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SUMMARY
Peroxisome proliferator-activated receptor b/d (PPARb/d) activates AMP-activated protein kinase (AMPK)
and plays a crucial role in glucose and lipid metabolism. Here, we examine whether PPARb/d activation ef-
fects depend on growth differentiation factor 15 (GDF15), a stress response cytokine that regulates energy
metabolism. Pharmacological PPARb/d activation increases GDF15 levels and ameliorates glucose intoler-
ance, fatty acid oxidation, endoplasmic reticulum stress, and inflammation, and activates AMPK in HFD-fed
mice, whereas these effects are abrogated by the injection of a GDF15 neutralizing antibody and in Gdf15�/�

mice. The AMPK-p53 pathway is involved in the PPARb/d-mediated increase in GDF15, which in turn acti-
vates again AMPK. Consistently, Gdf15�/� mice show reduced AMPK activation in skeletal muscle, whereas
GDF15 administration results in AMPK activation in this organ. Collectively, these data reveal a mechanism
by which PPARb/d activation increases GDF15 levels via AMPK and p53, which in turn mediates the meta-
bolic effects of PPARb/d by sustaining AMPK activation.
INTRODUCTION

Growth differentiation factor 15 (GDF15) is a cytokine that has

been implicated in multiple biological processes, including the

regulation of energy homeostasis (Tsai et al., 2018). This distant

member of the transforming growth factor b (TGF-b) superfamily

acts as a cell stress-response factor and is expressed in several

organs, including the liver, skeletal muscle, adipose tissue, kid-

ney, and placenta (Hromas et al., 1997; Paralkar et al., 1998;

Fairlie et al., 1999; Ding et al., 2009). Its expression is upregu-

lated following injury, mitochondrial dysfunction, inflammation,

and cancer by the action of several transcription factors,

including p53 (Kannan et al., 2000; Li et al., 2000; Tan et al.,

2000; Osada et al., 2007), early growth response 1 (egr-1)

(Baek et al., 2004; 2005), and C/EBP homologous protein

(CHOP) (Chung et al., 2017). Normal circulating levels of

GDF15 range between 100 and 1,200 pg/mL, increasing after ex-

ercise and in many disease processes (Tsai et al., 2018).

GDF15 plays a crucial role in metabolism, mainly through its

neuronal receptor, glial-derived neurotrophic factor (GNDF) re-

ceptor a-like (GFRAL) (Tsai et al., 2018). Thus, administration
This is an open access article under the CC BY-N
of GDF15 in obesity improves glucose tolerance by reducing

food intake (Emmerson et al., 2017; Yang et al., 2017; Mullican

et al., 2017; Hsu et al., 2017). In addition, transgenic mice over-

expressingGdf15 show a lean phenotype and a reduction in food

intake and aremore resistant to obesity, metabolic inflammation,

and glucose intolerance (Johnen et al., 2012; Macia et al., 2012;

Chrysovergis et al., 2014;Wang et al., 2014a, 2014b). These find-

ings indicate that the effects of GDF15 occur via GFRAL-depen-

dent anorexic actions in the brain. However, this cytokine also

increases thermogenesis, lipid catabolism, and mitochondrial

oxidative phosphorylation independently of changes in food

intake (Chung et al., 2017), suggesting that GDF15 might also

exert its effects via other so far unknown receptors.

The nuclear receptor peroxisome proliferator-activated recep-

tor b/d (PPARb/d) regulates glucose and lipidmetabolism, as well

as inflammation. Consequently, the activation of PPARb/d by ag-

onists attenuates dyslipidemia and hyperglycemia, improves

whole-body insulin sensitivity, and prevents diet-induced

obesity (Vázquez-Carrera 2016; Tan et al., 2016). Many of the

anti-inflammatory and antidiabetic effects of PPARb/d activation

in skeletal muscle, including the reduction of endoplasmic
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reticulum (ER) stress and the prevention of lipid-induced activa-

tion of the pro-inflammatory nuclear factor (NF)-kB pathway, are

dependent on AMP-activated protein kinase (AMPK) activation

(Coll et al., 2010; Salvadó et al., 2014). Likewise, the administra-

tion of PPARb/d ligands to mice fed a high-fat diet (HFD) in-

creases fatty acid oxidation through AMPK activation in the liver,

resulting in glucose-lowering activity (Lee et al., 2006; Barroso

et al., 2011; Bojic et al., 2014). However, it is not known whether

these metabolic effects of PPARb/d ligands involve GDF15, a

key factor in metabolism. In the present study, we show that

PPARb/d activation induces GDF15 levels through an AMPK-

p53-dependent mechanism, and in turn, GDF15 sustains

AMPK activity and is necessary for the beneficial effects of

PPARb/d ligands on glucose intolerance, ER stress, and inflam-

mation in HFD-fed mice.

RESULTS

In skeletal muscle, GDF15 neutralization reverts the
beneficial effects of PPARb/d activation on lipid
metabolism, ER stress, inflammation, and insulin
signaling
Treatment of C2C12 myotubes with the PPARb/d agonist

GW501516 for 12, 18, and 24 h significantly increased mRNA

and protein levels of GDF15 and its secretion into the cultureme-

dia (Figures S1A–S1C). This effect of GW501516was specifically

dependent on PPARb/d because the PPARb/d antagonist

GSK3787 or knockdown of the receptor by small interfering

RNA (siRNA) transfection attenuated the increase in Gdf15

expression (Figures S1D–S1F). Similarly, mice treated with

GW501516 for 2, 4, and 6 days showed that only in the latter

duration Gdf15 expression was increased in skeletal muscle

(Figure S1G). This was accompanied by enhanced GDF15 pro-

tein levels in skeletal muscle and serum (Figures S1H and S1I).

A different PPARb/d agonist, GW0742, also increased GDF15

protein levels in skeletal muscle (Figure S1J), indicating that

the effect observed for GW501516 was not limited only to this

specific ligand.

Next, we evaluated whether the effects of the PPARb/d ligand

GW501516 on HFD-fed mice depended on GDF15 by using

GDF15 neutralizing antibody or immunoglobulin G (IgG) as con-

trol. Importantly, the dose of the neutralizing antibody used

attenuated the reduction in food intake caused by recombinant

mouse GDF15 (Figure S2), demonstrating that the antibody

effectively blocked the GDF15 effects. GW501516 improved

glucose intolerance in HFD-fed mice, but this beneficial effect

was inhibited by the GDF15 neutralizing antibody (Figures 1A

and 1B). Importantly, neither GW501516 nor antibody treatment

affected food intake or body weight (Figures 1C and 1D). We

then examined the skeletal muscle mRNA levels of several

genes involved in fatty acid oxidation and very-low density lipo-

protein (VLDL) uptake, which are upregulated by PPARb/d acti-

vation (Vázquez-Carrera 2016; Tan et al., 2016). The increased

expression of Acox, Acadm, and Vldlr caused by GW501516

was abolished by the neutralization of GDF15 (Figure 1E),

implying that this PPARb/d-dependent increased expression

was mediated by enhanced GDF15 levels. By contrast, the

increased Cpt1b expression caused by PPARb/d activation
2 Cell Reports 36, 109501, August 10, 2021
was significantly, but not completely, attenuated by the

GDF15 neutralizing antibody. Last, the increase in Pdk4 expres-

sion caused by GW501516 was not modified by the GDF15

neutralizing antibody, suggesting that the regulation of this

gene by PPARb/d is independent of GDF15, and additional

mechanisms might be involved such as direct binding of

PPARb/d to the multiple peroxisome proliferator response ele-

ments (PPREs) located in its promoter region (Shrivastav

et al., 2013) (Figure 1E).

The cellular location of lipin 1, which regulates metabolic

homeostasis, determines whether fatty acids are incorporated

into triglycerides or undergo mitochondrial b-oxidation (Finck

et al., 2006). In the cytoplasm, lipin 1 is a phosphatidate phos-

phatase enzyme that promotes triglyceride accumulation and

phospholipid synthesis, whereas in the nucleus, lipin 1 acts as

a transcriptional coactivator regulating the induction of PPAR-g

coactivator-1a (PGC-1a)-PPARa-target genes (Finck et al.,

2006) implicated in fatty acid oxidation. Interestingly, PPARb/d

activation in the liver promotes the PGC-1a-lipin 1-PPARa

pathway (Barroso et al., 2011). The levels of PPARa and PGC-

1a in skeletal muscle of the HFD-fed mice was decreased

compared to standard diet-fed control mice but this reduction

was blocked by GW501516 (Figure 1F). The antibody reduced

GW501516-induced nuclear localization of lipin 1 and increased

its cytosolic levels, consistent with GDF15 promoting lipin 1 nu-

clear localization.

ER stress induced by HFD is involved in the development of

inflammation and insulin resistance (Salvadó et al., 2015), and

PPARb/d activation prevents lipid-induced ER stress, inflamma-

tion, and insulin resistance in skeletal muscle (Salvadó et al.,

2014). Moreover, PPARb/d activation prevents the interleukin 6

(IL-6)-mediated increase in the expression of suppressor of cyto-

kine signaling 3 (SOCS3) (Serrano-Marco et al., 2012), which

inhibits insulin signaling through several mechanisms, including

insulin receptor substrate (IRS) degradation (Howard and Flier,

2006). In the current study, the HFD increased the expression

of the ER stress markers BiP/GRP78 and Chop in skeletal mus-

cle, as well as the expression levels of the pro-inflammatory

cytokine Tnfa and Socs3 (Figure 2A). Consistent with the

above-mentioned roles of PPARb/d, these changes were atten-

uated by GW501516, but treatment with the GDF15 neutralizing

antibody reverted the beneficial effects of the PPARb/d agonist.

