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Transitional Dynamics in a Tullock Contest
with a General Cost Function®

Martin Grossmann, Markus Lang, and Helmut Dietl

Abstract

This paper constructs and analyzes open-loop equilibria in an infinitely repeated Tullock con-
test in which two contestants contribute efforts to accumulate individual asset stocks over time.
To investigate the transitional dynamics of the contest in the case of a general cost function, we
linearize the model around the steady state. Our analysis shows that optimal asset stocks and their
speed of convergence to the steady state crucially depend on the elasticity of marginal effort costs,
the discount factor and the depreciation rate. In the case of a cost function with a constant elas-
ticity of marginal costs, a lower discount factor, a higher depreciation rate and a lower elasticity
imply a higher speed of convergence to the steady state. We further analyze the effects of second
prizes in the contest. A higher prize spread increases individual and aggregate asset stocks, but
does not alter the balance of the contest in the long run. During the transition, a higher prize spread
increases asset stocks, produces a more balanced contest in each period and increases the speed of
convergence to the steady state.
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1 Introduction

Individuals and organizations compete for scarce goods, opportunities, posi-
tions, and status. Much of these competitions take the form of contests in
which competitors make efforts by investing tangible and intangible resources
and are rewarded based on their relative “efforts.” In the context of business,
for example, employees compete in promotion contests (Rosen, 1986; Bog-
nanno, 2001), firms compete in market share contests (Schmalensee, 1976;
Piga, 1998) and R&D labs compete in patent race contests (Loury, 1970; Tay-
lor, 1995). Competition in the form of contests, however, is not limited to the
world of business. Contests can be observed in all fields of social life. Litiga-
tion (Warneryd, 2000; Baye et al., 2005), rent-seeking (Farmer and Pecorino,
1999; Baye and Hoppe, 2003; Grossmann and Dietl, 2011), sport champi-
onships (Szymanski, 2003; Dietl et al. 2009), political campaigns (Glazer and
Gradstein, 2005; Klumpp and Polborn, 2006), military conflicts (Garfinkel
and Skaperdas, 2007), and many other forms of competition take the form of
contests.

Such contests are usually modeled as static one-shot games. While
this static approach may be sufficient to highlight many important aspects
of competition, it ignores the fact that effort decisions in contests are often
inter-temporarily connected. The effort invested in today’s contest may affect
the probability of winning a similar contest tomorrow.

In this paper, we analyze the transitional dynamics in an infinitely
repeated Tullock contest between two players with general cost functions. In
each period, both contestants simultaneously exert efforts by investing in some
form of “asset,” such as reputation, human capital, market share, prestige,
weapons and so on. This asset stock accumulates over time and, in each period,
determines the probability of winning an exogenous first prize (winner) and
second prize (loser). We assume that contestants are not able to observe the
past actions of their rivals, so that we can analyze open-loop equilibria.

To solve the model with a general cost function, we linearize the ac-
cumulation and Euler equations around the steady state. By these means,
we are able to investigate the incentives to exert effort close to the steady
state. To the best of our knowledge, the linearization procedure has not yet
been applied to a Tullock contest model. Our analysis shows that the optimal
asset stocks and their speed of convergence crucially depend on the elasticity
of marginal effort costs, the discount factor and the depreciation rate. We

'For a comprehensive survey on contest theory, see Konrad (2009).
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further investigate the effects of second prizes in the transition to the steady
state as well as in the steady state itself.?

Our article contributes to the growing literature on dynamic contests, in
particular, on infinitely repeated contests in discrete time. Infinitely repeated
Tullock contests have been studied by Leininger and Yang (1994), Amegashie
(2006) and Shaffer and Shogren (2008). Leininger and Yang (1994) study a
dynamic Tullock contest with linear effort costs and show that wasteful ex-
penditures in sequential-move games with an infinite time horizon are lower
than in static simultaneous-move games. Contrary to Leininger and Yang
(1994), our model looks at a sequence of outcomes rather than a single fi-
nal outcome. Our paper is also related to Shaffer and Shogren (2008), who
consider infinitely repeated Tullock contests with linear costs to study the effi-
ciency consequences on regulation and governance. They focus on the question
whether more rents are dissipated in repeated regulatory contests than one-
time competitions under two equilibrium concepts: Friedman’s classic trigger
strategy and the Rotemberg and Saloner equilibrium. Similarly, Amegashie
(2006) uses the Tullock framework in an infinitely repeated contest with linear
effort costs to show that collusion is easier to sustain when the players are
more equal than when they are less equal.

Furthermore, Krahmer (2007) analyzes infinitely repeated contests in
which the contestants do initially not know their true relative abilities but are
able to learn about them over time. He models a general-form, two-player
contest in which each contestant can exert either low or high effort and the
contestants’ win probabilities depend on effort, ability and luck. He finds that
a “belief reinforcement effect” is encouraging optimistic contestants and dis-
courages pessimistic contestants in the case that relative ability and effort are
complements. Shaffer and Shogren (2009) explore the properties of repeated
rent-seeking games in a general parametric framework and study how effort
levels are affected by ability, more productive effort and additional players.
Finally, Amegashie (2011) studies both finite and infinite period investment-

2Note that a contest designer might be interested in the overall quality of the contest
measured by the level of aggregate efforts. Simultaneously, a balanced contest could be
another goal of the designer. For example, in sports, the quality of the contest often improves
with increasing competitive balance (Dietl, Lang, Rathke 2011).

