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A B S T R A C T

Deep learning models (DLM) are efficient replacements for computationally intensive optimization techniques.
Musculoskeletal models (MSM) typically involve resource-intensive optimization processes for determining
joint and muscle forces. Consequently, DLM could predict MSM results and reduce computational costs. Within
the total shoulder arthroplasty (TSA) domain, the glenohumeral joint force represents a critical MSM outcome
as it can influence joint function, joint stability, and implant durability. Here, we aimed to employ deep
learning techniques to predict both the magnitude and direction of the glenohumeral joint force. To achieve
this, 959 virtual subjects were generated using the Markov-Chain Monte-Carlo method, providing patient-
specific parameters from an existing clinical registry. A DLM was constructed to predict the glenohumeral
joint force components within the scapula coordinate system for the generated subjects with a coefficient
of determination of 0.97, 0.98, and 0.98 for the three components of the glenohumeral joint force. The
corresponding mean absolute errors were 11.1, 12.2, and 15.0 N, which were about 2% of the maximum
glenohumeral joint force. In conclusion, DLM maintains a comparable level of reliability in glenohumeral joint
force estimation with MSM, while drastically reducing the computational costs.
1. Introduction

The glenohumeral (GH) joint force refers to the force exerted by the
humerus on the glenoid fossa (Pataky et al., 2021). Although direct in
vivo measurement of this force is not feasible, except with instrumented
prostheses (Bergmann et al., 2011), computational musculoskeletal
models (MSM) enable its prediction (Sarshari et al., 2021a). However,
employing the MSM model directly for subject-specific shoulder model-
ing can be computationally demanding (Rane et al., 2019). To address
this challenge, deep learning presents a viable solution (De Vries et al.,
2016; Wang et al., 2020; Burton II et al., 2021). The computational
burden associated with subject-specific shoulder modeling using the
MSM model can be alleviated by leveraging deep learning techniques.

Deep learning models (DLM) can learn data representations with
multiple abstraction levels (LeCun et al., 2015). These models have
been utilized in numerous prediction problems with impressive perfor-
mance. In the scope of musculoskeletal dynamics prediction, several
studies have been conducted. Wang et al. (2020) used fully-connected
neural networks (FCNN) and XGBoost to predict the knee adduction
moment during walking with data collected from two low-cost wear-
able sensors. Burton II et al. (2021) performed prediction of lower
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extremity muscle and joint contact forces of total knee replacement
patients from joint kinematics, ground reaction forces, and anthropo-
metrics during four different activities of daily living with recurrent
neural networks, convolutional neural networks, and FCNN. Zhang
et al. (2022) predicted the joint angle and muscle forces at the knee
joint during different walking speeds, and at the wrist joint during
wrist flexion/extension, from the electromyography (EMG) data with
physics-informed FCNN. Giarmatzis et al. (2020) developed FCNN and
support vector machines to predict all components of medial and lateral
knee contact forces during different gait speeds based on optical motion
capture. Other studies performed prediction of elbow torques and limb
movements from EMG data with convolutional and recurrent neural
networks (Song and Tong, 2005; Xia et al., 2018), prediction of muscle
lengths and moment arms based on joint angles generated from an
arm and hand model using FCNN (Smirnov et al., 2021), prediction
of internal muscle forces based on kinetic, kinematic, and EMG mea-
surements with FCNN (Rane et al., 2019). These models’ inputs were
kinematics or EMG data. A fast and easy evaluation of the MSM results
without needing motion data for every subject would be preferable for
researchers performing patient-specific finite element analysis.
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Table 1
Number of generated virtual subjects by implant type and sex.
Implant/Sex Female Male

Anatomical 251 233
Reverse 243 232

Therefore, we aimed to predict patient-specific glenohumeral joint
orce (the reaction force on the glenoid) with a DLM, using training data
rovided by an upper-limb patient-specific MSM, and generated sub-
ects from an existing clinical registry. Several anatomical features and
urgical options were considered, with the final objective to facilitate
SA patient-specific finite element modeling.