In agreement with the increase in ER stress caused by the HFD,

activating transcription factor 4 (ATF4) protein levels and

the phosphorylated levels of eukaryotic translation initiation

factor 2a (eIF2a) were increased; these effects were blocked

by GW501516 (Figure 2B). However, this protective role of

GW501516 was abrogated when the HFD-fed mice were co-

treated with the GDF15 neutralizing antibody. HFD-fed mice

treated with GW501516 and IgG also exhibited an increase in

the protein levels of IkBa that inhibits the pro-inflammatory tran-

scription factor NF-kB. Accordingly, GW501516 treatment of

HFD-fed mice inhibited the increase in the nuclear protein levels

of the p65 subunit of NF-kB, and co-treatment with the GDF15

neutralizing antibody attenuated this inhibition (Figure 2B).

In the insulin signaling pathway, GW501516 treatment

increased the protein levels of the b subunit of the insulin recep-

tor (IRb) (Figure 2C). This increase was completely suppressed



Figure 1. Neutralization of GDF15 reverts the metabolic effects of PPARb/d activation

(A and B) Glucose tolerance test (A) and area under the curve (AUC) (B) of mice fed standard chow (control), a HFD or a HFD plus GW501516 (GW) for 3 weeks.

Three days before the end of the 3-week treatment, mice were injected once intraperitoneally with either IgG or a neutralizing antibody against GDF15.

(C) Food intake.

(D) Body weight.

(E) mRNA levels of Pdk4, Cpt1b, Acox, Acadm, and Vldlr in skeletal muscle.

(F) Skeletal muscle cell lysate extracts were assayed via western blot analysis with antibodies against PPARa, PGC-1a, and nuclear (N) and cytosolic (C) lipin-1.

Data are presented as the mean ± SEM (for all the experiments n = 5 animals; except for control mice where n = 4) *p < 0.05, **p < 0.01, and ***p < 0.001 versus

control + IgG. #p < 0.05, ##p < 0.01, and ###p < 0.001 versus HFD + IgG group. $p < 0.05, $$p < 0.01, and $$$p < 0.001 versus GW501516-treatedmice injected with

IgG. p values determined by one-way ANOVA with Tukey’s post hoc test.

Source data are provided as a Source data file.
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by the GDF15 neutralizing antibody. Insulin signaling can be

attenuated by activation of the pro-inflammatory kinase IkB ki-

nase b (IKK-b), which belongs to the NF-kB pathway, through

phosphorylation of IRS-1 at serine residues. In agreement with
the activation of the NF-kB pathway by the HFD, IRS-1 phos-

phorylation at Ser307 was increased (Figure 2C). GW501516

blocked this increase, but this protective effect was abolished

by the GDF15 neutralizing antibody.
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Consistent with a previous report (Salvadó et al., 2014),

PPARb/d activation increased phospho-AMPK levels and

reduced the HFD-mediated increase in the levels of phospho-

ERK1/2, which is involved in a negative crosstalk with AMPK

(Du et al., 2008; Hwang et al., 2013) (Figure 2D). However, these

changes were not observed in mice treated with the GDF15

neutralizing antibody. Taken together, the data presented above

indicate that many of the beneficial effects of pharmacological

PPARb/d activation in muscle, including lipid metabolism, ER

stress, inflammation, and insulin signaling, are attenuated or

abolished by the GDF15 neutralizing antibody.

In the liver, GDF15 neutralization attenuates the
beneficial effects of PPARb/d activation on lipid
metabolism, ER stress, and the insulin signaling
pathway
Mice treated with GW501516 for 6 days also showed increased

Gdf15 expression and protein levels in the liver (Figures 3A and

3B). Furthermore, the expression of the genes involved in fatty

acid oxidation (Pdk4, Cpt1a, Acadm, and Acox) and of the

hormone Fgf21 was slightly increased by the HFD, with

GW501516 treatment exacerbating this increase (Figure 3C).

GDF15 neutralization did not reduce Pdk4 as in skeletal muscle.

Similarly, GDF15 neutralization did not significantly reduce

Cpt1a expression, suggesting that, in contrast to its moderate

effect in skeletal muscle, the increase in Cpt1a mRNA levels

caused byGW501516 is not affected byGDF15 in the liver. How-

ever, the increased expression of Acadm and Acox caused by

GW501516 was reduced by GDF15 neutralization. By contrast,

the induction of the stress-response hormone Fgf21 caused by

GW501516 was strongly increased by GDF15 neutralization.

Consistent with the GW501516-mediated increase in the

expression of genes involved in fatty acid oxidation, the levels

of serum b-hydroxybutyrate, a product of ketogenesis used as

a marker of hepatic fatty acid oxidation, were significantly

elevated in HFD-fed mice receiving GW501516 (Figure 3D).

This was abolished by the neutralizing antibody against

GDF15. The HFD increased the hepatic expression of the ER

stress markers BiP/GRP78 and Chop (Figure 3E). GW501516

partly protected against this increase, but this effect was lost

in mice injected with the GDF15 neutralizing antibody. The

same trend was observed for hepatic Socs3 mRNA levels. In

agreement with a previous study (Barroso et al., 2011), PPARb/d

activation increased phospho-AMPK levels and decreased

phospho-ERK1/2 levels (Figure 3F), which is consistent with

the negative crosstalk between these kinases (Du et al., 2008;

Hwang et al., 2013). When we explored the levels of signal trans-
Figure 2. Neutralization of GDF15 reverts the beneficial effects of PPA

(A) mRNA levels of BiP/GRP78, Chop, Socs3, and Tnfa in skeletal muscle of mice

before the end of the 3-week treatment, mice were injected once intraperitoneal

(B) Skeletal muscle cell lysate extracts were assayed via western blot analysis wit

of NF-kB.

(C) Total and phospho-IRS1 (Ser307) and IRb levels.

(D) Total and phospho-AMPK and total and phospho-ERK1/2 levels. Data are pr

control mice where n = 4). *p < 0.05, **p < 0.01, and ***p < 0.001 versus control +
$$p < 0.01, and $$$p < 0.001 versus GW501516-treated mice injected with IgG. p

Source data are provided as a Source data file.
ducer and activator of transcription 3 (STAT3), the transcription

factor that regulates Socs3 expression, we observed that the

HFD increased the phosphorylated levels of STAT3 at both

Tyr705 and Ser727 residues (Figure 3G). This was accompanied

by increased SOCS3 protein levels. Interestingly, GW501516

prevented these increases, whereas in HFD-fed mice treated

with GW501516 and the GDF15 neutralizing antibody, the pro-

tective effect of the PPARb/d agonist was attenuated. In line

with the increased SOCS3 levels in the liver of HFD-fed mice,

there was a slight decrease in IRS-1 and a marked reduction in

IRS-2 protein levels (Figure 3G). These changes were blocked

by GW501516, but this inhibition was lifted by the GDF15

neutralizing antibody. Collectively, these data indicate that

many of the effects attained by PPARb/d activation in the liver

depend on GDF15.

Gdf15 knockoutmice present an attenuated response to
PPARb/d activation
To clearly demonstrate that the effects resulting from pharmaco-

logical PPARb/d activation were dependent on GDF15, we took

advantage of the Gdf15 knockout (Gdf15�/�) mouse model.

Feeding wild-type (WT) mice with the HFD caused glucose intol-

erance that was ameliorated by the PPARb/d agonist (Figure 4A).

On the contrary, this beneficial effect of GW501516 was not

observed in Gdf15�/� mice, but in contrast an increase in

glucose intolerance was detected (Figure 4A). GW501516 treat-

ment did not significantly affect the increase in body weight

caused by the HFD in WT and Gdf15�/� mice (Figure S3A). As

expected, GW501516 reduced serum triglyceride levels

(�20%) in WT mice but this effect was significantly attenuated

(�12%) in Gdf15�/� mice (Figure 4B).

In skeletal muscle, administration of the PPARb/d agonist

increased Pdk4 in both WT and Gdf15�/� mice (Figure 4C).

Cpt1b and Acox expression was also upregulated by

GW501516 in WT mice but this effect was not observed in

Gdf15�/� mice (Figure 4C). Similarly, PPARb/d activation

reduced the increase in the expression of BiP/GRP78, Socs3,

and Mcp1 (also known as Ccl2) in HFD-fed WT mice, although

without reaching statistical significance in the case of BiP/

GRP78. In Gdf15�/� mice, the reduction in the expression of

BiP/GRP78 and Mcp1 caused by pharmacological treatment

was attenuated or abolished, whereas that of Socs3 was not

significantly affected (Figure 4D). Two proteins strongly induced

by PPARb/d activation in skeletal muscle of WT mice, IkBa and

IRb, involved in reducing inflammation and maintaining insulin

signaling, respectively, remained unchanged in Gdf15�/� mice

(Figure 4E). Remarkably, phospho-AMPK levels were lower in
Rb/d activation on ER stress and inflammation in skeletal muscle

fed standard chow, a HFD, or a HFD plus GW501516 for 3 weeks. Three days

ly with either IgG or a neutralizing antibody against GDF15.

h antibodies against ATF4, total and phospho-eIF2a, IkBa, and the p65 subunit

esented as the mean ± SEM (for all the experiments n = 5 animals; except for

IgG. #p < 0.05, ##p < 0.01, and ###p < 0.001 versus HFD + IgG group. $p < 0.05,

values determined by one-way ANOVA with Tukey’s post hoc test.

Cell Reports 36, 109501, August 10, 2021 5



Figure 3. Neutralization of GDF15 reverts the beneficial effects of PPARb/d activation on ER stress and inflammation in the liver

(A and B) Gdf15 mRNA levels (A) and GDF15 protein levels (B) in the liver of mice (n = 5 animals) treated with vehicle or 3 mg/kg/day of GW501516 for 6 days.