3For a dynamic model in continuous time, refer to Wirl (1994).
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contest games and shows that it is possible for an asset-owner to overinvest in
the asset when property rights are incomplete.?

In contrast to our paper, none of the above mentioned papers allows
efforts or investments to accumulate over time. Allowing that efforts accu-
mulate over time, makes the analysis significantly more complicated. Most
closely related to our work is the paper by Grossmann et al. (2010), which
analyzes the investment behavior of clubs in a dynamic contest model of a
professional team sports league with talent accumulation. The authors focus
on linear and quadratic costs as well as on the effect of revenue sharing on
competitive balance. Their model shows that revenue sharing decreases com-
petitive balance and the steady state is attained immediately if investment
costs for playing talent are linear. Moreover, they find that revenue sharing
decreases the speed of convergence to the steady state if investment costs for
playing talent are quadratic. In order to derive their results, Grossmann et al.
(2010) use a "shooting method” to simulate their model for quadratic costs.
In this article, we extend and generalize the model of Grossmann et al. (2010)
by assuming a general convex cost function instead of linear and quadratic
costs. This generalization of the cost function requires a linearization of the
accumulation and Euler equations around the steady state since the ”shooting
method” is not applicable.

The remainder of this paper is structured as follows. Section 2 intro-
duces the model with its main assumptions, the information structure, the
optimality conditions and the steady state. In Section 3, we analyze the tran-
sitional dynamics of the model. Section 4 summarizes the main findings and
concludes the paper.

2 Model

2.1 Notation and Assumptions

Consider an infinitely repeated Tullock contest in discrete time with two con-
testants. In each period ¢ = 0,1,..., each contestant i € {1,2} chooses a
“contribution” e;; € Rar to accumulate an asset stock F;; € Rg . This asset

4For dynamic constests that are not infinitely repeated, see, e.g., Gradstein (1998) and
Gradstein and Konrad (1999) who study the design of multi-round contests with the elim-
ination of the loser in each round. Moldovanu and Sela (2006) analyze an all-pay auction
model of an elimination contest. Furthermore, Giirtler and Miinster (2009) study sabotage
in a tournament with two rounds. Our paper is also related to Yildirim (2005) who analyzes
a two-stage Tullock contest with two players in which a single prize is allocated at the end of
the second period. In this model, the players have the possibility of adding to their previous
efforts after having observed their rival’s most recent efforts.
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stock can include reputation, human capital, market share, R&D investments,
lobbying activities, prestige, weapons and so on. In the subsequent analysis,
we refer to the contribution e;; as “efforts” as it is customary in the literature
on contests.

Efforts are undertaken simultaneously, and the asset stock depreciates
over time. The accumulation equation for the asset stock is given by

Eii=(1—-0)Ei1+eis, (1)

with ¢ =0,1,... and ¢ € {1,2}. Note that E;; characterizes the state variable
in our model. The parameter § € (0,1) represents the depreciation factor.
Equation (1) shows that efforts are necessary to maintain the existing asset
stock. Before the competition starts, i.e., in period ¢ = —1, each contestant 7
is assumed to have an initial asset stock given by E; ; € R{.

In each period t, the available asset stock of contestant i determines
which contestant wins the exogenously-given prize fund V' € R, which is
divided between the winner and the loser of the contest. We assume that the
winner receives kV and the loser receives (1—k)V with & € (3,1]. That is, k is
the fraction of the prize fund allocated to the first prize and 2k—1 characterizes
the spread between first and second prize (“prize spread”).> We assume that
the contest designer can choose both the prize fund V' and the fraction k of
the prize fund allocated to the first prize. In the subsequent analysis, it holds
that 7,7 € {1,2}, j#i¢and t =0, 1,..., unless otherwise stated.

To calculate the probability p; € [0, 1] that contestant ¢ wins the first
prize kV in period ¢, we utilize the Tullock contest success function (CSF)
which is a widely-used functional form of a CSF in the contest literature. Its
general form was introduced by Tullock (1980) and axiomatized by Skaperdas
(1996) and Clark and Riis (1998). The Tullock CSF is given by

~y

Ei’t 1 . .
pi(Eir, Ejt) = { B+ Efy it max{Ei, Ej.} > 0,

otherwise.

(2)

1
29

If contestant i does not win the first prize, s/he will win the second

prize with certainty. Hence, the probability that contestant ¢ wins the second
prize (1 — k)V is given by 1 — p;(E;4, Ej;). The parameter v € RY is called

5See, e.g., Szymanski and Valletti (2005), who model the incentive effects of second prizes
in a static game. Unlike Szymanski and Valletti, we consider repeated instead of one-shot
contests and we use a general cost function rather than linear costs. For a literature review
about multiple-prize contests and the optimal allocation of prizes, see Sisak (2009).

http://www.bepress.com/bejte/vol 11/issl/artl7 4
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the “discriminatory power” of the CSF and reflects the degree to which the
asset stock affects the winning probability.%

The ratio of the winning probabilities p;(E;, E;¢)/pij(Eit, Ejt) - also
called “win ratio” - describes how even the contest is in period ¢t. The contest
is more balanced if the win ratio gets closer to 1.

