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Abstract 

Lung transplantation is the only therapeutic option for patients suffering from end-stage 

lung disease aiming to increase quality and expectancy of life. However, due to the 

limited number of donor organs eligible for lung transplantation, only a limited number 

of patients can benefit from this therapeutic option.  

The use of “marginal donor lungs” that do not fulfill the standard selection criteria for 

donor lungs was shown to be valuable option to increase the number of available 

organs; however, using these lungs may bear an increased risk for graft dysfunction 

after lung transplantation. Thus the accurate evaluation of these potentially damaged 

organs prior to transplantation becomes critical to avoid unwanted outcomes. As shown 

recently, ex-vivo lung perfusion (EVLP) is an appropriate tool to assess donor lungs 

before transplantation. After procurement, donor lungs are mounted in a specially 

designed circuit to perfuse and ventilate them at physiologic and protective conditions. 

Instead of cold ischemic preservation, resulting in a highly slowed down metabolism of 

the graft, EVLP preserves the organ at body temperature before transplant and allows 

assessing lung function in a well defined environment outside the body. Since lungs 

remain metabolically active the concept of normothermic lung preservation also bears 

the potential to serve for ex-vivo drug delivery to recondition donor lungs for 

transplantation.  

The goal of this thesis is to assess EVLP as a platform to deliver therapeutic agents for 

repair of damaged lung grafts and to prepare them for transplantation.  

In a first step we have established a novel experimental rodent EVLP model to assess 

and treat donor lung grafts mimicking the clinical setting. This model allows us to keep 

rodent lungs in physiologic conditions over 4 hours and to assess quantitatively and 

qualitatively donor lung damage related to typical graft injuries including bacterial 

contamination or warm ischemia (WI).  

WI is an important risk factor for ischemia-reperfusion injury (IRI), known to result in 

primary graft dysfunction in clinical practice. 

a) One of the key processes involved in IRI are the formation of reactive 

oxygen/nitrogen species (ROS/RNS) and the activation of poly (ADP-ribose) polymerase 

(PARP). Therefore we sought to investigate whether rat lungs obtained after extended 

warm ischemia could be reconditioned during EVLP using the inhibitors of ROS/RNS or 

PARP.  

b) Another known effect of WI resulting in IRI is the up-regulation of the Nuclear factor-

kappa B (NF-κB), a family of transcription factors, playing a critical role in the 

inflammatory response. We therefore studied the potential of ex-vivo inhibition of NF-

κB pathway to reduce WI induced lung damage.   

c) Tissue damage due to IRI is triggered by the release of various inflammatory 

cytokines. Sevoflurane, a volatile anesthetic, recognized to affect the release of cytokines 
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in-vitro, was therefore administrated using the EVLP platform and its effect on WI 

induced lung injury was determined. 

We found that all three approaches of ex-vivo lung therapy improved the functional 

status of damaged lung grafts mounted in the EVLP circuit with significant attenuation 

of WI induced lung inflammation and tissue injury.  

In a further step we have assessed if EVLP can reduce the bacterial load of streptococcus 

pneumoniae infected donor lungs, and if this affects lung function. We have found that in 

our experimental setting ex-vivo antibiotic treatment reduces the bacterial load without 

having a relevant effect on the impaired functional status of infected lungs. 

Subsequently we have developed a new experimental model of EVLP followed by 

unilateral lung transplantation. We than assessed the effects of donor lung 

reconditioning by EVLP on lung function during blood recirculation in the recipient. 

We found that transplantation of damaged lung grafts undergoing sham EVLP displayed 

severe dysfunction after transplantation. Pharmacological inhibition of PARP during ex-

vivo perfusion of injured lungs resulted in significantly reduced IRI and excellent initial 

lung function after transplantation. 

We conclude that EVLP bears the potential to be used as a platform to treat donor lungs 

before transplantation: (1) to repair preexisting donor lung injuries and (2) to prime the 

lung to attenuate deleterious effects of blood reperfusion after transplantation. Once 

translated to clinical practice this may become a pivotal strategy to expand the donor 

pool with donor grafts initially considered inappropriate to transplant.  

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 
 

Résumé  

La transplantation pulmonaire est la seule option thérapeutique pour les patients 

souffrant d’une maladie pulmonaire chronique terminale qui permette d’augmenter la 

qualité et souvent l’espérance de vie. Néanmoins, en raison du manque d’organes 

disponibles pour la transplantation pulmonaire, seul un nombre limité de patients peut 

bénéficier de cette option thérapeutique. L’utilisation des poumons de donneurs dits 

"marginaux", qui ne remplissent pas les critères habituels pour une transplantation, a 

démontré être une option possible pour augmenter le nombre de poumons à disposition 

pour la transplantation. Toutefois, l’utilisation de ces poumons peut augmenter le risque 

de dysfonction du greffon après la transplantation. Une évaluation précise de ces 

poumons potentiellement endommagés avant la transplantation devient donc une étape 

importante dans le processus de transplantation. Comme montré récemment, la 

perfusion ex-vivo du poumon est un outil approprié pour évaluer des poumons de 

donneurs avant la transplantation. Suite au prélèvement, les poumons du donneur sont 

montés dans un circuit permettant de les perfuser et les ventiler dans des conditions 

physiologiques et protectrices. On parle de perfusion pulmonaire ex-vivo ou ex-vivo  

lung perfusion (EVLP). A la place d’une préservation au froid qui diminue le 

métabolisme du greffon, l’EVLP autorise une préservation de l’organe à 37° avant la 

transplantation, et ainsi permet d’évaluer la fonction pulmonaire dans un 

environnement bien défini à l’extérieur du corps humain. Comme les poumons sont 

métaboliquement actifs, l’EVLP permet aussi d’administrer des traitements 

médicamenteux ex-vivo, avec pour objectif d’améliorer les poumons avant 

transplantation (concept de reconditionnement pharmacologique). 

Le but de cette thèse a été d’évaluer la perfusion ex-vivo du poumon comme plateforme 

pour l’administration de substances thérapeutiques aux poumons endommagés et ainsi 

de les préparer pour une transplantation pulmonaire. Dans un premier temps, un 

modèle expérimental d’EVLP du poumon de rat a été établi, modèle qui est proche de 

l’application clinique. Ce modèle permet de garder des poumons de rongeurs dans des 

conditions physiologiques pendant 4 heures et d’évaluer des poumons endommagés de 

façon quantitative et qualitative. Des lésions typiques des poumons donneurs ont été 

évaluées, comme notamment les lésions dues à l’ischémie chaude et à la contamination 

bactérienne.  

L’ischémie chaude est un facteur important déclenchant des lésions d’ischémie-

reperfusion, qui aboutit en clinique à la dysfonction primaire du greffon après 

transplantation. Un des processus impliqués dans l’ischémie-reperfusion est la 

formation de radicaux libres d’oxygène (reactive oxygen species, ROS) et d’azote 

(reactive nitrogen species, RNS), ainsi que l’activation de l’enzyme nucléaire Poly-ADP-

ribose Polymerase (PARP). Nous avons investigué si les poumons obtenus après un 

temps d’ischémie chaude prolongé pouvaient être reconditionnés lors de l’EVLP en 

administrant des inhibiteurs pharmacologiques des ROS/RNS et de la PARP. 
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Un autre mécanisme de l’ischémie-reperfusion favorisant la dysfonction primaire du 

greffon est l’activation précoce d’une réponse inflammatoire non spécifique induite par 

la reperfusion. Cette réponse est orchestrée par un facteur de transcription appelé 

nuclear factor-kappa B (NF-B). Nous avons donc investigué la possibilité de 

reconditionner le poumon au cours de l’EVLP par un inhibiteur du NF-B).  

De plus, nous avons également évalué la capacité d’un agent anesthésique volatil, le 

sevoflurane, administré dans le circuit d’EVLP, à réduire l’inflammation et les lésions 

pulmonaires induites par l’ischémie chaude, eu égard à certains effets anti-

inflammatoires connus de cet agent.  

Nous avons ainsi pu démontrer, dans notre modèle d’EVLP,  que les trois approches 

décrites ci-dessus, permettaient d’améliorer l’intégrité et la fonction des poumons 

endommagés et que ces trois approches permettaient également une diminution de 

l’inflammation pulmonaire due à l’ischémie chaude.  

L’étape suivante a été d’évaluer si la perfusion isolée du poumon permettait de diminuer 

la charge bactérienne dans des poumons contaminés par la bactérie Streptococcus 

pneumoniae, et si une telle réduction permettait d’améliorer la fonction pulmonaire. En 

administrant un traitement antibiotique ex-vivo dans le circuit d’EVLP, nous avons ainsi 

pu montrer que la charge bactérienne des poumons était réduite, toutefois, sans que cela 

n’ait d‘effet relevant sur la fonction pulmonaire des poumons infectés. 

Lors de la dernière étape, un modèle expérimental de perfusion ex-vivo du poumon suivi 

par une transplantation uni-pulmonaire chez le rongeur a été développé. Nous avons 

évalué des poumons donneurs reconditionnés par l’EVLP dans ce modèle de 

transplantation pulmonaire. En utilisant ce modèle, nous avons montré que des 

poumons endommagés par une ischémie chaude, perfusés dans un circuit d’EVLP sans 

ajout de substance thérapeutique montraient une dysfonction sévère après la 

transplantation. Par contre, l’application d’un inhibiteur pharmacologique de la PARP 

lors de l’EVLP de ces poumons endommagés a permis une réduction significative des 

lésions d’ischémie-reperfusion après transplantation, se traduisant par une fonction 

excellente des poumons reconditionnés, après la transplantation. 

En résumé, la perfusion ex-vivo du poumon a le potentiel d’être utilisée comme 

plateforme de traitement des poumons de donneurs endommagés : 1) pour réparer des 

lésions préexistantes chez le donneur 2) pour préparer le poumon afin de diminuer des 

effets qui auront lieu lors de la reperfusion du poumon lors de la transplantation.  

Une fois introduite en clinique, cette stratégie permettra d’élargir le pool des donneurs 

en utilisant des poumons initialement considérés comme non éligibles pour la 

transplantation. 
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1.1 Lung transplantation 

Since the first successful lung transplantation (LTX) in men three decades ago (1), lung 

transplantation gained wide acceptance and is currently the only  therapy of end-stage lung 

disease (e.g. cystic fibrosis, emphysema, pulmonary fibroses, etc) aiming to improve quality 

of life and survival. A major drawback is donor lung shortage which makes this treatment 

option only available to a very selected group of patients suffering from terminal 

respiratory insufficiency. 

1.1.1 Brief history and current trend 

In 1940s, Demikhov demonstrated the feasibility of the technique of Ltx using a canine 

model (2). Human Ltx was reported by Hardy in 1963. Although surgery was successful, 

the patient died on post-op day 18 due to kidney failure (3). In the following 10 years, 

multiple attempts of Ltx failed because of post-transplant graft rejection, as well as issues 

with healing of the bronchial anastomosis. An acceptable long-term survival after Ltx was 

only achieved following the development of posttransplant immunosupression (4). In 

1983, Cooper from Toronto performed the first successful Ltx with long-term survival (5). 

Five years later the same group reported on the first successful bilateral Ltx using a 

sequential technique (6), which became the standard in clinical practice. 

In 2014, the registry of the International Society of Heart and Lung Transplantation 

counted a cumulative number of over 50,000 Ltx worldwide since the introduction of this 

treatment modality in 1985, of which 96 % were primary Ltx and 4% were lung re-

transplantations [Figure 1.1, (7)]. Patients undergoing Ltx during this timeframe had a 

median survival of 5.7 years, with unadjusted overall survival rates after single or double 

Ltx of 89% at 3 months, 80% at 1 year, 65% at 3 years, 54% at 5 years, and 31% at 10 

years. Survival after lung transplantation is known to be higher when reported from single 

centers and more recent periods. Survival of all consecutive patients undergoing double or 

single lung transplant at the Lausanne university hospital from 2006 to 2014 (n=200, 

heart-lung and retransplantation excluded, Centre Universitaire Romand de 

Transplantation) have a 1-, 3-, 5- and 10-year survival of 91, 82, 75 and 65 %. Although a 

survival benefit has not yet been proven for all transplant indications, quality of life is 

significantly improved with 80% of survivors presenting no limitations of daily activities 

up to 10 years post Ltx (8). The major causes of death reported during the early post-

transplant period are primary graft dysfunction (PGD), infection, cardiovascular and 

surgery related events. Chronic lung allograft dysfunction, infections and malignancy 

account for most deaths after the first post-transplant year (7). Figure 1.2 shows the 

current survival curves of primary adult lung transplant as reported by the international 

registry. 
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Figure 1.1 Number of adult lung transplantation reported by year and procedure type. 

[Cited from the 2015 official adult lung and heart-lung transplantation report (7)] 

 

 

 



Experimental ex-vivo lung perfusion for reconditioning of lung grafts 

23 
 

Figure 1.2 Primary adult lung transplant recipient Kaplan-Meier survival, stratified by 

procedure type. Cited from the 2015 official adult lung and heart-lung transplantation 

report (7) 

 

1.1.2 Selection of donor lungs and organ shortage 

Selection criteria for donor lungs were established during the development of Ltx. 

According to an expert consensus, the ideal donor must fulfill a number of criteria outlined 

by the international Society for Heart and Lung Transplantation (ISHLT), Table 1.1 (9). 

Furthermore, surgeons perform a physical examination of the potential donor lung at 

retrieval including macroscopic observation and palpation to exclude any detectable 

intrinsic lung disease and abnormalities. Such stringent criteria are considered to limit the 

risk of PGD, a type of acute lung injury and dysfunction which plays an essential role for 

post-transplant morbidity and mortality (10), and which increases the risk of chronic lung 

allograft dysfunction in transplanted patients (10).  

The application of restrictive selection criteria contributes to a low utilization rate of donor 

lungs from multi-organ donors, with an estimated refusal rate around 80%. Consequently 

critical organ shortage is inevitable and translates into increased waiting times and waitlist 

mortality.  

 

 Age<55years 

 ABO compatibility 

 Clear chest radiograph 

 PaO2/FiO2 (1.0)>300, PEEP 5cmH2O 

 Tobacco history<20 packs/year 

 Absence of chest trauma 

 No evidence of aspiration/sepsis 

 No prior cardiopulmonary surgery 

 Sputum gram stain-absence of organisms 

 Absence of purulent secretions at bronchoscopy 
 

 

Table 1.1 Current ISHLT ideal donor lung selection criteria (9) 
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1.1.3 Donation after neurological determination of death lungs 

The principle source of donor lungs is the so called “neurological determination of death” 

donor (DNDD). In this type of donor, the complete brain function is irreversibly damaged, 

indicating that the legal definition of death is fulfilled. In potential donors the heartbeat and 

ventilation are maintained by intensive medical care, preserving for a limited period of 

time the viability of organs (11). Unfortunately, acute lung injury occurs to a certain degree 

in all potential donors as a consequence of brain death. Brain stem death leads to 

sympathetic stimulation with increased heart rate and cardiac index (12). The sudden 

increase of systemic vascular resistance leads to a drop in ventricular output and therefore 

an enhanced pulmonary capillary pressure, causing increased epithelial permeability (13, 

14). The so-called neurogenic lung edema develops. In addition, an up-regulated systemic 

inflammatory response takes place (13, 14). The over-expression of pro-inflammatory 

cytokines such as Interleukin-1beta (IL-1β), Interleukin-6 (IL-6), Tumor necrosis factor 

alpha (TNF-α) induces cell adhesion molecules on the epithelial and endothelial surfaces 

and results in the recruitment of neutrophils and monocytes, and causes lung inflammation 

(15). 

Next to these endogen mechanisms, excessive volume administration, lung trauma related 

to mechanical ventilation, and oxygen toxicity contribute to the lung injury (16, 17). In 

addition, neurological death multiorgan donors, who all need to be mechanically ventilated, 

are at very high risk to develop ventilator associated pneumonia (18). 

 

1.1.4 Donation after circulatory determination of death lungs 

To overcome the shortage of lung donors, alternative sources of lungs have been 

considered. Donors in whom the circulatory arrest precedes brain death are nowadays 

used to extend the donor pool. The procedure is called donation after circulatory 

determination of death (DCDD). Lungs remain viable after cardiac arrest for certain period 

of time (19). The current classification of DCDD is based on the timing of cardiac arrest 

prior to organ procurement, so called “Maastricht Categories” and is subdivided in 5 

categories. Patients dead on arrival at hospital (Cat. I) and patients undergoing 

unsuccessful resuscitation (Cat. II) are considered as uncontrolled DCDD donors; patients 

undergoing cardiac arrest after withdrawal of therapy (Cat. III) and patients undergoing 

cardiac arrest following brain death (Cat. IV) are considered as controlled DCDD donors; 

the  5th category of patients describes cardiac arrest in hospital patients (uncontrolled) 

(20).  

Since the first clinical experience with DCDD in 1995 by Love et al (21), numerous 

transplant centers worldwide have adopted controlled DCDD (Cat.III) in their Ltx program, 
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and more than 300 donor lungs of this category have been transplanted between 2003 to 

2013 (22). The use of DCDD lungs results in comparable post-transplant outcomes to the 

DBD lungs, with an overall survival at 1, 3, 6, 12 and 24 months after transplantation of 

94%, 94%, 94%, 94% and 87% respectively from DCDD donors, and 92%, 88%, 84%, 78% 

and 69% (23).  

Given the increased risk of unidentified lung damage in uncontrolled DCDD and the 

uncertainty about the effects of the agonal phase before cardiac arrest (24), this strategy is 

still underutilized (e.g. the utilization rate in the United States is 1.9% (25). Indeed, a longer 

agonal time with hypoxia and low systemic blood pressure before organ retrieval in DCDD 

donors, may be associated with an increased risk of PGD following Ltx (26). 

1.1.5 Extended criteria donor lungs 

As a consequence of the shortage of ideal donor organs and the high waitlist morbidity and 

mortality numerous centers use today  “extended criteria” or “marginal” organs for 

transplant which fail to fulfill ISHLT standard selection criteria but may still be 

transplantable. This strategy demonstrated equivalent short-term outcomes (27-32).  

However, standardization of extended criteria appears to be difficult, due to the variable 

definition of extended criteria lungs among different centers. The Toronto lung transplant 

group has defined different types of lung donor as shown in table 1.2 (10).  

 

Table 1.2 Ideal, extended and marginal donor selection criteria suggested by the Toronto 

lung transplant group 

 

A donor scoring system based on five items has been proposed to help clinical decision 

making, including age, smoking history, chest x-ray, secretions and the ratio of partial 

pressure of the oxygen on fraction of inspired oxygen (PaO2/FiO2) (33). Today, the cut off 
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values for most parameters describing donors and donor lungs are not well defined and 

rather based on expert opinion than on a higher level of evidence.  

The use of donor lungs not fulfilling standard criteria may bear an increased risk of graft 

dysfunction, as shown in various studies (30, 32, 34). There is an agreement that new 

strategies need to be developed to better predict the post transplant function of potential 

lung graft, especially when organs do not fulfill standard criteria.  

 

1.2 Normothermic ex-vivo lung perfusion 

Recent alternative approaches to expand the donor pool such as the utilization of DCDD 

and extended criteria lung grafts increase the complexity of donor lung selection with 

potential fatal outcomes in recipients if graft damage is not recognized before transplant.   

Thus a detailed and careful evaluation of potential lung grafts becomes even more 

important. With the recent introduction of ex-vivo lung perfusion (EVLP) transplant teams 

have a potent platform at their disposal to assess potential donor lungs and to identify and 

repair damaged organs before transplant.  

1.2.1 Standard static hypothermic preservation 

It is current clinical practice that the decision whether to use or not a lung for 

transplantation has to be taken based on donor history, laboratory tests, radiological 

imaging, and physical examination of the graft in the donor, at least in centers where EVLP 

is not available. Once the lung is accepted, the organ is flushed with a preservation solution 

at 4°C, procured and preserved at 4°C until it is placed in the empty cavity of the recipient 

for implantation. The duration of cold ischemia (CI) is usually limited to 8 hours (26). The 

reason of cold preservation is to reduce the rate of metabolic activity, to reduce ischemic 

injury and thus maintaining the viability of the graft until blood reperfusion. During the 

procurement procedure, a number of strategies are applied to minimize graft damage, such 

as protective ventilation to avoid barotrauma, cold flushing with a low potassium dextran-

glucose solution, administration of anticoagulants and vasodilators; inflation of the lung for 

cold ischemic storage. Figure 1.3 illustrates the graft temperature during ischemia, starting 

with the clamping of the donor’s aorta and ending at the moment of re-ventilation and the 

blood reperfusion in the recipient. 
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Figure 1.3 Current standard donor lung preservation 

 

1.2.2 Ex-vivo preservation and assessment 

With the standard procedure of cold preservation the graft evaluation is limited to the time 

before organ procurement, which can be largely influenced by the clinical experience of the 

retrieval team, the donor management, and systemic effects induced by donor brain death.  

In contrast, EVLP gives the opportunity to assess organs once they have been harvested. 

The lung is procured at 4°C as described above, transported to the transplant center and 

mounted in the EVLP circuit where it undergoes normothermic preservation. Metabolic 

activity is restored at that time thus allowing for assessment of lung function.  

Described by Steen and coworkers (35-37), normothermic EVLP was initially employed to 

assess DCDD lungs. Following this pioneer work, Shaf Keshavjee from Toronto has 

extensively investigated the use of EVLP in extended criteria donor lungs which resulted in 

a specific EVLP protocol of protective ex-vivo lung perfusion and ventilation (38).   

Once the harvested lung is equipped with the PA and LA cannulae, and an endotracheal 

tube, it is connected to the primed perfusion circuit and its vascular system is de-aired. It is 

then connected to the ventilator in a semi-inflated state. The perfusion is performed with 

an extracellular solution complemented with Dextran and Albumin to achieve optimal 

rheological properties and a high colloid pressure (Steen Solution, XVIVO, Sweden). 

Antibiotics and steroids are added. The inflow pCO2 is corrected by controlling the CO2 

supply through the gas-exchange membrane. Perfusion is initiated slowly, the graft is 

progressively warmed, the flow is increased gradually and when the circuit reaches a 

temperature of 32°C, ventilation is started. Respiratory rate is 7/min, tidal volume is 

7ml/kg, positive end-expiratory pressure is 5cmH2O, and the FiO2 is 21%.  When the lung 

temperature reaches 37°C, the perfusion flow is increased to a maximum of 40% of the 

cardiac output calculated according to the ideal bodyweight of the donor. The LA pressure 
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is set to 3-5mmHg, the PA pressure is monitored and depends on the vascular resistance of 

the lung and the preset flow.  In general, clinical EVLP is performed for a period of 4 to 6 

hours, the graft is cooled down, and preserved at 4°C until implantation (Figure 1.4). 

 

 

 

 

Figure 1.4 Toronto clinical EVLP protocol (38) 

 

During the ex-vivo perfusion, several aerodynamic (lung compliance, airway pressure) and 

hemodynamic (pulmonary vascular resistance) measurements, and measurements of the 

grafts’ oxygenation capacity (differential partial pressure of oxygen of affluent and effluent 

perfusion solution) are repeatedly performed. Therefore the donor graft can be repeatedly 

and reliably evaluated in order to determine its suitability for transplantation. The decision 

to accept or decline the EVLP lung for Ltx is primarily based on the trend of the parameters 

mentioned above over 4 to 6 hours of EVLP. Once the lung is accepted for transplantation 

the lung is cooled down again, stored again at 4°C and then implanted (Figure 1.5). 

While ex-vivo evaluation was initially limited to a short time frame, the Toronto group has 

successfully performed prolonged normothermic EVLP up to12 hours, by using an acelluar 

perfusate and a centrifugal pump with reduced perfusion flow and maintained positive left 

atrium pressure (39). 
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Figure 1.5 EVLP to preserve or assess donor lung grafts at body temperature 

 

 

1.2.3 Ex-vivo reconditioning and therapeutic interventions during EVLP 

Apart from being a potent tool for organ assessment and preservation, EVLP provides an 

opportunity to treat donor lungs since the metabolism of the lung is preserved. It is a well 

recognized effect that normothermic EVLP favors atelectatic lung areas to be recruited, 

thus allowing a better ventilation-to-perfusion ratio in the graft. Ex-vivo bronchoscopies 

and ventilatory recruitment maneuvers may be used to further improve the homogeneity 

of ventilation. 

More importantly, EVLP may serve as a therapeutic platform to deliver therapeutic agents 

though airway or/and pulmonary vessels. Drugs can be ex-vivo administered at high doses 

since doses are only limited by direct tissue toxicities but not by systemic adverse effects.  

Firstly, the ex-vivo treatment can be directed against preexisting donor lung injuries (e.g. 

edema, pulmonary embolism, pneumonia). Secondly, therapeutic interventions during 

EVLP might reduce the severity of the unavoidable adverse events induced by the blood 

reperfusion of the donor lung at the time of transplantation e.g. to prime the graft for 

transplant. (e.g. immunological events, ischemia-reperfusion injury).  

The best established ex-vivo pharmacological intervention is the use of the acellular 

perfusate, the so called Steen® solution which has a high oncotic pressure, thus eliminating 

lung edema during EVLP. The therapeutic effects of various other drugs have been 

investigated in clinical or experimental settings, such as the use of anti-inflammatory 
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substances (40, 41), antioxidants (42), fibrinolytics (43), bronchodilators (44), and 

antibiotics (45).  

 

1.3 Ischemia reperfusion induced pulmonary injury 

After cold ischemic preservation, or cold ischemic preservation interrupted by 

normothermic preservation (EVLP), the lung is implanted into the recipients’ chest cavity, 

and once the pulmonary vasculature is de-aired and vascular anastomoses are completed, 

blood circulation to the ischemic graft is progressively restored. The graft reperfusion by 

the recipients’ blood, which is the final step of the surgical procedure, permits to 

reestablish organ function. However, the reperfusion also triggers a complex 

pathophysiological event, the so-called ischemia reperfusion injury (IRI). It is characterized 

by an increased alveolar-capillary permeability, enhanced pulmonary vascular resistance, 

interstitial edema, impaired oxygenation and pulmonary hypertension (46).  It can be 

observed to various extents within the first 72 hours after transplantation in all patients. 

Severe IRI is an essential factor contributing to the occurrence of primary graft dysfunction, 

a significant cause of post-transplant morbidity and mortality and chronic lung allograft 

dysfunction (47). Recent studies have shown that up to 20% of transplants undergo PGD 

(48, 49). Therefore, substantial attention is drawn to strategies circumventing the damage 

elicited by IRI and the incidence of PGD. 

 

1.3.1 Consequence of ischemic storage 

Donor lungs from DNDD donors fulfilling the standard selection criteria for LTX are flushed 

with cold preservation solution and then stored at 4°C to decrease the metabolic rate. 

