 Simulation of the Embryonic Stem Cell Regulatory Networks

Using the model of mouse embryonic stem cell regulatory networks with ADA, we constructed
systems in the two available regimes: ordered and critical. Indeed, as can be seen in Section
D.5, there is no value of T that clearly puts the system in the chaotic phase. Therefore, we use
Torder = 0.2 and Tc = 0.68 for the unique ADA model. On the other hand, we built 1000 RUF
models of the ES systems, with as many different sets of unique rule in each gene. In the RUF
case, porder = 0.1, pc = 0.13, and pchaos = 0.5.

Figure D.11 shows the numerical simulations results in terms of number of attractors for ADA,
respectively average number of attractors for RUF, average attractor lengths, and average basin
size. Error bars represent the standard error.
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Figure D.11: Numerical simulation results for the ES model. (a) Attractors (average) number, (b)
attractors average lengths, and (c) the average basin of attraction size. The statistics are computed
on samples of RUF systems, hence the standard error bars, and exhaustively on ADA systems.

In the case of ES cells, we observe an increase in the number and length of the attractors,
explaining the shrinkage in the basins’ sizes, as the systems are getting more chaotic. This agrees
with previously obtained results on lager network models [DTG09], and it is aligned to Kauffman’s
conjecture that the biggest increase in this characteristic should happen in the chaotic regime. In
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the ADA case, we find more attractors of shorter length than in the case of RUF, almost all being
point attractors. When studying at basin entropy H (not pictured in this work), we observe for
RUF that the entropy tends to increase when moving toward the chaotic regime. This phenomenon
is expected with the growth in the number of attractors (i.e. of basins of attraction), thus none
of the basins seems to take over the others in size. ADA functions, on the contrary, show a drop
in the value of H (0.5 → 0.3), indicating that a few attractors have significantly larger basins
of attraction. Between RUF and ADA models, mean transient times and mean branch lengths
do not differ, showing a tendency to considerably increase in the chaotic regime. In ordered and
critical regimes, the mean branch lengths and transient times are very short (smaller than 2 states),
explaining the close to 1 probability of having leaf-states. These measures suggest that considering
ADA functions we are focusing on a more biologically interesting and plausible subset of RUFs.

D.7.2 Simulation of the Yeast Cell-Cycle Regulatory Networks

In contrast with the mouse embryonic stem cell regulatory network, the yeast cell-cycle one with
ADA can be found in all three regimes. Simulations for networks in the different regimes and with
both RUF and ADA functions have been performed in the same manner as for the ES model.
Figure D.12 shows the numerical simulations results in terms of number of attractors for ADA,
respectively average number of attractors for RUF, average attractor lengths, and average basin
size. Error bars represent the standard error.
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Figure D.12: Numerical simulation results for the yeast model. (a) Attractors (average) number,
(b) attractors average lengths, and (c) the average basin of attraction size. The statistics are
computed on samples of RUF systems, hence the standard error bars, and exhaustively on ADA
systems.

In this case, while RUF behaves as expected with a growth in the number of attractors as the
systems moves to chaos, surprisingly, the opposite behavior can be observed when ADA functions
are employed. When considering basin entropy H, as expected RUF models tend to show higher
values in critical and chaotic regimes. On the contrary, ADA systems’ entropies dramatically drops
from 0.6 in the ordered regimes to 0.3 in the critical one and to 0.1 when chaotic. This behavior
could be expected if the decrease in the number of attractors was significant, which is not the
case here. Therefore, we are witnessing the dominance in their basin sizes of a small number of
attractors. These yeast cell-cycle systems thus show a biologically interesting feature, compatible
of the assumption that attractors correspond to cell-cycles. Mean attractors lengths, basin sizes,
transient and brach lengths, and probability of leaf-states show an identical behavior to that of ES
cell regulatory networks.
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D.8 Resilience to Small Perturbations

Failures in systems can occur in various ways, and the probability of some kind of error increases
dramatically with the complexity of the systems. They can range from a one-time wrong output to
a complete breakdown and can be system-related or due to external factors. Living organisms are
robust to a great variety of genetic changes, and since RBNs are simple models of the dynamics of
biological interactions, it is interesting and legitimate to ask questions about their fault tolerance
aspects.