We assume that efforts of contestant i generate costs according to a
(strictly) convex cost function C(e) with C’(e) > 0 and C"(e) > 0 for e > 0
and C’(0) = 0. It should be noted that we concentrate on the effects of asym-
metrical initial asset stocks on the optimal effort contributions of contestants
over time. That is, we consider contestants with a common, strictly convex
cost function but asymmetrical initial asset stocks.

Contestant ¢’s expected profits m;; in period ¢ are given by expected
revenues minus costs:

Wi,t(ei,t, Ei,ta Ej,t) = pi(Ei,ta Ej,t)kv + [1 - pi(Ei,ta Ej,t)](l - kf)V - O(ei,t)

With probability p;(Ey, Ej;), contestant i receives kV, and with proba-
bility 1 —p;(Ei, Ej,) s/he receives (1 —k)V at costs C(e; ;). Future profits are
discounted by a factor 8 € (0,1). Finally, we assume that the outside option
for each contestant is zero.

2.2 Information and Equilibrium

In this subsection, we discuss the connection between the information structure
and the utilized equilibrium concept. According to Fudenberg and Tirole
(1991), if agents (i.e., contestants in our paper) observe their rivals’ actions
and can condition their action on the history of the game, then the closed-
loop equilibrium concept is appropriate. If, however, agents only know their
previous actions but do not observe the history of their rivals’ actions, then
the open-loop equilibrium concept is applied.”

To solve the model, we follow the approach in Grossmann et al. (2010)
and concentrate on open-loop equilibria due to the following two reasons:

1. Real-world examples exist in which agents are unable - at least to some
extent - to observe the rivals’ actions. For example, suppose that a

6See, e.g., Dietl et al. (2008) for an analysis of the parameter 7 in a static contest model.
Moreover, Corchén and Dahm (2010) investigate foundations for prominent CSFs.

“Open-loop equilibria can also be interpreted as equilibria in which agents commit to their
action paths up-front. This pre-commitment implies that agents do not react to possible
deviations of the rivals from their equilibrium strategies. We are grateful to an anonymous
referee who suggested this point.
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group lobbies for their individual interests over and over again. This
lobbying activity may be hidden such that the open-loop approach is the
appropriate equilibrium concept. Another example are pharmaceutical
firms that repeatedly compete against each other. These firms invest in
R&D in order to increase their chance to be the first in developing a new
medicament. It makes sense to assume that these firms do not know
exactly their rivals’ specific investment in R&D such that the open-loop
approach is the appropriate equilibrium concept.

2. The open-loop approach ensures tractability. In open-loop equilibria, the
strategy space is smaller which facilitates the computation of equilibria,
especially in infinitely repeated games.®

2.3 Optimality Conditions and Steady States

Contestant ¢ maximizes its expected discounted profits Y .-, 5'm; ; with respect
to the stream {e;;}7°, and subject to the accumulation equation for the asset
stock given by equation (1). As shown in Appendix A.1, the Euler equation
for contestant i € {1,2} is:

(2k — 1)V7EZ;1E1t
(B, + Ej,)?

= Cl(€i’t) — 5(1 — 6)C,<€i7t+1). (3)

Similar to Grossmann et al. (2010), we establish Proposition 1, which
summarizes the steady state results for a general, strictly convex cost function.”

Proposition 1 (i) A unique steady state exists, with
E,=E;=E,
that is implicitly defined by (2k — 1)yV/(4E) = [1 — 3(1 — §)]C"(dE), and
e, =e; =e,
that is implicitly defined by e = 0F.

(i) The steady state values E and e increase in the prize spread k, in
the prize fund V and in the discount factor 3.

8Note that the closed-loop approach can lead to multiple equilibria. For example, Gross-
mann and Dietl (2009) show in a contest model that multiple equilibria are possible even in
a two-period setup.

9Henceforth, variables without a time subscript indicate steady states.

http://www.bepress.com/bejte/vol 11/issl/artl7 6
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(iii) The steady state asset stock E decreases in the depreciation rate
0, while the steady state effort e increases in 6.

Proof. See Appendix A.2. m

Part (i) of Proposition 1 shows that efforts and asset stocks are identical
for both contestants in the steady state: that is, there is not only a relative
convergence but also absolute convergence of the asset stocks in the long run
if contestants have identical, strictly convex cost functions. It is important to
stress that this result holds even if contestants start with different initial asset
stocks F; _; and Ej_;. It immediately follows from part (i) that p;(E;, E;) =
p;(E;, Ej) = 0.5 holds independently of initial asset stocks. That is, the contest
is completely balanced in the long run.