(C) mRNA levels of Pdk4, Cpt1a, Acadm, Acox, and Fgf21 in the liver of mice (n = 5 animals; except for control mice where n = 4) fed standard chow, a HFD, or a

HFD plus GW501516 for 3 weeks. Three days before the end of the 3-week treatment, mice were injected once intraperitoneally with either IgG or a neutralizing

antibody against GDF15.

(D) Plasma levels of b-hydroxybutyrate.

(legend continued on next page)
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skeletal muscle of Gdf15�/� mice than in WT, suggesting that

GDF15 regulates phospho-AMPK levels. GW501516 restored

the phosphorylated levels of this kinase in WT mice fed the

HFD, but it failed to do it inGdf15�/�mice (Figure 4E). Consistent

with the negative crosstalk between AMPK and ERK1/2 (Chen

et al., 2011; Hwang et al., 2013), phosphorylated levels of the

latter were increased in skeletal muscle of Gdf15�/� mice

compared with WT mice. Likewise, HFD feeding increased the

levels of phospho-ERK1/2 and this effect was prevented by

drug treatment in WT mice, but not in Gdf15�/� mice.

In the liver, H&E and oil red O (ORO) staining showed that the

HFD caused a significant hepatic lipid accumulation that was

slightly reduced by the PPARb/d agonist, although this effect

did not reach statistical significance (p = 0.06) (Figures 5A and

5B). This modest reduction is consistent with the effect of short

treatments with PPARb/d agonists that increase the expression

of genes involved in fatty acid oxidation, but also of genes impli-

cated in hepatic lipid deposition (Liu et al., 2011; Vázquez-Car-

rera 2016; Tan et al., 2016). Hepatic steatosis was remarkably

higher in HFD-fed Gdf15�/� mice and it was exacerbated by

GW501516. Because GDF15 mainly upregulates the expression

of genes involved in fatty acid oxidation (Chung et al., 2017), the

increase in hepatic steatosis and glucose intolerance caused by

GW501516 in Gdf15�/� mice probably reflects that this com-

pound does not induce the expression of genes involved in fatty

acid oxidation in these mice but still promotes lipid deposition

(Liu et al., 2011). Pharmacological activation of PPARb/d

increased the expression ofGdf15 in WTmice (Figure 5C). More-

over, consistent with the results using the neutralizing antibody

against GDF15, GW501516 increased the hepatic expression

of Pdk4 in both WT and Gdf15�/� mice (Figure 5C), confirming

that the regulation of this gene by PPARb/d is independent of

GDF15. By contrast, the hepatic expression of Cpt1a, Acox,

and Fgf21was upregulated byGW501516 inWTmice but this in-

crease was significantly attenuated in HFD-fed Gdf15�/� mice

(Figure 5C). Similarly, the increase in the expression of both

BiP/GRP78 and Socs3 caused by the HFD in WT mice was

significantly decreased by GW501516, whereas this reduction

was attenuated in Gdf15�/� mice (Figure 5D). The same trend

was observed in hepatic SOCS3 protein levels (Figure 5E). In

agreement with the neutralizing antibody study, the HFD

reduced the protein levels of IRS-2 in WT mice, an effect that

was prevented by the PPARb/d agonist, whereas in Gdf15�/�

mice the levels of IRS-2 were significantly lower than in WT

mice, with no GW501516 effect (Figure 5E). As in skeletal mus-

cle, GW501516 increased the hepatic levels of phospho-AMPK

and reduced those of phosho-ERK1/2 in WT mice, whereas no

effect was observed in Gdf15 KO mice (Figure 5E). These data

confirm that many of the beneficial effects caused by pharmaco-
(E) mRNA levels of BiP, Chop, and Socs3 in the liver (n = 5 animals; except for c

(F) Liver cell lysate extracts (n = 5 animals; except for control mice where n = 4) we

AMPK and total and phospho-ERK1/2.

(G) Total and phospho-STAT3 (Ser727 and Tyr705), SOCS3, total IRS-1, and IRS-2 l

the mean ± SEM. *p < 0.05, **p < 0.01, and ***p < 0.001 versus control + IgG. #p < 0

and $$$p < 0.001 versus GW501516-treated mice injected with IgG. p values de

unpaired Student’s t test (A and B).

Source data are provided as a Source data file.
logical activation of PPARb/d in liver, including the reduction in

hepatic steatosis, depend on GDF15.

PPARb/d activation increases GDF15 levels through an
AMPK-p53-dependent mechanism
Next, we examined the potential mechanism by which PPARb/d

activation increases GDF15 levels. Because PPARb/d ligands

activate AMPK (Salvadó et al., 2014), we first explored whether

activation of this kinase increased GDF15 levels, which would

identify a putative PPARb/d-AMPK-GDF15 axis. Treatment of

C2C12 myotubes with the AMPK activator A769662 strongly

increased the mRNA and protein levels of GDF15, which was

blocked by co-incubating the cells with the AMPK inhibitor com-

pound C (Figures S4A and S4B). Likewise, compound C blocked

the increase in GDF15 and phospho-AMPK levels caused by

GW501516 (Figures S4C and S4D), suggesting that the

PPARb/d-mediated increase in GDF15 involves AMPK activa-

tion. To confirm this, C2C12 myotubes were transfected with a

siRNA against both Ampk1 and Ampk2 to knock down both

genes (Figures S4E and S4F). This significantly attenuated the in-

crease in Gdf15 mRNA levels caused by GW501516 (Fig-

ure S4G). AMPK is known to inhibit the p53 negative regulator,

murine doubleminute X (MDMX). Because this repression results

in the activation of p53 (Chen et al., 2011; He et al., 2014; Chen

et al., 2015), a key transcription factor regulating Gdf15 expres-

sion (Kannan et al., 2000; Li et al., 2000; Tan et al., 2000; Osada

et al., 2007), we evaluated the involvement of p53 in the

increased levels of GDF15 following PPARb/d activation. First,

we examined whether under our conditions, AMPK also

increased p53 levels. AMPK activation by A769662 in myotubes

increased p53 expression, which was prevented by the AMPK

inhibitor compound C (Figure 6A). Interestingly, GW501516

treatment increased p53 protein levels in myotubes (Figure 6B)

and the increase in p53 expression caused by GW501516 was

blocked by the PPARb/d antagonist GSK3787 (Figure 6C) and

by the knockdown of Ampk1 and Ampk2 (Figure 6D). Similar to

these myotubes studies, mice treated with GW501516 showed

increased p53 protein levels in both the skeletal muscle (Fig-

ure 6E) and liver (Figure 6F). When we treated myotubes with

GW501516, we observed an increase in the protein levels of

both p53 and GDF15 that was completely blocked by the selec-

tive p53 inhibitor pifithrin-a (Komarov et al., 1999) (Figure 6G).

Similarly, treatment of mice with GW501516 increased both

the mRNA and protein levels of p53 and GDF15 in skeletal mus-

cle and this effect was blocked by pifithrin-a (Figures 6H and 6I).

Finally, knockdown of p53 in myotubes completely inhibited the

increase in GDF15 caused by GW501516 (Figure 6J). Collec-

tively, these findings indicate that PPARb/d activation increases

GDF15 levels through activation of the AMPK-p53 pathway.
ontrol mice where n = 4).

re assayed via western blot analysis with antibodies against total and phospho-

evels (n = 5 animals; except for control mice where n = 4). Data are presented as

.05, ##p < 0.01, and ###p < 0.001 versus HFD + IgG group. $p < 0.05, $$p < 0.01,

termined by one-way ANOVA with Tukey’s post hoc test (C–G) and two-tailed
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Figure 4. The beneficial effects of PPARb/d activation are attenuated in Gdf15�/� mice

(A) Glucose tolerance test and area under the curve (AUC) of wild-type (WT) littermates andGdf15�/� mice (n = 5 animals) fed standard chow, an HFD or an HFD

plus GW501516 for 3 weeks.

(B) Serum triglyceride levels (n = 5 animals).

(C) mRNA levels of Cpt1b, Acox, and Pdk4 in skeletal muscle (n = 5 animals).

(D) mRNA levels of BiP/GRP78, Socs3, and Mcp1 in skeletal muscle (n = 5 animals).

(E) Skeletal muscle cell lysate extracts were assayed via western blot analysis with antibodies against IkBa, IRb, total and phospho-AMPK, and total and

phospho-ERK1/2 levels (n = 5 animals). Data are presented as themean ± SEM. *p < 0.05, **p < 0.01, and ***p < 0.001 versusWT or GDF15-KO control mice. #p <

0.05 versus WT or GDF15-KO mice fed a HFD. p values determined by two-way ANOVA with Tukey’s post hoc test.

Source data are provided as a Source data file.
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Figure 5. The beneficial effects of PPARb/d activation are reversed in the liver of Gdf15�/� mice

(A) H&E, oil red O (ORO) staining of livers. Scale bar, 100 mm.

(B) Quantification of ORO staining (n = 4 animals).

(legend continued on next page)
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The increase in GDF15 caused by PPARb/d activation
results in AMPK activation and does not require central
effects
Because the PPARb/d ligand and the injection of the GDF15

neutralizing antibody did not affect food intake, we postulated

that the effects caused by the PPARb/d-induced increase in

GDF15 levels might be peripheral. To test a possible GDF15 ef-

fect independent of the brain, we exposed cultured myotubes to

GW501516. We observed an increased expression of Gdf15

and, more importantly, of three genes involved in fatty acid

oxidation, Cpt-1b, Acadm, and Acox (Figure 7A). The stimulation

of these genes caused by GW501516 was abolished when

Gdf15 was knocked down (Figures 7A and S5A). These results

suggest that the increased expression of these genes is medi-

ated by GDF15, without implicating the central receptor GFRAL,

as previously reported (Chung et al., 2017). Similar results were

obtained in the presence of the saturated fatty acid palmitate

(Figures S5B–S5D).