Although unavoidable to prevent irreversible ischemic damage, grafts exposed to cold 

preservation will still undergo a series of physiological changes that eventually deteriorate 

the organ function when re-perfused (47). When DCDD lungs are used, donor organs are 

inevitably exposed twice to a period of warm ischemia (WI): first of all, from the time of 

cardiac arrest in the donor until the start of cold organ perfusion (for legal and ethical 

reasons the patient cannot be touched during 5 to 10 minutes after cardiac arrest in most 

countries), and second, during transplantation, from removal of the organ from the cold 

storage until blood reperfusion in the recipient (50).  

Additional WI amplifies the ischemic damage, due notably to the residual cellular 

metabolism while still lacking oxygen and nutrients (50). A number of key mechanisms are 

involved in the ischemia induced damage. Firstly, oxidative stress characterized by 

unstable free radical formation (reactive oxygen species [ROS]) promotes tissue injury by 

initiating lipid peroxidation and various oxidative damages in proteins and nucleic acids, 

leading to necrotic cell death (51). Secondly, the energy-dependent sodium pump (Na+/K+-
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ATPase) is inactive during ischemia, resulting in influx of sodium and causing cell swelling 

(50). Thirdly, overloaded intracellular calcium and altered pH can derange cellular 

processes. Finally, during ischemia, the lack of mechanotransduction (52) in the arterioles 

and capillaries induces macrophages and endothelial cells mediated early inflammatory 

response, which play pivotal role in the subsequent reperfusion injury (47). 

 

1.3.2 Consequence of reperfusion 

Following hyperacute derangements triggered by ischemia of the graft, blood reperfusion 

itself paradoxically promotes further damage and dysfunction. Ischemia activated 

macrophages and endothelial cells induce the activation of platelet/thrombin and the 

formation of microvascular thrombosis (53), contributing to blood flow perturbations (47). 

Besides, when reperfusion occurs, macrophages and endothelial cells, associated with 

lymphocytes and epithelial cells release pro- and anti-inflammatory cytokines, chemokines 

(e.g. IL-1β, IL-6, TNF-α, IL-10, IL-8 and interferon alpha [IFN- α], etc) and adhesion 

molecules, modulating downstream leukocyte recruitment and infiltration, finally resulting 

in an inflammatory cascade (47, 50). Together with activated ROS and reactive nitrogen 

species (RNS) (54) signaling pathways, this inflammatory response results in reperfusion-

induced vascular injury, translating into an increased pulmonary vascular resistance (PVR) 

and microvascular permeability (55).  As a consequence, lung edema, poor gas exchange 

and ultimately graft dysfunction develops. Figure 1.6 briefly summarizes the mechanisms 

of IRI. 

 

1.3.3 The role of peroxynitrite-poly (ADP-ribose) polymerase pathway in IRI 

The oxidative stress leads to increased release ROS and RNS which generate a great 

amount of superoxide anion radical (O2-) and nitric oxide (NO), respectively (55). An 

important characteristic of O2- and NO is the capability to react with each other and to form 

a highly toxic new molecule, known as peroxynitrite (PN). PN interacts with lipids, DNA 

and proteins through a direct oxidative/nitrosative stress pathway or an indirect radical-

mediated mechanism (56). This interaction triggers a cell response varying from some cell 

signaling modulation (57, 58) to overwhelming cellular oxidative injury (59). PN attacks 

nucleic acid and leads to DNA single-strand breaking, leading to the activation of a nuclear 

enzyme, called poly (ADP-ribose) polymerase (PARP) (60). Under normal physical 

conditions, the function of PARP is to facilitate DNA repair by binding to DNA strand breaks 

and transferring ADP-ribose units from the respiratory coenzyme 

nicotinamideadeninedinucleotide (NAD+) to various nuclear proteins (60). However, in 

case of severe DNA damage, as a result of oxidative stress with a considerable formation of 

PN, PARP is over-activated and depletes NAD+ store (60). As a pivotal factor of the 
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tricarboxylic acid cycle, the loss of NAD+ decreases ATP levels, and finally results in cellular 

dysfunction and necrotic cell death (60). Another key pathophysiological function of PARP 

relies in its pro-inflammatory promotion. Activated PARP induces the over-expression of 

many inflammatory mediators, through up-regulation of various pro-inflammatory 

transcription factors, most importantly, the nuclear factor kappa B (NF-κB) pathway (61, 

62), which is considered as a principle regulator of innate responses and inflammation 

during ischemia and reperfusion (63, 64). 

 

 

 

Figure 1.6 Principle mechanisms involved in ischemia reperfusion induced lung injury 
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Increased formation of PN occurs in the reperfused lung following Ltx, as shown by the 

detection of nitrotyrosine, a footprint of PN (53, 65). PN synthesis related cytotoxicity was 

shown to be related to unwanted outcomes after lung transplantation, such as obliterative 

bronchiolitis, a major form of chronic lung allograft dysfunction (66, 67).  

In contrast, few evidence exists about the role of PARP in ischemia reperfusion injured 

lungs, although its implication in this context has been shown in other transplanted organs, 

such as the heart (68, 69) and the kidney (70), or in other experimental lung injury models, 

such as sepsis (71) and hemorrhagic shock (72). 

 

1.3.4 Strategies to circumvent lung IRI 

Numerous strategies to limit ischemia reperfusion induced lung damage have been 

proposed using various experimental settings. Most of the preclinical work has been 

performed in animal models of transient in-situ ischemia followed by lung reperfusion, or 

in models of transplantation with donor treatment before harvesting or during cold 

preservation.  

Those therapeutic strategies can be briefly summarized as (1) anti-oxidant strategies, 

applying free radical scavenger [e.g. edaravone(73)] to protect mitochondria, inhibition of 

xanthine oxidase (74) or NADPH oxidase (75); (2) anti-inflammatory strategies, inhibition 

of pro-inflammatory transcription factors [NF-κB (76), activator-protein-1(77)], depletion 

of alveolar macrophage/neutrophil, inhibition of inflammatory-related mediators 

[cytokines (78), complement (79)]; (3) Intra-airway/venous delivery of vasodilators and 

modulation of cytoprotective pathways, such as NO (80), prostaglandins (81), carbon 

monoxide [CO (82)]; (4) others approaches such as therapeutic preconditioning (83, 84), 

gene therapy (85) and protective lung preservation and reperfusion (86-89). 

 

1.4 Summary 

Lung transplantation represents the most promising therapy for end stage lung disease. 

The number of organs considered as transplantable is significantly lower than the number 

of patients waiting for lung transplant. This leads to an increased waiting time, and waiting 

list mortality. The use of DCDD lungs or extended criteria lungs will at least in part alleviate 

this problem, but may conversely increase the risk of unwanted bad outcome after lung 

transplantation, if irreversibly damaged donor lungs are transplanted.  

EVLP emerges as an opportunity to better evaluate and preserve potential lung grafts not 

fulfilling standard donor selection criteria. It may also serve as a platform to repair 

damaged grafts or to prime donor lungs for adverse effects occurring after lung 

transplantation with the goal to expand the pool of available organs. In this PhD thesis, I 
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investigate in an experimental setting the potential of EVLP-mediated drug delivery to 

recondition donor lungs injured by warm ischemia. 
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Chapter 2  

General Hypotheses, Objectives and Thesis Structure 
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2.1 General hypotheses 

1. Experimental ex-vivo lung perfusion accurately assesses the severity of donor lung 

injury. 

2. Warm ischemia induced donor lung injury can be repaired by ex-vivo therapeutic 

intervention 

 

2.2 General objectives 

 

In this research project the candidate evaluates in an experimental setting the potential of 

EVLP to repair typical donor lung injuries. The objectives are: 

- to develop a rodent model of damaged donor lungs and to assess these lungs in a 

downsized EVLP system, 

- to apply different ex-vivo therapies during EVLP addressing donor lung injuries related to 

ischemia or bacterial contamination, with the aim to repair damaged lung grafts ex-vivo 

and to render these lungs eligible for transplantation, 

- to establish a rodent unilateral lung transplant model, and 

- to select a promising ex-vivo therapy and to assess in the transplant model if the benefit 

of ex-vivo reconditioning translates into an improved graft function after transplantation. 

 

2.3 Thesis structure 

 

Chapter 3: Development of a novel rodent model of EVLP for the functional assessment of 

variably damaged lung grafts. 

Chapter 4: Ex-vivo inhibition of peroxynitrite and poly (ADP-ribose) polymerase in lungs 

injured by warm ischemia. 

Chapter 5: Ex-vivo inhibition of NF-κB using pyrrolidine dithiocarbamate in lungs injured 

by warm ischemia. 

Chapter 6: Ex-vivo conditioning of ischemic lungs by sevoflurane. 

Chapter 7: Ex-vivo delivery of antibiotics to lungs colonized by Streptococcus pneumonia. 

Chapter 8: Development of an acute unilateral rodent lung transplant model. 

Chapter 9: Transplantation of injured donor lungs reconditioned by ex-vivo 

pharmacological inhibition of poly (ADP-ribose) polymerase 

Chapter 10: General conclusions and future directions 
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Chapter 3  

Establishment of a rat EVLP platform: Transfer of the Toronto protocol of human 

EVLP to a rodent model and ex-vivo assessment of ischemic lungs 
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Abstract 

Background: Normothermic ex-vivo lung perfusion (EVLP) provides an opportunity to 

assess and repair injured donor lungs for subsequent transplantation. Here we describe a 

downsized experimental EVLP platform based on the Toronto technique of human EVLP. 

We assess the effect of different preservation conditions on ex-vivo lung function of rodent 

lungs. 

Methods: Following cardiac arrest, lungs underwent either 3 hours cold storage (C3h), or 1 

hour warm ischemia followed by 2 hours of cold storage (W1h), or 2 hours warm ischemia 

followed by 1 hour cold ischemia (W2h). All the lungs were then ex-vivo perfused for 3 

hour, during which static pulmonary compliance (SPC), pulmonary vascular resistance 

(PVR), and differential partial pressure of oxygen (DppO2) were measured. At the end of 

EVLP, privascular edema was histologically evaluated, lung weight gain was calculated, 

protein and lactate dehydrogenase (LDH), protein carbonyl and 3-nitrotyrosine (3-NT) 

were determined in bronchoalveolar lavage (BAL) or lung tissue.  

Results: SPC improved in C3h, remained stable in W1h and decreased significantly in W2h. 

PVR increased in all groups although no significant difference was found.  DppO2 remained 

stable in C3h and W1h but significantly decreased in W2h. Perivascular edema, lung weight 

gain, protein in BAL and LDH remained stable in C3h, increased moderately in W1h but 

markedly in W2h. Protein carbonyl and 3-NT levels increased non-significantly in group of 

C3h while significantly in W1h and W2h. 

Conclusion: This rat EVLP model allows for quantitative assessment that reflects the degree 

of damaged lung in accordance with the presence and the length of warm ischemia. It may 

be used to assess ex-vivo pharmacological treatments of damaged donor lungs. 
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Introduction 

Cold static preservation (CSP) has been the only strategy to preserve donor lungs from 

procurement to implantation until the concept of normothermic ex-vivo lung perfusion 

(EVLP) has been introduced in clinical practice. While CSP aims to reduce the metabolism 

to prevent irreversible damage due to ischemia, EVLP maintains lung metabolism since the 

lung is ventilated and perfused outside the human body at normothermia (38). This allows 

to assess ventilatory mechanic and gas exchange capacity of donor lungs ex-vivo and to 

better select grafts before transplantation (90). Since the maintenance of lung tissue 

metabolism is the main principle of normothermic EVLP, this technology also gives an 

opportunity for ex-vivo therapy. Two principle strategies may evolve in the future: (1) 

Treating pre-existing donor organ injuries to render a damaged organ eligible for 

transplantation [e.g. oedema, embolism (85, 91)], and/or (2) Preparation of the organ for 

adverse events following lung transplantation, such as ischemia-reperfusion injury, or 

rejection (92). 

The concept of EVLP has recently been introduced in clinical practice (36). Various 

approaches of ex-vivo lung perfusion and ventilation have been described (35, 38, 93, 94). 

Most cases from series in the literature describe the outcome of EVLP applying the Toronto 

technique, which can be considered as the best evaluated approach to date (93, 95-97). 

Today, EVLP mainly serves for organ preservation and assessment. The utilization of ex-

vivo drug therapies is restricted to the use of a defined hyperoncotic perfusion solution to 

reduce oedema, and heparin, steroids as well as antibiotics.  

We here describe in detail a downsized experimental model of the Toronto technique of 

EVLP for assessment of lungs variably damaged by ischemia. This model may serve as a 

platform for development of innovative ex-vivo therapies of donor lungs. 
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Material and Methods 

Animal and housing 

Eighteen male adult Sprague Dawley rats (mean weight 377g, Charles River, L’Arbresle, 

France) were used. All the animals were ad libitum fed with standard diet and drink, 

housed in laminar flow cages in a conventional animal facility, and treated in accordance 

with National Institute of Health Guidelines for the Care and Use of Laboratory Animals and 

the cantonal commission (Authorization Nr. VD2637) 

Animal model  

The rats were anesthetized by intraperitoneal injection of pentobarbital (50mg/kg, Streuli 

Pharma AG, Uznach, Switzerland). The rats were then placed on an animal surgical table 

(Hugo Sachs Electronik (HSE), Hugstetten, Germany )in a supine position. This was 

followed by tracheotomy and intubation. Mechanical ventilation was done by a standard 

rodent ventilator (model 683, Harvard Apperatus, Holliston, MA) using a room air 

supplemented with oxygen (FiO2 0.21). Tidal volume was of 7ml·kg-1 and respiratory rate 

was 75 min-1. A midline sternotomy was performed and the chest cavity was exposed by a 

retractor (Medicon eG, Tuttlingen, Germany). Heparin (600IU, Drossapharm AG/SA, Basel, 

Switzerland) was injected into right ventricle. Following systemic heparinization, 2 

manufactured metal cannulas (Hugo Sachs, Hugstetten, Germany) were introduced into the 

pulmonary artery (PA, ID=1.7mm, OD=2.0mm) and the left atrium through ventricular 

incisions (LA, ID=3.4mm, OD=4.0mm). Subsequent to the asystole, animals were randomly 

assigned to one of 3 experimental. 

Study design 

Different warm and cold ischemia conditions were tested 

1) C3h group, (N=6): Lungs were immediately flushed through the PA- and vented trough 

the LA cannula with 15ml of 4°C Perfadex® (Xvivo Perfusion, Goteborg, Sweden), heart and 

lung were en bloc extracted, lungs were kept inflated, and preserved at 4°C Perfadex® for 3 

hours, followed by 3 hours of EVLP;  

2) W1h group, (N=6): Lungs were left in situ, exposed to room temperature for 1 hour, then 

flushed through PA- and vented trough the LA cannula with 15ml of 4°C Perfadex®, heart 

and lung were en bloc extracted, lungs were kept inflated, and preserved at 4°C Perfadex® 

for 2 hours, followed by 3 hours of EVLP;  
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3) W2h group, (N=6): Lungs were left in situ, exposed to room temperature for 2 hours, 

flushed through the PA- and vented trough the LA cannula with 15ml of 4°C Perfadex®, 

heart and lung were en bloc extracted, lungs were kept inflated, and preserved at 4°C 

Perfadex® for 1 hour, followed by 3 hours of EVLP.  

4) Baseline group, (N=6): lungs were procured immediately after cardiac arrest, without 

cold flush. 

During cold Perfadex® flush, infusion pressure was set at 15mmHg) and all the lungs were 

ventilated with respiratory rate of 15·min-1 and tidal volume of 7ml·kg-1. Study groups are 

illustrated as Figure 1. 

 

Figure 3.1 study design  

 

Experimental Ex-vivo lung perfusion & ventilation system 

A modified isolated lung perfusion system [Harvard IL-2 System, TYPE 829/2, Hugo Sachs 

Electronik (HSE), Hugstetten, Germany] was used in our study. The primary functional 

units of the perfusion system are a speed adjustable roller pump (ISM 827/230V, HSE, 
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Hugstetten, Germany), a gas-exchange membrane (Hemofilter D150, MEDICA S.P.A, Italy,) a 

heat exchanger, a jacketed lung chamber, a pressure equilibration vessel close to the LA 

cannula allowing to control the pressure of the venous outflow, a jacketed perfusate 

reservoir and a closed system of perfusion tubes. The temperature of the perfusion system 

was regulated and maintained by a water thermostatic circulator (Alpha immersion 

thermostat 6, LAUDA-Brinkmann, Delran, NJ, USA) and a heater-cooler unit (Sarns TCMI, 

3M, Saint Paul, MN, USA) connected to the lung chamber, a heat exchanger connected to the 

tubing system, and the perfusate reservoir. The perfusate was deoxygenated by a gas 

mixture of 6% O2, 10% CO2 and 84% N2 supplied through the gas-exchange membrane.  

PA- and LA- pressures of the graft were measured by pressure transducers (P75 TYPE 379, 

HSE, Hugstetten, Germany) which were placed in the tubing system close to the PA and LA 

cannula. Two flow-through oxygen electrodes (HSE, Hugstetten, Germany) were employed 

to measure in real-time the partial pressure of oxygen (pO2) of the perfusate before and 

after the lung, respectively. Signals from the pressure transducers and the oxygen 

electrodes were converted and monitored using a data collector (USB data acquisition 

hardware, HSE, Hugstetten, Germany). A perfusion control unit was integrated to allow for 

lung perfusion with constant flow or constant pressure (TYPE 704, HSE, Hugstetten, 

Germany). Ex-vivo lung ventilation was performed using a Scireq Flexivent ventilator (FX3, 

SCIREQ Inc, Montreal, Canada) connected to the tracheal tube of the graft. The ex-vivo lung 

perfusion and ventilation system is shown in Figure 2A and 2B. 
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Figure 3.2.A Schematic diaphragm of Ex-vivo lung perfusion and ventilation system 

Normothermic EVLP requires ventilation and perfusion of the organ: A closed circuit of 

lung and perfusion system is constructed, comprising an organ chamber to create a 

protective environment for the graft during perfusion, a pump to drive the perfusate, a 

reservoir and tubing containing the perfusion solution, a gas exchange membrane to supply 

the circuit with a gas mixture to remove oxygen and add carbon dioxide, a heat exchanger 

for temperature control. PA as well as the LA pressures are monitored during perfusion 

(PT: pressure transducer). The perfusate flows from the lung to a reservoir, then to the gas 

- and heat exchange system before entering the lung again. In order to ventilate the lung, a 

tube is inserted in the trachea and connected to a ventilator. 
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Figure 3.2.B Rodent EVLP platform 

1: Lung chamber; 2: Perfusate reservoir; 3: Gas-exchange membrane; 4: Roller pump; 5: Flow-through oxygen 

electrode; 6: Thermostatic circulator; 7: Ventilator; 8: Data collection unit; 9: Data recording and analysis. 

 

Preparation of EVLP circuit 

The EVLP circuit was primed with 100ml of Steen® solution (XVIVO Perfusion AB, 

Goteborg, Sweden) at room temperature. The roller pump, pressure transducers, oxygen 

electrodes and ventilator were calibrated in compliance with the manufacturer instruction. 

The circuit was maintained at 10°C prior to the onset of lung perfusion.  

Initiation, rewarming and normothermic phase of EVLP 

Following cold storage, the heart-lung block and cannulas were weighted using a 

laboratory balance (PB-602C, METTLER TOLEDO, Greifensee, Switzerland) before 
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mounting it in the EVLP circuit. Perfusion was flow-controlled, with the initial flow set at 

2ml.min-1 and the temperature at 10°C. The PA cannula was connected to the circuit, and an 

antegrade washout of the lung was performed to discharge clots and bubbles which may 

have remained in the pulmonary vascular bed. Then the LA canula was connected to the 

perfusion circuit and perfusion was started.  

The perfusion flow and temperature were gently elevated to reach the target flow of 8 % of 

the estimated cardiac output and 37.5°C within 30min. Cardiac output was estimated 

according to following formula: 3.75*60*bodyweight(kg)0.72 (98). The LA pressure was 

maintained at 4cmH2O by adjusting the height of equilibration vessel. The perfusate pH 

was maintained stable between 7.35 and 7.45 by adding gas mixture or buffer (THAM-

Kohler 3M, Kohler pharma GmbH, Alsbach-Hahnlein, Germany) 

In initial experiments the perfusion mode was switched to a pressure-controlled mode 

with a constant PA pressure preset to 15mmHg. Since this pressure-controlled perfusion 

mode resulted in healthy lungs in a perfusate flow through the lung of 7-8 % of the animals’ 

estimated cardiac output, the perfusion was always flow controlled in later experiments.  

When normothermia was achieved, the mechanical ventilation was started (Vt=3ml.min-1, 

frequency=7.min-1, PEEP=3cmH2O, FiO2=0.21). After 10 minutes Vt was increased to 

6ml.min-1 and the lung was recruited with the plateau pressure gradually increased from 

15cmH2O to 18cmH2O. EVLP duration was 180min. The EVLP protocol is shown in Figure 

3A. 

Physiological assessment of Ex-vivo lung 

Real-time PA and LA pressure were continuously recorded to calculate pulmonary vascular 

resistance (PVR): PVR (cmH2O.ml-1.min-1) = (mean PA pressure-LA pressure)/Flow. PaO2 of 

Steen® solution in influent and effluent of the grafts was recorded to calculate differential 

partial pressure of oxygen (DppO2) to determine the graft oxygenation capacity. At selected 

time points during EVLP (at 30min, 90min, 150min 180min), static pulmonary compliance 

(SPC) was measured by the ventilator analyzing inspiratory pressure-volume curves 

during a defined perturbation. The time points of Ex-vivo assessment of these parameters 

during EVLP is illustrated in Figure 3B.  After EVLP the heart-lung bloc including cannulas 

was weighed again to calculate the weight change. Then 2ml of sterile PBS (pH 7.4) was 

injected in the airway to perform bronchoalveolar lavage (BAL), and the samples were 

snap-frozen and kept at -80°C (U570 premium, Eppendorf, Hamburg, Germany). The lungs 

were stored at -80°C  
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Figure 3.3.A EVLP protocol. Ventilation and perfusion settings 

(F-Ctrl: Flow controlled mode; P-Ctrl: Pressure controlled mode; VT: Tidal volume; RR: Respiratory rate; 

PEEP: Positive end-expiratory pressure) 

Figure 3.3.B Lung function assessments during EVLP 

pO2: Partial pressure of oxygen; PA: Pulmonary artery; LA: Left atrium; PVR: Pulmonary vascular resistance; 

WG: Weight gain. 

 

Biomarker assays 

Lung tissue and BAL samples were proceeded to perform biomarker assays as described 

below. A group of rats (Baseline group, N=6) were sacrificed and the lungs were procured 

without other intervention to determine the baseline value of these assays.  
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Rat lung protein extraction and quantification 

Lung tissue was grinded to powder in liquid nitrogen and homogenized in lysis buffer 

(TrisHCL 10mM, NP40 0.5%, NaCl 0.15 M, Na3VO4 1 mM, NaF 10mM, PMSF 1 mM, EDTA 1 

mM, aprotinin 10µg/ml, leupeptin 10µg/ml, and pepstatin 1µg/ml), sonicated and 

incubated 20min on ice. Then samples were centrifuged at 13000rpm for 10min and 

proteins were quantified by the BCA assay according to manufacturer’s guide (Thermo 

Scientific Pierce, Rockford, IL, USA). 

Protein and lactate dehydrogenase (LDH) level in BAL  

Protein in BAL was determined using the Pierce BCA assay (Thermo Scientific, Rockford, 

USA), and expressed in mg.ml-1. LDH was measured using a commercial kit (Cytotoxicity 

Detection KitPLUS; Roche, Basel, Switzerland), and expressed in arbitrary units. 

Protein carbonyl concentration in lung tissue  

Protein carbonyl was quantified in lung tissue using an ELISA-based kit (OxiSelect Protein 

Carbonyl ELISA Kit; Cell BIolabs Inc., San Diego, CA, USA) with accordance to the user 

manual. The absorbance was measured at 450nm and the results was expressed as 

nanomol·mg protein-1. 

3-nitrotyrosine (3-NT) concentration in BAL 

3-NT was determined as a footprint of peroxynitrite generation using a commercial ELISA 

kit (Rat 3-nitrotyrosine ELISA kit; Amsbio, Abingdong U.K.), and expressed in nanomol.ml-1. 

Histopathological analysis 

Histopathological examination of the right lung was performed in all animals following 3 

hours of EVLP. Lungs were fixed with OCT and 4% paraformaldehyde injected 

intrabronchially. Five micrometer sections were sliced from paraffin-embedded lung 

tissue, stained with hematoxylin-eosin (HE) and analyzed by two investigators 

independently in a blinded fashion, using an image analysis program (Slidepath, Leica 

Biosystems). On each slide, 20 pulmonary vessels (arteries and veins) were assessed, and 

the ratio of perivascular edema thickness to the inner diameter of the surrounded vessel 

was calculated to describe the degree of edema. 
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Statistical analysis 

Data were analyzed using Graphpad prism 6 (Graphpad Software Inc., La Jolla, CA, USA) 

and are presented as means±SEM. Normality test was performed using Kolmogorov-

Smirnov test. For physiological measurements (SPC, PVR and DppO2), 2-way ANOVA was 

performed, followed by Dunnett’s test to analyze the effects of time and Sidak’s test to 

evaluate the effect of different preservation conditions. For other comparisons, 1-way 

ANOVA followed by Tukey’s correction was applied if data passed normality test, otherwise 

Kruskal-Walllis test and Dunn’s correction was applied. P values of less than 0.05 were 

considered to indicate statistical significance.  
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Results 

Macroscopic appearance of lungs undergoing 3 hrs of EVLP 

  

Figure 3.4 Appearance of lungs at the end of EVLP  

Appearance of lungs undergoing either A: 3 hours of cold preservation (C3h), B: 1 hour of WI and 2 hrs of CI 

(W1h) and C: 2 hours of WI and 1hr CI (W2h) followed by 3 hrs of normothermic EVLP. 

 

Ex-vivo assessment of lung function 

Ex-vivo pulmonary mechanics as assessed by SPC slightly improved over 3 hours of EVLP 

in group C3h, were stable in group W1h throughout EVLP, but lower as compared to group 

C3h, and were lowest and deteriorated over time in group W2h (Fig. 3.5.A). The W2h group 

had significantly decreased SPC from 90 to 180 minutes of EVLP as compared to group C3h. 

PVR decreased over time during the first 90 minutes and remained then stable in all three 

experimental groups. The highest PVR values were measured in group W2h, however no 

statistically significant difference was observed (Fig. 3.5.B).  