Part (ii) states that the steady state values F and e are increasing in
the prize spread and the prize fund due to higher marginal benefits of effort.
Therefore, if a contest organizer wants to increase (individual and aggregate)
efforts or (individual and aggregate) asset stocks in the long run, it should
increase the weight & attached to the first prize and/or increase the prize fund
V. However, neither the prize spread nor the prize fund affect the balance of
the contest in the long run because p;(E;, E;) = p;(E;, E;) holds independent
of k and V. Moreover, we derive that a higher discount factor # implies higher
asset stocks E in the steady state. Because future expected profits get less
discounted, incentives for contestants to exert efforts e are higher such that E
increases in (3.0

Part (iii) posits that a higher depreciation rate ¢ induces a decrease in
steady state asset stocks I since the effect of E;; upon the future is weaker
when ¢ is larger. However, a higher ¢ increases steady state efforts e. Because
the depreciation rate decreases steady state asset stocks but increases efforts,
a contest designer, who can influence the depreciation rate, cannot maximize
both steady state values simultaneously. If, however, the contest designer
wants to maximize, for example, only steady state efforts, s/he should ignore
previous asset stocks and consider only present efforts to determine who wins
the contest.!!

0This result may have the following policy implication. In rent-seeking contests, for
instance, more forward-looking contestants (higher ) exacerbate social costs. A contest
designer therefore should replace contestants frequently to make them less forward-looking.
We are grateful to an anonymous referee for this point.

Published by The Berkeley Electronic Press, 2011 7
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3 'Transitional Dynamics

3.1 Approximation Method

In this section, we investigate the dynamics of the model and analyze the tran-
sition (i.e., the short run) to the steady state. According to the accumulation
equation (1) and the Euler equation (3), we have a system of non-linear dif-
ference equations. It is not possible to solve this model explicitly. In order to
obtain a solvable linear system, we must linearize the model around the steady
state. This linearization procedure involves two steps. First, we derive the to-
tal derivative of equations (1) and (3). Second, we linearize each condition in
terms of percentage deviations from the steady state values.

This procedure permits us to approximately determine the optimal path
of the asset stocks for both contestants close to the steady state. It has an
advantage in that we do not have to specify the cost function, but we are still
able to provide an explicit path of the asset stocks. The general drawback
of the linearization method is that the results hold only if initial states are
close to the steady state. If initial states are not close to the steady state the
optimality conditions may not be well represented by the linearized versions
of those equations.!?

3.2 General Results

By linearizing the asset stock accumulation equation (1) around the steady
state, we obtain:'?

Eiip1= (1-— 5)E¢,t + 06441, (4)
where E@t = (E;;—FE)/E and é;; = (e;+ —e)/e. Hence, E@t and é;; represents
the percentage deviations of F;; and e;; from their steady state values £ and
e.

12For more detail about the linearization method please refer to King et al. (2002), who
provide a comprehensive analysis of this method. See also Chamley (1986) and King et al.
(1988), who utilize this method to solve dynamic optimization problems.

13The total derivative of equation (1) is given by dE; ;11 = (1 —8)dE; ; +de; ++1. Because
we linearize around the steady state the previous equation becomes FE, ;41 — E = (1 —
0)(Ei+ — E) + ei 141 — e where variables without subscripts represent steady state values.
Dividing both sides by E and using the result that §E = e in the state steady according
to equation (1), we obtain (E; ;41 — E) /E = (1 = §)(E;y — E)/E + (ei141 —¢€) /(e/d) &
(Bigs1 — E)/E=(1-0)(Eiy — E)/E+ (i1 —€)/e.

http://www.bepress.com/bejte/vol 11/issl/artl7 8
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By linearizing the Euler equation (3) around the steady state and using
the results from Section 2.3, we obtain:'4

5 PB1—9d)ale), ole) .
Bip=—————S€1 — =€t )
S T G R S T R S 5)
where ()
eC”(e
, (6)
C'(e)
is the elasticity of marginal costs with respect to efforts e.

Using equations (4) and (5), which hold for contestant ¢ and analogously
for contestant j, we obtain the following system:

o(e) =

) 5(1-p1-0)) | 1 _ 5 R

Eiii1 B(1-0)o(e) +1-90 0 B(1-5) 0 E;:

) 0 0(1-p(1-9)) +1-96 0 E

Ejp | _ B1-2)a(e) B(1-9) it

3 1-B(1-5 0 1 0 é.

S B1=0)0(c) s s [t

o | 0 BI-0)7(c) 0 sug |7

Ert+1 E‘EQ ="y
= [ = QT (7)

Next, we will apply several steps and transform system (7) to derive
equations that are necessary to analyze explicitly the optimal dynamics of the
asset stocks and efforts. We will show that the stable eigenvalue of the matrix
) will have a decisive influence on the dynamics. The matrix of eigenvalues

of @ is defined as follows:'®

;o 0 0 0
_ 0 pe 0 O
=10 0 pw 0
0 0 0 p

4 Taking total derivative of equation (3) and simplifying yields —(2k —1)yV/(4E?)dE; ,
C"(e)de; — B(1 — 6)C" (e)de; 1+1. Using the fact that E = e and (2k — 1)7yV/(4E) = (1—

B(1—19))C’(e) in the steady state, the previous equation becomes —(1—3(1—9))C’(e)E; +
eC"(e)é;r — B(1 — 5)60//(6)@"“,1.