Because activation of AMPK plays a pivotal role in the effects

of PPARb/d agonists (Vázquez-Carrera, 2016), and our findings

show that the GDF15 neutralization and Gdf15 deficiency pre-

vents the increase in phospho-AMPK levels caused by PPARb/d

activation (Figures 2D, 3F, 4E, and 5E), together with the reduc-

tion in phospho-AMPK in skeletal muscle of Gdf15�/� mice

compared with WT mice (Figure 4E), we examined whether the

increased GDF15 levels caused by PPARb/d activation affected

AMPK. Interestingly, the GW501516-mediated increase in phos-

pho-AMPK levels in the myotubes was inhibited by the knock-

down of Gdf15, with an opposite trend observed for ERK1/2

phosphorylation (Figure 7B), which agrees with the negative

cross-talk between AMPK and ERK1/2 (Du et al., 2008; Hwang

et al., 2013). These results indicate that the activation of AMPK

by PPARb/d ligands requires increased GDF15 levels. To check

this, we treated myotubes with human and mouse recombinant

GDF15 and observed that this cytokine significantly increased

phospho-AMPK levels, and reduced phospho-ERK1/2 levels

(Figure 7C). Because some of the effects of recombinant

GDF15 in cultured cells seem to involve activin receptor-like ki-

nase (ALK) receptors 4/5/7 (ALK4/5/7) (Chung et al., 2017), we

exposed cells to the ALK4/5/7 inhibitor SB431542 to examine

whether these ALK isoforms were involved in the effects of

GDF15 on AMPK and ERK1/2. SB431542 did not prevent the ef-

fects of either recombinant GDF15 or GW501516 on the phos-

phorylation status of AMPK and ERK, making unlikely the

involvement of ALK4/5/7 isoforms in the observed changes (Fig-

ures S6A and S6B). Consistent with the effect observed in

cultured myotubes, mice receiving a subcutaneous administra-

tion of recombinant GDF15 showed an increase in phospho-

AMPK in skeletal muscle, whereas phospho-ERK1/2 was

reduced (Figure 7D), confirming that GDF15 activates AMPK in
(C) mRNA levels of Gdf15, Pdk4, Cpt1b, Acox, and Fgf21 in liver of wild-type (W

GW501516 for 3 weeks (n = 5 animals).

(D) mRNA levels of BiP/GRP78 and Socs3 in liver (n = 5 animals).

(E) Liver cell lysate extracts were assayed via western blot analysis with antibod

ERK1/2 (n = 5 animals). Data are presented as the mean ± SEM. ND, not detected

values determined by two-way ANOVA with Tukey’s post hoc test.

Source data are provided as a Source data file.
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skeletal muscle. To clearly confirm that the effect of GDF15

was independent of central effects, soleus muscle isolated

from WT littermates and Gdf15�/� mice were incubated with

GW501516 or recombinant GDF15 (Figure 7E). Both treatments

increased phospho-AMPK and reduced phospho-ERK1/2 levels

in WT mice but not in Gdf15 KO mice. Based on the PPARb/d-

induced secretion of GDF15 by myotubes and increased

GDF15 serum levels in mice, we speculate that GDF15 acts via

autocrine or paracrine signaling.

DISCUSSION

GDF15 is implicated in several metabolic dysfunctions, including

obesity (Mullican et al., 2017) and insulin resistance (Chung et al.,

2017). In fact,Gdf15 overexpression in mice (Chrysovergis et al.,

2014) and the administration of recombinant GDF15 improves

glucose intolerance and increases thermogenesis and lipid

metabolism (Emmerson et al., 2017; Yang et al., 2017; Mullican

et al., 2017; Hsu et al., 2017). Interestingly, most of these effects

are also observed when HFD-fed mice are treated with PPARb/d

agonists (Vázquez-Carrera 2016; Tan et al., 2016). Here, we

demonstrate that treatment with a PPARb/d agonist increases

GDF15 levels through an AMPK-dependent increase in p53.

Gdf15 was previously shown to be a direct p53 target gene

(Osada et al., 2007). Interestingly, the beneficial effects of phar-

macological PPARb/d activation on glucose intolerance, fatty

acid oxidation, ER stress, inflammation, and activated AMPK

were abrogated by a neutralizing antibody against GDF15 and

in Gdf15�/� mice, indicating that these PPARb/d effects were

mainly mediated by GDF15. Although the improvement in

glucose intolerance caused by GDF15 has been linked to a

reduced food intake (Emmerson et al., 2017; Yang et al., 2017;

Mullican et al., 2017; Hsu et al., 2017), we did not observe

changes in either food intake or body weight, which is consistent

with a previous study (Chung et al., 2017), thereby making this

improvement unlikely to be the result of central effects. However,

most of the effects of GDF15 reported so far are mediated cen-

trally by GFRAL that is solely expressed in hindbrain neurons

(Mullican et al., 2017). In the current study, Gdf15 knockdown

in myotubes in culture demonstrated that the increased expres-

sion of the genes involved in fatty acid oxidation caused by

PPARb/d activation is dependent on the effects of myotube

GDF15 that is secreted in the culture medium. Such effects

have previously been attributed to the activation of a range of

TGF-b receptors also known as the ALK receptors (ALK1-7)

(Ago and Sadoshima, 2006; Johnen et al., 2007; Artz et al.,

2016), which support a GDF15 autocrine signaling mechanism

in the cultured myotubes. However, our findings discard the

involvement of ALK4/5/7 in the regulation of AMPK by GDF15

or PPARb/d agonists. Further studies should elucidate the
T) littermates and Gdf15�/� mice fed standard chow, a HFD, or a HFD plus

ies against SOCS3, IRS-2, total and phospho-AMPK, and total and phospho-

. *p < 0.05, **p < 0.01, and ***p < 0.001. ###p < 0.001 versus indicated group. p



Figure 6. PPARb/d activation upregulates GDF15 expression through p53

(A) p53mRNA levels in C2C12 myotubes exposed to 60 mM of the AMPK activator A769662 for 24 h in the presence or absence of 30 mM of the AMPK inhibitor

compound C (CC) (n = 4 independent cell culture experiments).

(B) p53 protein levels in C2C12 myotubes exposed to 10 mM of the PPARb/d agonist GW501516 (GW) for 24 h (n = 4 independent cell culture experiments).

(C andD) p53mRNA levels in C2C12myotubes exposed to 10 mMofGW501516 for 24 h in the presence or absence of 10 mMof the PPARb/d antagonist GSK3787

(GSK) (C) or transfected with control siRNA or AMPK1/2 siRNA (D) for 48 h (n = 4 independent cell culture experiments).

(E and F) p53 protein levels in the skeletal muscle (E) and liver (F) of mice (n = 4 animals) treated with vehicle or 3 mg/kg/day of GW501516 for 6 days.

(G) GDF15 and p53 protein levels in C2C12myotubes exposed to 10 mMof GW501516 for 24 h in the presence or absence of 10 mMof the p53 inhibitor pifithrin-a

(n = 4 independent cell culture experiments).

(legend continued on next page)

Cell Reports 36, 109501, August 10, 2021 11

Article
ll

OPEN ACCESS



Article
ll

OPEN ACCESS
mechanisms involved, including the nuclear effects of pro-

GDF15 (Min et al., 2016).

The GDF15 neutralizing antibody counteracted the PPARb/d-

dependent increased levels of the transcription factor PPARa

and the transcriptional co-activators PGC-1a and lipin 1, which

regulate the expression of genes involved in fatty acid oxidation,

as well as in serum b-hydroxybutyrate levels. This provided evi-

dence for GDF15 strongly contributing to the increased fatty acid

oxidation caused by PPARb/d activation (Vázquez-Carrera,

2016). We showed that the increased expression of genes

involved in fatty acid oxidation (Cpt-1b, Acox, and Acadm)

caused by PPARb/d activation was blocked by the GDF15

neutralizing antibody and in Gdf15�/� mice, underscoring a crit-

ical role of this cytokine. In agreement with the regulation of the

genes involved in fatty acid metabolism by GDF15, it has been

previously reported that recombinant GDF15 increases the

expression of Ppara, Cpt1a, and Acadm in skeletal muscle and

the liver without changing food intake (Chung et al., 2017).

As for PPARa, the hypotriglyceridemic effect caused by

PPARb/d activation is partially mediated by the increase in the

expression of genes involved in fatty acid oxidation (Vázquez-

Carrera 2016; Tan et al., 2016). Here, we show that the

PPARb/d-mediated increased expression of these genes is

dependent on GDF15 and, consistently, the reduction in triglyc-

eride levels induced by GW501516 inWTmice was attenuated in

Gdf15�/� mice.

Furthermore, we found that the GDF15-mediated PPARb/d-

dependent regulation of the genes involved in fatty acid oxida-

tion is modulated by the activity of AMPK, an energy sensor

that functions as a signaling hub, coordinating anabolic and

catabolic pathways to balance nutrient supply with energy de-

mand. Indeed, activation of this kinase plays a pivotal role in

the effects of PPARb/d agonists (Vázquez-Carrera 2016; Tan

et al., 2016). We have also previously reported that the activation

of the PGC-1a-lipin 1-PPARa pathway by PPARb/d is associated

with AMPK activation (Barroso et al., 2011). Consistent with pre-

vious studies (Salvadó et al., 2014; Barroso et al., 2011), we

showhere that pharmacological activation of PPARb/d increased

the phosphorylated levels and thereby the activity of AMPK in

skeletal muscle and the liver, which was abolished by the

neutralizing antibody against GDF15 and in Gdf15�/� mice.