The lungs’ diffusion capacity as assessed by the difference of pO2 in the influent and 

effluent perfusate was lowest in the W2h group and this difference reached statistically 
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significance when compared to both other groups at 90 minutes and later. The oxygenation 

capacity was similar in C3h and W1h groups (Fig. 3.5.C). 

 

Figure 3.5 3-hour-EVLP: ex-vivo assessment of pulmonary compliance, pulmonary vascular 

resistance and oxygenation capacity *:p<0.05 
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Necrosis, oxidative and nitrosative stress in lung tissue 

Significant higher LDH levels were found in tissue samples from lungs in W2h group 

(Figure 3.6.A) as compared to C3h and W1h groups (p<0.05). Significantly increased levels 

of protein carbonyl in lung tissue were found in all EVLP groups as compared to the 

baseline group, levels in W2h group were also significantly higher than in group C3h 

(Figure 3.6.B). 3-NT levels were highest in group W1h and W3h and significantly increased 

as compared to baseline (Figure 3.6.C) 
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. 

Figure 3.6 Lung tissue necrosis, oxidative and nitrosative stress during EVLP *:p<0.05 
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Lung edema devolvement during EVLP 

Lung interstitial edema as assessed by lung weight gain during 3 hours of EVLP 

significantly increased in W2h group as compared to all other groups (Figure 3.7.A). In 

parallel, lungs in Baseline, C3h and W1h group displayed low protein content in the BAL, 

while lungs with extended warm ischemia had a significantly higher leakage of protein to 

the bronchoalveolar space. (Figure 3.7.B and Table 3.2) 

 

 

Figure 3.7 Protein content in BAL and edema development as assessed by weight gain 

during EVLP  
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Histology and histomorphometry of lung edema 

A various degree of pulmonary perivascular edema was visible on histological lung tissue 

sections in all EVLP groups, but not in the baseline group, where normal parenchyma 

architecture was observed. Representative histological sections indicating how 

quantification of perivascular lung edema was performed are shown in Figure 3.8. The 

ratio of edema thickness to the diameter of the examined vessel was calculated. Lungs from 

group C3h presented mild perivascular edema, while lungs undergoing 1 hour (W1h) or 2 

hours (W2h) of WI showed increased perivascular edema. Histomorphometric analysis of 

edema showed significant differences in-between experimental groups. 

 

Figure 3.8 Lung edema after EVLP 

a.: Baseline group; b.: C3h group; c.: W1h group; d.: W2h group. Black arrows show perivascular edema 

around arteries and veins (arrowheads). Open arrows indicate bronchial structures. Graph e. displays the 

quantification of perivascular lung edema for all experimental group (ratio of the perivascular edema 

thickness to the inner diameter of the examined vessels). 
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Table 3.1 Summary of EVLP physiological parameter   Means±sem *: p<0.05 vs C3h  

  

 

Table 3.2 Summary of lung weight gain and biomarker assays   Means±sem *: p<0.05 vs all other 

groups; †:p<0.05 vs Baseline and C3h; ‡:p<0.05 vs Baseline  
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Discussion 

Here we describe (a) how to transfer the principle concepts of the Toronto protocol of 

human EVLP to a rodent model, and (b) how experimental ischemic lung injury can be 

detected with a miniaturized ex-vivo lung perfusion circuit.  

In this study we have assessed injured rat lungs in a downsized EVLP circuit. We have 

found that warm in-situ ischemia of lungs procured from healthy rats translates into 

worsened lung ventilatory mechanics and perturbed gas exchange during ex-vivo 

reperfusion and re-ventilation, as compared to lungs undergoing immediate cold 

ischemic preservation after cardiac arrest. We have observed a good correlation of the 

ex-vivo functional results and analysis of damage in BAL and tissue.  

Ischemia is the most relevant trigger of graft injury in solid organ transplantation. In 

clinical lung transplantation cold ischemic times (CIT) up to 8 to 12 hours are 

considered acceptable in lungs originating from donation after neurological 

determination of death (DNDD) donors (99). Longer CITs may negatively affect outcome 

after lung transplantation (100). The broad interest in donation after circulatory 

determination of death (DCDD) donor lungs has stimulated the research on acceptable 

warm ischemic times (WIT) and pharmacological intervention to decrease the warm 

ischemic damage(92). Van Raemdonck et al. have shown in a large animal model that 

WIT of 1 hour leads to an acceptable lung function after reperfusion. Interestingly, the 

authors have not tested these injured lungs in a transplant model but in an ex-vivo lung 

perfusion model (101), demonstrating the significance of EVLP for the assessment of 

potential donor lungs where the risks of unidentified graft damage is high. 

The rat model of EVLP 

The goal of our study was to determine if a downsized experimental model of EVLP 

allows assessing ischemic injury to lungs, with particular interest in warm ischemic 

damage. We have chosen the rodent model of EVLP since it has several advantages as 

compared to large scale EVLP models, in particular when ex-vivo pharmacological 

treatments are tested. In general, researchers can develop high success rates performing 

rat models and their excellent reproducibility increases the chance to achieve in short 

periods of time higher sample sizes with statistically meaningful results. Rat models are 

considered as excellent for the testing of therapeutics against ischemia-reperfusion 

injury (102). In the context of EVLP the rat model is of particular interest since most 

effects observed during ex-vivo perfusion need to be translated to graft function after 

blood reperfusion; thus, a corresponding model of transplantation is mandatory. 

Various rat left lung transplant models are well described, validated and used in 

multiple studies (103-105). In addition, are considered as cost effective, which holds 

especially true for the required infrastructure (perfusion and ventilation system), the 

running costs for consumables and animals, as well as the required manpower. Less 
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than 0.1L of the expensive Steen solution is required per procedure, as compared to 3L 

needed for EVLP in a pig. If drug discovery research for ex-vivo lung repair is conducted, 

the low priming volume of the rat EVLP circuit becomes relevant in so far as less amount 

of the compound of interest is needed. However, potential advantages of the pig model 

as compared to rat-EVLP are the greater similarity of the pigs’ immune system and 

physiology (106), thus making study results easier comparable to humans. Since there is 

a good size match of human and pig lungs, the results from animals studies regarding 

ventilatory and perfusion parameters could be directly transferred to clinical trials. 

Only very few studies describe EVLP in rats. Most of them describe closed perfusion 

circuits and use of Steen solution for perfusion. For instance, the Pittsburgh group 

assessed a new EVLP dual perfusion technique including the bronchial artery circulation 

(107) and also hydrogen preconditioning of lungs (108) using an advanced rat model of 

prolonged normothermic EVLP. This model is very close to the one we describe in this 

paper (109); in contrast to our study,  native, non-injured lungs were used. EVLP 

systems described in other studies show important differences regarding the ventilatory 

management, the achieved length of perfusion, and the ex-vivo assessment of lung 

function. Egan et al assessed rat DCDD lungs in a simplified ex-vivo circuit. The circuit 

did not allow assessing lung function ex-vivo, neither compliance nor oxygenation 

capacity (110). A study of the Kyoto Group has described the inhomogeneity of ex-vivo 

perfusion (111) and the use of plasmin in a partially thrombosed donor lungs (112) in 

an easy 1 hour ex-vivo perfusion model, using negative pressure chamber ventilation. 

The group from Ohio described a model of 1 hour EVLP in native non-damaged lungs, 

using volume controlled ventilation (113). 

We have based our experimental model on the Toronto technique of human EVLP since 

this protocol has been introduced successfully in clinical practice and promising results 

of this protocol are published (38, 39). The Toronto protocol is characterized by 

normothermic perfusion, use of acellular Steen solution, constant flow perfusion of the 

lung at 40% of the donors’ cardiac output, a closed circuit with a defined LA pressure, 

and protective ventilation; below we describe the principle aspects of the human 

procedure and how they were transferred to the model. 

Components of the circuit: To perform EVLP of human lungs a perfusion circuit with 

following principle elements is needed: an organ chamber to create a protective 

environment for the graft during perfusion, a pump to drive the perfusate, a reservoir 

and tubing containing the perfusion solution, a gas exchange membrane to supply the 

circuit with a gas mixture to remove oxygen and add carbon dioxide, and a heat 

exchanger for temperature control. In order to ventilate the lung, it is connected to a 

standard ICU ventilator (114). In the experimental setting described in this paper we 

have used the well described IL-2 lung perfusion which has been established many years 

ago for lung physiology research [Harvard IL-2 System, TYPE 829/2, Hugo Sachs 
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Electronik (HSE), Hugstetten, Germany] (115). We have made essential changes to the 

hardware, as well as to the applied perfusion and ventilation procedure.  

The first principle modification is the use of a rodent ventilator (FX3, SCIREQ Inc, 

Montreal, Canada) for positive pressure ventilation with a set tidal volume replacing the 

negative pressure chamber ventilation set-up in the original circuit. As described in the 

method section the pressure ventilation chamber was maintained but served as organ 

chamber to control the lungs’ microenvironment (temperature, humidity, fluid loss). 

The use of the Flexivent ventilator allows for pressure and volume controlled 

ventilation, and more importantly, it simplifies the automatic repeated assessments of 

lung ventilatory mechanics including lung compliance and peak airway pressure, since 

this is a preset functionality of the device. This allows assessing organ function ex-vivo 

repeatedly, as done in the clinical protocol of EVLP. 

The next important modification to mimic the clinical situation was the use of Steen 

solution instead of Krebs-Henseleit solution, which has been used in most studies using 

the circuit in the field of lung physiology. Acellular Steen solution is used in the clinical 

setting of EVLP. It is an extracellular solution complemented with Dextran and Albumin 

to achieve optimal rheological properties and a high colloid pressure (Steen Solution, 

XVIVO, Sweden). Confirming results from other investigators (109), we show that Steen 

solution allows preserving rat lungs at normothermic conditions during prolonged 

EVLP. 

In human EVLP the inflow pCO2 is corrected by controlling the CO2 supply through the 

gas-exchange membrane in the human setting (114). The experimental circuit uses a 

dialysis hemofilter for gas exchange. The gas mixture supplied to the perfusion solution 

was composed according to the human EVLP protocol, containing 84% of Nitrogen, 6% 

oxygen and 10% CO2. The pH value of the perfusion solution is controlled every 30 

minutes with a ph meter. As described in the Toronto protocol for human lungs, pH is 

maintained between 7.35-7.45. A buffer was systematically added to Steen solution to 

obtain the target pH value before connecting the lung to the circuit. Gas flow was 

adapted to attain a pCO2 of approximately 35mmHg as assessed by occasional blood gas 

analysis. pH values were found to be very stable and depended rather on CO2 supply 

and buffer in the perfusion solution, than on CO2 removal by the graft. The circuit was 

equipped with sensors for influent and effluent perfusate oxygen partial pressure 

measurements (flow-through oxygen electrodes, HSE, Hugstetten, Germany). This 

allows for automatic and continuous assessments of the oxygenation capacity given as 

the delta v-a PO2 of the perfused lung, similar to the human setting.  

Ex-vivo perfusion and ventilation of the lung: In the Toronto protocol the human lung 

undergoes cold static preservation until EVLP. To mount the human lung in the 

perfusion circuit the system is primed with the perfusion solution, a straight cannula is 

inserted in the pulmonary artery and a funnel shaped cannula is sutured to the left 
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atrium. As a result a closed circuit of lung and perfusion system is constructed. This 

allows control of the PA as well as the LA pressures during perfusion (114). In contrast, 

in the experimental setting PA and LA cannula for EVLP are already used for cold flush 

and kept in place during cold ischemic preservation. The cold flush at 4 °C is performed 

in situ in the donor animal using Perfadex which is perfused at a low pressure of 

15mmHg through a cannula inserted in the pulmonary artery trunk. The lung 

vasculature is vented through a second cannula introduced in the left ventricle, passing 

through the mitral valve with its tip in the left atrium. Consequently, heart and lung are 

not separated for EVLP. Both cannulas are connected to the EVLP circuit and the lungs’ 

vascular system is de-aired. As in the human setting the lung is intubated and connected 

to the ventilator in a semi-inflated state.  

According to the Toronto protocol perfusion is initiated slowly, the graft is progressively 

warmed, the flow is increased gradually. The perfusate flows from the lung to a 

reservoir, then to the gas - and heat exchange system before entering the lung again. 

Ventilation is started when the circuit reaches a temperature of 32°C. Respiratory rate is 

7/min, tidal volume is 7ml/kg, positive end-expiratory pressure is 5cmH2O, and the 

FiO2 is 21%.  In the experimental setting respiratory rate was 7/min, TV was 6ml/kg, 

PEEP was 3, and FiO2 was 21%. 

When the lung temperature reaches 37°C, the perfusion flow is increased to a maximum 

of 40% of the cardiac output calculated according to the ideal bodyweight of the donor. 

This is considered as a protective perfusion strategy. The LA pressure is set to 3-

5mmHg, the PA pressure is monitored and depends on the vascular resistance of the 

lung and the preset flow.  In general, clinical EVLP is performed for a period of 4 hours. 

Then the graft is cooled down, and preserved at 4°C until implantation (114). In the 

animal model the perfusion flow was set lower than in the clinical setting. Since 

preliminary studies had shown (1) that a perfusate flow from 20 to 40% leads to 

worsening ex-vivo lung function over time (data not shown), and (2) that a pressure 

controlled perfusion of healthy lungs with a PA pressure set to 15mmHg results in a 

perfusion rate around 10% of the cardiac output, we decided to set a constant perfusate 

flow at 8% of the estimated cardiac output. Thus, we performed EVLP in this model with 

a constant flow like in the clinical setting, but at a lower rate. This appeared to be a safe 

for prolonged normothermic EVLP in our experimentalmodel. Other investigators have 

used constant flow modes for rat EVLP ranging from 8% to 20% of the estimated cardiac 

output (108(Dong, 2013 #195, 111, 113)As in the clinical protocol the target LA 

pressure was 3 to 5 mmHg.  

The clinical EVLP protocol requires methylprednisolon, heparin and antibiotics as 

adjuncts to the Steen solution. In contrast we do not apply these drugs in the 

experimental setting in order to avoid interference with the experimental hypothesis to 

be tested. In particular, methylprednisolon would have affected the inflammatory tissue 
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response. The administration of heparin was considered unnecessary since the lung was 

flushed and contained no blood when mounted in the circuit. 

Assessment of the lung 

In the clinical protocol various parameters are assessed during EVLP to determine 

transplant suitability including lung compliance and airway pressures, oxygenation, 

pulmonary artery and left atrial pressures, and pulmonary vascular resistance. Next to 

lung mechanics and hemodynamics, the lung’s oxygenation capacity is determined by 

measuring the difference of oxygen partial pressure in the effluent (pulmonary veins or 

left atrium) and the inflow perfusion solution (pulmonary artery). These measurements 

need to be performed repeatedly with set pulmonary perfusion, flow and ventilatory 

parameters. In the clinical setting the decision if a lung can be accepted or needs to be 

declined is based on the trend of the above mentioned parameters. So far no single 

individual parameter has been identified to indicate the transplant suitability. According 

to the Toronto EVLP protocol a lung will be declined if after 4 hours of perfusion the 

ratio of partial pressure of oxygen in the left atrium to the inspired fraction of oxygen is 

below 400 mmHg, the PA pressure, the compliance or the peak airway pressure worsen 

during EVLP more than 15%; conversely, lungs are accepted with a partial pressure 

oxygen ratio above 400 mmHg, stable or decreasing PA and peak airway pressures, and 

stable or improving compliance (116). 

Similar to the clinical setting ventilatory mechanics were assessed repeatedly. Each 

measurement of lung compliance was preceded by a lung recruitment maneuver with a 

peak airway pressure of 15cmH2O. In contrast to the clinical setting the FiO2 was not 

increased to 1.0 to measure the lungs’ oxygenation capacity. This was necessary since 

the experimental set-up did not allow for rapid and valid changes of FiO2 in our 

experimental setting. 

Ex-vivo lung function and tissue damage of ischemic lungs  

The principle goal of this EVLP model is to evaluate lung damage due to ischemia. We 

have shown that lungs undergoing 3 hours cold ischemic preservation have excellent ex-

vivo lung function with improving compliance, lowest vascular resistance and a stable 

oxygenation capacity in our model. Analysis of ischemia induced tissue damage in these 

lungs showed a low degree of oxidative stress (protein-carbonyl), nitrosative stress (3-

NT) and tissue necrosis (LDH). The edema development during EVLP was less 

pronounced as compared to all other groups.  

In clinical practice, healthy human lungs undergoing three hours of CI would be 

considered as ideal donor lungs. As known from human studies those lungs would show 

stable ventilatory mechanics and diffusion capacities if mounted in a human EVLP 

system (117). Here we demonstrate that lungs preserved under standard ideal 

conditions have good organ function in this experimental setting. Besides, we 
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demonstrate a good correlation of excellent functional results and low ischemia induced 

tissue injury. 

Lungs damaged by one or two hours of WI had worse lung function in the experimental 

ex-vivo system as compared to “ideal donor lungs”, including pulmonary mechanics and 

oxygenation capacity. This correlated very well to the extent of tissue damaged as 

determined in lung parenchyma and BAL in the same lungs at the end of EVLP. Protein-

carbonyl, 3-NT, LDH were highest after 2 hours of WI, and were also increased when the 

lung was harvested one hour after cardiac arrest. Interestingly, lungs obtained after 1 

hour of WI displayed still a quite stable lung function during ex-vivo perfusion during 2 

hours; however their function tended to decrease during the third hour of EVLP, 

indicating some degree of ischemic damage. In contrast, lungs injured by 2 hours of WI 

showed a bad initial function as well a rapid decline of their function during EVLP, most 

probably related to irreversible ischemic tissue damage as documented by tissue 

analysis.  

In the clinical setting, lungs obtained after prolonged times of warm ischemia are grafts 

obtained from uncontrolled or controlled donation after circulatory determination of 

death donors, with some of these lungs safely usable and other lungs irreversibly 

damaged. Our experimental setting demonstrates how EVLP may help to decide whether 

lungs after prolonged ischemic times are still eligible for transplant of not. According to 

the clinical protocol of EVLP, lungs with declining compliance, increasing vascular 

resistance and worsened oxygenation capacity are not eligible for transplant. In our 

experimental model lungs showing these functional characteristics of non-

transplantable lungs showed the highest degree of oxidative/nitrosative stress and 

tissue necrosis. 

In conclusion, this experimental model of rat EVLP allows for 3 hours of normothermic 

preservation of rat lungs. The model presents principle characteristics of the Toronto 

protocol of human EVLP, including a closed perfusion circuit, acellular perfusion, 

protective ventilation and perfusion settings. Moreover, it allows to asses reliably lung 

function ex-vivo. A good correlation of ex-vivo lung function and the degree of ischemic 

tissue damage was found. This model may be used to assess ex-vivo pharmacological 

treatments of damaged donor lungs. It will allow assessing the initial organ function, to 

perform pharmacological ex-vivo treatments aiming to improve graft function, and to 

reassess the effect of the applied treatment ex-vivo. In a final step an extension of the 

model with transplantation of pretreated lungs to a recipient is required to confirm the 

effects of ex-vivo therapies. 
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Chapter 4  

Pharmacological reconditioning of marginal donor rat lungs using inhibitors of 

peroxynitrite and poly (ADP-ribose) polymerase during ex-vivo lung perfusion 
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Abstract 

Background: Donor lungs obtained after prolonged warm ischemia (WI) may be 

unsuitable for transplantation due to the risk of reperfusion injury, but could be treated 

and reconditioned using ex-vivo lung perfusion (EVLP). Key processes of reperfusion 

injury include the formation of reactive oxygen/nitrogen species (ROS/RNS) and the 

activation of poly(ADP-ribose) polymerase (PARP). We explored whether rat lungs 

obtained after WI could be reconditioned during EVLP using the ROS/RNS scavenger 

Mn(III)-tetrakis(4-benzoic acid) porphyrin chloride (MnTBAP) or the PARP inhibitor 3-

aminobenzamide (3-AB). 

Methods: Rat lungs obtained after 3h cold ischemia (CI group, control), or 1h WI plus 2h 

CI (WI group) were placed in an EVLP circuit for normothermic perfusion with Steen 

solution for 3h. Lungs retrieved after WI were treated or not with 3-AB (1mg/ml; WI-3-

AB group) or MnTBAP (0.3mg/ml; WI-MnTBAP group), added to the perfusate. 

Measurements included physiological variables (lung compliance, vascular resistance 

and oxygenation capacity), lung weight gain, as well as levels of proteins, lactate 

dehydrogenase (LDH), protein carbonyl (marker of ROS), 3-nitrotyrosine (3-NT, marker 

of RNS), poly(ADP-ribose) (PAR, marker of PARP activation) and interleukin 6 (IL-6), in 

the bronchoalveolar lavage (118) or the lung tissue,and histopathological analysis. 

Results: In comparison to CI group, the lungs from WI group displayed higher protein 

carbonyls, 3-NT, PAR, LDH and proteins in BAL, lung weight gain, perivascular edema, as 

well as reduced static compliance, but similar oxygenation. All these alterations were 

markedly attenuated by 3-AB and MnTBAP.  

Conclusions: EVLP of lungs obtained after warm ischemia exhibit significant oxidative 

stress, PARP activation and tissue injury, which is suppressed by pharmacological 

inhibitors of ROS/RNS and PARP.  
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Introduction 

Lung transplantation is limited by the shortage of suitable organs, and increasing the 

pool of eligible donor lungs is an urgent priority. This could be achieved by using lungs 

obtained after cardiac death (DCD lungs), or lungs displaying some damage and 

dysfunction (“marginal” donor lungs), although such options increase the risk of 

primary graft dysfunction (PGD) after transplantation. In this respect, evaluation of the 

donor lung using ex vivo lung perfusion (EVLP) represents a strategy to determine the 

suitability of the organ for transplantation. EVLP could also permit to treat the donor 

lung to improve its condition, thereby increasing the number of transplantable organs 

(28, 85, 119, 120).  

Ischemia-reperfusion (IR) represents the critical process triggering PGD after 

transplantation, and its severity depends on the duration of graft ischemia (121). In the 

case of DCD lungs, the unavoidable warm ischemic time represents therefore an 

important risk factor for reperfusion injury and PGD (122). Whether such lungs can be 

reconditioned by targeted therapies during EVLP requires prompt investigation. A key 

mechanism of IR injury is the generation of oxidants and free radicals, initiating 

widespread cellular damage (56). These species encompass reactive oxygen species 

(ROS), primarily the superoxide radical, and reactive nitrogen species (RNS), primarily 

peroxynitrite (56). A major cytotoxic pathway triggered by ROS/ RNS is related to DNA 

injury and subsequent activation of the DNA repair enzyme poly(ADP-ribose) 

polymerase (PARP) (56). Activated PARP initiates a series of molecular events leading to 

cell death via regulated necrosis (necroptosis), and fostering inflammation via 

interactions with nuclear factor kappaB and additional signaling pathways (56). 

Pharmacological inhibition of PARP has been therefore proposed to reduce tissue injury 

and inflammation under conditions associated with ROS/RNS formation (123). 

We therefore conducted the present study to address two main hypotheses. First, we 

postulated that EVLP of rat lungs obtained after prolonged warm ischemia is associated 

with significant oxidative stress, PARP activation and tissue injury; and second, that 

such lungs can be reconditioned by pharmacological treatment with inhibitors of PARP 

and peroxynitrite. 
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Material and Methods 

Surgical preparation and experimental design 

The animals received humane care in compliance with the ”Guide for the Care and Use of 

Laboratory Animals”, and experiments were approved by our Local Ethical Committee 

(Authorization Nr 2637). Twenty-eight male adult Sprague-Dawley rats (10-14 weeks, 

mean weight 410 grams, Charles River, L'Arbresle, France) were used. Anesthesia was 

induced with inhaled isoflurane and maintained with pentobarbital sodium (50mg/kg 

i.p.). The animals were placed on heating plates to maintain temperature at 37.5°C, 

tracheotomized and mechanically ventilated (Respiratory rate -RR- = 75.min−1, tidal 

volume -Vt- = 8 ml·kg−1, fraction of inspired oxygen -FiO2- = 0.21), using a rodent 

respirator (model 683, Harvard Apparatus, Holliston, MA). Following a median 

sternotomy, heparin (600 U) was injected into the right ventricle in order to prevent 

clotting and thrombus formation within the pulmonary circulation. Perfusion cannulae 

(Hugo Sachs, Hugstetten, Germany) were inserted into the pulmonary artery-PA- (ID = 

1.7mm, OD = 2.0mm) and left atrium –LA- (ID = 3.4mm, OD = 4.0mm). Animals were 

then killed by pentobarbital overdose and bleeding, and they were allocated to one of 4 

groups (as depicted in Figure 4.1): 

Cold Ischemia (CI group, N=6): Lungs were first flushed through the PA cannula with 

15ml of 4°C Perfadex® (Xvivo Perfusion, Göteborg, Sweden), at a perfusion pressure of 

20 cm H2O, while ventilated at a RR of 15/min and a Vt of 7 ml/kg (FiO2=0.21). Lungs 

were then harvested and preserved in an inflated (FiO2 = 0.21) status for 3 hours in 4°C 

Perfadex®, hence, the lungs were ventilated during Perfadex flushing, and were then 

kept inflated for 3 h, after which they were exposed to EVLP for 3 hours. 

- Warm Ischemia (WI group, N=7): Lungs were first kept deflated  in situ for 1 hour 

at room temperature, after which they were flushed through the PA cannula with 15ml 

of 4°C Perfadex®, at a perfusion pressure of 20 cm H2O, while ventilated at a RR of 

15/min and a Vt of 7 ml/kg (FiO2=0.21). Lungs were then harvested and preserved in an 

inflated (FiO2 = 0.5) status for 2 hours in 4°C Perfadex®, hence, the lungs were ventilated 

during Perfadex flushing, and were then kept inflated for 2 h, and then exposed to EVLP 

for 3 hours.  

- Warm Ischemia treated with the PARP inhibitor 3-aminobenzamide (WI-3-AB 

group, N=6): Same as WI group, except that 3-AB (see dose below) was added to the 

perfusate during EVLP. The lungs were therefore continuously perfused with 3-AB 

during the 3 hours of EVLP. 

- Warm Ischemia treated with the superoxide dismutase mimetics and 

peroxynitrite scavenger Mn(III)-tetrakis(4-benzoic acid) porphyrin chloride (WI-

MnTBAP group, N=6): Same as WI group, except that MnTBAP (see dose below) was 

added to the perfusate during EVLP. The lungs were therefore continuously perfused 

with MnTBAP during the 3 hours of EVLP. 
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In addition to the 4 groups above, a group of n=6 rats  was sacrificed by pentobarbital 

overdose, their lungs were immediately retrieved without any further intervention, and 

kept frozen at -70°C until analysis (Baseline group). This group served to determine the 

basal (physiological) levels of some biochemical markers, as detailed below. 