5Note that ue, £ € {1,2,3,4}, solves det(Q — uel) = 0 with I defined as a 4 x 4 identity
matrix.

Published by The Berkeley Electronic Press, 2011 9
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where
_ 1 sa-sa-e) | 1+80-8) s1-p(1-6) | 148(1-62\> _ 4
M= H2 =5 | B T a0 \/ ( B1-0)ole) T AU0) ) B
_ 1 [ sa=sa-e) |, 148(1-)° 6(1-8(1=0)) | 14+801-62\> _ 4
H3 = Ha =3 | B-5)ete) T A1-0) +\/ ( B-0)o(e) T B1-0) > 5

We conclude that all eigenvalues py, ¢ € {1,2,3,4} are real. One can
further show that the modulus of py and s is smaller than 1 and the modulus
of pz and puy is larger than 1.6 Tt follows that there are two stable eigenvalues
(11 = p2) and two unstable eigenvalues (3 = u4). Henceforth, we will use the
parameter i, interchangeably for the stable eigenvalues py and ps.

The matrix of eigenvalues of () is useful because we obtain the decom-
position Q = PuP~! where P is defined as the matrix of eigenvectors of Q.7
This decomposition can be used to rewrite the system (7) as follows:

[ =QT, & P Ty = uP'T, & Ty = uly.
41 = QL' t+1 = U , ¢ t+1 = Ml
Eft+1 =I

Hence, we have generated canonical variables:

I i 00 0 [T mly T
Dogor | _ | 0 p2 0 0 Dog | | pelay | _ Mt2+11j2,0
I'3041 10 0 w0 I3y B p3l's B Mgﬂljs,o
I_‘4,1H-1 0 0 0 22} F47t ,U4F4,t ,ufﬁ_ll—‘zl’o

(8)

These canonical variables have the advantage that we can determine

explicitly the optimal path for the asset stocks and efforts. After some math-
ematical manipulations, we obtain Proposition 2.

Proposition 2 In the linearized model, a unique solution of contestant efforts
and asset stocks exists for all initial asset stocks (Ey_1,Es_1) € R} x RY.
The dynamics of efforts and asset stocks near the steady state for contestant
i € {1,2} are summarized by equations

eip = e+ (s +0—1) (B — E)p, (9)
Eyy = E+ (B — B)u, (10)
16See Appendix A.3.

17See Hamilton (1994) and Greene (2000) for a detailed review of the decomposition
procedure.

http://www.bepress.com/bejte/vol 11/issl/artl7 10
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fort=0,1,..., where the stable eigenvalue pus € (0,1) of the linearized system
s given by

L1 B(L-0)  1+B(1- )
He = 2(6ﬂ—®d@ a0 )

1 [(6(1-B1=0) 1+p8(1-062\> 4
_5¢<ﬁﬂ—®d@ B9 ) B

3
Proof. See Appendix A.4. m

The proposition shows that there exists a unique solution of efforts and
asset stocks in the linearized model even if contestants have different initial
asset stocks: that is, there is a unique path of efforts that is optimal for each
contestant. As a result, we are able to negate the possibilities of “multiple
equilibria” or “no equilibrium”. Moreover, we obtain an explicit optimal path
for efforts and asset stocks through the linearization method. The dynamics of
the asset stocks crucially depend on the stable eigenvalue s of the linearized
system. Based on Proposition 2, we derive the following corollary.

Corollary 1 In the linearized model, the following are true:

(i) Contestant i’s efforts e;; monotonically increase (decrease) over
time into the steady state e if E; 1 > E (E; 1 < E). Moreover, lower initial
asset stocks E; 1 imply higher initial efforts.

(i) The contestant with the higher initial asset stocks will have a higher
probability of winning the prize in the transition.

(7ii) The speed of convergence of asset stocks is lower, the higher is the
stable eigenvalue s of the linearized system.

Regarding part (i), one can show that ps + 6 — 1 is always smaller
than zero. This implies that contestant ¢’s efforts e;; monotonically decrease
over time into the steady state efforts e if the initial asset stock is smaller
than the steady state asset stock, i.e., E;_; < E. Otherwise, if F; _; >
E, efforts e;; monotonically increase over time into steady state efforts e.
Furthermore, initial asset stocks critically influence the path of efforts and
the asset stocks. For instance, suppose that £; ; < E, then a lower value
of E; _; implies higher initial efforts e; o, ceteris paribus. Part (ii) shows that
the contestant with higher initial asset stock always dominates the contest
in the transition.'® This result follows from equation (10) because the stable
eigenvalue is a constant. Regarding part (iii), one can see from equation (10)

18We would like to thank an anonymous referee who pointed out this result.
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that a lower stable eigenvalue i, of the linearized system implies a higher speed
of convergence of the asset stocks. In particular, the asset stocks immediately
converge to the steady state value if the stable eigenvalue converges to zero.'”

During the transition, the effect of the prize spread on the asset stocks
and their speed of convergence is ambiguous for a general convex cost function.
The individual and aggregate asset stocks depend on the prize spread because
the steady state asset stock E depends on the weight k attached to the first
prize (see Section 2.3). Furthermore, the stable eigenvalue p itself depends on
(among other parameters) the elasticity of marginal costs o(e). According to
Section 2.3, steady state efforts e themselves depend on k as well. Therefore,
it is not unambiguous, how the individual as well as aggregate asset stocks
depend on the weight k attached to the first prize.