Moreover, and in line with the reported inhibitory cross talk be-

tween AMPK and ERK1/2 (Du et al., 2008; Hwang et al., 2013),

the increased phospho-AMPK levels caused by PPARb/d activa-

tion was associated to reduced phospho-ERK1/2 levels, an ef-

fect abrogated by the GDF15 neutralizing antibody and in

Gdf15�/� mice. This suggests that the increase in phospho-

AMPK levels and reduction in phosho-ERK1/2 levels caused

by PPARb/d activation are dependent on increased GDF15

levels.
(H and I) Gdf15 and p53 mRNA levels (H) and GDF15 and p53 protein levels (I)

GW501516 for 6 days or GW501516 plus pifithrin-a.

(J) GDF15, phospho-p53, and p53 levels in C2C12 myotubes exposed to 10 mM o

(n = 4 independent cell culture experiments). Data are presented as the mean ± S

and ###p < 0.001 versus A769662- or GW501516-treated cells or animals. p values

two-tailed unpaired Student’s t test (E and F).

Source data are provided as a Source data file.

12 Cell Reports 36, 109501, August 10, 2021
Lipid-induced ER stress contributes to the development of

inflammation, insulin resistance and type 2 diabetes mellitus (Sal-

vadó et al., 2015). Our findings show that feeding mice an HFD

increases the expression of the markers of ER stress and inflam-

mation, with PPARb/d activation attenuating these increases.

However, the GDF15 neutralizing antibody or the deficiency of

this hormone suppresses the PPARb/d protective effects. The

beneficial effect of PPARb/d activation on ER stress and inflam-

mation has been attributed to the activation of AMPK and the

reduction of phospho-ERK1/2 levels (Coll et al., 2010; Salvadó

et al., 2014). In fact, ER stress increases ERK1/2 phosphorylation

in myotubes (Salvadó et al., 2014; Hwang et al., 2013), whereas

ERK1/2 inhibition restores AMPK activity and insulin signaling

(Hwang et al., 2013). Our findings suggest that these beneficial

effects of PPARb/d activation on ER stress, inflammation, and in-

sulin resistance are dependent on GDF15.

Several cytokines and hormones associated with insulin resis-

tance induce the production of SOCS proteins, which inhibit insu-

lin signaling (Howard and Flier, 2006). SOCS3 expression is under

the transcriptional control of STAT3, which is activated by phos-

phorylation. Phosphorylation of STAT3 at Tyr705 is dependent

on Janus tyrosine kinases that are activated by cytokines. In addi-

tion to Tyr705 phosphorylation, STAT3 also requires phosphoryla-

tion at Ser727 to achieve maximal transcriptional activity. Several

kinases can phosphorylate STAT3 at Ser727, including ERK1/2

(Decker and Kovarik, 2000). We have previously reported that

pharmacological PPARb/d activation suppresses IL-6-induced

STAT3 activation by inhibiting ERK1/2 phosphorylation and pre-

venting the reduction in phospho-AMPK levels (Serrano-Marco

et al., 2012). The findings of the current study demonstrate that

the effect of PPARb/d on STAT3 phosphorylation and SOCS3

and IRS levels also depends on increased GDF15 levels.

In this study, we report that GDF15 activates AMPK. In support

of this mechanism, our findings show that the increase in phos-

pho-AMPK caused by pharmacological activation of PPARb/d is

suppressed in skeletal muscle and the liver of mice treated with

a neutralizing antibody against GDF15 and in Gdf15�/� mice. In

addition, treatment with GDF15 increases phospho-AMPK in vivo

and in cell culture and isolated skeletal muscle, the latter suggest-

ing that this effect is independent of central effects. Finally,

Gdf15�/�mice show reduced levels of phospho-AMPK in skeletal

muscle compared with WT mice. AMPK activation by GDF15

would result in reduced ERK1/2 phosphorylation, in line with pre-

vious studies reporting that GDF15 decreases phospho-ERK1/2

levels (Subramaniam et al., 2003; Xu et al., 2014). Based on our

results, we propose that the enhanced GDF15 levels caused by

PPARb/d activation prolong the increase in phospho-AMPK levels

and the reduction in phospho-ERK1/2 levels. Therefore, we can

postulate the following scenario (Figure 7F), although we cannot

discard the involvement of alternative pathways. First, and as
in the skeletal muscle of mice (n = 4 animals) treated with either vehicle plus

f GW501516 for 24 h and transfected with control siRNA or p53 siRNA for 48 h

EM. *p < 0.05, **p < 0.01, and ***p < 0.001 versus control. #p < 0.05, ##p < 0.01,

determined by one-way ANOVAwith Tukey’s post hoc test (A–D and G–J) and
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previously reported, PPARb/d activation leads toAMPKactivation

by changes in the AMP levels (Salvadó et al., 2014) or through the

increased expression of calcium calmodulin-dependent protein

kinase kinase b (CaMKKb) (Koh et al., 2017). This activation leads

to several effects, including enhanced p53 levels that increase

GDF15 expression and circulating levels. The increase in

GDF15 levels then sustains AMPK activation and the subsequent

reduction in phospho-ERK1/2 levels, thus perpetuating the acti-

vation of AMPK, which reduces ER stress, inflammation, and in-

sulin resistance.

Overall, the findings of this study highlight a regulatory mech-

anism by which the activation of the AMPK-p53 pathway by

PPARb/d ligands results in increased levels of GDF15, which in

turn mediates the metabolic effects of these ligands by prolong-

ing AMPK activation. Because activation of the PPARb/d-AMPK

pathway in skeletal muscle enhances physical performance

(Narkar et al., 2008; Koh et al., 2017) and ameliorates inflamma-

tion and insulin resistance (Vázquez-Carrera 2016; Tan et al.,

2016), the findings of this work indicate that GDF15may become

a pharmacological target to potentiate this pathway.

Limitations of the study
Challenges in exploring the receptors mediating the

peripheral effects of GDF15

The findings of this study point to an effect of GDF15 on AMPK

that is independent of central GFRAL and is not the result of

changes in food intake. In fact, the increased GDF15 plasma

levels (�150 pg/mL) provoked by the PPARb/d ligand were lower

than the plasma levels (�2,000 pg/mL) reported to reduce food

intake, corresponding to a GDF15 dose of 20 mg/kg, whereas a

lower dose (2 mg/kg) had no effect on food intake at any of the

time points studied (Borner et al., 2020). This is consistent with

the reduction in food intake caused by pharmacological doses

of GDF15, whereas physiological induction of endogenous circu-

lating GDF15 levels did not affect food intake (Klein et al., 2021).

However, the potential involvement of GFRAL in the PPARb/d-

mediated increase in GDF15 still needs to be formally rejected

in future studies by using GFRAL knockout mice or neutralizing

antibodies against this receptor. Therefore, a limitation of this

study is that we cannot totally exclude that the effects caused

by PPARb/d ligand through the upregulation of GDF15 in vivo

might involve GFRAL through changes in physical activity or

yet-to-be-determined GDF15 physiological effects. By contrast,
Figure 7. PPARb/d activation requires increased GDF15 expression to

(A) Cpt-1b, Acadm, Acox, and Gdf15 mRNA levels in C2C12 myotubes in the pr

transfected with control siRNA or GDF15 siRNA for 48 h (n = 4 independent cell

(B) Total and phospho-AMPK and total and phospho-ERK1/2 protein levels in C2

transfected with control siRNA or GDF15 siRNA (n = 4 independent cell culture e

(C) Total and phospho-AMPK and total and phospho-ERK1/2 protein levels in C2C

cell culture experiments).

(D) Immunoblot analysis of total and phospho-AMPK and total and phospho-ERK

subcutaneous injections of 0.05 mg/kg GDF15 for 2 days).

(E) Total and phospho-AMPK and total and phospho-ERK1/2 protein levels in i

GW501516 or 500 ng/mL of recombinant mouse GDF15 for 4 h (n = 4 muscles).

(F) Proposed mechanism by which PPARb/d regulates GDF15 levels and AMPK a
###p < 0.001 and #p < 0.05 versus siRNA control cells treated with GW501516. p v

two-tailed unpaired Student’s t test (C and D).

Source data are provided as a Source data file.
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the in vitro and ex vivo findings of this study show that GDF15 ac-

tivates AMPK in cultured C2C12 myotubes and isolated skeletal

muscle, suggesting that this effect of GDF15 is the result of auto-

crine or paracrine effects of this cytokine, ruling out central ef-

fects. Because Gfral mRNA was virtually absent in C2C12 cells

(Yang et al., 2017) (Figure S7) and skeletal muscle (Laurens

et al., 2020) (Figure S7), the GDF15-mediated activation of

AMPK in isolated skeletal muscle and cultured myotubes seems

to exclude this receptor. This leads to the question of which is

the newpotential receptor responsible for the autocrine/paracrine

effects of GDF15 in skeletal muscle. This is challenging because

GFRAL was robustly identified as the receptor mediating the ef-

fects of GDF15 (Hsu et al., 2017; Mullican et al., 2017; Yang

et al., 2017). However, several additional membrane-expressed

proteins have been suggested to be additional GDF15-binding

partners, although with lower affinity (Hsu et al., 2017; Mullican

et al., 2017). Moreover, we cannot exclude the involvement of

GDF15-mediated nuclear effects because it has been reported

that this cytokine controls transcription (Min et al., 2016). Future

studies are warranted to uncover the receptor involved in the au-

tocrine/paracrine effects of GDF15 in skeletal muscle.
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Asociadas (CIBERDEM) is a Carlos III Health Institute project. CERCA Pro-

gramme/Generalitat de Catalunya. This study was partly supported by grants

from the SpanishMinistry of Economy and Competitiveness (SAF2015-64146-

R and RTI2018-093999-B-100) and European Union ERDF funds.