Kauffman [Kau00] defines one type of perturbation to RBNs as “gene damage”, that is the
transient reversal of a single gene in the network. These temporary changes in the expression
of a gene are extremely common in the normal development of an organism. The effect of a
single stimululs can transiently modify the activity of a gene, resulting in a growing cascade of
alternations in the expression of genes influencing each other. Although not agreed by all, some
believe this to be at the origin of the cell differentiation process and guides the development.

The precise structure of attractor basins is of interest as it may reflect the stability of cell types
to perturbation. A set of similar states can be specified for example that differ by one bit from
a reference state (a Hamming distance of one). The distribution of the set across the basin of
attraction held indicates the network’s response to a one bit perturbation to its current state of
activation. The dynamics of the system might remain in the same basin or flip to a different basin.

For the mouse embryonic stem cell (left) and the yeast cell-cycle (right) regulatory networks,
figure D.13 depicts the pHD, the probability that two states at Hamming distance of one belong
to the same basin of attraction. The two network models are studied both with RUF and ADA
update functions. In the case of ES cells, both update functions show identical pHD in the ordered
regime, while in the critical region pADAHD > pRUFHD . This same relationship holds in the critical
regime of the yeast cell-cycle system, even though pADAHD < pRUFHD in the order. Therefore, in the
critical region the ADA function shows higher probability, thus better resilience to single-gene
perturbations.
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Figure D.13: Probability that two states at a Hamming distance of one are in the same basin of
attraction for mouse embryonic stem cell (left) and the yeast cell-cycle (right) models. Both RUF
(dark grey) and ADA (light grey) update function behaviors are shown.

D.9 Discussion, Conclusions and Future Work

Taking into account recent years’ advances in the field of cellular biology, we have proposed to
identify under what conditions Kauffman’s hypothesis that living organism cells operate in a region
bordering order and chaos holds. This property confers to organisms both the stability to resist
transcriptional errors and external disruptions, and, at the same time, the flexibility necessary
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to evolution. We studied two particular cases of genetic regulatory networks found in literature
in terms of complex dynamical systems derived from the original RBN model. Therefore, we
compared the behavior of these systems under the original update function and a novel additive
function that we believe is closer to the actual role of living organisms.

The proposed functions, here called Activator Driven Additive (ADA), correspond to a subset
of all possible Boolean functions of the original Random Boolean Network model. Moreover, using
this set of update rules, the synchronous timing of the events coincides with the semi-synchronous
topology driven update scheme we recently investigated. This update sequence is neither fully
synchronous nor asynchronous, but rather takes into account the order in which genes affect each
other.

In order to investigate the dynamical behaviors of this new model, we visualized the phase
transition between order and chaos into the critical regime using Derrida plots. We also proposed
a new measure, the criticality distance, that allows to numerically discriminate between different
regimes by capturing the visual-only method implemented by Derrida plots.

Simulation results on two real-life genetic regulatory networks, the yeast cell-cycle and the
mouse embryonic stem cell, show that there exist parameter settings in both update functions that
allow the systems to operate in the critical region, and that these values are comparable in the
two case studies. Both Derrida plots and criticality distances agree on the numerical values of
the parameter for which the transition into the critical regime takes place. To better understand
real-life regulatory networks, it is not enough to qualify their regime. The state spaces of the two
real-life GRNs is portrayed using RBN-specific statistical measurements, confirming that the two
system operate at the edge of chaos. Moreover, in the critical regime, we show that ADA systems
exhibit superior tolerance to transient perturbations than classical RBNs.