It is important to mention here that we purposely let the lungs deflated during the 1 

hour period of warm ischemia in order to further enhance the damaging effect of warm 

ischemia, whereas lungs in the CI group were not deflated. Therefore, lung injury 

following warm ischemia in our study cannot be ascribed solely to the warm ischemic 

time, but also, to some extent, to the deflation procedure. This protocol was designed to 

evaluate the effects of MnTBAP and 3-AB on significantly damaged lungs, whereas lungs 

from the cold ischemia group served as control, undamaged lungs.  

 

Figure 4.1 Experimental Design 

 

Ex-vivo lung perfusion  

The heart-lung block was weighted, then mounted in a customized rat EVLP system 

(Harvard IL-2 System, Hugo Sachs), as detailed in Figure 4.2. The circuit was perfused 

with Steen® solution (Xvivo Perfusion), equilibrated with a mixture of 6% O2, 10% CO2 

and 84% N2 through a gas-exchange membrane (Hemofilter D150; MEDICA S.P.A, Italy) 

and maintained at pH 7.4. Left atrial pressure was set at 4cm H2O. Perfusion was started 

in a flow-controlled mode, at 2 ml.min-1 and at a temperature of 10°C, progressively 

increased to 7 ml.min-1 and 37.5°C (using a 3M TCMII heater, Saint Paul, MN, USA), over 

30 minutes, after which ventilation was started (Vt = 6 ml.kg−1, FiO2 = 0.21, RR = 7. min−1) 
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using a Flexivent FX3 ventilator (SCIREQ Inc., Montréal, Canada). This ventilation 

protocol was used in order to reproduce the strategy used in clinical EVLP and detailed 

in the landmark article by Cypel et al (38). The perfusion was then switched to a 

pressure-controlled mode, with a preset constant PA pressure of 15cm H2O for 150 

minutes. In the treatment groups, Steen® solution was supplemented either with 3-AB 

(1mg.ml-1, Sigma-Aldrich, Buchs, Switzerland) or MnTBAP (0.3 mg.ml-1, Calbiochem, 

Sand Diego, CA), according to previous experimental studies (124, 125). At the end of 

EVLP, the heart-lung block was retrieved and weighted. The difference with the initial 

weight was calculated as an index of lung edema. A bronchoalveolar lavage (118) was 

performed with 2 ml PBS, pH 7.4, via the tracheal cannula. The left lungs were then 

flash-frozen in liquid nitrogen and kept at -80°C until processing, and the right lungs 

were fixed in 4% parafornaldehyde for further histological analysis.   

 

Figure 4.2 The ex vivo rat lung perfusion circuit 

1: Jacketed artificial thorax; 2: Flexivent FX3; 3: Laptop (Flexivent data recording); 4: EVLP data 

converter; 5: Laptop (EVLP data recording and display); 6: Pressure transducer connected to the 

pulmonary artery canula; 7: Pressure transducer connected to the left atrial canula; 8: Oxygen electrode 

(affluent circuit); 9: Oxygen electrode (effluent circuit); 10: Perfusate reservoir; 11: Thermostatic 

circulator; 12 Gas mixture tank; 13: Gas exchange membrane; 14: Heat exchanger. 

 

Measurements 

Physiological variables  

Pulmonary vascular resistance (PVR) was calculated as: PVR= (mean PAP-LAP) /Flow, 

expressed in cm H2O.ml-1.min-1. At selected time-points, static pulmonary compliance 

(SPC) was determined during transient increase of inspiratory pressure to 15cm H2O. 
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The partial pressure of O2 was measured in the affluent and effluent of the EVLP circuit, 

using 2 O2 electrodes (Hugo Sachs Elektronik, Hugstetten, Germany), to compute 

differential partial pressure of O2 (DppO2) as an index of O2 transfer.  

Protein, lactate deshydrogenase (LDH), and 3-nitrotyrosine (3-NT) content in BAL 

Proteins were determined using the BCA assay (Thermo Scientific, Rockford, USA), and 

expressed in mg.ml-1. LDH activity, an index of tissue necrosis, was measured using a 

commercial kit (Cytotoxicity Detection KitPLUS; Roche, Basel, Switzerland), and expressed 

in arbitrary units. 3-NT was determined as a footprint of peroxynitrite generation using 

a commercial ELISA kit (Rat 3-Nitrotyrosine ELISA kit; Amsbio, Abingdon, U.K.), and 

expressed in nanomol.ml-1.  

Protein carbonyl formation in lung tissue 

 Protein carbonyl formation was quantified in lung tissue as an index of oxidative stress. 

Frozen lung samples were homogenized by pulverization in liquid nitrogen, and protein 

carbonyl were measured using an ELISA-based assay (OxiSelect Protein Carbonyl ELISA 

Kit; Cell Biolabs Inc., San Diego, USA) and expressed in nanomol·mg protein-1. 

Poly (ADP-ribose) and Interleukin-6 (IL-6) concentrations in lung tissue  

PARP activation was evaluated by the measurement of its product, poly(ADP-ribose) 

(PAR) in lung homogenates using a commercial kit (Pharmacodynamic Assay II, 

Trevigen Inc., Gaithersburg, USA), and expressed in picogram·mg protein-1. IL-6 was 

determined in lung homogenates using a commercial rat ELISA kit (Rat IL-6 DuoSet; 

R&D Systems, Minneapolis, USA) and expressed in nanogram.mg protein-1. Control 

experiments for PAR and IL-6 were done using lungs not exposed to EVLP, retrieved 

from rats immediately after euthanasia (baseline group), in order to determine the 

physiological, basal levels of PAR and IL-6. Therefore, this group served as the control 

group (instead of the cold ischemia group) for PAR and IL-6 levels. 

Histological analysis 

Histopathological changes were evaluated in the right lung, obtained from each animal 

at the end of the EVLP protocol.  Lungs fixed with OCT and 4% paraformaldehyde were 

embedded in paraffin, longitudinally sectioned at 5 µm and stained with hematoxylin 

and eosin. All slides were digitalized using Hamamatsu NanoZoomer HT Digital slide 

scanner (Hamatsu Photonics, K. K., Japan). They were uploaded to an image analysis 

programme (Slidepath, Leica Biosystems) for morphometric measurements. As an index 

of lung injury, we determined the severity of perivascular edema (since alveolar edema 

could not be evaluated due to the broncho-alveolar lavage), by computing the ratio of 

perivascular edema thickness to the inner diameter of the examined vessel. On average, 

a number of 20 symmetrically cross-sectionned vessels per lung (arteries and veins) 

were evaluated twice, by two independent investigators who were blinded with respect 

to the different experimental groups.  

Analysis of data 
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All data are expressed as means±sem. For physiological measurements (compliance, 

resistance and DppO2), the effects of time and treatments were analyzed by 2-way 

ANOVA, followed by Dunnett’s test for the effect of time (with 30 minutes as a control), 

and Tukey’s adjustments for the effects of treatments. For all other comparisons, one 

way ANOVA followed by Tukey’s correction was used. p<0.05 was considered 

significant. Data analysis was performed by Graphpad prism 6 (GraphPad Software Inc., 

La Jolla, CA, USA).  
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Results 

MnTBAP and 3-AB alleviate lung nitro-oxidative stress and tissue injury during EVLP  

In comparison with the CI group, the WI group displayed significant increases of protein 

carbonyl adducts (p<0.01 WI vs CI; Fig. 4.3A), 3-NT content (p<0.01 WI vs CI; Fig. 4.3B) 

and LDH activity (p<0.01 WI vs CI; Fig. 4.3C). All these alterations were suppressed by 

treatment with MnTBAP (p≤0.01 WI-MnTBAP vs WI for all variables) and 3-AB (p<0.01 

WI-3-AB vs WI for all variables)  

 

Figure 4.3 Lung oxidative/nitrosative stress and LDH release after EVLP 

A: Protein carbonyl in lung tissue after EVLP. B: 3-nitrotyrosine (3-NT) in broncho-alveolar lavage fluid. C: 

LDH in broncho-alveolar lavage fluid Means ± sem.  †:  p<0.05 vs CI;   *: p<0.05 vs WI  

 

 

PARP activation and lung inflammation during EVLP are reduced by 3-AB and MnTBAP 

A massive increase of PAR content (Fig. 4.4A) occurred in the WI group, as compared to 

baseline conditions (determined in lungs retrieved from normal rats) (p<0.01 WI vs 

baseline). This was suppressed both by 3-AB (p<0.01 WI-3-AB vs WI) and MnTBAP 

(p<0.01 WI-MnTBAP vs WI) (Fig. 4.4A). Furthermore, when compared to baseline 

conditions, WI lungs displayed a significant elevation of IL-6 (p<0.01 WI vs baseline), 

pointing to the activation of inflammatory cascades (Fig. 4.4B), whereas such increase 

was not observed in the WI-3AB and WI-MnTBAP groups (p>0.05 WI-3-AB vs baseline 

and WI-MnTBAP vs baseline). At the end of EVLP, lung IL-6 was however only 

significantly reduced in the WI-3-AB group in comparison to WI (p<0.05), whereas the 

difference was non-significant (p>0.05) between WI and WI-MnTBAP groups. 
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Figure 4.4.  Activation of PARP and expression of IL-6 in lungs after EVLP 

A: poly(ADP-ribose) content in lung tissue (a marker of PARP activation).  

B: IL-6 in lung tissue.  

Means ± sem.  *: p<0.05 vs WI ; §: p<0.05 vs Baseline  

 

 

MnTBAP and 3-AB mitigate the development of lung edema during EVLP 

Protein content in BAL (Fig. 4.5A) increased massively in the WI group (p<0.01 vs CI), 

and this was suppressed by 3-AB (p<0.01 WI-3-AB vs WI) and MnTBAP (p<0.01 WI-

MnTBAP vs WI). In parallel, a marked weight gain (Fig. 4.5B) occurred in the WI group 

(p<0.01 vs CI), which was strikingly reduced by3-AB (p<0.01 WI-3-AB vs WI) and 

MnTBAP (p<0.01 WI-MnTBAP vs WI). 

 

Figure 4.5. Protein rich pulmonary edema and lung weight gain after EVLP 

A: Protein concentration in broncho-alveolar lavage fluid. B: Lung weight gain during EVLP.  
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Means ± sem.  †:  p<0.05 vs CI;   *: p<0.05 vs WI 

 

Contrasted effects of 3-AB and MnTBAP on pulmonary compliance, PVR and DppO2 during 

EVLP 

Whereas pulmonary static compliance remained stable in the CI group (Fig. 4.6 A and B), 

a progressive reduction occurred in the WI group (p<0.05 WI vs CI at 180 minutes). In 

contrast, WI-3AB (Fig. 4.6A) and WI-MnTBAP (Fig. 4.6B) lungs maintained stable 

compliance (p>0.05 WI-MnTBAP vs CI and WI-3-AB vs CI at all time points), so that the 

values were significantly higher than in the WI group from time 90 minutes (p<0.05 WI-

MnTBAP vs WI and p<0.05 WI-3-AB vs WI at time 90 min and above). PVR did not vary 

significantly in CI, WI and WI-3-AB groups (Fig. 4.6C). In contrast, PVR was significantly 

higher in the WI-MnTBAP group (p<0.01 WI-MnTBAP vs CI and p<0.01 WI-MnTBAP vs 

WI at all time points; Fig. 4.6D). Finally, DppO2 did not exhibit any significant changes 

over time in any of the groups (Fig. 4.7A and 4.7B). 
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Figure 4.6. Time-course of pulmonary compliance and vascular resistance during EVLP 

A-B: Pulmonary static compliance at 30, 90, 150 and 180 minutes of EVLP. Values for the CI and WI groups 

are the same in both graphs. The effects of 3-AB are shown in A, and the effects of MnTBAP are shown in B. 

C-D: Pulmonary vascular resistances (PVR) at 30, 60, 120, 150 and 180 minutes of EVLP. Values for the CI 

and WI groups are the same in both graphs. The effects of 3-AB are shown in A, and the effects of MnTBAP 

are shown in B  

Means ± sem.  †:  p<0.05 vs CI;   *: p<0.05 vs WI 
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Figure 4.7. Time course of the differential partial pressure of oxygen between affluent 

and effluent arms of the EVLP circuit   

Differential partial pressure of oxygen (DppO2) calculated at 60, 120, 150 and 180 minutes of EVLP. 

Values for the CI and WI groups are the same in both graphs. The effects of 3-AB are shown in A, and the 

effects of MnTBAP are shown in B. 

 

 

Histopathological changes  

The major histopathological observation was the presence of perivascular edema 

(Fig.4.8A-H). We could not detect significant alveolar edema, due to the fact that the 

lungs were subjected to BAL before being fixed for histological evaluation. Perivascular 

edema was quatitatively assessed by calculating the ratio of edema thickness to the 

diameter of the examined vessels (Fig. 4.8I). When compared to the CI group, the 

severity of perivascular edema was significantly greater in the WI group (p<0.05 WI vs 

CI). In contrast, perivascular edema was not increased in the WI-MnTBAP and WI-3-AB 

groups when compared to the CI group (p>0.05 WI-MnTBAP vs CI and p>0.05 WI-3-AB 

vs CI), but was significantly reduced when compared to the WI group (p<0.05 WI-

MnTBAP vs WI and p<0.05 WI-3-AB vs WI). A further histopathological observation was 

made in the WI-MnT BAP group, in which we found several deposits of dark brown 

material predominantly in the alveolar wall, most likely representing microaggregates of 

this porphyrin-based chemical in alveolar capillaries (Fig. 4.8G-H). 
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Figure 4.8. Histopathological findings following EVLP 

Representative histopathological alterations (HE staining) following EVLP at a magnification of 4x (upper 

pictures) and 10x (lower pictures) in the CI group (A-B), the WI group (C-D), the WI-3AB group (E-F) and 

the WI-MnTBAP group (G-H). Black arrows show perivascular edema around arteries and veins 

(arrowheads). Open arrows indicate bronchial structures. Dark brown aggregates (stars) are found in the 

alveolar wall of lungs in the WI+MnTBAP group. The graph (I) displays the quantification of perivascular 

lung edema in each group (ratio of perivascular edema thickness to inner diameter of the examined 

vessels). Means ± s.e.m..  † p < 0.05 vs CI. *p < 0.05 vs WI   
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Discussion 

Initially developed to assess the physiological status of the donor lung, EVLP has been 

extended to a technique for reconditioning the donor lung, and a platform to deliver 

drugs to treat the organ before transplantation (36, 126). In animal models, drugs 

including the adenosine A2 receptor antagonist ATL-123 (127), plasmin (128) and 

nitroglycerin (129) were recently shown to improve the status of DCD lungs after 

extended warm ischemia. Pre-clinical experiences using marginal human lungs treated 

during EVLP by adenoviral-mediated gene transfer of IL-10 (85), or by mesenchymal 

stem cells (130), also reported benefits in term of reduced inflammation and edema of 

the perfused lungs.  

Our findings extend this emerging concept, by demonstrating a striking benefit of 2 

drugs acting as inhibitors of redox-based cytotoxic pathways, administered during EVLP 

of lungs retrieved after prolonged warm ischemia. These lungs displayed greater 

formation of oxidized and nitrated proteins than cold-preserved lungs during EVLP, 

pointing to a more severe reoxygenation injury, in line with the established role of ROS 

and RNS in the pathophysiology of ischemia/reperfusion (131). It has been generally 

assumed that infiltrating polymorphonuclear neutrophils make up a large source of 

ROS/RNS during reperfusion/reoxygenation, as indicated by the reduced oxidative 

stress and lung injury in studies using leukocyte-depleted reperfusion solutions or 

antagonists of adhesion molecules (46, 132). In our study, the contribution of infiltrating 

neutrophils to ROS/RNS formation cannot be regarded, owing to the acellular perfusate 

used during EVLP, and other sources of reactive oxidants must be considered. There are 

indeed many possible cellular sources of ROS/RNS in the reperfused/reoxygneated lung 

independent from neutrophils, including endothelial cells, epithelial cells, and resident 

monocytes. Mechanisms for oxidant production in these cells include the activation of 

enzymes such as xanthine oxidase, NADPH oxidase or uncoupled NO synthase, as well as 

electron leakage from the mitochondrial respiratory chain (46, 56) 

The enhanced oxidative stress in lungs after warm ischemia was suppressed by 

MnTBAP, which is in agreement with its activity as a superoxide dismutase mimetics 

and peroxynitrite decomposition catalyst (124). Furthermore, MnTBAP has also been 

associated with the upregulation of type I heme-oxygenase, an enzyme with 

cytoprotective and antioxidant properties (133).  Such reduction of oxidative stress by 

MnTBAP is entirely consistent with previous data obtained with this compound in an 

unrelated model of lung oxidative stress (134). 3-AB produced comparable effects, 

which may suggest some direct anti-oxidant capacities of this compound, or simply 

reflect the reduced generation of reactive oxidants that follows the inhibition of PARP 

activity (135).  

The heightened oxidative/nitroxidative stress in warm ischemic lungs was associated 

with copious generation of ADP-ribose polymers, which could be suppressed by 

MnTBAP and 3-AB, implying that a ROS/RNS-dependent PARP activation pathway took 

place in these lungs.  PARP activation represents a crucial cytotoxic mechanism in 
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conditions associated with redox stress, as the latter is a major inducer of DNA damage, 

the obligate trigger of PARP activation. PARP uses NAD+ as a donor of ADP-ribose units, 

and attaches them to multiple cellular proteins, modulating their biological activities 

(123). Such “PARylation” is critical for DNA repair, which is the basis for the 

development of PARP inhibitors as anticancer drugs (136). Besides its DNA repair 

functions, PARP promotes a series of molecular processes leading to necrotic cell death, 

including energetic collapse, parthanatos (a mode of cell death implicating some specific 

mitochondrial-to-nuclear crosstalk), and PARylation of cell death/survival kinases 

(123). Furthermore, activated PARP exerts pro-inflammatory actions, by directly 

affecting immune cells and by regulating numerous inflammatory mediators (63). 

Inhibiting PARP activity may therefore represent a potent therapeutic strategy to limit 

cell death, inflammation, and tissue injury in conditions associated with ROS/RNS 

generation and PARP overactivation, such as ischemia-reperfusion (137). 

In our study, EVLP of warm ischemic lungs was associated with significant cell death, as 

evidenced by a massive release of LDH. In keeping with the biological roles of PARP, we 

found that 3-AB virtually abolished the increase in LDH, evidencing the instrumental 

role of PARP in the development of lung injury during EVLP of warm ischemic lungs. A 

comparable reduction of LDH was obtained with MnTBAP, pointing to the superoxide 

radical and peroxynitrite as crucial cytotoxic effectors in this setting, in agreement with 

previous investigations (138). Besides their PARP-activating role, these species exert 

additional cytotoxicity through lipid peroxidation and  biomembrane injury, as well as 

protein oxidative damage leading to the dysfunction of ionic pumps and mitochondrial 

respiration, to cite only a few (56).  

A further experimental finding was the increase of IL-6 in warm ischemic lungs 

following EVLP, a prototypical inflammatory cytokine elaborated during the sterile 

immune response triggered by ischemia-reperfusion (139). IL-6 is induced following the 

activation of various pro-inflammatory signaling pathways, primarily the p38 MAP 

kinase and nuclear factor kappa B (140).  It is noteworthy that both ROS/RNS and PARP 

largely contribute to activate p38 and NF-B (63), which likely explains the lack of IL-6 

increase in lungs treated with 3-AB and MnTBAP, the former providing the most 

prominent effect, consistent with previously reported anti-inflammatory effects of 3-AB 

in unrelated models of lung  inflammatory diseases (141-143). Such attenuated 

inflammatory response is particularly relevant, in view of its well established role in the 

pathophysiology of ischemia-reperfusion associated with lung transplantation (144). An 

important aspect of inflammation after reperfusion is related to endothelial activation in 

response to oxidative stress, promoting leukocyte adhesion and infiltration, thereby 

fostering the inflammatory response. Due to the use of an acellular perfusate during 

EVLP, we could not address the issue of leukocyte/endothelial interactions in our model. 

This will be the matter of future investigation in which we will evaluate leukocyte 

recruitment following transplantation of the ex-vivo reperfused lung.  

A key feature of reperfusion/reoxygenation injury of the lung is the development of 

pulmonary edema, primarily related to increased endothelial permeability (145). Such 
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high-permeability edema was obvious in warm-ischemic lungs, which displayed massive 

weight gain, considerable increase in BAL fluid’s proteins, and a substantially reduced 

compliance. In addition, histopathological analysis revealed a marked increase of 

perivascular edema in warm ischemic lungs, further confirming the alterations of 

vascular permeability under such conditions. The abrogations of protein leakage 

afforded by MnTBAP and 3-AB, as well as the significant attenuation of lung perivascular 

edema, imply, therefore, a considerable protection against endothelial injury, which may 

be attributed to the concomitant cytoprotective and anti-inflammatory actions of these 

two drugs. Indeed, the cytotoxicity of ROS/ RNS and of inflammatory mediators is the 

primary mechanism disrupting pulmonary endothelial integrity during lung reperfusion 

(145).  

A major consequence of pulmonary edema is hypoxemia, consecutive to intrapulmonary 

shunt. Therefore, the fact that we did not notice any significant variations of oxygen 

transfer may appear puzzling. It is possible that our protocol of EVLP, using a FiO2 of 

0.21 throughout the procedure may have limited the interpretation of the oxygen 

transfer capacity. Indeed, in current clinical EVLP protocols, oxygen capacity is generally 

evaluated using a FiO2 of 1 (38). However, the most likely explanation for the lack of 

alterations in oxygen transfer was the fact that we used an acellular (i.e. no hemoglobin) 

perfusate fluid in our EVLP protocol. It is here worth to mention that the relationship 

between PO2 and the actual content of O2 in such an acellular medium is linear, in 

contrast to the sigmoid shape of the PO2/O2 content relationship in a perfusate 

containing red cells and hemoglobin. Under conditions of low VA/Q (from simple VA/Q 

mismatch to true shunt), as expected in the conditions of our study due to the formation 

of pulmonary edema, the actual “venous admixture” from the affluent arm of the circuit 

will therefore have only a very limited influence on the O2 content, hence the PO2, of the 

effluent. This has very well been demonstrated in a recent paper by Yeung et al (146), 

who clearly showed in a porcine model of EVLP, that the consequences of VA/Q 

mismatch and true shunt on effluent PO2 were only observed under conditions of a 

cellular perfusate, whereas there was no observable effect in conditions of acellular 

perfusate. Therefore, these characteristics imply that the interpretation of PO2 values as 

an indicator of lung damage can be largely misleading when using an acellular perfusate. 

(146). 

We did not identify differences among cold ischemic and warm ischemic lungs in term of 

PVR. It has been previously shown that an increase in PVR during EVLP is mainly related 

to vascular obstruction by thrombus formation in the absence of heparinization (128). 

We took care to avoid such process by injecting heparin within the right ventricle before 

pulmonary cannulation, which probably explains the lack of PVR increase in our model, 

a hypothesis which will be evaluated in the future in experiments without 

heparinization. Whereas 3-AB did not influence vascular reactivity, MnTBAP induced an 

unexpected increase of PVR, which may be explained by two possible mechanisms. The 

first one is microvascular clogging by drug microthrombi. Such mechanism appears 

likely in view of the histopathological findings of dark brown deposits in the alveolar 
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wall, suggesting drug microaggregates in alveolar capillaries. The second may be related 

to the pharmacological activity of the drug as a peroxynitrite decomposition catalyst. 

Although highly cytotoxic, peroxynitrite also possesses potent vasodilating properties, 

especially in the pulmonary circulation (147). We therefore suspect that the loss of such 

peroxynitrite-dependent vasodilation may have contributed to the increased PVR in 

lungs treated with MnTBAP. Obviously, in spite of the beneficial effects of MnTBAP 

noted in our study, such increase in PVR represents an adverse effect that would limit 

the translational potential of this compound. Additional studies addressing this issue are 

therefore needed to clarify the mechanisms of PVR increase by MnTBAP. 

In summary, our study indicates that lungs retrieved from rats after cardiac death and 

prolonged warm ischemia exhibit severe reperfusion/reoxygenation injury upon 

perfusion in an EVLP circuit, characterized by oxidative/nitroxidative stress, PARP 

activation, cell death, inflammation, and high permeability pulmonary edema. These 

changes are markedly attenuated by the PARP inhibitor 3-aminobenzamide and the 

superoxide dismutase mimetics and peroxynitrite scavenger MnTBAP, administered 

within the ex vivo perfusion circuit. Although we may not directly translate our findings 

to the clinical situation, due notably to differences in the EVLP protocol and the lack of in 

vivo data on transplantation of the reconditioned lungs in our study, our findings 

support the concept that EVLP may serve as an useful therapeutic station for the 

reconditioning of marginal lungs. In this respect, drugs interfering with oxidant- and 

PARP-mediated cytotoxicity could represent promising tools for such reconditioning. 
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Chapter 5  

Pyrrolidine Dithiocarbamate Administered During Experimental Ex-Vivo Lung 

Perfusion Alleviates Lung Damage after Extended Warm Ischemic Time 
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Abstract 

Purpose: The use of ex-vivo lung perfusion (EVLP) is of particular interest in grafts 

where the risk of unidentified lung damage is high, such as donation after circulatory 

death (DCD). From withdrawal of life support or cardiac arrest to cold preservation DCD 

lungs are at risk to undergo hypotension and warm ischemia. In this situation the up-

regulation of the Nuclear factor-kappa B (NF-κB), a family of transcription factors, plays 

a critical role in the inflammatory response. We therefore studied the potential of 

pyrrolidine dithiocarbamate (PDTC), an inhibitor of NF-κB pathway and antioxidant, to 

reduce the tissue damage of rat lungs harvested after circulatory death and an extended 

warm ischemic time. 

Methods: Two groups of 6 Sprague-Dawley rats each were used. Following cardiac 

arrest, the lungs were exposed to 1 hour of warm ischemia and 2 hours of cold (4°C) 

ischemia. Normothermic EVLP during 4 hours was performed using a customized circuit 

primed either with Steen solution® only or supplemented with PDTC (2.5mg/ml). 

Differential partial pressures of oxygen in the perfusate (DppO2), vascular resistance 

(PVR), static pulmonary compliance (SPC), peak airway pressure (PAWP) and lung 

weight gain were measured. At the end of EVLP, protein content level, lactate 

dehydrogenase (LDH), protein Carbonyl, IL-6, CINC-1 and TNF-α level were determined 

in bronchoalveolar lavage or in lung tissue. 