AUTHOR CONTRIBUTIONS

D.A.-R., E.B., A.G., J.P.-D., L.P., M.R., and M.V.-C. conducted the experi-

ments. D.A.-R., M.R., X.P., W.W., andM.V.-C. analyzed the data and reviewed

the results. D.A.-R., A.G., andM.V.-C. designed the experiments and reviewed

the results. M.V.-C. was primarily responsible for writing the manuscript. All

authors contributed to manuscript editing and have approved the final version.

DECLARATION OF INTERESTS

The authors declare no competing interests.

Received: October 8, 2019

Revised: March 31, 2021

Accepted: July 15, 2021

Published: August 10, 2021

REFERENCES

Ago, T., and Sadoshima, J. (2006). GDF15, a cardioprotective TGF-beta su-

perfamily protein. Circ. Res. 98, 294–297.

Artz, A., Butz, S., and Vestweber, D. (2016). GDF-15 inhibits integrin activation

and mouse neutrophil recruitment through the ALK-5/TGF-bRII heterodimer.

Blood 128, 529–541.

Baek, S.J., Kim, J.S., Nixon, J.B., DiAugustine, R.P., and Eling, T.E. (2004).

Expression of NAG-1, a transforming growth factor-beta superfamily member,

by troglitazone requires the early growth response gene EGR-1. J. Biol. Chem.

279, 6883–6892.

Baek, S.J., Kim, J.S., Moore, S.M., Lee, S.H., Martinez, J., and Eling, T.E.

(2005). Cyclooxygenase inhibitors induce the expression of the tumor sup-

pressor gene EGR-1, which results in the up-regulation of NAG-1, an antitu-

morigenic protein. Mol. Pharmacol. 67, 356–364.

Barroso, E., Rodrı́guez-Calvo, R., Serrano-Marco, L., Astudillo, A.M., Bal-

sinde, J., Palomer, X., and Vázquez-Carrera, M. (2011). The PPARb/d activator

GW501516 prevents the down-regulation of AMPK caused by a high-fat diet in

liver and amplifies the PGC-1a-Lipin 1-PPARa pathway leading to increased

fatty acid oxidation. Endocrinology 152, 1848–1859.

Bojic, L.A., Telford, D.E., Fullerton, M.D., Ford, R.J., Sutherland, B.G., Ed-

wards, J.Y., Sawyez, C.G., Gros, R., Kemp, B.E., Steinberg, G.R., and Huff,

M.W. (2014). PPARd activation attenuates hepatic steatosis in Ldlr-/- mice

by enhanced fat oxidation, reduced lipogenesis, and improved insulin sensi-

tivity. J. Lipid Res. 55, 1254–1266.

Borner, T., Wald, H.S., Ghidewon, M.Y., Zhang, B., Wu, Z., De Jonghe, B.C.,

Breen, D., and Grill, H.J. (2020). GDF15 Induces an Aversive Visceral Malaise

State that Drives Anorexia and Weight Loss. Cell Rep. 31, 107543.

Chen, M.B., Wu, X.Y., Gu, J.H., Guo, Q.T., Shen, W.X., and Lu, P.H. (2011).

Activation of AMP-activated protein kinase contributes to doxorubicin-
induced cell death and apoptosis in cultured myocardial H9c2 cells. Cell Bio-

chem. Biophys. 60, 311–322.

Chen, M.B., Jiang, Q., Liu, Y.Y., Zhang, Y., He, B.S., Wei, M.X., Lu, J.W., Ji, Y.,

and Lu, P.H. (2015). C6 ceramide dramatically increases vincristine sensitivity

both in vivo and in vitro, involving AMP-activated protein kinase-p53 signaling.

Carcinogenesis 36, 1061–1070.

Chrysovergis, K., Wang, X., Kosak, J., Lee, S.H., Kim, J.S., Foley, J.F., Travlos,

G., Singh, S., Baek, S.J., and Eling, T.E. (2014). NAG-1/GDF-15 prevents

obesity by increasing thermogenesis, lipolysis and oxidative metabolism. Int.

J. Obes. 38, 1555–1564.

Chung, H.K., Ryu, D., Kim, K.S., Chang, J.Y., Kim, Y.K., Yi, H.S., Kang, S.G.,

Choi, M.J., Lee, S.E., Jung, S.B., et al. (2017). Growth differentiation factor

15 is a myomitokine governing systemic energy homeostasis. J. Cell Biol.

216, 149–165.

Coll, T., Alvarez-Guardia, D., Barroso, E., Gómez-Foix, A.M., Palomer, X., La-
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Heme-Regulated eIF2a Kinase Modulates Hepatic FGF21 and Is Activated

by PPARb/d Deficiency. Diabetes 65, 3185–3199.

http://refhub.elsevier.com/S2211-1247(21)00929-3/sref25
http://refhub.elsevier.com/S2211-1247(21)00929-3/sref25
http://refhub.elsevier.com/S2211-1247(21)00929-3/sref26
http://refhub.elsevier.com/S2211-1247(21)00929-3/sref26
http://refhub.elsevier.com/S2211-1247(21)00929-3/sref26
http://refhub.elsevier.com/S2211-1247(21)00929-3/sref26
http://refhub.elsevier.com/S2211-1247(21)00929-3/sref27
http://refhub.elsevier.com/S2211-1247(21)00929-3/sref27
http://refhub.elsevier.com/S2211-1247(21)00929-3/sref27
http://refhub.elsevier.com/S2211-1247(21)00929-3/sref28
http://refhub.elsevier.com/S2211-1247(21)00929-3/sref28
http://refhub.elsevier.com/S2211-1247(21)00929-3/sref28
http://refhub.elsevier.com/S2211-1247(21)00929-3/sref28
http://refhub.elsevier.com/S2211-1247(21)00929-3/sref29
http://refhub.elsevier.com/S2211-1247(21)00929-3/sref29
http://refhub.elsevier.com/S2211-1247(21)00929-3/sref29
http://refhub.elsevier.com/S2211-1247(21)00929-3/sref29
http://refhub.elsevier.com/S2211-1247(21)00929-3/sref30
http://refhub.elsevier.com/S2211-1247(21)00929-3/sref30
http://refhub.elsevier.com/S2211-1247(21)00929-3/sref30
http://refhub.elsevier.com/S2211-1247(21)00929-3/sref30
http://refhub.elsevier.com/S2211-1247(21)00929-3/sref31
http://refhub.elsevier.com/S2211-1247(21)00929-3/sref31
http://refhub.elsevier.com/S2211-1247(21)00929-3/sref31
http://refhub.elsevier.com/S2211-1247(21)00929-3/sref31
http://refhub.elsevier.com/S2211-1247(21)00929-3/sref32
http://refhub.elsevier.com/S2211-1247(21)00929-3/sref32
http://refhub.elsevier.com/S2211-1247(21)00929-3/sref32
http://refhub.elsevier.com/S2211-1247(21)00929-3/sref32
http://refhub.elsevier.com/S2211-1247(21)00929-3/sref33
http://refhub.elsevier.com/S2211-1247(21)00929-3/sref33
http://refhub.elsevier.com/S2211-1247(21)00929-3/sref33
http://refhub.elsevier.com/S2211-1247(21)00929-3/sref33
http://refhub.elsevier.com/S2211-1247(21)00929-3/sref34
http://refhub.elsevier.com/S2211-1247(21)00929-3/sref34
http://refhub.elsevier.com/S2211-1247(21)00929-3/sref34
http://refhub.elsevier.com/S2211-1247(21)00929-3/sref34
http://refhub.elsevier.com/S2211-1247(21)00929-3/sref35
http://refhub.elsevier.com/S2211-1247(21)00929-3/sref35
http://refhub.elsevier.com/S2211-1247(21)00929-3/sref35
http://refhub.elsevier.com/S2211-1247(21)00929-3/sref35
http://refhub.elsevier.com/S2211-1247(21)00929-3/sref35
http://refhub.elsevier.com/S2211-1247(21)00929-3/sref36
http://refhub.elsevier.com/S2211-1247(21)00929-3/sref36
http://refhub.elsevier.com/S2211-1247(21)00929-3/sref36
http://refhub.elsevier.com/S2211-1247(21)00929-3/sref37
http://refhub.elsevier.com/S2211-1247(21)00929-3/sref37
http://refhub.elsevier.com/S2211-1247(21)00929-3/sref37
http://refhub.elsevier.com/S2211-1247(21)00929-3/sref38
http://refhub.elsevier.com/S2211-1247(21)00929-3/sref38
http://refhub.elsevier.com/S2211-1247(21)00929-3/sref38
http://refhub.elsevier.com/S2211-1247(21)00929-3/sref38
http://refhub.elsevier.com/S2211-1247(21)00929-3/sref39
http://refhub.elsevier.com/S2211-1247(21)00929-3/sref39
http://refhub.elsevier.com/S2211-1247(21)00929-3/sref39
http://refhub.elsevier.com/S2211-1247(21)00929-3/sref40
http://refhub.elsevier.com/S2211-1247(21)00929-3/sref40
http://refhub.elsevier.com/S2211-1247(21)00929-3/sref40
http://refhub.elsevier.com/S2211-1247(21)00929-3/sref41
http://refhub.elsevier.com/S2211-1247(21)00929-3/sref41
http://refhub.elsevier.com/S2211-1247(21)00929-3/sref41
http://refhub.elsevier.com/S2211-1247(21)00929-3/sref41
http://refhub.elsevier.com/S2211-1247(21)00929-3/sref42
http://refhub.elsevier.com/S2211-1247(21)00929-3/sref42
http://refhub.elsevier.com/S2211-1247(21)00929-3/sref42
http://refhub.elsevier.com/S2211-1247(21)00929-3/sref42
http://refhub.elsevier.com/S2211-1247(21)00929-3/sref43
http://refhub.elsevier.com/S2211-1247(21)00929-3/sref43
http://refhub.elsevier.com/S2211-1247(21)00929-3/sref43
http://refhub.elsevier.com/S2211-1247(21)00929-3/sref44
http://refhub.elsevier.com/S2211-1247(21)00929-3/sref44
http://refhub.elsevier.com/S2211-1247(21)00929-3/sref44
http://refhub.elsevier.com/S2211-1247(21)00929-3/sref44
http://refhub.elsevier.com/S2211-1247(21)00929-3/sref45
http://refhub.elsevier.com/S2211-1247(21)00929-3/sref45
http://refhub.elsevier.com/S2211-1247(21)00929-3/sref45
http://refhub.elsevier.com/S2211-1247(21)00929-3/sref45
http://refhub.elsevier.com/S2211-1247(21)00929-3/sref45
http://refhub.elsevier.com/S2211-1247(21)00929-3/sref46
http://refhub.elsevier.com/S2211-1247(21)00929-3/sref46
http://refhub.elsevier.com/S2211-1247(21)00929-3/sref46
http://refhub.elsevier.com/S2211-1247(21)00929-3/sref46
http://refhub.elsevier.com/S2211-1247(21)00929-3/sref47
http://refhub.elsevier.com/S2211-1247(21)00929-3/sref47
http://refhub.elsevier.com/S2211-1247(21)00929-3/sref47
http://refhub.elsevier.com/S2211-1247(21)00929-3/sref47
http://refhub.elsevier.com/S2211-1247(21)00929-3/sref48
http://refhub.elsevier.com/S2211-1247(21)00929-3/sref48
http://refhub.elsevier.com/S2211-1247(21)00929-3/sref48
http://refhub.elsevier.com/S2211-1247(21)00929-3/sref48
http://refhub.elsevier.com/S2211-1247(21)00929-3/sref49
http://refhub.elsevier.com/S2211-1247(21)00929-3/sref49
http://refhub.elsevier.com/S2211-1247(21)00929-3/sref49
http://refhub.elsevier.com/S2211-1247(21)00929-3/sref50
http://refhub.elsevier.com/S2211-1247(21)00929-3/sref50
http://refhub.elsevier.com/S2211-1247(21)00929-3/sref50
http://refhub.elsevier.com/S2211-1247(21)00929-3/sref51
http://refhub.elsevier.com/S2211-1247(21)00929-3/sref51
http://refhub.elsevier.com/S2211-1247(21)00929-3/sref51
http://refhub.elsevier.com/S2211-1247(21)00929-3/sref52
http://refhub.elsevier.com/S2211-1247(21)00929-3/sref52
http://refhub.elsevier.com/S2211-1247(21)00929-3/sref52
http://refhub.elsevier.com/S2211-1247(21)00929-3/sref53
http://refhub.elsevier.com/S2211-1247(21)00929-3/sref53
http://refhub.elsevier.com/S2211-1247(21)00929-3/sref53
http://refhub.elsevier.com/S2211-1247(21)00929-3/sref54
http://refhub.elsevier.com/S2211-1247(21)00929-3/sref54
http://refhub.elsevier.com/S2211-1247(21)00929-3/sref54
http://refhub.elsevier.com/S2211-1247(21)00929-3/sref55
http://refhub.elsevier.com/S2211-1247(21)00929-3/sref55
http://refhub.elsevier.com/S2211-1247(21)00929-3/sref55
http://refhub.elsevier.com/S2211-1247(21)00929-3/sref55
http://refhub.elsevier.com/S2211-1247(21)00929-3/sref56
http://refhub.elsevier.com/S2211-1247(21)00929-3/sref56
http://refhub.elsevier.com/S2211-1247(21)00929-3/sref56
http://refhub.elsevier.com/S2211-1247(21)00929-3/sref56
http://refhub.elsevier.com/S2211-1247(21)00929-3/sref57
http://refhub.elsevier.com/S2211-1247(21)00929-3/sref57
http://refhub.elsevier.com/S2211-1247(21)00929-3/sref57
http://refhub.elsevier.com/S2211-1247(21)00929-3/sref57
http://refhub.elsevier.com/S2211-1247(21)00929-3/sref58
http://refhub.elsevier.com/S2211-1247(21)00929-3/sref58
http://refhub.elsevier.com/S2211-1247(21)00929-3/sref58
http://refhub.elsevier.com/S2211-1247(21)00929-3/sref58