In order to validate ADA update functions, we used another bio-chemical regulation network
operating near the critical regime (as confirmed by Derrida plot). For each node of this network,
in addition to their connections, the authors defined the Boolean function that decides the state
of each component at the next time-step. This new information can help us to assess the validity
of the ADA update function. These results show that in this particular case, ADA is significantly
closer to the real-life function than a random function. This also comforts us that, at least in some
cases, the ADA function ought to be closer to the real-life update function of a regulatory network
system.

A first improvement to the model could consist of the use of different threshold values for each
node. Further investigations of the model should include in particular the use of weighted influences
of the activator or repressor effects of a gene on another. This could be implemented by giving
to each link of the network model a specific weight. The resulting nodes’ ADA update functions
could drive the model toward more realistic patterns of gene regulation dynamics. Finally, this
new model should be validated on larger gene regulatory networks.
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Chapter 10

Conclusions & Future Perspectives

Statistics: The only science that
enables different experts using the
same figures to draw different
conclusions.

Evan Esar

10.1 Conclusions and Scientific Contributions

This five-year endeavor has led to both innovative and thorough research. It evolved in a guided
organic fashion, where the main area of exploration were defined at the very early stages of the
project and new idea have sprung naturally from ongoing research and advances in the fields stud-
ied as they were becoming available. This mixture of both planned and unplanned, although not
uncommon in a work of this length and breadth conducted in collaboration with several interna-
tional groups, kept it at the cutting edge of computational systems biology. Clearly, the biological
inspiration, the computational agent based simulation, the analysis of remarkable properties of
the systems owing to the networks’ attributes, the quest for emergence in complex systems, and
the thorough study of the robustness and fault tolerance abilities of the models can be followed
throughout the entire work. Over time, the context to which these common fields of study have
evolved from theoretical distributed computation with cellular automata to applied molecular biol-
ogy, opening new collaborations and making results potentially useful to the biological community
at large. At the end of each subsections below, we also hint at possible future developments we
might undertake in the field.
Finally, I am drawing conclusions in direct relations with the theses stated at the beginning of this
document.

Addressing the First Thesis

Using structured evolutionary algorithms, we have successfully evolved the underlying topology of
cellular automata for solving prototypical tasks, namely the density and the synchronization tasks.
Both starting from initial population of regular one-dimensional lattices networks and random
graphs, we have witnessed that, with very little guidance, EAs bring about topologies that are at
the crossroads of regular and random structures, and solve the tasks with high efficiency. Moreover,
they share properties, in terms of network science, with both types of topologies.

Addressing the Second Thesis

The structures we evolved using EAs as support for CA computation show numerous topological
similarities with biological, social and technological networks. We have shown by computer simu-
lations that they also share their remarkable stability and robustness in the face of probabilistic
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perturbations. Indeed, cellular automata that use these evolved structures keep their ability to
perform the task at hand in cases where systems on regular structure fail to do so.

Addressing the Third Thesis

In conjunction with previously discovered structural properties of genetic regulatory networks,
we have developed a novel semi-synchronous update timing for a Boolean model of regulatory
networks. When included in the model, this new topologically driven update scheme allows it to
retain its attractive simplicity, and similar or superior performance while making the model more
biologically realistic. In addition, we have throughly studied the influence of the network topology
on the system’s behavior. Further advances in abstract representations of GRNs could introduce
more realistic node update functions such as continuous activation, etc., in the context of plausible
topologies.

Addressing the Fourth Thesis

In addition to the steady and in some cases improved performance, our new model also shows
excellent flexibility to support evolution and robustness in the face of minor perturbation, that
can be interpreted as mutations or transcriptional errors in biology. Our results clearly show that
for similar models where only the topological structure of the underlying network differs, those
of biological inspiration are more robust. This comforts us in the speculation that outstanding
stability and evolvability displayed by regulatory networks is not to be solely attributed to the
biochemical interactions of the organic compounds, but also to the very topological structure of
these interactions.