Results:  4 hours of EVLP resulted in a significant decline of DppO2, SPC, PVR, PAWP in 

untreated lungs, a clear increase of graft weight gain and significantly increased levels of 

LDH, protein, protein carbonyl, IL-6, CINC-1 and TNF-α in BAL or in lung tissue, 

indicating alveolar damage and inflammatory process. EVLP with PDTC significantly 

improved SPC, PVR, PAWP, weight gain and attenuated the increase of protein content, 

LDH, protein carbonyl, IL-6, CINC-1 and TNF-α in BAL or in lung tissue. 

Conclusion: Pharmacological intervention during EVLP aiming to inhibit the NF-κB 

pathway markedly improves the functional status of DCD lungs procured after 

prolonged warm ischemic times. These results also correlate with lesser amount of 

inflammatory cytokines. 
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Introduction 

Lung transplantation is the only definitive treatment available for end-stage lung 

diseases. A critical issue when considering such therapy is the significant shortage of 

donor lungs available for transplantation, due both to small number of organ donors, 

and to the high proportion of potential donor lungs ultimately deemed unsuitable for 

transplantation (148). A recent breakthrough in the field of lung transplantation has 

been the development of ex-vivo lung perfusion (EVLP), a technique which allows a 

precise functional assessment of potential lung grafts. EVLP was initially developed to 

assess the function and the potential for transplantation of lungs from donation after 

circulatory death (DCD) (37). EVLP also permits the ex-vivo administration of drugs to 

the graft, in order to improve its status and render it suitable for transplantation 

(concept of pharmacological reconditioning). Such reconditioning might be particularly 

useful for DCD lungs, as these lungs may be at higher risk for ischemia-reperfusion-

mediated damage and dysfunction due to the unavoidable period of warm ischemia 

which occurs in this setting. 

In line with this concept, we recently provided evidence, in an experimental model of 

DCD lungs, that such lungs could be significantly reconditioned during EVLP using drugs 

interfering with redox-dependent processes associated with ischemia-reperfusion.   

Nuclear factor-kappa B (NF-κB) is a family of transcription factors whose activation 

plays a critical role in the inflammatory response to various tissue injuries (149). It 

regulates a wide range of gene implicated in inflammation, from proinflammatory 

cytokines and chemokines to cell adhesion molecules (118). 

Pyrrolidine dithiocarbamate (PDTC) is a low molecular weight thiol compound which 

acts as an inhibitor of the NF-κB transcription factor family (150)and also has 

antioxidant properties; scavenging superoxide and hydroxyl radicals (151). It has 

already been shown to attenuate ischemia reperfusion injury when added to the organ 

preservation solution in a porcine lung transplant model (76).  

We therefore hypothesized that treating damaged lungs with PDTC through EVLP would 

reduce lung tissue damage and improve lung function. We tested this hypothesis with on 

a model of rat lungs harvested after circulatory death and exposed to an extended warm 

ischemic time. 
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Materials and Methods 

Animals 

Twelve male Sprague-Dawley rats weighing 300 to 350g (Charles River Laboratory, 

L’Arbresle, France) were used in this study. All the animal experiments were performed 

in accordance with the Animal Welfare Act and the National Institutes of Health 

“Guidelines for the Care and Use of Laboratory Animals” were approved by our Local 

Ethical Committee (Service Vétérinaire Cantonal de l’Etat de Vaud, Authorization Nr. 

2637)  

 

DCD lung graft model 

Animals were anesthetized using Isoflurane and pentobarbital sodium i.p. (50mg·kg-1). 

Tracheotomy was performed and rats were mechanically ventilated with room air, tidal 

volume of 7ml·kg-1 and respiratory rate of 75·min-1. Median sternotomy was performed 

and lung compliance was measured using a flexiVent ventilator (FX3, SCIREQ Inc, 

Montréal, Canada). One minute after injection of 600 IU of heparin in the right 

ventricule, animal was sacrified by exsanguination. Pulmonary artery and left atrium 

were canulated using specially designed canulas (Hugo Sachs Elektronik, Hugstetten, 

Germany). The chest was left open for one hour at room temperature. The lungs were 

then flushed with 15ml of cold low-potassium dextran solution (Perfadex®, Xvivo 

Perfusion, Göteborg, Sweden) through pulmonary artery at a pressure of 20cm H2O. 

Heart lung bloc was inflated with a FiO2 of 0.5, volume of 5ml·kg-1, excised and kept for 

another 2 hours at 4°C. 

 

Ex-vivo lung perfusion 

The heart lung bloc was weighted, and then mounted to a commercial rodent’s isolated 

organ perfusion platform (Harvard IL-2 System, Hugo Sachs Elektronik, Hugstetten, 

Germany). The EVLP circuit was primed with Steen® solution (Xvivo Perfusion, 

Göteborg, Sweden). For control group (CTRL, N=6), Steen® solution was used alone. 

THAM solution was used to adjust pH. For PDTC treatment group (PDTC, N=6), Steen® 

solution was supplemented with 2.5g·l-1 of pyrrolidine dithiocarbamate ammonium 

(Sigma-Aldrich, St. Louis, USA). A constant perfusion flow was applied, starting at 2% of 

cardiac output and at a temperature of 10°C. The flow and temperature were 

progressively increased over 40 minutes, to reach 7.5% of cardiac output and 37°C 

respectively. The left atrium pressure was set at 4cmH2O. Ventilation was initiated after 

30 minutes with room air, tidal volume was progressively increased to reach 6 ml·kg-1 

after 40 minutes of EVLP. The perfusate was deoxygenated using a hemofilter 

(Hemofilter D150, MEDICA S.P.A, Italy) connected to the EVLP circuit and supplied with 

a 6%CO2, 8%O2, 86%N2 gas mixture. The EVLP was carried out for a total of 4 hours.  

Pulmonary artery pressure (PAP) and left atrium pressure (LAP) were continuously 

recorded using pressure transducer (Hugo Sachs Elektronik, Hugstetten, Germany). 
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Pulmonary vascular resistance (PVR) was calculated using the formula: PVR = (mean 

PAP-LAP)/Flow. Starting after 60 minutes of EVLP and every 30 minutes thereafter, lung 

compliance (19) and peak airway pressure (PAWP) were recorded using a flexiVent 

ventilator (FX3, SCIREQ Inc, Montréal, Canada). Oxygenation capacity (ΔppO2) of the 

lungs was determined as the oxygen partial pressure difference between outflow and 

inflow perfusate, determined using oxygen partial pressure electrode (Hugo Sachs 

Elektronik, Hugstetten, Germany). 

At the end of EVLP the heart lung bloc was weighted. A bronchoalveolar lavage (118) 

was performed instilling 2ml of PBS inside trachea and 0.8 to 1.2ml of volume was 

recovered and stored at -80°C. The left lung parenchyma (LLP) was sampled and stored 

at -80°C. 

Figure 5.1 summarizes the experimental design. 

 

Figure 5.1 Study design 

 

 

Baseline group 

A group of rats (BASE, n=3) were sacrificed prior to any intervention and lungs were 

retrieved to assess a baseline level for the different biomarker assays. 

 

Tumor necrosis factor alpha (TNF-α) production BAL 

The productivity of TNF-α in the lung tissue and BAL was evaluated by a commercial 

ELISA kit (Rat TNF-alpha DuoSet) according to the manufacture manual. The results are 

normalized by the quantity of protein extracted for lung tissue and are expressed in 

nanogram·mg-1 for lung tissue and nanogram·ml-1 for BAL. 



Experimental ex-vivo lung perfusion for reconditioning of lung grafts 

86 
 

 

Cytokine-induced neutrophil chemoattractant Factor 1 (CINC-1) concentration in BAL 

CINC-1 in the lung tissue and BAL was determined by a Duoset ELISA kit (Rat 

CXCL1/CINC-1; R&D System, Minneapolis, MN, USA). The results are normalized by the 

quantity of protein extracted for lung Tissue and are expressed in nanogram·mg-1 for 

lung tissue and nanogram·ml-1  for BAL. 

 

Interleukin-6 (IL-6) concentration in BAL 

A commercial rat ELISA kit (Rat IL-6 Duoset; R&D Systems, Minneapolis, MN, USA) was 

used to determine the IL-6 level in lung tissue and BAL. For lung tissue, the 

concentration of IL-6 was expressed in nanogram·mg-1 on a basis of calculating the 

linear portion of the standard curve created. For BAL, the results are expressed in 

nanogram·ml-1. 

 

Protein carbonyl concentration in lung tissue 

Protein carbonyl was quantified in lung tissue using an ELISA based assay (OxiSelect 

Protein Carbonyl ELISA Kit; Cell Biolabs Inc., San Diego, CA, USA) with accordance to the 

user manual. The absorbance was measured at 450 nm thanks to an ELISA plate reader 

and the results was expressed in nanomol·mg-1. 

 

Protein concentration and Lactate dehydrogenase (LDH) activity in BAL  

Total protein level in BAL was determined using the Pierce BCA assay (Thermo 

Scientific, Rockford, USA). The concentration was shown in mg·ml-1. LDH was measured 

as an index of formazan from tetrazolium salt at 492nm (Cytotoxicity Detection KitPLUS; 

Roche Molecular Biochemicals, Basel, Switzerland) and was expressed in optical density 

(O.D.) units.  

 

Statistical analysis 

All the results in the study are presented as the mean plus or minus the standard error 

of the mean. Statistical analysis was performed using Graphpad prism 6 (GraphPad 

Software Inc., La Jolla, CA, USA). For the repeated physiological measurements during 

EVLP, data was analyzed by 2-way ANOVA, significant difference were determined using 

the Bonferroni multiple comparison test. To determine the effect of time in physiological 

data the value at 60min was taken as control. For the weight gain comparison between 

control and treatment group, unpaired 2-tailed t-test was used. For the other 

comparisons, one-way ANOVA was used and Tukey’s correction was used for significant 

difference determination. p<0.05 was considered statistically significant.  
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Results 

EVLP physiological variables  

In CTRL group the measured SPC declined during EVLP, especially during the last hour 

(LC=0.74 ± 0.05ml·cmH2O-1 at 60min versus 0.61 ± 0.06ml·cmH2O-1 at 210min (p=0.001) 

and 0.46 ± 0.08ml·cmH2O-1 at 240min (p=<0.0001). In PDTC group the LC stayed stable 

during the whole EVLP procedure (LC=0.80 ± 0.06ml·cmH2O-1 at 60min versus 0.83 ± 

0.07ml·cmH2O-1 at 240min). The CTRL group LC is significantly lower compared with 

PDTC at the end of the EVLP procedure (p=0.001). (Figure 5.2A) 

The PAWP measured was stable in the PDTC group during the whole experiment 

(PAWP=6.47 ± 0.26cmH2O at 60min versus 5.98 ± 0.22cmH2O at 240min), while in CTRL 

group we see a progressive increase, starting at 210min (non significant) and increasing 

significantly in the last 30min (PAWP=6.94 ± 0.38cmH2O at 60min versus 10.23 ± 

1.97cmH2O at 240min (p=<0.0015)). The difference between the two groups is 

significant at 240min (p=<0.0001)). (Figure 5.2B) 

The PVR show a similar pattern as PAWP. It is stable in the PDTC group throughout 

experiment (PVR=0.44 ± 0.02cmH2O·min·ml-1 at 60min versus 0.46 ± 

0.02cmH2O·min·ml-1 at 240min). In the CTRL group the PVR is rising at 210min and 

240min (PVR=0.46 ± 0.02cmH2O·min·ml-1 at 60min versus 0.77 ± 0.12cmH2O·min·ml-1 

at 210min (p=0.0002) and 1.03 ± 0.16cmH2O·min·ml-1 at 240min (p=<0.0001). The PVR 

in CTRL group is significantly higher than in the PDTC group at 210min (p=0.0015) and 

240min (p=<0.0001). (Figure 5.2C) 

The PDTC group shows a stable DppO2 during the experiment (40.4 ± 5.5mmHg at 

60min versus 40 ± 7.4mmHg at 240min). The CTRL group shows a progressive decrease 

which is not statistically significant (40.4 ± 5.5mmHg at 60min versus 23.4 ± 6.2mmHg at 

240min) as well as the difference between the two groups. (Figure 5.2D) 

We measured an increase in weight gain of 0.47 ± 0.05g in the PDTC group, compared 

with 2.19 ± 0.53g in the CTRL group. The difference is statistically significant (p=0.009). 

(Figure 5.2E) 
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Figure 5.2 EVLP physiology 

EVLP lungs reconditioned by PDTC benefited from an improved pulmonary physiological function than 

that of non-treated lungs, peculiarly in the last hour of perfusion, demonstrated as A: static pulmonary 

compliance (SPC); B: Peak airway pressure (PAWP); C: Pulmonary vascular resistance (PVR); D: 

Differential partial pressure of oxygen (DppO2); E: Lung weight gain. 

*p<0.05 ; **p<0.01 

 

Bioassay 

Alveolar integrity and oxidative stress  

The protein content in BAL was measured as a marker of alveolar cell integrity. The 

amount of protein is significantly increased in CTRL and PDTC compared to BASE 

(p=0.0004 and p=0.022). The difference between the CTRL and PDTC group is also 

significant (10.02 ± 1.12mg·ml-1 versus 6.1 ± 0.97mg·ml-1). (Figure 5.3A) 

The LDH content in BAL, marker of cell necrosis, is markedly increased in CTRL 

compared with BASE (6.45 ± 0.79OD492nm versus 0.21 ± 0.03OD492nm (p=0.002)). 

PDTC also shows a moderate increase of LDH level (3.72 ± 0.97OD492nm), which is not 

significant compared to BASE and CTRL (p=0.065 and p=0.081). (Figure 5.3B) 
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Protein Carbonyl level in lung tissue served as indicator of oxidative stressi. We 

measured an increase in protein carbonyl amount more pronounced in CTRL (0.38 ± 

0.03nmol·ml-1) than in PDTC (0.31 ± 0.05nmol·ml-1) compared to BASE (0.17 ± 

0.02nmol·ml-1). This increase is significant for CTRL (p=0.03) but not for PDTC (p=0.16). 

(Figure 5.3C) 

 

Figure 5.3 Alveolar integrity and oxidative stress 

EVLP lungs reconditioned by PDTC showed a significantly less pronounced protein content (A) in BALF in 

comparison to control group, and displayed a trend of decreased LDH (B) and protein carbonyl (C).  

*p<0.05 

 

 

Inflammatory cytokines  

IL-6 level determined in BAL was strongly increased in CTRL (2.97 ± 0.48ng·ml-1) 

compared with BASE (0.05 ± 0.02ng·ml-1, p=0.0005). PDTC level of IL-6 (1.15 ± 

0.13ng·ml-1) is non-significantly elevated compared to BASE and significantly reduced 

compared to CTRL (p=0.005) (Figure 5.4A).  

CINC-1 is the rat homologue to human interleukin-8. Its level in BAL is significantly 

increased in CTRL (11.38 ± 1.25ng·ml-1) and PDTC (7.4 ± 1.23ng·ml-1) compared to BASE 

(0.14 ± 0.06ng·ml-1) (p=0.0003 and p=0.008 respectively). This increase is less 
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pronounced in PDTC than in CTRL, although the difference between the two groups is 

not statistically significant (p=0.069) (Figure 5.4B).  

TNF-α measured in BAL shows a very important increase in CTRL (1.71 ± 0.43ng·ml-1) 

compared with BASE (0.11 ± 0.02ng·ml-1, p=0.016) and PDTC (0.34 ± 0.07ng·ml-1, 

p=0.012). The increase in PDTC is moderate and non-significant compared to BASE 

(Figure 5.4C).  

 

 

 

 

Figure 5.4 Inflammatory cytokines 

Lung in control group was associated with high increased IL-6(A), CINC-1(B) and TNF-α(C) in BALF as 

compared to the Baseline group. These alterations have been significantly down-regulated by ex-vivo 

PDTC treatment. 
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Discussion 

In this study, we describe the use of EVLP as a therapeutic platform to 

pharmacologically recondition injured lungs. We demonstrate the potential of 

pyrrolidine dithiocarbamate (PDTC), an inhibitor of NF-κB pathway and antioxidant, to 

reduce the tissue damage of rat lungs harvested after circulatory death and an extended 

warm ischemic time. 

Four hours of EVLP resulted in a significant decline of DppO2, SPC, PVR, PAWP in 

untreated lungs, a clear increase of graft weight gain and significantly increased levels 

of LDH, protein, protein carbonyl, IL-6, CINC-1 and TNF-α in BAL or in lung tissue, 

indicating alveolar damage and inflammatory process. EVLP with PDTC significantly 

improved SPC, PVR, PAWP, weight gain and attenuated the increase of protein content, 

LDH, protein carbonyl, IL-6, CINC-1 and TNF-α in BAL or in lung tissue. 

Nuclear factor-kappa B (NF-κB) plays an important role in the inflammatory response to 

ischemia reperfusion injury. The underlying mechanism is quite complex and has been 

described recently (REF): It is a family of dimeric proteins from the Rel family, including 

NF-B1 (p50 and its precursor p105), NF-B2 (p52 and its precuror p100), p65 (RelA), 

RelB and c-Rel (152), the commonest dimer being a heterodimer formed from a p50 

subunit and a p65 subunit. NF-B is normally held inactive in the cytoplasm, bound to an 

inhibitory protein termed IB (the most common being IBα) (153, 154). NF-B 

activation follows the dissociation of the NF-B dimer from  IB, due to stimulus-

induced phosphorylation of IBα and its polyubiquitination, leading to its degradation 

by the 26S proteasome (153, 154). NF-B can then enter the nucleus to activate 

transcription of multiple NF-B-dependent genes. The phosphorylation of IB is 

triggered by IB kinase (120), made up of two catalytic subunits, IKKα and IKKβ, and a 

regulatory subunit, IKKϒ. The so-called canonical pathway of NF-B activation, which 

prevails during innate immune reponses and  inflammation, is related to the activation 

of IKK by various upstream signals which primarily include the inflammatory cytokines 

TNFα and IL-1 (153, 154), as well as  ligands of innate immune cell surface  from the 

toll-like receptors. Activation of NF-B by TNFα is mediated by the TNF receptor 

(TNFR), an adaptor molecule (TRADD) and several signaling proteins including TNF 

receptor associated factors (TRAFs) and receptor interacting protein 1 (RIP-1), forming 

a complex activating IKK (155, 156). TLRs and IL-1 (via the IL-1 receptor), activate NF-

B through a common cascade involving the adaptor molecule MyD88 (Myeloid 

differentiation primary response gene 88), and several downstream proteins such as 

IRAK (IL-1R associated kinase) and TRAF6 to activate IKK (157-160). Besides these 

well-described mechanisms of NF-B activation, it is important to stress the fact that 

NF-B can also be activated by reactive oxidants, including PN, through complex, and yet 

incompletely understood mechanisms (161). As such, NF-B  is generally regarded as a 

“redox-sensitive” transcription factors, which is one important mechanism connecting 

oxidative stress and inflammation, as outlined in our recent review on the topics (63). 

Once activated, NF-B activates the transcription of a myriad of genes primarily 
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involved in inflammation and, therefore, NF-B is considered as the master regulator of 

innate immune responses and inflammation (63). In addition to NF-B, some additional 

transcription factors play also important roles in the development of inflammation, such 

as activator-protein-1 (AP-1) and the interferon-regulatory factors (IRFs), to cite only a 

few. Evidence has been obtained that activation of NF-B represents a key process 

leading to tissue injury and inflammation during ischemia and reperfusion (64) and 

notably after transplantation (76).  

In conclusion, acute inflammation is a central pathophysiological process during 

ischemia-reperfusion. The activation of the transcription factor NF-B is instrumental in 

the initiation of such inflammation. In this respect, we have demonstrated here, that 

inhibition of NF-B activation using pyrrolidine dithiocarbamate, administered during 

EVLP of damaged lungs, resulted in significant decrease of inflammatory injury and 

improvement of functional status, suggesting that such approach could be useful to 

recondition low quality donor grafts for subsequent transplantation, which will be 

assessed in the future.  
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Chapter 6  

Experimental Ex-vivo Lung Perfusion with Sevoflurane: Effects on Damaged Donor 

Lung Grafts 
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Abstract 

Background: Damaged donor lungs obtained after prolonged warm ischemia (WI) can 

be pharmacologically reconditioned during ex-vivo lung perfusion (EVLP). Here, we 

explored the ability of sevoflurane, administered within an EVLP circuit, to reduce 

damage and dysfunction of rat lungs obtained after circulatory death (DCD) and 

prolonged WI.  

Methods: Fifteen rats were distributed in 3 groups. In the Baseline (N=3) group, heart-

lung blocks were harvested immediately after euthanasia. In the Control (CONT, N=6) 

and Sevoflurane (SEVO, N=6) groups, the heart-lung blocks were harvested after 1h WI 

at 20º, stored for 2h at 4°C, and then perfused in an EVLP circuit for 3h with Steen® 

solution only or adding 2% sevoflurane during the first 30 min of EVLP ). Physiological 

variables (compliance, vascular resistance, oxygenation capacity, peak airway pressure) 

were evaluated during EVLP. At the end of EVLP, lung weight gain was assessed, the 

levels of, protein and lactate dehydrogenase (LDH), protein carbonyls (markers of 

oxidative stress) and inflammatory cytokines (TNF-α, IL-6, CINC-1) were measured in 

bronchoalveolar lavage fluid (BALF) or lung tissue, and histopathological changes were 

assessed.  

Results: When compared to CONT lungs, lungs from the SEVO group  disclosed 

significantly reduced release of protein, LDH, protein carbonyls and cytokines, as well as 

a significant reduction of weight gain and perivascular edema, together with an 

improved static compliance. In contrast, Oxygenation, airway pressure and vascular 

resistance were unchanged by sevoflurane. 

Conclusions: Sevoflurane administered during EVLP significantly attenuates pulmonary 

damage and dysfunction of rat lungs obtained after circulatory death and prolonged 

warm ischemia. 
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Introduction 

The shortage of donor lungs due to a low acceptance rate remains a challenge in lung 

transplantation (LTX) (10, 162). To increase the number of eligible organs, one could 

harvest the lungs after circulatory death (DCD)(163), or use ex-vivo lung perfusion 

(EVLP) to evaluate and recondition damaged lungs previously denied for 

transplantation(38, 164) or combine both techniques. Due to an unavoidable and 

variable period of warm ischemia, DCD lungs may be at increased risk of primary graft 

dysfunction (PGD)(28). PGD is the main cause of short term morbidity and mortality 

following transplantation and may be associated with chronic allograft dysfunction 

(165). The leading contributors to PGD are the time of warm ischemia (WI) and the 

subsequent cellular ischemia reperfusion/reoxygenation (IR) injury (166).  

Theoretically, IR injury of donor lungs at risk of PGD could be reduced or alleviated by 

pharmacological reconditioning performed during EVLP (167).  

Different therapeutic strategies have shown the efficacy in experimental IR injury of 

various organs. Evidence has notably accumulated that volatile anesthetics, such as 

sevoflurane, is a potent protective agent against IR, when administered either before or 

after ischemia, giving rise to the concept of anesthetic pre- and postconditioning, which 

has been essentially validated in the heart (168).  With specific respect to the lungs, 

preconditioning with inhaled sevoflurane is associated with reduced IR injury in animal 

models of ex vivo isolated rat lungs (169) and auto-transplanted pig lungs in vivo (170). 

Furthermore, sevoflurane post-conditioning exhibits anti-inflammation property on 

lungs (171, 172), but with scarce explorations on the IR injury, particularly in the 

context of transplantation. The aim of the current experimental study was therefore to 

assess the therapeutic potential of postconditioning with sevoflurane added in the 

solution of an EVLP system on the development of IR injury in damaged rat lungs 

harvested after an extended period of WI. 
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Materials and Methods 

Animals 

All the animal experiments were performed in accordance with the Animal Welfare Act 

and the National Institutes of Health “Guidelines for the Care and Use of Laboratory 

Animals” and were approved by our Local Ethics Committee (Service Vétérinaire 

Cantonal de l’Etat de Vaud, Authorization Nr. 2637). Fifteen male adult (9-11 weeks) 

Sprague-Dawley rats weighing 300-350 g (Charles River Laboratory, L’Arbresle, France) 

were subdivided in 3 groups : Baseline (BASELINE group, N=3), Control (CONT group, 

N=6) and Sevoflurane (SEVO group, N=6).  

Surgical preparation and lung harvesting 

The procedures used in this study were comparable, with some modifications, to those 

presented in detail in our recent publication (92). Animals were anesthetized with intra-

peritoneal sodium pentobarbital (50mg/kg) and placed on a heating pad to maintain the 

core temperature at 37°C .The trachea was cannulated and mechanical ventilation was 

initiated using a rodent respirator (Model 683, Harvard Apparatus, Holliston, MA, USA). 

Ventilation was delivered in volume controlled mode with a respiratory rate at 75 

breath·min-1, a tidal volume of 7ml·kg-1 and an inspired fraction of oxygen of 0.21. 

Following median sternotomy, heparin (600 IU) was administered into the right 

ventricle, and both the pulmonary artery (PA) and the left atrium (LA) were cannulated 

using two specially designed metal catheters (Hugo Sachs Elektronik, Hugstetten, 

Germany) and secured with 3-0 silk sutures. The inner and outer diameters were 1.7 

mm and 2.0 mm respectively for the PA cannula and 3.4 mm and 4.0 mm for the LA 

cannula.  

The animals were then sacrificed by exsanguination through a left ventricular puncture 

and subdivided in 3 groups. In the BASELINE group, immediately after euthanasia, the 

heart-lung blocks were harvested and a bronchoalveolar lavage (118) was performed 

with 2 ml phosphate-buffered saline, pH 7.4, via the tracheal cannula. The left lungs 

were then flash-frozen in liquid nitrogen and kept at -80°C until processing, and the 

right lung were fixed in 4% paraformaldehyde for further histological analysis.This 

BASELINE group representsed the standard donor lung harvesting procedure and was 

used to determine the physiological levels of various biochemical markers and the 

baseline histology as detailed below. On the basis of preceding study (92), due to stable 

data reproducibility, we scarified only 3 animals for this purpose. 

In order to mimic the DCD explantation procedure, lungs obtained after euthanasia in 

the CONT group and SEVO groups, were first kept deflated in situ during 1 hour of warm 

ischemia at room temperature. Then the lungs were perfused through the PA cannula 

with 15ml of 4°C Perfadex®, at a perfusion pressure of 20 cm H2O, while ventilated at a 
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RR of 15/min and a Vt of 7 ml/kg and stored for 2 hours of cold ischemia in 4°C 

Perfadex® in an inflated status (FiO2=0.50). The study design is illustrated in Figure 6.1.   