Article
ll

OPEN ACCESS
STAR+METHODS
KEY RESOURCES TABLE
REAGENT OR RESOURCE SOURCE IDENTIFIER

Antibodies

b-Actin Sigma A5441 RRID:AB_476744

AMPK Cell Signaling Cat#2532 RRID:AB_330331

Phospho-AMPK Thr172 Cell Signaling Cat#2531 RRID:AB_330330

ATF4 (CREB-2) Santa Cruz sc-390063 RRID:AB_2810998

eIF2a Cell Signaling Cat#9722 RRID:AB_2230924

ERK1/2 (p44/42 MAPK) Cell Signaling Cat#9102 RRID:AB_330744

Phospho-ERK1/2 (p42/44 MAPK) Thr202/Tyr204 Cell Signaling Cat#9101 RRID:AB_331646

GAPDH Millipore MAB374 RRID:AB_2107445

GDF15 Santa Cruz sc-515675 RRID:AB_2892674

Histone H3 Santa Cruz sc-10809 RRID:AB_2115276

IkBa Santa Cruz sc-371 RRID:AB_2235952

Insulin receptor b Cell Signaling Cat#3025 RRID:AB_2280448

IRS-1 Cell Signaling Cat#2382 RRID:AB_330333

Phospho-IRS-1Ser307 Cell Signaling Cat#2381S RRID:AB_330342

IRS-2 Cell Signaling Cat#4502 RRID:AB_2125774

Lamin B Santa Cruz sc-6216 RRID:AB_648156

Lipin 1 Santa Cruz sc-98450 RRID:AB_2135907

NF-kB p65 Santa Cruz sc-109 RRID:AB_632039

p53 Cell Signaling Cat#2524T RRID:AB_331743

Phospho-p53Ser15 Cell Signaling Cat#9284T RRID:AB_331464

PGC-1a Abcam ab54481 RRID:AB_881987

PPARa Santa Cruz sc-1985 RRID:AB_2165740

SOCS3 Santa Cruz sc-9023 RRID:AB_2193305

STAT3 Santa Cruz sc-482 X RRID:AB_632440

Phospho-Stat3Tyr705 Cell Signaling Cat#9131 RRID:AB_331586

Phospho-Stat3Ser727 Cell Signaling Cat#9134 RRID:AB_331589

a-Tubulin Sigma T6074 RRID:AB_477582

Chemicals, peptides and recombinant proteins

A769662 Tocris Bioscience 3336

Compound C Santa Cruz sc-200689

GDF15 PeproTech 120-28

GDF15 R&D 8944-GD

GW501516 Sigma-Aldrich SML1491

GW501516 Tocris Bioscience 5674

SB431542 PeproTech 3014193

Lipofectamine 2000 Thermo-Fisher 11668027

Pifithrin alpha p-nitro, cyclic (culture) Millipore 506154

Pifithrin alpha p-nitro (in vivo treatment) Santa Cruz sc-222176

siRNA Control Santa Cruz sc-37007

siRNA PPARb/d Santa Cruz sc-36306

siRNA AMPK1/2 Santa Cruz sc-45313

siRNA p53 Santa Cruz sc-29436

siRNA GDF15 Santa Cruz sc-39799

(Continued on next page)
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Critical commercial assays

Mouse GDF15 ELISA Kit Biorbyt orb391081

Beta-Hydroxybutyrate Assay Kit Sigma-Aldrich MAK041

Experimental models: organisms/strains

C57BL/6J mice Envigo 5706M

C2C12 ATCC CRL-1722

Software and algorithms

Image Lab software (version 6.0.1) Bio-Rad https://www.bio-rad.com/en-us/product/

image-lab-software

Graph Pad Prism 6.01 Graph Pad Software https://www.graphpad.com/dl/96314/10B92408/
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RESOURCE AVAILABILITY

Lead contact
Further information and requests for resources and reagents should be directed to and will be fulfilled by the lead contact, Manuel

Vázquez-Carrera (mvazquezcarrera@ub.edu).

Materials availability
This study did not generate new unique reagents.

Data and code availability
The published article includes all datasets generated or analyzed during this study.

This paper does not report original code.

Any additional information required to reanalyze the data reported in this paper is available from the lead contact upon request.

EXPERIMENTAL MODEL AND SUBJECT DETAILS

Mice
Male C57BL/6 mice (10-12 weeks old) were purchased from (Envigo, Barcelona, Spain). Male Gdf15�/� mice (10-12 weeks old,

C57BL/6/129/SvJ background) were gifts from Dr. Se-Jin Lee (Johns Hopkins University School of Medicine). Mice were housed

and maintained under a constant temperature (22 ± 2�C) and humidity (55%). The mice had free access to water and food and

were subjected to 12 h light-dark cycles. All experiments were performed in accordance with European Community Council directive

86/609/EEC, and experimental protocols as well as the number of animals, determined based on the expected effects size, were

approved by the Institutional Animal Care and Use Committee at the University of Barcelona. Animal studies are reported in compli-

ance with the ARRIVE guidelines (McGrath and Lilley, 2015).

Cell lines
Mouse C2C12 myoblasts (ATCC, Manassas, VA) were maintained in Dulbecco’s modified Eagle’s medium (DMEM) supplemented

with 10% fetal bovine serum (FBS), 50 units/mL of penicillin and 50 mg/mL of streptomycin.