. Methods

.1. Data

We generated 959 virtual subjects (Table 1) from an upper-limb
usculoskeletal model (Sarshari et al., 2021a). For each virtual subject,
e considered sex, height, weight, glenoid version, glenoid inclination,
nd the physiological cross-sectional area (CSA) of the four rotator cuff
uscles: supraspinatus (SS), infraspinatus (IS), subscapularis (SC), and

eres minor (TM). These anatomical features were considered for both
natomical and reversed TSA. We simulated three activities: abduction
n the scapular plane, abduction in the scapular plane with a mass of

kg in hand, and abduction in the frontal plane with a mass of 2 kg
n hand. Based on these inputs, the MSM calculated the upper-limb
uscles and glenohumeral joint force as a time series associated with

ctivity time. We considered the following abduction angles: 30, 40,
0, 60, 70, 80, 90, and 100 degrees. The abduction activities simulated
y the MSM were based on recorded motion and EMG data (Sarshari
t al., 2021b), and scaled based on patient-specific parameters (Sarshari
t al., 2021a).

The virtual subjects were generated by the Metropolis Monte-Carlo
arkov Chain (MCMC) algorithm (Geyer, 2011). We replicated four

roups of subjects: males with anatomical TSA, females with anatom-
cal TSA, males with reversed TSA, and females with reversed TSA
Table 1). Samples were generated by MCMC for each of these groups,
or all parameters mentioned above, from their distributions based on
n existing clinical registry (Fig. A1–A9 in the supplementary data).
his clinical registry consisted of preoperative and postoperative clini-
al data and computed tomography (CT) scan images of patients who
nderwent anatomical or reversed TSA (Mariaux et al., 2021). We used
T scans to calculate the glenoid version, the glenoid inclination, and
he CSA of the rotator cuff.

.2. Deep learning model optimization

The mentioned 12 features were the input and the components (x,
, z) of the glenohumeral joint force were the output of the model.
e optimized the hyperparameters of the DLM, which was a fully-

onnected neural network, with Bayesian optimization provided by
eras-tuner (O’Malley et al., 2019). We explored the considered hy-
erparameters search space for 100 iterations (Table 2). This search
pace consisted of the following range of variables: from 2 to 10 hidden
ayers with a step of one, from 20 to 250 neurons with a step of
0, two possible activation functions (Exponential Linear Units (ELU),
nd rectified linear unit (ReLU)), whether or not to use dropout and
f yes a rate between 0.05 to 0.5, three possible optimizers (Adam,
adam and stochastic gradient descent (SGD)). For Adam and Nadam,
n initial learning rate between 1e-5 and 1e-2 was considered, while
n exponential learning rate schedule was used for SGD (Table 2).
he output layer included three neurons for the three glenohumeral

oint force components (GHFx, GHFy, and GHFz) in the scapula co-
2

rdinate system (Terrier et al., 2014): 𝑥 for postero-anterior, 𝑦 for
infero-superior, and z for medio-lateral (right scapula). We evaluated
the model using the coefficient of determination and the mean absolute
error of the glenohumeral joint force components and magnitudes as
well as the mean angular difference between the force vectors resulting
from MSM and DLM. We also compared the computation time between
MSM and DLM.

The training dataset included 85% of the whole data (815 cases)
and the remaining 15% (144 cases) was used as the test dataset for
the final evaluation of the model. Besides, 15% of the training dataset
(122 cases) was used for validation, to optimize the hyperparameters.
The models were developed with the TensorFlow library 2.12.0 (Abadi
et al., 2015) in Python 3.10 (Van Rossum and Drake, 2009). The
choice of 815 cases for training was justified by the evaluation of the
generalization performance of the model (A10 in the supplementary
data).

The virtual patients dataset, DLM Python code, and simulation
results are available at c4science.ch/diffusion/DLMMSM/. The MSM is
available at c4science.ch/source/msm_ul/.

3. Results

The optimized DLM consisted of 7 hidden layers, with 250, 20, 250,
160, 90, 90, and 100 neurons, respectively. Each layer was followed by
a dropout layer with a 0.05 rate and a batch normalization layer. The
activation function of each hidden layer was ELU. The optimizer was
Adam with an initial learning rate of 1e-5 (Fig. 1, Table 2).