Similarly, for a general convex cost function, it is ambiguous how the
elasticity of marginal costs o(e), the discount factor § and the depreciation
rate 0 affect the stable eigenvalue. It follows that the effect on the speed
of convergence of asset stocks is also not clear. To obtain further insights
regarding the effects of the different parameters, we analyze a specific class of
strictly convex cost functions in the next section.

3.3 Constant Elasticity of Marginal Costs

We now analyze the class of cost functions with constant elasticity of marginal
costs a(e) = o > 0,
gb 61—|—cr

:1—1—0

where ¢ € RT is a parameter. In this case, the stable eigenvalue p, € (0,1)
only depends on the parameters (3, §, ¢ and is independent of the weight k
attached to the first prize because the elasticity ¢ does no longer depend on
steady state efforts e.

C(e)

)

3.3.1 Effects of Elasticity of Marginal Costs, Discount Factor and
Depreciation Rate

In this section, we show how the elasticity of marginal costs, the discount factor
and the depreciation rate affect the speed of convergence of asset stocks to the
steady state. Recall that the stable eigenvalue of the linearized system crucially
influences the speed of convergence. In particular, the speed of convergence is
lower, the higher is the stable eigenvalue.

19Gee Grossmann et al. (2010) who show that linear costs imply immediate convergence
of the asset stocks to the steady state.
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Computing the partial derivative of the stable eigenvalue with respect
to the elasticity o yields

Ops _00—B(=08) | | o(l+p(1L—8?)+5(1-5+89)

Jo 2020(1 —9) I on2
aB(1 _5)\/(6@ BO—6) | 14+8(1-9) ) —4

> 0.

580 T B1D)

We conclude that a higher elasticity of marginal costs with respect to
steady state efforts implies a higher eigenvalue and therefore a lower speed of
convergence of the asset stocks. This result holds because a high elasticity
implies a more sharply curved cost function which makes it rather profitable
to smooth efforts over time. If the elasticity is rather low, high efforts in
the beginning of the contest are profitable such that there is lower smoothing
behavior over time, and hence, convergence occurs faster. In the limiting case
of a linear cost function, the steady state asset stock F; for contestant ¢ would
be achieved immediately in the first period independent of initial asset stocks.

How do the other parameters influence the stable eigenvalue of the
linearized system and therefore the speed of convergence? We find that a
higher discount factor 3 and/or a lower depreciation rate ¢ imply a higher
eigenvalue, i.e., Ous/0F > 0 and dus /00 < 0. It follows that a higher 3 yields
a lower speed of convergence of the asset stocks. Conversely, the speed of
convergence of the asset stocks is higher, the higher is the depreciation rate
0. If the discount factor is low, the future is less important because future
expected profits get more discounted and therefore convergence occurs faster.
In the limiting case of § = 0, the steady state would be immediately attained
in the first period. On the other hand, if the depreciation rate is high, a lower
percentage of the current asset stock is taken over to the next period and the
speed of convergence is higher. In the limiting case of 6 = 1, the whole asset
stock is depreciated and convergence to the steady state occurs again in the
first period.

The following corollary summarizes our results:

Corollary 2 For a cost function with a constant elasticity of marginal costs,
the speed of convergence of asset stocks is lower in the linearized model:

(i) the higher is the elasticity of marginal costs, (ii) the higher is the discount
factor, and (iii) the lower is the depreciation rate.
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3.3.2 Effect of the Second Prize

In this section, we investigate the effect of the second prize on the asset stocks
and their speed of convergence. First, we analyze how the prize spread affects
the asset stocks in the transition. From Section 2.3, we know that a higher
weight k attached to the first prize will increase individual asset stocks in the
steady state, i.e., 0F/0k > 0. Therefore,

E,=FE+(E_1—EW™" =E _ "+ (1 —pfhE

is increasing in k because OF; ;/0k = (1—ut™)OE /0k > 0. That is, a higher k
induces an increase in individual asset stocks during the transition. It follows
that also aggregate asset stocks E;+ Fj, = (E; 1 + Ej 1) pt™ +2(1—pt™E
are increasing in k because O(E;; + E;;)/0k = 2(1 — pt*1OFE /ok > 0.

In a further step, we can show that the contest becomes more balanced
in each period if the weight k attached to the first prize increases:

>0
=~
-1(1 t+1\,,t+1 E E aE

_ 7(E+(b1,_1—E)ui“)” U= w s By — Bo)
E+ (Ej_1 — E)utt (E + (E;_y — E)ut+1)?

0 (pi’t> > 0 if Ej7_1 > Ei,—l
- 0 lf Ej7_1 == Ei,—l
<0ifE,_, < E,

From the above calculations, we derive the following results:

o If £, 1 < E;_y, then p;;/p;s > 1 and 0 (pi+/p;+) /Ok < 0: hence, the
balance of the contest is increasing in k.

o If £, 1 > E;_ 4, then p;;/p;s < 1 and 0 (pi+/p;+) /Ok > 0: hence, the
balance of the contest is increasing in k.

o If £, 1 = E;_, then p;;/p;+ = 1 and 0 (p;+/p;+) /Ok = 0: hence, the
balance of the contest is not affected by changing k.