Addressing the Fifth Thesis

Actual regulatory networks of biological organisms, although partial, have opened up new horizons
in our research. Not only have we been able to put our models to the test on real-life cases, it
has also provided us with invaluable insight on gene-gene interactions. This, in turn, allows us to
partially overcome the main shortcoming of Kauffman’s original random Boolean network model
of regulatory networks, namely the randomness. By updating both the structure and the kind of
interaction to mimic recent finding in genetics, we have been able to develop a new update rule,
that is completely deterministic, and we believe closer than ever before to be of use to biologists
as a tool of predicting interactions amongst genes. Naturally, in the view of the very limited size
of the regulatory networks studied so far, much is still to be done as larger systems will become
available.

10.2 Future Perspectives

As new data become more available, models for biological phenomena will greatly be improved by
the introduction of this new knowledge. Below, I describe a few possible direction my research is
susceptible to take:

• lacking of time, I was not able to apply fully close the circle and apply evolutionary algorithms
to models of biological genetic regulatory networks. There are number of situations where
EAs could be applied to models of GRN, for example:

• use EAs to reverse-engineer gene-gene interaction links from microarray data using an in-
stance of the additive update rules proposed in this work;

• use EAs to reverse-engineer the update functions in boolean GRN models from microarray
in a known sub-network model of GRN;

• use EAs to assign the threshold values in the boolean GRN model that uses an instance of
the additive update function;
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10.3 Final Considerations

Nowadays, in the field of systems biology, modeling complex dynamical systems is rapidly becoming
unavoidable. Every aspect of science uses models to make predictions and study systems, yet,
models are, by definition, imperfect, as they relay on assumptions and simplifications. This does
not mean they are not useful, take weather forecast for instance. However, their use is still limited
to a particular instance of a problem, under strict conditions. The fact that they are useful,
sometimes crucial, justifies the investment put into improving them to better match reality.

Biological models are, in my opinion, only at their genesis. This view is backed by the tremen-
dous efforts of scientist to work on them, with them, and improve them. Yet, we live in an
interesting time, computer science and computational models are following the trend of fundamen-
tal mathematics or statistics. Indeed, computer science and models are not exclusively viewed as
fields of study anymore, but more as a useful tools at the service of other scientific disciplines. Con-
sequently, biologists are opening up to computational models, understanding the potential insight
they can provide. A perverse effect is that people of either field loosely cross the line in the other
one: biologists become computer modelers, and vice-versa. If that was an acceptable situation
not long ago, the increasing complexity of the phenomena modeled start to push the limits of the
scientists’ abilities. It is no longer enough to be a computer scientist with moderate biological
knowledge to build accurate models of phenomena of the complexity and granularity that is ex-
pected today by the scientific community. Inversely, a biologist and amateur programmer is also
a limitation. Biologists, wet lab scientist must work hand in hand with modelers and computer
specialists. The design of the models must be based on lab experiments and results, that are built
in collaboration between all parties. I am personally very excited to be at the crossroads between
modeling and biology.
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Appendix A

Tools

We must use time as a tool, not
as a crutch.

John F. Kennedy

Most of the tools and simulators were developed in house, using non proprietary programming
languages, mainly Java and Python. Statistical analysis were made using R scripts, or Octave.
Figures were produced with Plot for Mac OS X.

Simulation were run on grids of Apple Macintosh workstations linked with Apple’s Xgrid tool
to distribute the processes over the grid(s). Results were stored in a mySQL database. All these
systems were ran and maintained at the University of Lausanne.

Online Resources

All the libraries and simulators used during this work are available on my web page:

http://cdarabos.googlepages.com
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Appendix B

UML Class Diagram - Jcell

This annex contains the UML class diagram of the main evolutionary CA simulator.
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Appendix C

UML Class Diagram - RBN

This annex contains the UML class diagram of the main RBN simulator.
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Appendix D

UML Class Diagram - eaRBN

This annex contains the UML class diagram of the secondary RBN simulator dependent on RBN.
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