The coefficients of determination for the prediction of the three
components and the magnitude of the glenohumeral joint force, GHFx,
GHFy, GHFz, and GHFm were 0.97, 0.98, 0.98, and 0.97 (Fig. 2). The
corresponding mean absolute errors were 11.1, 12.2, 15.0, and 17.9
N, about 2% of the maximum glenohumeral joint force (approximately
800 N). These results were averaged for all abduction angles: 30, 40,
50, 60, 70, 80, 90, and 100 degrees (Fig. 3). The mean difference
between the MSM and DLM resultant force vector direction was 3.4
degrees.

We also evaluated the model on the abduction angles not presented
in the training dataset: 25, 35, 45, 55, 65, 75, 85, 95, and 105 degrees.
The GHFx, GHFy, GHFz, and GHFm coefficients of determination,
averaged for all abduction angles, were 0.97, 0.98, 0.98, and 0.97, and
mean absolute errors were 11.7, 12.9, 16.1, and 18.5 N (Figure A11).

The computation time of the glenohumeral joint force was less than
one second in DLM, while it took 30 to 45 min with the MSM on a
standard workstation.

4. Discussion

This study aimed to test the possibility of getting the glenohumeral
joint force prediction of an MSM by a DLM. We successfully obtained an
optimized DLM providing predictions with a mean absolute error below
15.0 N for all components of the force, which is acceptable compared
to the overall uncertainty of MSM predictions (Menze et al., 2023). The
main advantage of the DLM over the MSM is the much lower required
computation time: less than 1 s vs 30–45 min on a regular workstation.
Besides, it would be much easier to integrate the DLM within a larger
workflow, including finite element simulations, statistical modeling,
and preoperative planning for TSA. The method provided here could
be easily extended to other joint and muscle force predictions.

The reliability of our DLM was acceptable compared to other DLMs
for MSM parameter prediction. A neural network was developed to map

https://c4science.ch/diffusion/DLMMSM/
https://c4science.ch/source/msm_ul/


Journal of Biomechanics 163 (2024) 111952P. Eghbali et al.
Fig. 1. DLM architecture; input layer with 12 features, 7 hidden layers with 250, 20,
250, 160, 90, 90, and 100 neurons, respectively, followed by a Dropout layer with a
0.05 rate and a batch normalization layer, and an output layer with 3 neurons for the
components of the glenohumeral joint force.

kinematics and shoulder muscle EMG, recorded for one subject, to the

glenohumeral joint reaction force (De Vries et al., 2016). They reported

0.83–0.98 intraclass correlation coefficients between the MSMs and the
3

neural network’s joint reaction force time series for different shoulder
activities. The MSM employed in their study was the Delft Shoulder
and Elbow Model, DSEM (Van der Helm, 1994). Sharma et al. (2022)
developed machine learning models for predicting different upper-
limbs MSM (www.anybodytech.com) results based on motion data,
recorded from five subjects. They evaluated linear models and neural
networks and reported a minimum of 23% of normalized (based on the
MSM predictions) RMSE for different joint reaction forces. Mubarrat
and Chowdhury (2023) developed a convolutional long short-term
memory (LSTM) model to predict shoulder joint reaction forces based
on motion data for eight participants. They reported a mean of 18.6%
normalized RMSE for medial-lateral, 19.2% for inferior–superior, and
21.3% for anterior–posterior force for their best model. Their ground
truth resulted from AnyBody software. These three studies had funda-
mental differences from ours. In the first study (De Vries et al., 2016),
the input data comprised 3D kinematics and EMG signals captured
during random upper extremity movements and active daily living
tasks (e.g., brushing teeth). For the second study (Sharma et al., 2022),
the input was motion data for the Reach-to-Grasp task in the forward
direction executed at a self-selected pace. In the third study (Mubarrat
and Chowdhury, 2023), the input consisted of 3D shoulder kinemat-
ics data collected across 30 different shoulder activities. However, in
our case, the input was MSM results for three shoulder abductions.
Moreover, their input was recorded data for every patient, while the
MSM we used scaled recorded data for one subject based on patient-
specific parameters (Sarshari et al., 2021a,b). The models of De Vries
et al. (2016) and Mubarrat and Chowdhury (2023) predicted the time
course of the glenohumeral joint force, and the model of Sharma
et al. (2022) predicted the time course of different MSM outcomes
(e.g., joint angles and forces, muscle forces, and activations). The
prediction of our model was the glenohumeral joint force for a specific
elevation angle, but although the model was only trained on some
elevation angles, it could make predictions for any elevation angle
(Fi. A11 in the supplementary data).