We conclude that a higher & produces a more balanced contest in each
period and therefore it also increases the speed of convergence to the steady
state as long as contestants start with different initial asset stocks. These
results lead to Corollary 3, which summarizes our key findings.
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Corollary 3 For a cost function with a constant elasticity of marginal costs,
in the linearized model, a higher weight k attached to the first prize will:

(i) increase individual asset stocks as well as aggregate asset stocks during the
transition as well as in the steady state itself,

(i) produce a more balanced contest in each period and, therefore, the speed
of convergence to the steady state is faster as long as contestants start with
different initial asset stocks.

It should be noted that parts (i) and (ii) of Corollary 3 generally hold in
the linearized model for a cost function with a constant elasticity of marginal
costs. According to the corollary, there are two reasons for a contest designer
to increase the prize spread between first and second prize in the case of a
cost function with a constant elasticity of marginal costs. First, if the contest
designer aims to increase individual and aggregate asset stocks during the
transition as well as in the steady state (see Section 2.3) itself, s/he should
augment the spread between first and second prize because incentives to exert
efforts increase in each period. Second, a higher prize spread increases the
balance of the contest in each period during the transition if the contestants
start with different initial asset stocks.? A contest designer might prefer a
balanced contest. For example, in sports, a contest rather gains attention
when the outcome is uncertain. In this case, a contest designer can increase
the speed of achieving a balanced contest by increasing the weight attached
to the first prize. In any case, a fully balanced contest is achieved in the long
run (steady state) independent of the organizer’s choice of the spread between
first and second prize.

4 Conclusion

This paper develops an infinitely-repeated Tullock contest with a general cost
function, in which two contestants contribute efforts to accumulate individual
asset stocks. To investigate the transitional dynamics of the contest, we use an
open-loop equilibrium concept and we linearize the model around the steady
state. This linearization procedure, which has not yet been applied to a Tullock
contest model, permits us to approximately determine the optimal path of
asset stocks for both contestants.

Our analysis shows that in the long run (steady state), efforts and
asset stocks increase with a higher discount factor. A higher depreciation rate

20Tf contestants start with the same asset stocks, then it is clear that asset stocks are
balanced in each period.
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induces a decrease in steady state asset stocks but an increase in the steady
state efforts. Our model further shows that optimal effort levels and their
speed of convergence to the steady state depend on the stable eigenvalue of
the linearized system. In particular, the speed of convergence to the steady
state increases if the stable eigenvalue decreases. We further find that the
contestants’ efforts monotonically increase (decrease) over time into the steady
state efforts if initial assets stocks are larger (smaller) than the steady state
asset stocks. Moreover, the contestant with the higher initial asset stocks has
a higher winning probability in the transition.

In the case of a cost function with a constant elasticity of marginal
costs, a lower elasticity, a lower discount factor and a higher depreciation
rate imply a lower eigenvalue and therefore induce a faster convergence. Our
analysis further reveals that a higher spread between first and second prize
increases aggregate asset stocks but does not alter the balance of the contest
in the long run. During the transition, a higher prize spread increases the
effort contributions of contestants as well as the balance of the contest in each
period such that the speed of convergence to the steady state increases.

Our study can be seen as a first step to elucidate the transitional dy-
namics in an infinitely repeated Tullock contest with multiple prizes and a
general cost function. There is a broad range for further applications and
model extensions. For example, a promising avenue for further research might
be the extension of our model to more than two contestants. Furthermore, it
would be interesting to see how our results carry over to a setting in which
contestants have different abilities and/or are able to observe the opponents’
effort levels after each period (closed-loop concept).

A Appendix

A.1 Derivation of the Euler Equation

Similar to Grossmann et al. (2010), we solve the dynamic program for contes-
tant ¢ and obtain:

v(Ei;—1) = max ){pi<Ei,t7 E;)kV + (1 —pi(Eir, Ej))(1 = k)V

(ei,t,Fi
— C(ei,t) -+ BU(Ei,t)}
subject to E;y = (1 —0)E;;—1 + €4,

where v(-)represents the contestants’ value function. It is important to high-
light that contestant ¢ takes F;, as given in period ¢ = 0,1,...according to
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the open-loop concept. The Lagrangian Lwith multiplier \; € Ry of the max-
imization problem is defined as:

EVE], + (1 - k)VE]
L= X 5 ( 7) Lt Cleir) + Bu(Eiy) + M[(1 = 0)Ei—1 + ey — Eiyl.
E, + Ej,

Maximizing L with respect to E;;, e;; and \; yields the following first-
order conditions:

Cl<€i,t) = A
KVAEEl — (1= k)VAE!'E],  Ou(E;,)
(L + EJ;) it

(1-0)Ei1—1+er = Eiy.

((”)U(Ez“tfl) —

By using the first-order conditions and the envelope theorem = Yo

Ai(1 —0), we obtain the following Euler equation for contestant i:

(2k — 1)V7Eg;1E;t
(B, + Ej,)?