METHOD DETAILS

Animal treatments
After 1 week of acclimatization, the mice were randomly distributed into two experimental groups (n = 5 each), one of the groups

receiving one daily oral gavage of vehicle (0.5% w/v carboxymethylcellulose) and the other one a daily oral dose of 3 mg/kg/day

of GW501516 dissolved in the vehicle (volume administered 10 mL/kg) for 6 days. This dose has been reported to activate

PPARb/d, but not PPARa or PPARg (Lee et al., 2006). At the end of the treatment, the mice were sacrificed, and skeletal muscle

(gastrocnemius) and liver samples were frozen in liquid nitrogen and then stored at �80�C. In a second study, mice were randomly

distributed into three experimental groups (n = 5 each), one receiving one daily oral gavage of vehicle, one receiving a daily oral dose

of 3 mg/kg/day of GW501516 for 6 days and one receiving GW501516 plus an intraperitoneal injection of the p53 inhibitor, pifithrin a

p-nitro (2.2 mg/kg) dissolved in vehicle (PBS/DMSO, 10:1), every 48 h.

In a third study, male C57BL/6 mice (10-12 weeks old) were randomly distributed into four experimental groups (n = 5 each): (1)

standard diet plus one daily oral gavage of vehicle (0.5% w/v carboxymethylcellulose); (2) Western-type high-fat diet (HFD, 45%
e2 Cell Reports 36, 109501, August 10, 2021
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Kcal from fat, product D12451, Research Diets Inc., New Brunswick, NJ) plus one daily oral gavage of vehicle; (3) HFD plus one

daily oral dose of 3 mg/kg/day of the PPARb/d agonist GW501516 dissolved in the vehicle; and (4) HFD plus one daily oral dose

of 3 mg/kg/day of GW501516 dissolved in the vehicle (volume administered 10 mL/kg) for 3 weeks. Long-term treatment with this

compound significantly reduces weight loss and fat mass (Wang et al., 2003, 2004), affecting both lipid metabolism and insulin sensi-

tivity. To prevent the interference of weight loss in the parameters analyzed, mice were treated with the PPARb/d agonist for 3 weeks.

Three days before the end of the 3-week treatment, mice in the first three experimental groups were injected once intraperitoneally

with IgG (40 mg/mouse), while those in the fourth group received a neutralizing antibody (40 mg/mouse) against GDF15 (R&D Systems

Inc., Minneapolis, MN) (Sasahara et al., 2017).

To evaluate the efficacy of the GDF15 neutralizing antibody we performed a fourth study where 12-week-old male C57BL/6J mice

were randomly distributed into three different groups (n = 5), all receiving a standard diet. Micewere intraperitoneally injected with the

GDF15 neutralizing antibody or IgG 48h before receiving 0.1 mg/kg of recombinant GDF15 or vehicle. The administration of recom-

binant GDF15 was performed at 18:00 h and measurement of food consumption was performed the next day at 8:00 h.

In a fifth study, maleWT littermates controls andGdf15�/� (10-12 weeks old, C57BL/6/129/SvJ background), obtained from Johns

Hopkins University School of Medicine, were randomly distributed into three experimental groups (n = 5 each): (1) standard diet plus

one daily oral gavage of vehicle (0.5% w/v carboxymethylcellulose); (2) Western-type high-fat diet (HFD, 45% Kcal from fat, product

D12451, Research Diets Inc.) plus one daily oral gavage of vehicle; (3) HFD plus one daily oral dose of 3 mg/kg/day of the PPARb/d

agonist GW501516 dissolved in the vehicle.

In the sixth study, male C57BL/6 mice (10-12 weeks old) were randomly distributed into two experimental groups (n = 5 each), one

of the groups receiving two subcutaneous injections per day of saline and the other two subcutaneous injections of recombinant

GDF15 (0.05 mg/kg), for two days. Mice were sacrificed two hours later after the last administration and skeletal muscle (gastrocne-

mius) samples were frozen in liquid nitrogen and then stored at �80�C.
For the glucose tolerance test (GTT), animals received 2 g/kg body weight of glucose by an intraperitoneal injection and blood was

collected from the tail vein after 0, 15, 30, 60 and 120 min.

Liver histology
For histological staining studies, samples were formalin fixed, paraffin embedded and 4 mm sections obtained. Oil Red staining

(Sigma Aldrich) was performed in 10 mm frozen liver sections. Fifteen images at 20x magnification were captured to quantify lipid

droplets evaluated as the red stained area per total area with ImageJ software.

Cell culture
When C2C12 myoblasts reached confluence, the medium was switched to the differentiation medium containing DMEM and 2%

horse serum, which was changed every other day. After 4 more days, the differentiated C2C12 cells had fused into myotubes. These

were incubated in serum-free DMEM in either the absence (control cells) or presence of GW501516 (10 mM), A769662 (60 mM), com-

pound C (30 mM) pifithrin-a (10 mM) or human GDF15 (100 ng/mL). Differentiated myotubes were transiently transfected with 70 nM

siRNA against PPARb/d, AMPK1/2, GDF15 or p53 or siRNA control (Santa Cruz) in Opti-MEM medium (Thermo Fisher, MA) using

Lipofectamine 2000 (Invitrogen, Carlsbad, CA) (7 mL per 1.5 mL well) according to the manufacturer’s instructions. Different com-

pounds were tested after 24 h of transfection.

Ex vivo skeletal muscle incubation
Soleus muscles were dissected in anesthetized mice, using isoflurane, and incubated in vitro, as previously described (Gumà et al.,

1988) with some modifications as indicated following. The soleus muscles of each mouse were incubated in a single vial containing

4mL of the incubationmedium for a recovery period of 10min at 34�C. After that, muscleswere placed in new vials containing 3mL of

the incubation medium in the presence or absence of the respective treatments, GW501516 or recombinant mouse GDF15, for

90 min. Afterward, two consecutive replacements of the muscles were done in vials containing fresh medium and maintaining the

respective treatments for a period of 90 and 60 min respectively, in order to favor the viability of the soleus muscles.

Reverse Transcriptase-Polymerase Chain Reaction and Quantitative Polymerase Chain Reaction
Isolated RNA was reverse transcribed to obtain 1 mg of complementary DNA (cDNA) using Random Hexamers (Thermo Scientific),

10 mM deoxynucleotide (dNTP) mix and the reverse transcriptase enzyme derived from the Moloney murine leukemia virus (MMLV,

Thermo Fisher). The protocol was run in a thermocycler (BioRad) and consisted in a program with different steps and temperatures:

65�C for 5 min., 4�C for 5 min., 37�C for 2 min., 25�C for 10 min., 37�C for 50 min. and 70�C for 15 min. The relative levels of specific

mRNAswere assessed by real-time RT-PCR technique in aMini-48well T100 thermal cycler (Bio-Rad) using SYBRGreenMasterMix

(Applied Biosystems), as previously described (Zarei et al., 2016). Briefly, samples contained a final volume of 20 ml, with 25 ng of total

cDNA, 0.9 mM of primer mix and 10 mL of 2x SYBR Green master mix. The thermal cycler protocol for real time PCR included a first

step of denaturation at 95�C for 10 min and 40 repetitive cycles with three steps for denaturation, primer annealing and amplification:

95�C for 15 s, 60�C for 30 s and 72�C for 30 s. Primers sequences were designed using the Primer-BLAST tool (NCBI), based on the

full mRNA sequences to find optimal primers for amplification and evaluated with the Oligo-Analyzer tool (Integrated DNA Technol-

ogies) to ensure optimal melting temperature (Tm) and avoid the formation of homo/hetero-dimers or nonspecific structures that can
Cell Reports 36, 109501, August 10, 2021 e3
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interfere with the interpretation of the results. The primer sequences were designed specifically spanning the junction between

exons. Values were normalized to glyceraldehyde phosphate dehydrogenase (Gapdh) or adenine phosphoribosyltransferase

(Aprt) expression levels, andmeasurements were done in triplicate. All expression changes were normalized to the untreated control.

Primer sequences used for real-time RT-PCR are shown in Table S1.

Western blot analysis
Isolation of total protein extracts was performed as described elsewhere (Zarei et al., 2016). Proteins (30 mg) were separated by SDS-

PAGE on 8%–12% acrylamide gels and transferred onto Immobilon polyvinylidene difluoride membranes (Millipore). Incubation with

primary antibody was performed overnight in cold room inWestVisionTMBlock and Diluent Solution (Cat. No: SP-7000, Vector Labs,

CA), the membranes were washed five times with a TBS 0.1% tween solution and incubated with a horseradish peroxidase conju-

gated secondary antibody (GE Healthcare) in TBS 0.1% tween 3% BSA for one hour at room temperature. After incubation with the

secondary antibodymembranes were washed three times with a PBS 0.1% tween solution incubated with detection reagent. Protein

bands were detected with theWestern Lightning� Plus-ECL chemiluminescence kit (PerkinElmer, Waltham, MA). The size of the de-

tected proteins was estimated using protein molecular mass standards (Bio-Rad, Barcelona, Spain). Signal acquisition was per-

formed using the Bio-Rad ChemiDoc apparatus and quantification of immunoblot signal was performed with the Bio-Rad Image

Lab software. The results for protein quantification were normalized to the levels of a control protein to avoid unwanted sources

of variation.

QUANTIFICATION AND STATISTICAL ANALYSIS

Statistical analysis
Results are expressed asmeans ± s.e.m. of at least four independent experiments or at least four different animals per group. Results

were analyzed by Student’s t test or one-way analysis of variance (ANOVA), according to the number of groups compared, using the

GraphPad Prism program (V8.4.3.) (GraphPad Software Inc., San Diego, CA). When significant variations were found by ANOVA, the

Tukey-Kramer multiple comparison post hoc test was performed only if F achieved a P value < 0.05 and there was no significant vari-

ance in homogeneity. Differences were considered significant at p < 0.05. Specific statistical tests done for experiments are included

in the figure legends.
e4 Cell Reports 36, 109501, August 10, 2021
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