 

Figure 6.1 Experimental design 

Baseline group (BASELINE, N=3): Rats were euthanized and the lungs were harvested directly without 

any further intervention, for the determination of baseline physiological variables in some of experiments. 

Control group (CONT, N=6): subsequent to the cardiac arrest, the rat lungs underwent 1 hour warm 

ischemia in the room temperature were flushed with 4°C Perfadex® , harvested and stored in 4°C 

Perfadex® for 2 hours in an inflated status (FiO2=0.50), followed by 3 hours EVLP with only Steen® 

solution primed as the perfusate.   

Sevoflurane group (SEVO, N=6): same as the CONT group, but with 2% sevoflurane continuously added to 

the circuit 30min before and after the initiation of EVLP. 

 

Ex-vivo lung perfusion 

After 2 hours of cold preservation, the heart-lung block of CONT and  SEVO groups was 

weighed (PB-602C, METTLER TOLEDO, Greifensee, Switzerland) prior to be mounted on 

an isolated rat lung perfusion system (Harvard IL-2 System, Hugo Sachs Elektronik, 

Hugstetten, Germany). This EVLP system consisted of a perfusion circuit with tubing and 

a reservoir primed with Steen® solution (Xvivo Perfusion, Göteborg, Sweden). A pump 

drove the perfusate from the reservoir through a heat exchanger and a gas exchanger 

before entering the PA. Then the pulmonary effluent from LA drained back to the 

reservoir and was recirculated. Details of the circuit are provided in Figure 6.2. 
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Figure 6.2. EVLP system 

Oxygenated Steen® solution in Perfusate Reservoir was pumped through a Gas Mixture (6% O2, 10% CO2, 

84% N2) equilibrated Hemofilter to be deoxygenated and warmed through a Heat Exchanger prior to be 

perfused into pulmonary artery. The lung graft was mechanically ventilated with room air to artificially 

oxygenate Steen® solution which was circulated from the left ventricle then discharged to the Perfusate 

Reservoir. Only in the SEVO group, a customized flow-adaptable Sevoflurane Vaporizer was installed in 

line to the Hemofilter to supply 2% sevoflurane to the Steen® solution. Two transducers to continuously 

monitor PaO2 were respectively coped to the arterial and venous arms of the lung grafts.   

PT: pressure transducer; PO2 Tr : PaO2 transducer 
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To evaluate the lung oxygenation capacity (ΔPO2 = perfusate LA PO2 - perfusate PA PO2 

[mm Hg]) during the EVLP, the perfusate was deoxygenated by using a 1 l/min gas 

mixture containing 6% O2, 10% CO2 and 84% N2 (CHUV, Lausanne, Switzerland) 

delivered over a gas-exchange membrane (Hemofilter D150, MEDICA S.P.A, Italy) 

connected to the affluent (PA) arm of the heart-lung block (Figure 2). Thirty minutes 

prior to the EVLP procedure, the perfusate was cooled down to 10°C by an external 

heater-cooler unit (Sarns TCMII, 3M, Saint Paul, MN, USA). During this period, in CONT 

group, only Steen® solution was added in the EVLP circuit. In SEVO group, a flow 

adaptable sevoflurane vaporizer (Vapor2000 Sevoflurane, Drägerwerk AG, Lübeck,  

Germany) was connected in line with the affluent of gas-exchange membrane, and 2% 

sevoflurane (169-171) at a flow of 1L/min was continuously added in the EVLP circuit 

during cooling down period (30min before the onset of EVLP) and 30 minutes during 

the initiation of EVLP, thus 1 hour of sevoflurane administration in total (Figure 1).  

EVLP was initiated at a flow rate of 2 ml·min-1 at 10°C, and was step-wise increased to 

the target flow defined as 7.5 ml·min-1, which corresponds to 7.5% of theoretical cardiac 

output and (98) rewarmed to 37°C (Alpha immersion thermostat 6, LAUDA-Brinkmann, 

Delran, NJ, USA) during the next 30min. The left atrial pressure (LAP) was set at 4 

cmH2O by adjusting the height of an outflow vessel. The pH of the perfusate was 

maintained in the range of 7.35-7.45 by titrating THAM solution (Tham-Köhler 3M, 

köhler Pharma GmbH, Alsbach-Hähnlein, Germany) to the circuit. After the first 30 

minutes of EVLP, mechanical ventilation of the lungs was initiated using a tidal volume 

of 3 ml·kg−1, a respiratory rate of 7 min−1, and a FiO2 of 0.21 (flexiVent FX3 ventilator, 

SCIREQ Inc, Montréal, Canada). After 40 min of EVLP, the perfusate reached 37°C and 

the tidal volume was increased to 6 ml·kg-1. After 180 minutes of EVLP, the heart-lung 

block was withdrawn from the circuit and weighed. 2 ml of sterile PBS, pH 7.4 was 

instilled into the trachea to perform and sample a BAL. The left lung was harvested from 

the block and stored at -80°C, and the right lung was fixed in 4% paraformaldehyde for 

further histological analysis. The EVLP protocol illustrated as Table 6.1 in this study was 

based on the strategy described for clinical EVLP by Cypel et al (38). 
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Table 6.1 Rodent EVLP protocol 

CO: Cardiac output; T: Temperature; VT: Tidal volume; RR: Respiratory rate 

 

Measurements 

Physiological variables  

PA and LA pressures were continuously recorded and used to calculate pulmonary 

vascular resistance (PVR) according to the standard formula: PVR= (mean PAP -LAP 

pressure)/Flow. Before measuring the other physiological variables, a recruitment 

maneuver with an inspiratory pressure of 15 cm·H2O-1 during 20 seconds was 

performed 60 minutes after the onset of EVLP and every thirty minutes thereafter. Static 

pulmonary compliance (SPC) was calculated by computing the change in lung volume 

elicited by an automated step-wise increase of inspiratory pressure up to 15 cmH2O. 

Peak airway pressure (PAWP) measured by the ventilator from the pressure-time curve 

was documented. Finally, to compute the difference of partial pressure of O2 (DppO2), as 

an indicator of oxygenation capacity, partial pressure of O2 in the Steen® solution was 

measured by 2 oxygen electrodes (Hugo Sachs Elektronik, Hugstetten, Germany) in the 

affluent and effluent arms of the circuit.  

Rat lung protein extraction and quantification 

Sevorane® 

(%, CONT/SEVO) 
0/2 0/2 0/2 0/2 0/0 0/0 0/0 0/0 0/0 0/0 0/0 

Time (Minutes) 0 10 20 30 40 50 60 90 120 150 180 

T (C°) 10 20 30 35 37 37 37 37 37 37 37 

Flow (%CO) 2 2 4 7 7.5 7.5 7.5 7.5 7.5 7.5 7.5 

VT (ml·kg-1) no no no 3 6 6 6 6 6 6 6 

RR (breath·min-1) no no no 7 7 7 7 7 7 7 7 
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The lung tissue was grinded in liquid nitrogen to a powder using a mortar and a pestle, 

then homogenized in lysis buffer (TrisHCl 10 mM, NP40 0.5%, NaCl 0.15 M, Na3VO4 

1 mM, NaF 10 mM, PMSF 1 mM, EDTA 1 mM, aprotinin 10 μg/ml, leupeptin 10 μg/ml, 

and pepstatin 1 μg/ml), sonicated and incubated for 20 minutes on ice. Samples were 

centrifuged at 13000 RPM for 10 minutes and the clean supernatants were stored at -

80°C until further processing. Protein content was measured with the BCA assay 

(Thermo Scientific Pierce, Rockford, IL, USA) and expressed in mg·ml-1.  

Measurements of Cytokines 

The concentrations of the cytokines: tumor necrosis factor alpha (TNF-α) and 

interleukin-6 (IL-6), as well as of the chemokine cytokine-induced neutrophil 

chemoattractant factor 1 (CINC-1) were measured in lung tissue extracts using specific 

ELISA kits (R&D System, Minneapolis, MN, USA) following the manufacturer’s 

instructions. Concentration of cytokines were expressed in nanogram·mg-1 of proteins.  

Protein carbonyl concentration in lung tissue 

Protein carbonyls (a marker of oxidative modifications in proteins) were quantified in 

lung tissue using an ELISA based assay (OxiSelect Protein Carbonyl ELISA Kit; Cell 

Biolabs Inc., San Diego, CA, USA) according to the user manual and was expressed in 

nanomol·mg-1 of proteins. 

Protein concentration and lactate dehydrogenase (LDH) levels in BAL  

Total protein concentration in BAL was determined using the Pierce BCA assay (Thermo 

Scientific, Rockford, USA) and expressed in mg·ml-1. LDH in BAL was measured using a 

commercial kit (Cytotoxicity Detection KitPLUS; Roche Molecular Biochemicals, Basel, 

Switzerland) and was expressed in arbitrary units (A.U.).  

Histological evaluation 

Right lungs obtained either following the euthanasia (BASELINE group) or at the end of 

EVLP (CONT and SEVO groups) were for histopathological assessment. Lung tissue was 

formalin fixed (4% buffered formalin) and paraffin embedded. 5 µm thick slides were 

taken and stained with hematoxylin and eosin. All slides were digitalized using 

Hamamatsu NanoZoomer HT Digital slide scanner (Hamatsu Photonics, K K, Japan), and 

visualized by uploading to an image analysis program (Slidepath, Leica Biosystems) for 

morphometric studies. The pulmonary perivascular edema was indexed as the severity 

of tissue injury, by quantifying the ratio of perivascular edema thickness to the inner 

diameter of the encircled vessel. 20 symmetrically cross-sectioned vessels (arteries and 

veins), in average per slide, were independently evaluated by 2 investigators blinded to 

the experimental grouping of the specimens. 

Statistical analysis 

All the results in the study are presented as Means±SEM. Data analysis was performed 

by Graphpad prism 6 (GraphPad Software Inc., La Jolla, CA, USA). Kolmogorov-Smirnov 

test was used for testing normality of the distribution. Then for the repeated 
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physiological measurements during EVLP (SPC, PAWP, DppO2, PVR), data were analyzed 

by 2-way ANOVA, followed by Dunnett’s test to determine the effect of time (data at 60 

minutes during EVLP was taken as the control) and Sidak’s test to evaluate the effect of 

sevoflurane treatment at selected time points. For the weight gain, comparison between 

CONT and SEVO groups was done using unpaired t-test was used. For the other 

comparisons (Protein Carbonyl, LDH, CINC-1, TNF, IL-6, protein in BAL and perivascular 

edema), one-way ANOVA followed by Tukey’s correction was used. p<0.05 was 

considered statistically significant.  
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Results  

Physiological variables during EVLP 

SPC was greater in the SEVO group when compared to the CONT group throughout the 

experiment, the differences being statistically significant at 90 and 120 minutes 

(respectively 0.70±0.09ml·cmH2O-1 vs 0.41±0.03 ml·cmH2O-1, and 0.70±0.08ml·cmH2O-

1vs 0.44±0.04 ml·cmH2O-1) (Figure 6.3A). With respect to PAWP, we found that both 

experimental groups displayed a drop between 60 to 90 minutes of EVLP, followed by 

stabilization up to the end of the observation period. The values tended to be lower in 

the SEVO group but the differences did not reach statistical significance (Figure 6.3B). 

Both SPC and PAWP didn’t show significant effect with respect to the effect of time in 

each group. No significant changes between time points or between groups were 

detected with respect to both PVR (Figure 6.3C) and DppO2 (Figure 6.3D). The results 

for the physiologic parameters are summarized in Table 6.2.  

 

Figure 6.3 Pulmonary physiology during EVLP 

A: Static pulmonary compliance (SPC) was stable in the CONT group throughout EVLP; lungs treated with 

sevoflurane showed enhanced compliance compared to the CONT group, B: Peak airway pressure (PAWP) 

in both experimental groups demonstrated a drop after the first measurement. In the CONT group PAWP 
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continuously declined while they remained stable in the SEVO group. Differential partial Oxygen pressure 

(DppO2) (C) and pulmonary vascular resistance (PVR) (D) were similar in both of experimental groups. All 

the physiological variables didn’t demonstrate significant effect of time over groups. 

 

       Parameters Groups 60min 90min 120min 150min 180min 

SPC (ml·cmH2O-1) 
CONT 0.34±0.04 0.41±0.03 0.44±0.04 0.45±0.04 0.45±0.04 

SEVO 0.56±0.11 0.70±0.09 0.70±0.08 0.71±0.08 0.69±0.09 

       

PAWP (cmH2O) 
CONT 8.78±0.49 7.83±0.31 7.48±0.33 7.27±0.20 7.18±0.29 

SEVO 7.45±0.67 6.53±0.42 6.50±0.45 6.48±0.55 6.75±0.58 

       

DppO2 (mmHg) 
CONT 35.6±4.57 34.00±3.44 35.33±3.17 36.50±3.05 31.40±4.93 

SEVO 34.80±4.33 39.99±3.47 36.67±3.93 37.60±6.20 34.40±6.05 

       

PVR (mmHg·min·ml-1) 
CONT 0.43±0.03 0.44±0.03 0.40±0.03 0.40±0.03 0.41±0.03 

SEVO 0.52±0.05 0.47±0.04 0.48±0.04 0.46±0.04 0.47±0.04 

 

Table 6.2 Summary of the pulmonary physiologic parameters 

SPC: Static pulmonary compliance; PAWP: Peak airway pressure; DppO2: Differential partial pressure of 

oxygen; PVR: Pulmonary vascular resistance. 

No statistical difference with respect to the effect of time for physiological parameters  

Results was expressed as Mean±SEM 

 

 

Biochemical variables  

Biochemical data obtained in a group of normal lungs (BASELINE group) were used here 

as a baseline control, identifying the physiological values for the different variables. All 

the data are presented in detail in Table 6.3.  

Lung protein carbonyl accumulation and LDH release in BAL  

Protein carbonyls accumulation in lung tissue extracts was used as an index of oxidative 

modifications in proteins, hence of oxidative stress development during EVLP. As 

indicated in Figure 6.4A, protein carbonyls significantly increased following EVLP in the 
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CONT group in comparison to the BASELINE group (1.17±0.18 nmol·mg-1vs 0.31±0.009 

nmol·mg-1; p=0.0004), pointing to the development of significant oxidative stress during 

EVLP. In contrast, protein carbonyls did not increase during EVLP in the SEVO group, 

and were therefore significantly reduced in comparison to the CONT group (0.55±0.05 

nmol·mg-1, p=0.0060 vs CONT, p= NS vs BASELINE). 

LDH was measured in BAL as an index of cell death (Figure 6.4B). Following EVLP, a 

massive increase of LDH was noted in the CONT group in comparison to BASELINE 

(8.82±1.46 AU vs 0.46±0.17 AU, p=0.0002), implying significant cellular injury. The 

increase of LDH was significantly and markedly less pronounced in the SEVO group 

(3.80±1.23 AU, p=0.0153 vs CONT).   

 

Figure 6.4. Evaluation of oxidative stress and tissue necrosis during EVLP 

A: As an indicator of oxidative stress, protein carbonyl of lung tissue in CONT group was notably provoked 

in comparison with that in BASELINE group; but significantly reduced in SEVO group, B: LDH in BAL, a cell 

necrosis marker was markedly expressed in CONT group than that in BASELINE group, but less 

pronounced in the lungs treated with sevoflurane. *: p<0.05. 

 

 

Lung tissue concentrations of inflammatory cytokines  

We measured the tissue levels of TNF-α and IL-6 as prototypical biomarkers of acute 

innate inflammation in the pulmonary parenchyma, and we also evaluated the amount 

of CINC-1, a CXC chemokine analogous to human IL-8 playing an important role in 

attracting neutrophils at sites of inflammation, notably in the lung. As illustrated in 

Figure 6.5, tissue levels of TNF-α, IL-6 and CINC-1 all significantly increased (in 

comparison to BASELINE) following EVLP in the CONT group. In contrast, the increase 

was much less pronounced in the SEVO group, which disclosed significantly lower 

amounts of TNF-α and CINC-1 than the CONT group, and a trend towards reduced IL-6 

levels (p= 0.11). Detailed results are presented in Table 6.3. 
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Figure 6.5 Evaluation of inflammatory mediators in lung graft tissue after EVLP 

A: CINC-1 expression was significantly increased in the CONT group compared to the BASELINE group; 

but was suppressed in SEVO group, B: TNF- α expression in lungs of the CONT group was significantly 

increases compared to the BASELINE group; but attenuated in lungs treated by sevoflurane, C: IL-6 was 

up-regulated in CONT group than that in BASELINE group; but suppressed in SEVO group. *: p<0.05,  
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Table 6.3 Summary of the biomolecular test and lung weight gain  

 Results was expressed as Mean±SEM 

  

Lung weight gain and protein levels in BAL fluid   

Weight gain was determined as an index of lung edema following EVLP, and the amount 

of proteins recovered in the BAL was used to evaluate an increased permeability of the 

alveolo-capillary membrane permeability edema. As illustrated in Figure 6.6A, weight 

gain was significantly lower in the SEVO group compared to CONT group (0.52±0.06g vs 

0.72±0.09g; p=0.044), implying less pulmonary edema formation in the SEVO group. 

With respect to proteins in BAL fluid, both CONT and SEVO groups displayed 

significantly greater values than the baseline group. The increased protein content in 

BAL fluid tended to be less pronounced in the SEVO vs CONT group (Figure 6.6B), 

although the difference was not significant (p=0.6801). Detailed results are summarized 

in Table 3. 
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Figure 6.6 Evaluation of pulmonary edema during EVLP 

A: Protein content in BAL, indexing the integrity of alveolar epithelium. Lung suffered from 1 hour warm 

ischemia in CONT group led to a substantial accumulation of proteins in BAL than that in BASELINE group, 

while mitigated in the SEVO group, as there was no significant increase of protein when compared to 

BASELINE group, B: Lung weight gain was significantly reduced with the presence of sevoflurane 

treatment compared to the control. *: p<0.05. 

 

Post-EVLP histopathological findings 

Perivascular edema was present in CONT and SEVO groups (Figure 6.7C-6.7F), but not in 

lungs of the BASELINE group in which normal pulmonary macrostructure was visible 

(Figure 6.7A-6.7B). Since the lungs were subjected to the BAL before histological 

fixation, we were unable to detect significant alveolar edema. Perivascular edema was 

determined by computing the ratio of edema thickness to the diameter of the vessels 

surrounded (Figure 6.7G). Following EVLP, the severity of perivascular edema was 

markedly increased in the CONT group in comparison with BASELINE group (0.58±0.04 

vs 0.05±0.02; p=0.0001). Additionally, the edema was significantly lower when treated 

with sevoflurane (0.47±0.03, p=0.0355 vs CONT) compared to CONT group. 
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Figure 6.7 Histopathological changes   

Representative histopathological alterations (HE staining) illustrated in a magnification of 4x (upper 

pictures) and 10x (lower pictures) in the Baseline group (A-B), the Control group (C-D), and SEVO group 

(E-F). Black arrows show perivascular edema around arteries or veins (arrowheads). Open arrows 

indicate bronchial structures. The graph (G) displays the quantification of perivascular lung edema in each 

group (ratio of perivascular edema thickness to inner diameter of the examined vessels). 

*: p<0.05. 
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Discussion 

In this animal study we evaluated the effect of sevoflurane, administered during EVLP, 

on IR injured in lungs harvested after 1 hour of warm ischemia.  

EVLP, first developed as a tool for the evaluation and preservation of marginal donor 

lungs, has in recent years been studied as a modality to treat typical injuries of donor 

lungs such as brain death induced neurogenic edema, atelectasis, pulmonary embolism, 

(85, 91, 173) etc. It opens a platform for the administration of various agents such as 

anti-inflammatory agents (40), antioxidants (42), bronchodilators (44), and fibrinolytics 

(43) to minimize the damages caused by WI. Our findings strength this emerging 

concept, by showing the cytoprotective effect of sevoflurane post-conditioning during 

EVLP after a prolonged period of WI. 

Sevoflurane had been reported to have protective effects against IR injury in solid 

organs such as the heart (174) liver (175) and brain (176), with a decrease in reactive 

oxygen species (ROS), an inhibition of apoptotic cascades and reduced 

neutrophil/platelet adhesion to the endothelial wall. Although more than a dozen 

experimental studies investigated the potential of sevoflurane in healthy and in IR 

injured lung tissue, the explicit pharmacological mechanism remains controversial. In an 

ex-vivo isolated rat model (169) and in an in vivo porcine model (170), preconditioning 

with sevoflurane attenuated TNF-α and NO metabolism. However, when evaluating 

pulmonary inflammation of healthy lung tissue after sevoflurane compared to 

thiopentone anesthesia, Takala et al. found contradictory results in a porcine model. 

Although sevoflurane was associated with a decreased gene expression of TNF-α and 

interleukin-1β (177), inflammatory mediator as leukotriene C4, NO2 and NO3 were 

highly increased in BAL samples (178).  

In our DCD rodent model, sevoflurane was administered intravascularly early during 

EVLP to target the cellular signaling cascades involved in IR and limit the sequelae. A 

major consequence of IR injury is the development of pulmonary edema. EVLP lungs in 

SEVO group displayed a reduction in lung weight gain and perivascular edema, 

improved lung compliance and PAWP when compared to the CONT group. Giving the 

consideration that an increased endothelial permeability is one of the principal 

mechanisms in the development of pulmonary edema (179), these findings imply that 

the functional integrity of the pulmonary endothelium was better preserved. The 

stabilization of the endothelial glycocalyx by sevoflurane could contribute to this 

beneficial outcome as described in an IR model of isolated guinea pig hearts (180). In 

addition, the substantial mitigation of perivascular edema disclosed by histopathological 

observation further confirmed the cytoprotective effect of sevoflurane. However, this 

result was not supported by the protein content in the BAL, which lower but not 

statistically significant when comparing SEVO group to CONT. The small number of 

animals per group may explain this finding. 

With regard to the oxygenation capacity, no clear difference in DppO2 was identified 

between 2 experimental groups regardless the slightly higher mean values in the SEVO 
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group. Nevertheless, the use of DppO2 as a parameter for the evaluation of lung function 

during acellular EVLP is controversial. Yeung JC et al. demonstrated a reduced effect of 

shunt on EVLP PO2 when compared to addition of red blood cells to the perfusate. This 

result is attributable to the linearization of the relationship between oxygen content and 

PO2, which occurs with acellular perfusate in opposition to the blood (146). Therefore, 

the interpretation of PO2 values as an indicator of lung damage can be largely misleading 

when using an acellular perfusate. 

Thirty minutes after sevoflurane administration, PVR was calculated by plotting PA to 

LA pressure gradients against circuit flow. PVR was not statistically different in both 

experimental groups throughout EVLP.  

Despite few physiological arguments in favor to sevoflurane group during EVLP, we 

measured an important reduction of oxidative stress in warm ischemic lungs, as 

indicated by the lack of increase in protein carbonyl. The mechanisms involved in this 

protection are probably the same as described for the heart including the inhibition of: 

extracellular signal-regulated kinase ½, 70-kDA ribosomal protein s6 kinase and 

endothelial nitric oxide synthase (181), mitochondrial ATP-dependent potassium 

channel (182), GSK-3b (183), and mitochondrial permeability transition pore (mPTP) 

(184). 

As a result of the reduction in oxidative stress, the inflammatory cascade activation after 

warm ischemia resulted in a decreased expression of inflammatory markers TNF -α, 

CINC-1 and IL-6 in SEVO group when compared to CONT group. Others mechanism like 

intrinsic anti-inflammatory properties of sevoflurane may contribute to this beneficial 

effect. Produced mainly by macrophages, TNF-α is involved in systemic inflammation, to 

stimulate the acute phase reaction (185) through the nuclear factor kappa B (NF-κb) 

pathway (186). Lungs treated with sevoflurane in our EVLP model showed decreased 

expression of TNF-α, suggesting that the protective effect may be mediated by reducing 

TNF-α release, which is consistent with the literature aforementioned (169). CINC-1 is 

the counterpart of the human growth-regulated gene product, a member of the 

interleukin-8 family (187), which plays a critical role in inflammation with neutrophil 

infiltration. The significant reduction of CINC-1 in lung tissue treated with sevoflurane in 

our setting indicates an attenuation of neutrophil recruitment in the inflammatory 

process. Taken together, the attenuated TNF-α expression and the reduction of CINC-1 

confirms the finding, by Takaishi et al., that TNF-α blockade can reduce neutrophil 

chemotaxis and attenuate the lung injury process (188). Last but not least, acting as both 

a pro-inflammatory cytokine and an anti-inflammatory myokine, IL-6 is an important 

mediator stimulating the auto-immune process elicited by IR (139). Although no 

significantly, SEVO group has shown the lack of striking increase expression of IL-6 as in 

CONT group, which was in agreement of inflammatory response with TNF- α and CINC-1 

expression.  

To evaluate the extend of IR injury in our model, we measured LDH as a non-specific 

marker of cell necrosis in BAL. Sevoflurane administered in the early phase of 
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reperfusion result in a significant reduction  of LDH release when compared to CONT 

group. This cytoprotective effect is in line with intrinsic necrosis pathway that involves 

the opening of the mPTP, the swelling of the internal mitochondrial membrane and the 

releasing of mitochondrial proteases into the cytoplasm. The following rupture of 

cellular membrane will release cytoplasmic proteins, including LDH. 

There are several limitations in this study. The primary shortcoming may stand in the 

compromised translational probability to the clinical application, due conspicuously to 

the lack of in vivo evidence of lung transplantation following EVLP reconditioning. 

Besides, we measured static compliance by delivering positive pressure, which may 

induce volotrauma, particularly when compliance is good. This mechanism can explain 

the decline of the SPC at the end of EVLP in SEVO group.  

In conclusion, our study indicates that 2% sevoflurane, administered in the perfusate at 

the beginning of the EVLP with an anesthetic vaporizer connected directly in the circuit, 

is associated with reduced oxidative stress, attenuated inflammatory response and cell 

necrosis as well as  improved pulmonary physiological parameters. Sevoflurane may 

have protective properties against IR induced lung injury following warm ischemia in 

DCD lung grafts. 
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Chapter 7  

Experimental ex-vivo lung perfusion of donor lungs inoculated with streptococcus 

pneumonia 
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Abstract 

Background: Normothermic EVLP has the potential to treat frequent donor lung injuries, 

such as pneumonia. Here we assess the ex-vivo antibiotic treatment on infected lung 

grafts inoculated with Streptococcus pneumoniae. 

Methods: Three groups of 6 male Sprague-Dawley rats were used. Donor lungs were 

native or intratracheally inoculated four hours before harvesting with Streptococcus 

pneumoniae with a bacterial load of 1.0E+09 germs/500μl PBS. Subsequent to 4 hours of 

mechanical ventilation, pulmonary artery and left atrium were cannulated, heart-lung 

blocks were flushed and preserved at 4°C over 90 minutes in an inflated state (FiO2 0.5). 