= C”(ei,t) — ﬂ(]_ - 6)Cl(€i7t+1).

A.2 Proof of Proposition 1

Part (i): Similar to Grossmann et al. (2010), it is easy to show by con-
tradiction that E; = E; = E (implicitly defined by (2k — 1)7V/(4E) =
[1—3(1—-6)]C'(6F)) in the steady state independent of initial asset stocks.
Because (2k — 1)yV/(4E) is decreasing in E and [1 — 5(1 —0)] C'(0F) is in-
creasing in F, a unique solution exists for the steady state asset stocks E.
Moreover, e; = 0E; and e; = 6E; imply e; = e; = e = 0E.

Parts (ii) and (iii): To prove the comparative statics results, we use the
implicit function theorem and obtain

oF V%

= - _ >0
ok —(2k — 1)Vﬁ —(1-p6(1-10))C"(0E)d0 ’
Oe V‘;—Z

-~ —_ _ 5 > 0.

Ok —(2k—DV% - (1-B(1-8)C"(e)

Therefore, the steady state values E and e are increasing in k. Analogously,
it is easy to show that OFE/0V > 0, OE/9p > 0, de/OV > 0, 0e/I > 0 and
OE /06 < 0, 0e/d5 > 0 (see also Grossmann et al., 2010).
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A.3 Stable and Unstable Eigenvalues of Matrix Q

To show that the modulus of p; and s is smaller than 1 and the modulus of
ps and py is larger than 1, we analyze the sum and the product of the two
different eigenvalues:

5(1—B(L—26)) 148135

pa 4 s = pi2 + plg = 50— 5 (0) G0 (11)

1
HiHy = 2 = (12)

It is easy to see that puy + pe > 0 and py - o > 0. Hence, equation
(11) together with equation (12) imply that x; and pg are both positive roots.
We use this intermediate result further below. Figure 1 graphically illustrates
equations (11) and (12).

Figure 1: Stable and Unstable Roots

Hy
A
/450
ot ==
1 3 ﬁ///
- , S(1-BA-8) 1+B(1-5)
B < T B S0 T pa=s)

.
> /L,
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Without loss of generality, we assume that pus > py. Suppose that
u1 = 1. It follows from equation (12) that uz = 1/8 > 1. Furthermore,
p1+ps = (14 3) /8. However, we also know from equation (11) that pu;+uz =
§(1—=pB(1=10))/(B(1=08)a(e))+ (1 + (1 —§)?) /(B(1—46)). Hence, we suggest
by inspecting Figure 1 that p; < 1 (and therefore pg > 1) if and only if the
following condition is satisfied:

1+8 6(1—p(1-96) 1+p8(1-0)>
< +
8 A1 —=0d)a(e) A1 =)
Since effort costs are strictly convex we know that o(e) > 0. Therefore, in-

equality (13) is always fulfilled. We conclude that there are two stable roots
(11 = p2) and two unstable roots (us = fi4).

1> —o(e). (13)

A.4 Proof of Proposition 2

Because |p1| < 1, |pa| < 1,[p3| > 1 and |uy| > 1, we conclude that 50 and
[',0 must be zero to satisfy the transversality condition.?’ Next, we are able
to solve for the original variables I'y o and I'yy as follows:

Iy = PT,
Eig Tio I
Ejo _ p 1j2,0 _p I'a0
€10 [y 0
€0 Lao 0

Hence, we obtain a system of four equations with four unknowns ¢; ¢, €; 0, f‘Lo
and fg’o. Note that EAi,o and Ejp are determined by E; _1, F; _1,€;0 and €;.
In particular, this computation determines the unique optimal time path of
asset stocks and efforts.

Since f370 = f4’0 =0, equation (8) implies*

f‘t = Mifo

21The transversality condition in our model is different from the associated condition in
standard growth models. In those models, there must be zero capital in the long run: see,
e.g., King et al. (1988). In our model, contestants have the following restriction: ex ante,
expected profits must be positive for both contestants. Otherwise, it is not optimal for
contestants to participate in the contest.

22We are grateful to the editor who suggested this shortcut of proving the result.
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Substituting this equation into the definition of I';, we receive
T, = PI'y = Pully = p' PTy = (L.

According to the last equation, we solve for E,-,t and obtain

~ A

ot ot
Eip = pglip = pg Ei1.

)

Hence,
Ei,t —F = Mt+1 (Ei,—l — E) .

s

The last equation determines the dynamics of the asset stock as sug-
gested in Proposition 2.

In the last step, we consider the dynamics of the optimal policy function
e;. From the linearization around the steady state, we know that

~

Ei,t—l—l = (1—=06)Ei++ 06t
g E@',t+1 —F = (1 — (5) (Ei,t — E) + (ei,t+1 — 6) .
As E; 411 — E = us(E;y — E), we obtain:

ps(Eig — E) = (1=06)(Eiy — E) + (€i441 — €)
<~ €Eity1 =€+ (,Us + 60— 1)M§+1(Ei,—l — E)
— er=c+(us+0—1)(E_1— E)ul.

This completes the proof.
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