Normothermic EVLP was performed over 4 hours with Steen solution® only or 

supplemented with antibiotics (Meropenem: 2mg/ml perfusate; Vancomycin: 1mg/ml 

perfusate). Functional graft status during EVLP was assessed by measurements of 

differential oxygen partial pressures in Steen solution (DppO2), pulmonary vascular 

resistance, lung compliance and weight gain. Bacterial load was assessed by repeated 

measurement in Steen solution, bronchoalveolar lavage and in lung parenchyma.  

Results: Analysis of the perfusate sampled from EVLP with infected lungs displayed 

growth of Streptococcus pneumoniae: bacterial load resulted in growth from the 2nd 

hour until the end of EVLP in all animals. In lungs treated during EVLP with antibiotics 

no bacterial growth was detected. Analysis of BAL and lung parenchyma showed 

presence of Streptococcus pneumonia in the bacterial load group and was markedly 

reduced after antibiotic treatment. No bacterial growth was found in control animals. 

Bacterial load resulted in marked edema and significant deterioration of compliance, 

vascular resistance and DppO2 during EVLP. Control lungs showed stable DppO2, 

vascular resistance and lung compliance during 4 hrs of EVLP, without significant 

changes over time. Antibiotic treatment during EVLP of infected lungs did not affect ex-

vivo lung function. 

Conclusion: This experimental model of EVLP allows for ex vivo assessment and 

preservation of native and infected rat lungs during 4 hours. Ex-vivo antibiotic 

treatment reduces bacterial load in infected lung grafts, but does not result in a 

significant improvement of lung physiological function. 
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Introduction 

Lung transplantation is an effective therapy in selected patients diagnosed with end-

stage lung disease. The shortage of donor lungs suitable for lungs transplantation 

remains a critical issue. It is in part attributed to the impaired quality of donor lungs.  

It is well known that donor lungs, as compared to other solid organs (heart, liver, 

kidney) are contaminated by microorganisms and present a high risk of established 

infection at the moment of organ procurement, above all due to the prolonged 

endotracheal intubation and mechanical ventilation (18). Clinical studies have shown 

that more than half of donor lungs are present bacterial infection, leading to an 

increased risk of donor-host transmitted lung infection and poor graft function after 

transplantation (189, 190). Thus, the treatment of donor lungs with broad-spectrum 

antibiotics against bacterial infection prior to transplant may represent an advantage for 

the recipient. 

EVLP represents a novel opportunity modality to assess lung function and recondition 

damaged donor organs before transplantation. In this experimental study we sought to 

investigate the effect of ex-vivo antibiotic therapy on bacterial contamination in rat 

lungs. Bacterial load in BAL, lung parenchyma and perfusate as well as the ex-vivo lung 

function after treatment of Streptococcus Pneumoniae contaminated lungs were 

assessed. 
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Materials and Methods 

All the animal experiments were performed in accordance with the Animal Welfare Act 

and the National Institutes of Health “Guidelines for the Care and Use of Laboratory 

Animals” and were approved by the cantonal authorities (Service Vétérinaire Cantonal 

de l’Etat de Vaud, Authorization Nr. 2637). Eighteen male adult Sprague-Dawley rats 

(10-14 weeks, mean weight 410 gr, Charles River, L'Arbresle, France) were used to 

harvest heart lung blocks. Following experimental groups were used: 

a) Control group (CTRL, n=6): donor lungs were not inoculated with bacteria, no 

antibiotic treatment was performed 

b) Infected group (SP, n=6): donor lungs were inoculated with Streptococcus 

Pneumoniae (109 Streptococci Pneumoniae) but left untreated  

c) Infected and treated group (SP+ATB, n=6): lungs were inoculated with Streptococcus 

Pneumoniae (109 Streptococci Pneumoniae) and treated with antibiotics during EVLP 

(Meropenem: 2mg/ml perfusate; Vancomycin: 1mg/ml perfusate).  

Harvest of heart-lung blocks: The animal was anaesthetized (induction with Isoflurane 

5%, Pentobarbital injection i.p. (50mg/kg)), placed on a heating plate to maintain 

temperature at 37.5°C and tracheotomised. Either 0.5ml of PBS (control group) or 0.5ml 

of PBS containing 109 Streptococci Pneumoniae were injected into the trachea, half of the 

volume in left and half of the volume in right lateral decubitus position, followed by 

intratracheal injection of 1ml of air. Then a tracheal cannula was inserted and a 

mechanical ventilation was started (FiO2 0.50, Isoflurane of 0.8%, Tidal Volume (VT) of 

7ml/kg and respiratory rate (RR) of 75/min), using a rodent respirator (model 683, 

Harvard Apparatus, Holliston, MA). Following 4 hours of ventilation, the animal 

underwent sternotomy, heparinization (600I.U.) and exsanguination. Perfusion cannulas 

(Hugo Sachs, Hugstetten, Germany) were inserted into the pulmonary artery (PA) (ID = 

1.7mm, OD = 2.0mm) and left atrium (LA) (ID = 3.4mm, OD = 4.0mm).  Lungs were 

flushed through the PA cannula with 15ml of 4°C Perfadex® (Xvivo Perfusion, Göteborg, 

Sweden) until outflow perfusate became clear. During the Perfadex flush, ventilation 

was maintained with FiO2 of 0.50, RR of 20/min and VT of was 5ml/kg. The lungs were 

semi-inflated with a 0.5 FiO2 and preserved for 90 at 4°C (Figure 1). 
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Figure 5.1 Heart-lung blocks harvested following PBS/bacterial inoculation 

Left side: Control lung, inoculated with 0.5ml PBS; 

Right side: Infected lung, inoculated with 109 Streptococci Pneumoniae  

 

Rodent EVLP 

Normothermic EVLP was preceded by cold ischemic preservation.  The heart-lung block 

was weighted, mounted in the customized rodent EVLP system (Harvard IL-2 System, 

Hugo Sachs). The circuit was perfused either with Steen® solution (Xvivo Perfusion, 

Goteborg, Sweden) only (CTRL group and SP group), or supplemented with 2mg/ml of 

Meropenem and 1mg/ml of Vancomycin (SP+ATB group) A mixture of 6% O2, 10% CO2 

and 84% N2 was applied through a gas-exchange membrane (Hemofilter D150; MEDICA 

S.P.A, Italy) and pH was maintained at 7.4. Left atrial pressure was set at 4cm H2O. 

Perfusion was started in a flow-controlled mode, at 2 ml.min-1 and at a temperature of 

10°C, progressively increased to 7 ml.min-1 and 37.5°C within 30 minutes (using a 3M 

TCMII heater, Saint Paul, MN, USA), after which ventilation was started (VT of 6 ml/kg, 

FiO2 of 0.21 and RR of 7/min) using a Flexivent FX3 ventilator (SCIREQ Inc., Montréal, 

Canada). The perfusion was then switched to a pressure-controlled mode, with a preset 

constant PA pressure of 15cm H2O for 150 minutes.  
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Assessment of bacterial load 

Samples of Steen solution (10 ml) were taken at the onset, the 2nd hour and the end of 

EVLP. At the end of EVLP, the heart-lung block was retrieved and weighted to determine 

the weight gain during EVLP. A bronchoalveolar lavage (BAL) was performed at the end 

of the procedure with 1 ml of sterile PBS, pH 7.4, via the tracheal cannula. The left lung 

was harvested for assessment of bacterial load. All samples (Steen solution, BAL and 

fresh left lung tissue) were cultured for quantification of Streptococci Pneumoniae. Study 

design is illustrated as Figure 5.2. 

 

Figure 5.2 Study design 

Functional evaluation during EVLP 

During 4 hours of EVLP, partial pressure of oxygen was measured in the influent and 

effluent arms of the EVLP circuit, using two O2 electrodes (Hugo Sachs Elektronik, 

Hugstetten, Germany), and the differential partial pressure of O2 (DppO2) was 

calculated. Pulmonary vascular resistance (PVR) was calculated as: PVR= (mean PAP-

LAP) /Flow.  At selected time-points, static pulmonary compliance (SPC) was measured 

using the Flexivent ventilator.  

 

Data processing and statistical analysis  

Results of physiological measurements during EVLP are expressed as means ± SEM. For 

SPC, PVR and DppO2, the effects of time and treatments were analyzed by 2-way 

ANOVA, followed by Dunnett’s test for the effect of time (taking 30 minutes as a control), 

and Tukey’s adjustments for the effects of treatments. For lung weight gain, one-way 

ANOVA followed by Tukey’s correction was used. Bacterial quantification of Steen 

solution, BAL and lung tissue is expressed as absolute concentration of bacterial load in 

a given sample, categorized according to the related clinical significance and analyzed by 

fisher’s exact test. p<0.05 was considered significant. Data analysis was performed using 

Graphpad prism 6 (GraphPad Software Inc., La Jolla, CA, USA).  
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Results 

Lung function assessment during EVLP and edema development 

Ex-vivo antibiotic treatment did not affect the pulmonary mechanics of infected lungs as 

determined by repeated compliance measurements during EVLP. All infected lungs were 

associated with poor SPC as compared to the non-infected ones. In the control group, 

although stable initially, SPC tended to deteriorate after the first hour of EVLP. (Figure 

5.3, A) 

Graft DppO2 (Figure 5.3.B) during EVLP was calculated to assess oxygenation capacity. 

Control lungs showed a stable DppO2 while infected lungs had a slightly worse DppO2, 

regardless the presence of ex-vivo antibiotic treatment. Differences were not statistically 

significant. 

PVR (Figure 5.3.C) increased over 4 hours of EVLP in lungs inoculated with 

Streptococcus Pneumoniae and remained stable in lungs inoculated with PBS only. 

Lungs loaded with Streptococcus Pneumoniae treated with or without antibiotics had a 

higher weight gain during EVLP (Figure 5.3.D) than the control lungs, although this was 

not statistically significant. 
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Figure 5.3 Lung function and weight gain during EVLP 

A: Static pulmonary compliance; B: Differential partial pressure of O2; C: Pulmonary vascular resistance; 

D: Weight gain 

 

Analysis of bacterial load 
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The analysis of bacterial load in the perfusate at various time points and for various 

conditions is given in Figure 5.4. When control lungs were perfused, Steen solution was 

free of bacterial contamination throughout 4 hours of EVLP. When contaminated lungs 

were perfused, the antibiotic treatment resulted in an undetectable level of bacteria in 

the perfusate, while perfusion of contaminated lungs without antibiotic treatment 

resulted in a high load of Streptococcus Pneumoniae in Steen solution. After 2 hours of 

EVLP 5 of 6 perfusion circuits were contaminated and after 4 hours all perfusion circuits 

were contaminated, when contaminated lungs were perfused without antibiotics. 

 

Figure 5.4 Analyses of bacterial load in Steen solution during EVLP 

*: p<0.05 

 

The bacterial load in BAL after EVLP was highest in infected lungs kept untreated and 

increased in infected and treated lungs. Streptococcus Pneumoniae was undetectable in 

the BAL of three lungs initially contaminated and treated during 4 hours ex-vivo by 

antibiotics. Streptococcus Pneumoniae was not detectable in all control lungs. 

No Streptococcus Pneumoniae was detected in tissue of control lungs, while both, treated 

and untreated contaminated lungs presented Streptococcus Pneumoniae tissue 

contamination, however, the number of lungs with a high bacterial loads was reduced in 

the antibiotic group, with one lung having no Streptococcus Pneumoniae contamination 

(Fig 5.5) 
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Figure 5.5 Analyses of bacterial load in BAL and lung parenchyma at the end of EVLP 

*: p<0.05 
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Discussion 

In this study we demonstrated the first time in an experimental setting that antibiotic 

therapy administered during EVLP reduces the bacterial burden of lungs contaminated 

with Streptococcus Pneumoniae. We also show that these bacteria translocate from the 

lungs’ bronchial system to the perfusate of the EVLP system. This translocation leads to 

contamination of the perfusate and the perfusion circuit, with an increasing bacterial 

load throughout EVLP if no antibiotic treatment is added to the perfusate. The Steen 

solution and the normothermic perfusion mode present ideal conditions for bacterial 

growth. Adding antibiotics into the Steen solution avoids bacterial growth in the 

perfusate and results in a decrease of the grafts’ bacterial load after 4 hours of EVLP 

(BAL and tissue). Contamination of lungs by Streptococcus Pneumoniae leads to impaired 

lung function in the ex-vivo setting, but the antibiotic treatment showed no beneficial 

effect on lung function. 

The use of antibiotics administered during EVLP for infected donor lungs has been 

described in only two human studies, and was not addressed in experimental animal 

studies so far.  

Andreasson et al. described the effect of EVLP with a perfusate containing high dose 

broad spectrum antibiotics on 18 human donor lungs considered unusable for 

transplantation. 13 of these lungs had positive cultures, with bacterial loads significantly 

decreasing after EVLP. Six out of 18 lungs were transplanted with favorable outcome. 

The authors conclude, that EVLP allows to effectively reducing the bacterial burden of 

donor lungs (191). No information is given about the evolution of lung function during 

EVLP; however some lungs were transplanted successfully. Our experimental study 

shows similar results in terms of reduction of the bacterial load; however, all 

contaminated lungs in our study displayed poor initial function in the EVLP system and 

a worsening lung function throughout EVLP and could most probably not have been 

transplanted with success.  

The Toronto group has published an experimental human study with donor lungs 

rejected for transplantation because of concerns about infection. Half of the lungs 

underwent 12 hours of EVLP antibiotic therapy, half had EVLP without antibiotics (45). 

The authors observed a decrease of bacterial counts in BAL in most lungs undergoing 

the antibiotic treatment. Long term EVLP over 12 hours also resulted in improved 

compliance, pulmonary vascular resistance and lungs’ oxygenation capacity. Endotoxin 

levels in the perfusate were found to be lowered by antibiotic treatment.  Lungs were 

not transplanted. 

Our results from the animal model are similar in terms of reduction of the bacterial 

charge, but are different in terms of the effect on lung function. This may be explained by 

the different bacterial charge as well as the different pathogenicity of the bacteria in the 
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clinical and animal setting. Besides, EVLP was performed during only 4 hours in our 

setting while in the above cited paper human lungs were perfused during 12 hours.  

In conclusion this experimental model shows a beneficial effect of antibiotic treatment 

on bacterial load of lungs during EVLP. EVLP appears to be an ideal platform for the 

administration of antibiotics to infected lungs. The model may be used for the further 

development of this treatment strategy. An interesting topic in this context is the 

development of rapid real time detection systems to precisely assess the microbiological 

burden of potential donor lungs before transplant. 
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Chapter 8  
Development of an acute unilateral rodent lung transplant model 
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In this step, the candidate has established an acute unilateral rat lung transplant model 

based on the technique described by de Perrot et al (103). The principle idea of this 

acute model is to perform single lung transplantation followed by independent 

ventilation of the left-sided transplanted graft and the right-sided native lung with two 

different ventilators. This allows assessing accurately the graft function.  

The model is an extension of the EVLP model described above and serves to correlate 

results obtained in the ex-vivo circuit to the in-vivo organ function. While the EVLP 

circuit affords graft reoxygenation and reperfusion with an acellular perfusate under 

well defined conditions, the transplant model permits to assess the effect of 

reoxygenation and blood reperfusion in-vivo.  

The combination of both models will be an excellent tool to assess ischemia-reperfusion 

injury and potential therapeutic strategies in this field. 

 

The following chapter describes key steps of the model as established today: 

 
1) 
 

 
Following cardiac arrest, pulmonary artery (PA), left atrium (with introduction of the 

cannula in the left ventricle) and trachea are cannulated. The heart- lung block is flushed 

at 20cmH2O with 15ml of 4°C Perfadex (Xvivoperfusion, Sweden), during which the lung 

is mechanically ventilated (tidal volume 7ml/kg, frequency 20/min, PEEP 5cmH2O, FiO2 

0.21) 
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2) 

Following cold flush the heart-lung block is harvested and stored in 4°C Perfadex in an 
inflated status.   
                                                                                                   
3) 
 

 
The left lung is isolated and the pulmonary hilus is carefully dissected. 16-Gauge cuffs 

are placed into the PA and PV. The left main bronchus is clamped, keeping the graft 

inflated. 
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4) 

  
The recipient rat is anesthetized and mechanically ventilated (tidal volume 7ml/kg, 

frequency 90/min, PEEP 5cmH20, FiO2 0.50). The left hilus is exposed following a 

thoracotomy. 

5) 

Anterior view: The left PA, PV and the main bronchus of the recipient are carefully 
dissected. Then the left main bronchus is ligated following lung deflation. The recipients’ 
right lung is then ventilated with a reduced tidal volume (5ml/kg). 
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6) 

The recipient PA is proximally clamped by a microclip, followed by the PV clamping. The 

left native lung is resected. The recipient PA and PV are suspended distally by 7-0 silk 

suture to facilitate the following anastomosis. 

7) 

The graft is placed into the recipient chest cavity, taking care that the PA and PV are not 

twisted.  
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8) 

Transverse incisions are made anteriorly in recipient PA and PV. The grafts’ PA and PV 

cuffs are introduced into the corresponding vessels of the recipient, and secured by 7-0 

silk sutures.  

 
9) 

Here, both anastomoses are completed. The left main bronchus of the graft is intubated 

and connected to a second ventilator. 
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10) 

Following the anastomoses of PA and PV, the graft is mechanically ventilated using a 

separate ventilator (tidal volume 4ml/kg, frequency 90/min, PEEP 5cmH20, FiO2 0.50) 

for 3 min prior to the blood reperfusion 

11) 

The PV is declamped, followed by the declamping of PA. The graft is reperfused and 

separately ventilated for 2 hours, during which the in-vivo graft function (oxygenation, 

lung compliance, peak airway pressure) is assessed. 
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Chapter 9  

Ex-vivo pharmacological inhibition of poly (ADP-ribose) polymerase (PARP) 

reduces ischemia reperfusion injury and improves function of transplanted lung 

grafts
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Abstract 

Introduction: Ischemia-reperfusion injury (IRI) is a key mechanism of graft damage 

following lung transplantation, which could be targeted by therapies applied during ex-

vivo lung perfusion (EVLP). Production of oxidants and activation of the enzyme poly 

(ADP-ribose) polymerase (PARP) are key processes involved in IRI. Previously, the 

pharmacological inhibition of PARP during EVLP was shown to alleviate reperfusion 

injury and improve graft function ex-vivo. Here, we hypothesized that inhibition of PARP 

with 3-aminobenzamide (3-AB) during EVLP improves lung graft function and reduces 

IRI in a rodent lung transplantation model. 

Methods: Male Sprague-Dawley rats (n=24) underwent left single lung transplantation 

(Ltx). Donor lungs were procured and allocated to 3 groups: lungs were flushed with 

cold Perfadex following cardiac arrest and stored for 4 hours at 4°C before 

transplantation (CI group), or lungs underwent 1hr warm ischemia following cardiac 

arrest, cold Perfadex flush, and were stored for 1 hour at 4°C, followed by 3 hours of 

normothermic EVLP either with Steen solution (WI group) or Steen solution 

supplemented with 3-AB (WI-3-AB group) and then transplanted. Graft physiological 

function (static pulmonary compliance, peak airway pressure, pulmonary vascular 

resistance, oxygenation and weight gain) were assessed during EVLP and the following 2 

hours reperfusion after transplantation. Bronchoalveolar lavage fluid (BALF) harvested 

after EVLP or Ltx was analysed to determine protein content, lactate dehydrogenase 

(LDH), malondialdehyde (135), inflammatory cytokines (IL-6, TNF-α, CINC-1). Total cell 

count and cell differentiation in BALF was assessed. 

Results: Warm ischemia lungs exerted significantly enhanced IRI after Ltx, in line with 

poor physiological function and elevated oxidative stress, lung inflammation and edema 

during EVLP. IRI after Ltx was markedly alleviated by inhibition of PARP administrating 

3-AB during EVLP. 

Conclusion: Pharmacological intervention during EVLP inhibiting PARP protects 

damaged donor lungs from ischemia-reperfusion injury after transplantation and 

improves post-transplant graft function in this experimental setting. 
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Introduction 

We have previously shown in an ex-vivo model that ischemia-reperfusion injury can be 

alleviated by pharmacological inhibition of PN and PARP during EVLP (92). Here we 

apply this strategy in a lung transplant model with donor lungs undergoing prolonged 

warm ischemia. 

 

 

Materials and methods 

Animals 

Adult male Sprague-Dorley rats weighing 300-350g were used as donors and recipients. 

All the animal experiments were performed in accordance with the Animal Welfare Act 

and the National Institutes of Health “Guidelines for the Care and Use of Laboratory 

Animals” and were approved by the cantonal authorities (authorization 2637).  

Donor lung procurement and preservation 

General anesthesia was induced by intraperitoneal administration of Ketamine 

(80mg·kg-1, SINTETICA S.A., Mendriso, Switzerland) +Xylazine (8mg·kg-1, Provet, S.A., 

Lyssach, Switzerland). The animal was placed on a heating pad maintaining the core 

temperature at 37°C, the trachea was intibated and the animal was ventilated using a 

rodent respiratory (Model 683; Harvard Apparatus, Holliston, MA, USA). Mechanical 

ventilation was adjusted with a fraction of inspired oxygen (FiO2) of 0.21, a respiratory 

rate (RR) of 80 breaths·min-1, a tidal volume (VT) of 7ml·kg-1 and positive end-expiratory 

pressure (PEEP) of 3cmH2O. Following a median sternotomy, systemic anticoagulation 

was achieved by injecting heparin (600U) to the right ventricle. Pulmonary artery (PA) 

and left ventricle (LV) were cannulated and flushed as described previously (92). Then 

the animals were randomly divided into 4 groups (see also Figure 9.1):  

a) Cold ischemic lungs (CI group, N=8): the lung was flushed with 4°C Perfadex (XVIVO 

Perfusion AB, Goteborg, Sweden) through PA at a perfusion pressure of 20 cm H2O, 

being ventilated (FiO2=0.21, RR=15/min, VT =7ml·kg-1 and PEEP=3cmH2O), procured 

and stored in 4°C Perfadex for 4 hours in an inflated status prior to left lung 

transplantation (L-Ltx). 

b) Warm ischemic lungs undergoing EVLP (WIE group, N=7): the lung was kept in situ for 

1 hour at room temperature, followed by 4°C Perfadex flush through PA, ventilation 

(FiO2=0.50, RR=15·min-1, VT =7ml·kg-1 and PEEP=3cmH2O). The lung was procured and 

stored in 4°C Perfadex for 1 hour in an semi-inflated status. Then the heart-lung blocks 

underwent normothemic EVLP up to 3 hours, after which the L-Ltx was performed. 

c) Warm ischemic lungs undergoing EVLP the PARP inhibitor 3-aminobenzamide (WIE-

3-AB group, N=9): same procedure as described for WIE group, except that WIE-3-AB 

(1mg·ml-1, Sigma-Aldrich, Buchs, Switzerland) was added to the perfusate. 
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Figure 9.1 Study design 

 

Rat Normothermic EVLP 

EVLP was preceded by warm and cold ischemia as described above. Animals in groups 

WIE and WIE-3-AB underwent 3 hours of EVLP using a customized rat EVLP system 

(Harvard IL-2 System; Hugo Sachs Elektronik, Hugstetten, Germany) as described in 

detail previously (92). Briefly, the heart-lung blocks were weighted and then mounted in 

the circuit for protective ventilation and constant flow normothermic perfusion with 

Steen® solution (Xvivo Perfusion, Göteborg, Sweden). In the WI group, the circuit was 

primed with Steen® solution only, while 3-AB (1mg·ml-1, Sigma-Aldrich, Buchs, 

Switzerland) was added to the Steen solution in WIE-3-AB group. The perfusion was 

initialized at flow rate of 2ml·min-1 at 10°C, and was step-wise increased to the target 

flow which corresponds to 7.5% of theoretical rat cardiac output (98) at 37.5°C. 

Mechanical ventilation was started once normothermia was reached with a FiO2 of 0.21, 

RR of 15/min, VT of 6ml·kg-1 and PEEP of 3cmH2O (flexiVent FX3 ventilator; SCIREQ Inc, 

Montréal, Canada). The circuit was deoxygenated using a mixture of 6% O2, 10% CO2 

and 84% N2 supplied through a hemofilter (D150, MEDICA S.P.A, Italy). During 3 hours 

of EVLP, partial pressure of O2 of affluent (PaO2) and effluent (PeO2) arms, pulmonary 

artery pressure (PAP) and left ventricular pressure (LVP) were continuously recorded 

to calculate differential partial pressure of O2 (DppO2= PeO2- PaO2) and pulmonary 

vascular resistance (PVR=[PAP-LAP]/Flow). Static pulmonary compliance (SPC), peak 

airway pressure (PAWP) were repeatedly measured and monitored. At the end of EVLP, 

heart-lung blocks were weighed again, immediately cooled in 4°C Perfadex and stored in 

an inflated status (FiO2=0.21) for a second cold preservation of 2 hours. 

 

Orthotopic left lung transplantation  
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Rat left lung transplantation with independent ventilation of the graft and the native 

lung was performed according to a technique described before (103).  During the cold 

ischemic preservation, the left bronchus was isolated from the trachea of retrieved 

heart-lung blocks and clamped to keep the lung inflated, the left lung was separated 

from the heart lung block, the left PA and left PV were carefully mobilized, and a 

homemade 16-gauge cuff were placed in each vessel (Abbocath Catheters, Hospira, Inc., 

Lake Forest, IL, USA).  

General anesthesia of the recipient was the same as in donor rats, but Buprenorphone 

(0.3mg·kg-1, i.p., Temgesic®, Reckitt Benckiser AG, 8304 Wallisellen, Switzerland) was 

added. Then the animals were placed on a heating surface maintaining the body 

temperature at 37.5°C,  tracheostomized and ventilated using a respirator (model 683, 

Harvard Apparatus, Holliston, MA) with FiO2 of 0.50, RR of 90 breaths·min-1, VT of 

7ml·kg-1 and PEEP of 3cmH2O. The right external jugular vein was cannulated with a 

microtip polyethylene catheter (ID=0.28mm), and 0.9% NaCl of 10ml·kg-1·h-1 was given 

to the recipient animal. A Micro-Renathane® tubing (ID=0.37mm) was introduced into 

the left carotid artery to monitor arterial blood pressure during the surgery. A rat foot 

sensor (FootClip, STARR life science Corp, Oakmont, PA, USA) was attached to obtain the 

arterial oxygen saturation (SpO2). Through the left posterolateral thoracotomy, the left 

pulmonary inferior ligament was mobilized, and the left hilar structures were dissected 

with left PA, left PV and left main bronchus freely exposed. The left main bronchus was 

ligated and divided, and the VT of the respiratory was reduced to 5ml·kg-1, since 

ventilation was limited to the recipients’ right lung only. The left PA and PV were then 

proximally clamped and the left native lung was removed. The recipients’ PA and PV 

were suspended, anteriorly incised and circumferentially encircled with pre-looped 7-0 

silk sutures (Teleflex, Coventry, CT, USA). The donor lung was weighed and then the pre-

cuffed PA and PV were gently introduced into the corresponding PA and PV of the 

recipient, with the cuffs secured by sutures. The graft was connected to a second 

ventilator (Flexivent FX3; Scireq Inc, Montreal, Canada; FiO2=0.50, RR=90 breaths·min-1, 

VT =4ml·kg-1 and PEEP=5cmH2O). Thus, the recipients’ native right lung and left 

transplanted lung were separately ventilated. Following a recruitment maneuver, graft 

reperfusion was started by declamping the PV and then the PA. Care was taken to 

prevent twist of the graft bronchus. The animal was kept under general anesthesia for 

two hours of reperfusion, after which the transplanted left lung was harvested to 

determine the graft weight gain during reperfusion, as well as for further analysis. 

  

In-vivo recipient and graft functional assessment during blood reperfusion 

During 2 hours of blood reperfusion, mean arterial pressure (MAP, F-LMP1-00-00, Datex 

Engstam, Helsinki, Finland) and SpO2 were continuously monitored. At selected time-

points, PAWP and SPC were measured using the Flexivent ventilator. The gas exchange 

of the graft was assessed by blood gas analyses in blood taken from the grafts’ PV. The 

the oxygenation index (OI) was calculated using the equation: OI=FiO2·MPAW·PO2-1 
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(192), where PO2 was the partial pressure of O2 of the blood sample and MPAW was the 

Mean Airway Pressure of the ventilated graft (MPAW=Peak inspiratory pressure (PIP)· 

inspiratory time (IT)+PEEP·expiratory time (ET)) (193). PIP, IT and ET were 

automatically recorded by the ventilator.  

 

Biochemical analyses of bronchoalveolar lavage at the end of EVLP 

At the end of EVLP, BAL was performed in all the right lungs from the donor rats by 

instilling 6ml of PBS (pH=7.4) through the right main bronchus. After recovery, the BAL 

fluid (BALF) was centrifuged at 5,000 rpm for 10minutes at 4 °C and the cell-free 

supernatant was kept. The proteins content, as an index of the integrity of the alveolar-

capillary membrane, was determined using BCA assay (Thermo Scientific, Rockford, 

USA) and expressed in mg·ml-1; lactate dehydrogenase (LDH) activity, an general index 

of tissue necrosis, were measured using a kit (Cytotoxicity Detection Kit PLUS; Roche, 

Basel, Switzerland) and expressed in arbitrary unit (AU) ·ml-1; Malondialdehyde (135),  

a byproducts of lipid peroxidation during oxidative stress was measured using a rat 

ELISA kit (MyBioSource, San Diego, CA, USA); inflammatory cytokines as interlukin-6 

(IL-6), tumor necrosis factor alpha (TNF-α) and chemokine cytokine-induced neutrophil 

chemoattractant factor 1 (CINC-1) were assessed using ELISA kit (R&D system, 

Minneapolis, MN, USA) and expressed in nanogram·ml-1. 

 

Biochemical and cytological analyses of BAL at 2 hours after transplantation 

Two hours following transplantation, BAL was performed in the transplanted left lung 

by instilling 4ml of PBS (pH=7.4). Analysis (Protein content, LDH, MDA, IL-6, TNF-α and 

CINC-1 determined in BALF) in the cell-free supernatant of the BALF were done as 

described above. The sedimented cells in the BALF were resuspended in a volume of 

0.5ml, a total cell count was performed in 0.1ml of this volume using a hemocytometer, 

while the remained cell suspension was cytospinned (800 rpm for 5 min, Cytospin 2, 

SHANDON southern products Ltd, UK), stained (Diff-quik, Medion, Diagnotic AG, 

Dudingen, Switzerland) to assess differential cell count under a light microscope. Cells 

were categorized as  mononuclear cells (MNs) or polymorphonuclear cells (PMNs). The 

calculated cell concentration was corrected to the recovered BALF volume and finally 

expressed as actual counts. 

 

Statistics 

Data analysis was performed by Graphpad prism 6 (GraphPad Software Inc., La Jolla, CA, 

USA).  All the results in this study are presented as Means±SEM. For the repeated 

measurements (SPC, PAWP, DppO2, PVR, MAP and SpO2) during EVLP or reperfusion 

time, 2-way ANOVA was applied, followed by Dunnett’s test for the effect of time and 

Tukey’s test for the effect of treatment. One-way ANOVA plus Tukey’s correction was 

used for all other comparisons. P<0.05 was considered statistically significant. 
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Results 

The effect of 3-AB on SPC, PAWP, DppO2 and PVR of warm ischemic lung during EVLP 

SPC in WIE group remained stable throughout EVLP and was improved in lungs 

undergoing EVLP with administration of 3-AB (Figure 9.2A). This effect was significant 

at time 90 min (p=0.0036) and 120 min (p=0.0812). PAWP during EVLP (Figure 9.2B) 

was lower in lungs treated with 3-AB as compared to lungs undergoing sham EVLP 

(P<0.05 at all time-points). In both groups (WIE and WIE-3-AB) a PAWP drop after 30 

min of EVLP was observed, corresponding to the the onset of ex-vivo ventilation and 

preceding recruitment maneuvers. DppO2 (Figure 9.2C) and PVR (Figure 9.2D) were 

stable during EVLP and did not reveal differences in-between both groups. 

 

 

Figure 9.2 EVLP lung physiology for WIE and WIE-3-AB groups 

A: Static pulmonary compliance (SPC) during EVLP; B: Peak airway pressure (PAWP) during EVLP; C: 

Differential partial pressure of the oxygen (DppO2) and D: Pulmonary vascular resistance (PVR). 

Means±sem. *: p<0.05. 
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Administration of 3-AB diminishes lung edema development, tissue injury and oxidative 

stress during EVLP 

Donor lung weight gain during EVLP, as a marker of lung edema (Figure 9.3A), was more 

pronounced in WIE group than in WIE-3-AB group (p=0.0428 WIE vs WIE-3-AB). In 

comparison to the lungs undergoing cold static preservation only, donor lungs exposed 

to warm ischemia (WIE group) showed significantly increased tissue necrosis and 

oxidative stress as demonstrated by the protein content (Figure 9.3B), LDH (Figure 

9.3C) and MDA (Figure 9.3D) in BALF (p=0.0415, p=0.0002 and p=0.0261 WIE vs CI). 

When 3-AB was added during EVLP, the protein content and MDA in BALF were less 

pronounced (p=0.6841, p=0.08, respectively; WIE-3-AB vs WIE), and the LDH level in 

BALF significantly reduced (p=0.0002 WIE-3-AB vs WIE).   

 

 

Figure 9.3 lung edema, tissue injury and oxidative stress at the end of EVLP 

A: Lung weight gain during EVLP. B: Protein content in broncho-alveolar lavage fluid (BALF). C: Lactate 

dehydrogenase (LDH) in BALF. D: Malondialdehyde in BALF. Means±sem. *: p<0.05. 
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Lung inflammatory response was attenuated by 3-AB at the end of EVLP 

The levels of IL-6 and TNF-α in the BALF as markers of acute innate inflammation were 

evaluated at the end of EVLP. In addition, the concentration of CINC-1, a member of the 

CXC family of chemokines, attracting neutrophils and corresponding to the human IL-8 

was measured in BALF. Levels of IL-6 (Figure 9.4A), TNF-α (Figure 9.4B) and CINC-1 

(Figure 9.4C) in BALF from lungs undergoing warm ischemic damage were elevated as 

compared to lungs undergoing cold ischemic preservation only (p=0.0003, p=0.0017 

and p<0.0001 WIE vs CI). Conversely, the levels of IL-6 and CINC-1 were significantly 

attenuated by 3-AB administration during EVLP (p=0.0001 and p=0053 WIE vs WIE-3-

AB). TNF-α was reduced, without a significant difference (p=0.1255 WIE vs. WIE-3-AB).    

 

Figure 9.4 Lung inflammatory response assessed at the end of EVLP  

A: Interleukin-6 (IL-6) in BALF. B: Tumor necrotic factor alpha (TNF-α) in BALF. C: Chemoattractant for 

neutrophils 1 (CINC-1) in BALF.  Means±sem. *: p<0.05. 

 

The effect of EVLP with 3-AB on graft function after transplantation 

During two hours of blood reperfusion after transplantation, injured grafts which 

underwent inhibition of PARP with 3-AB during EVLP (WIE-3-AB group) exerted 
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comparable SPC (Figure 9.5A) and PAWP (Figure 9.5B) to those grafts preserved at ideal 

conditions at 4°C (p>0.05 WIE-3-AB vs CI group). The lung function of these grafts was 

significantly improved as compared to those in WIE group (p<0.05 WIE-3-AB vs WIE). 

Furthermore, normal and similar MAP (Figure 9.5C) and SpO2 (Figure 9.5D) were 

observed for all the transplanted grafts in different groups. 

 

 

Figure 9.5 Graft function after transplantation 

WIE-3-AB group showed improved pulmonary compliance (A) and decreased peak airway pressure (B) as 

compared to the WIE group. Mean arterial pressure (MAP) and oxygen saturation (SpO2) were stable and 

comparable for all the experimental groups. Means±sem. *: p<0.05. 

Improved graft gas-exchange at 2 hours after transplantation 

Lungs from the WIE-3-AB had a significantly lower OI than those from the the WIE group 

(p=0.0267 WIE-3-AB vs WIE). (Figure 9.6). 
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Figure 9.6 Graft gas-exchange function at 2 hours after transplantation 

Means±sem. *: p<0.05. 

 

 

EVLP with 3-AB diminished lung edema development, tissue necrosis and oxidative stress 

after transplantation  

A considerable increase of graft weight (Figure 9.7A) occurred after 2 hours of blood 

reperfusion in WIE group, as compared to the CI group (p=0.0054). This effect was 

alleviated by 3-AB treatment during EVLP (p=0.0001 WIE vs WIE-3-AB). Likewise, when 

compared to CI group, WIE grafts displayed a significant elevation of protein content 

(Figure 9.7B), LDH (Figure 9.7C) and MDA (Figure 9.7D) in BALF harvested after 

transplantation, indicating an increased alveolar-capillary permeability, cell necrosis as 

well as lipid peroxidation after transplantation (p<0.05 WIE vs CI) These phenomena 

were significantly reduced in animals receiving injured grafts after EVLP reconditioning 

with 3_AB (WIE-3-AB group; p=0.0009, p=0.0325 and p=0.0419; WIE-3-AB vs WIE). 
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Figure 9.7 Graft edema, tissue necrosis and oxidative stress after lung transplantation  

A: Graft weight gain at 2 hours after transplantation. B: Protein content in BALF. C: LDH in BALF. D: MDA 

in BALF. Means±sem. *: p<0.05. 
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Graft inflammatory response was down-regulated by 3-AB after transplantation 

Following 2 hours of blood reperfusion, IL-6 (Figure 9.8A), TNF-α (Figure 9.8B) and 

CINC-1 (Figure 9.8C) in BALF were all substantially up-regulated as compared to the 

status before transplantation (Figure 9.4), indicating the inflammatory response. 

Furthermore, transplantation of lungs from the WIE group was associated with 

significant activation of IL-6, TNF-α and CINC-1 in comparison to both other groups. The 

expression of inflammatory cytokines in lungs undergoing 3-AB ex-vivo treatment was 

higher than in CI lungs (p<0.05), but was less as compared to those lungs injured by 

warm ischemia undergoing sham EVLP (p<0.05 for IL-6 and CINC-1, p=0.0584 for TNF-α 

WIE vs WIE-3-AB).    

 

Figure 9.8 Graft inflammatory response after transplantation 

A: IL-6 in BALF. B: TNF-α in BALF. C: CINC-1 in BALF.  Means±sem. *: p<0.05. 
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Inflammatory cell infiltration after transplantation 

Two hours following transplantation, an increased total cell counts in the BALF was 

noted in WIE group (p=0.0108 WIE vs CI), whereas a significantly lower cell count was 

found in BALF of lungs undergoing 3-AB treatment (p=0.0382 WIE vs WIE-3-AB) (Figure 

8.9A). Cell differentiation in BAL (Figure 9.9 B-E) showed that cells recruited in WIE 

(Figure 9.9C) and WIE-3-AB (Figure 9.9D) groups were predominately MNs. In contrast, 

MNs and PMNs were equally presented in CI group (Figure 9.9B). Furthermore, both cell 

types were present at high levels in the BALF of grafts of WIE group but not of WIE-3-AB 

group (Figure 9.9E).  

 

 

 

 



Experimental ex-vivo lung perfusion for reconditioning of lung grafts 

146 
 

Figure 9.9 Cytological assessment after transplantation 

A: Total cell counts in the BALF at 2 hours after transplantation. Microscopic view of cells in BALF at 2 

hours after transplantation in CI group (B), WIE group (C) and WIE-3-AB group (D). Graph E shows the cell 

counts of MNs and PMNs in all groups. 

Means±sem. *: p<0.05. 

MNs: mononuclear cells; PMNs: polymorphonuclear cells 

Magnification for B, C and D: 400 X 
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Discussion 

In this study, we demonstrated by using a rat model that ex-vivo inhibition of PN on 

damaged donor lungs obtained from extended warm ischemia led to a significant 

improvement of pre-transplant graft functional/biochemical outcomes, and remarkable 

benefit of alleviated IRI following transplantation. Focusing on the redox-based 

cytotoxicity during lung graft reperfusion/reoxygenation, our ex-vivo mediated 

pharmacological therapy further advances the fact that EVLP as a treatment platform to 

recondition injured donor lungs to be candidatable for the transplantation (38, 119, 

120). 

The application of damaged DCDDs, conceptually aiming to expand the lung donor pool 

is potentially at highly increased risk of PGD, particularly in the cases of uncontrolled 

DCDDs (uDCDDs) due to the warm ischemic damage ascribed to the uncertain period of 

agonal phase (28). It is noteworthy to underline that the donor lungs exposed to warm 

ischemia were intendedly allowed to become atelectatic before cold Perfadex flushing, in 

order to further detriment the graft. This procedure deprived lungs of oxygen in the 

alveoli and airways. Therefore, lung injury following WI was attributed not only to the 

warm ischemic time, but also partially the deflation procedure. In contrast, CI lungs 

were kept inflated during either the cold perfadex flushing or storage thereafter to 

assort as control, undamaged lung grafts, representing an ideal preservation.  

In this study, donor lungs in all experimental groups were preserved bilaterally to 

undergo the same conditions before transplant, then the left lungs were isolated for the 

following unilateral Ltx while the right lungs, which virtually contained identical pre-

transplant consequences of ischemia with (WIE or WIE-3-AB group) or without (CI 

group) EVLP as the left lungs were subjected to the biochemical assays. Given the 

interest to rule out the effect of EVLP before transplantation, separate handling of the 

bilateral lungs gives an opportunity to investigate the causal role of pharmacological 

EVLP to repair donor lung injuries and the preparation for post transplantation events. 

Furthermore, independent ventilation with precise control of transplanted graft 

following reperfusion allowed us to directly obtain samples or measurements reflecting 

the functional status of the grafts and the degree of lung injury in vivo (103).    

Donor lungs retrieved after prolonged WI elicited significant formation of MDA during 

EVLP, a marker of lipid peroxidation (194), pointing to the oxidative degradation of 

lipids with the process of lipid electrons loss and cell membrane damage mediated by 

the free radicals (195). MDA, as well as 4-hydroxynonenal (4-HNE) of reactive 

aldehydes, are two end products of in vivo lipid peroxidation (194) initiated by the PN 

and finally the activation of nuclear enzyme PARP for the induced DNA damage (56). WI 

lungs with copious MDA formation implied the triggering of “PN/PARP pathway”, which 

was entirely in line with massively increased 3-nitrotyrosine (3-NT) and poly (ADP 

ribose) (PAR), a footprint of PN generation and a marker of PARP activity respectively, 

as shown in our previous study (92). It is particularly noteworthy that due to the 

acellualr EVLP, there are possible other reactive oxidants instead of well recognized 
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infiltrating neutrophils as the main source of ROS/RNS contributing to the IRI. Indeed, 

the phase of our EVLP is more appropriately to be regarded as “anoxia-reoxygenation”, 

of which the endothelium and epithelium in the perfused lungs are the origins of oxidant 

production related injury (46). In addition, WIE lungs were associated with considerable 

MDA production following Ltx and 2 hours blood reperfusion, as compared to either CI 

lungs or per se before Ltx (Figure 8.3D), further reflecting the pathogenic role of PARP in 

oxidant injury in the lung grafts after transplantation.   

 Ex-vivo delivery of 3-AB largely suppressed the enhanced oxidative stress of WI lungs 

with reduced MDA following transplantation, as compared to the non-treated lungs and 

was identical to the CI lungs, suggesting potent protective effect of such ex-vivo 

treatment. In addition, WI lungs treated with 3-AB before Ltx was associated with non 

increased MDA, consistent with mitigated PAR and 3-NT in the previous observation 

(92), pointing to the reduced generation of reactive oxidants owing to the PARP 

inhibition, probably as well as its direct anti-oxidant property (135). 

Lung edema development is of the prominent consequences presented in IRI. Lungs 

underwent WI revealed significant edema formation during EVLP, as evidenced by the 

markedly enhanced lung weight gain and protein content in BALF, and was further 

pronounced when reperfused, implicating increased dysfunction of epithelial integrity 

(145). This alteration of protein-enriched edema, however, was significantly abrogated 

by 3-AB, either during EVLP or post Ltx, shedding light on its protective effect of 

alveolar-capillary membrane. In fact, biomembrane toxicity of ROS/RNS particularly 

lipid proxidation during reperfusion is the key factor inducing disruption of pulmonary 

endothelium and increased permeability (145, 195). 

In this study, we demonstrated clearly that cell necrosis was drastically promoted 

during EVLP lung of WI, shown as its general marker LDH. Taken together with the 

elevated PAR (substrate of PARP) (92), this result was consistent with the view of 

oxidant-dependent PARP activation pathway incurred in those lungs, which led to 

subsequent nicotinamide adenine dinucleotide (NAD) and ATP depletion then ultimately 

resulted in necrotic cell death (56). In contrast, 3-AB abolished the increased LDH 

release during both EVLP and blood reperfusion period, indicating the cytoprotective 

property of this compound mediated by the PARP inhibition. Similar results were 

reported in other type of cells as myocytes (196), renal (197) epithelial cells, thymocytes 

(198) etc, to cite only a few. 

Another major finding of the study was the inflammatory response. WIE lungs exhibited 

heightened pro-inflammatory cytokine IL-6 following EVLP, pointing to a redox-

dependent modulation of inflammatory signaling in the ischemic lung. Notably, such up-

regulation further responded up to 10-fold at 2 hours after transplantation, reflecting 

the critical role of cellular restoration featured reperfusion in the development of 

inflammation. Mainly secreted by macrophages, IL-6 is induced following the activation 

of signaling pathway, namely, p38 MAP kinase (MAPK) and nuclear factor kappa B (NF-

κB) (140), the activation of both are also attributed to the initiation of TNF-α (199), an 
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important signaling protein highly involved in systemic inflammation. Furthermore, 

prevailing in innate immune response and inflammation, pro-inflammatory cytokines 

mediated NF-κb activation yields the expression of chemokines, which acts as a 

chemoattractant for the neutrophil recruitment, such as IL-8 and its counterpart CINC-1 

in rats (200). WI lungs at the end of EVLP or after subsequent blood reperfusion exerted 

considerably over-expressed TNF-α and CINC-1, reinforcing the fact of activated 

inflammatory cascade. Anti-inflammatory effect of 3-AB on damaged WI lung was 

associated with markedly attenuated pro-inflammatory cytokines and chemokine as 

discussed above, implying the central role of PARP in mediating inflammatory response. 

It must be underscored that a principle function of activated PARP relies in its pro-

inflammatory promotion of many inflammatory mediators, cytokines, chemokines and 

adhesion molecules (201). Therefore inhibition of PARP and PN promotes the down-

regulation of pro-inflammatory signal pathway, which produces a self amplifying cycle 

and noxious cellular spilling to neighboring tissue for inflammatory cell injury (56).  

A straightforward consequence of lung edema and activated inflammatory response is 

the exacerbation of pulmonary physiological function, as observed in this study. WI 

injured lungs were associated with poor compliance and elevated PAWP over the period 

of EVLP, and displayed a persistent physiological deterioration after transplantation. 

This observation was in agreement of the development of interstitial and alveolar 

edema that resulted from the dysfunction of endothelial barrier, in the context of PGD 

featured IRI (202). As we expected, improved lung compliance and decreased airway 

pressure were shown in the WIE lungs treated by 3-AB, reflecting the protective 

property of endothelial hyperpermeability owing to the PARP inhibition. Surprisingly, 

beneficial effect of 3-AB treatment in WI lungs was limited with regard to the 

unimproved PVR and DppO2 during EVLP. It has been shown that PN possesses potent 

pulmonary vasodilating activity (147); therefore we speculate that the lack of such PN-

dependent vesodilation due to the possible direct antioxidant capacity of 3-AB (92, 203), 

may make up to the unchanged PVR. Based on our previous observation (92) and 

disclosed by Yeung et al (146), alteration of DppO2 as an index of oxygenation capacity 

on the EVLP lungs is probably misleading, due to the application of acellular perfusate. 

Nevertheless, after transplantation when graft circulation reestablished, WIE-3-AB lung 

was characterized with improved respiratory function at the end of reperfusion, as 

shown with significantly lower OI. It is worthy to mention that we use OI, defined as the 

reciprocal of PaO2/FiO2 ratio times MAP, to better represent the severity of oxygenation 

dysfunction because it takes airway pressure into account (204). Therefore, lower OI 

refers to a better in vivo lung oxygenation capacity in our experimental Ltx setting.  

Injured WI lungs presented an elevated cell migration after 2 hrs reperfusion in the 

BALF, deriving from cytokines-mediated inflammatory cascade. Ex-vivo 3-AB treatment 

prevented the increase of cell migration, underscoring its preponderant property of 

down-regulated inflammation in IRI (47). Interestingly, we found that accumulated 

leukocytes in BALF were predominated by MNs instead of PMNs, although CINC-

1(neutrophil attractant) was overexpressed in all the transplanted lungs when 



Experimental ex-vivo lung perfusion for reconditioning of lung grafts 

150 
 

reperfused (Fig 7C). Vigorous experimental evidences have been assembled to show a 

biphasic pattern of IRI in Ltx, of which donor macrophages mainly mediate the early 

phase of reperfusion injury, whereas in the delayed phase, recipient neutrophils are 

mostly involved (205, 206). Since we particularly sought to assess acute consequences 

of 2 hours reperfusion of transplanted donor grafts with or without ex-vivo 3-AB 

reconditioning, our observation was in agreement of the exhibition of bimodal pattern in 

IRI. Indeed, study with specific antibodies against PMNs confirmed that neutrophil-

mediated inflammatory events occurred primarily after 4 hours of reperfusion (207), 

conversely, first few hours of reperfusion is independent from neutrophils, during which 

macrophages exert more important roles (208-210).  

In summary, our study demonstrated that EVLP of DCDD lungs underwent extended 

warm ischemia displayed notable ischemia reperfusion injury following transplantation, 

as evidenced by increased oxidative stress, lung inflammation, pulmonary edema, cell 

death and deteriorated lung function. Ex vivo delivery of PARP inhibitor 3-AB markedly 

alleviated these alterations, ensuring the adequacy of damaged DCDDs lungs for the 

subsequent transplantation. Our results elucidate the central role of intervening PARP-

mediated IRI after lung transplantation, and further highlight the efficacy of EVLP as a 

therapeutic mean to recondition marginal lungs to eventually expand the donor pool. 
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Chapter 10 

General conclusions and future directions 
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Today lung transplantation is the only curative treatment for various end-stage lung 

diseases, but the proportion of donor lungs considered usable for transplantation 

remains low, leading to high waitlist mortality. It is therefore of paramount importance 

to increase the availability of donor lungs.   

One of the principle reasons for the low acceptance rate of potential donor lungs is the 

concern about graft dysfunction after transplantation resulting from ischemia 

reperfusion injury.  

The donor lung needs precise evaluation prior to transplantation. Since introduction of 

LTX in clinical practice the donor lung evaluation consisted of bronchoscopic and 

radiological examination and lung functional tests, etc, allowing identifying usable 

organs. With the increasing number of transplants performed using extended criteria 

donor lungs or lungs from DDCD donors, this may approach may become too imprecise 

and fail to detect usable lungs for transplant.  

Improved graft evaluation is mandatory when using extended criteria donor lungs. Ex-

vivo lung perfusion provides a more reliable approach to assess potential donor lungs 

and to identify injured organs before transplant. Moreover, EVLP can serve as a 

therapeutic platform to treat injured lungs previously deemed to be not transplantable.  

In this thesis we have established a model of EVLP to accurately assess rodent lungs and 

to investigate how different graft ischemic preservation conditions affect ex-vivo lung 

function. The lungs underwent a period of cold or warm ischemia before EVLP to mimic 

clinical conditions of ideal or marginal donor lungs. We have demonstrated that this 

EVLP model allows for quantitative assessment of lung injury related to warm ischemic 

times. Ischemic damage was associated with worsened pulmonary compliance, vascular 

resistance and edema. Lung injury as determined by ex-vivo lung function paralleled the 

biochemical and histopathological assessment of oxidative/nitrosative stress, cell 

necrosis and perivascular edema.  

We have assessed various ex-vivo treatment strategies. We sought to investigate 

whether damaged rat lungs after warm ischemia could be reconditioned during EVLP by 

pharmacological inhibition of (a) ROS/RNS formation, or (b) PARP activity, or (c) NF-κB 

activation, aiming to reduce ischemia reperfusion induced lung injury. We have also 

determined the therapeutic properties of volatile sevoflurane for ex-vivo post-

conditioning on damaged lungs. As expected, lungs exposed to extended warm ischemia 

developed severe ischemia reperfusion injury, characterized by poor pulmonary 

function, oxidative stress, PARP activation, tissue injury, and upregulation of 

inflammation either during EVLP or after lung transplantation. These alterations were 

significantly reduced by all tested therapeutic strategies delivered during EVLP, 

demonstrating, how EVLP could be used as a treatment platform for ex-vivo therapies, 

either to repair donor lung injuries or to prepare for post-transplant events.  
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Figure 10.1 EVLP in University Hospital of Lausanne
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