The main limitation of the present DLM is the restricted number of
activities considered. We indeed replicated the elevation movements
in two different planes. However, this was a reasonable choice for
this methodology study. Besides, we may restrict these simple move-
ments for future potential applications in design testing of preoperative
planning. We assume that the method presented here could be easily
and successfully applied to the other movements implemented in the
used MSM (Sarshari et al., 2021a). This model is restricted to the
prediction of glenohumeral joint force for one of the three activities in
the training dataset. An alternative would have been to train the model
with a set of joint angles, which would have allowed prediction for
any combination of joint angles representing other activities. However,
for practical reasons, we intentionally restricted the model to three
important movements in order to obtain a reasonable prediction of
typical glenohumeral forces without requiring kinematics data as input.
The present model could be extended by assigning joint angles to
the joint forces independently of activity, but in this case, we would
require kinematic measurements as input. Since the present model
does not require motion capture, it offers the advantage of a fast
and simple estimation of the glenohumeral joint force, which can be
Table 2
DLM hyperparameters’ range of and optimized values.
Hyperparameter Range Optimized value

Number of hidden layers [2, 10] with step = 1 7
Number of units in each hidden layer [20, 250] with step = 10 [250, 20, 250, 160, 90, 90, 100]
Activation function [ReLU, ELU] ELU
Dropout [True, False] True
Dropout rate [0.05, 0.5] 0.05
Optimizer [Adam, Nadam, SGD] Adam
Adam and Nadam optimizer learning rate (lr) [1e−05, 1e−02] 1e−05
SGD exponential decay (lr) schedule initial (lr) [1e−05, 1e−02] –
SGD exponential decay (lr) schedule decay rate [0.5, 0.99] –

http://www.anybodytech.com


Journal of Biomechanics 163 (2024) 111952P. Eghbali et al.
Fig. 2. Correlation between the MSM and DLM values of the components (GHFx, GHFy, GHFz, GHFm) and the magnitude (GHFm) of the glenohumeral joint force at different
abduction angles: 30, 40, 50, 60, 70, 80, 90, 100 degrees. The average coefficients of determination were 0.97, 0.98, 0.98, and 0.97 for GHFx, GHFy, GHFz, and GHFm, respectively.
used, for example, in finite element modeling of the glenoid bone.
As a secondary limitation, compared to the model of De Vries et al.
(2016) and Mubarrat and Chowdhury (2023), we may report the fixed
angles of elevation, instead of the full range of motion. However, as
we focused on a simple elevation movement, this choice was more
straightforward and more rational, especially for interpreting the re-
sulting output. The interval of 10 degrees of elevation between each
prediction was also sufficient to report the force variation. Anyway, for
more complex movements, where the elevation angle could not be used
as a pseudo-time parameter, the same method could be applied using,
for example, discrete values of the percentage of the movement cycle as
a pseudo-time parameter. Still, our choice of fixed and limited pseudo-
time points holds value in the rapid estimation of the glenohumeral
joint force for daily living activities, which can benefit patient-specific
shoulder modeling or preoperative planning software. In this context,
considering selected angles during abduction appears to be a reasonable
choice. The third limitation concerned using motion data, captured
from one subject and scaled for virtual subjects. Although this cannot
be as accurate as capturing motion data for all subjects, it is the more
feasible approach as capturing motion data for hundreds of subjects
would be much more expensive and laborious and, to our knowledge,
has not yet been reported in the literature.

Deep learning has the potential to offer a faster estimation of the
glenohumeral joint force compared to MSM while maintaining com-
parable reliability. This can considerably simplify the patient-specific
4

prediction of glenohumeral joint force so that it can be used with finite
element analysis to test the design of glenoid implants or to test surgical
techniques. By leveraging deep learning techniques, computational ef-
ficiency can be improved without sacrificing the reliability of the force
estimation. Consequently, deep learning provides a promising avenue
for advancing patient-specific shoulder analysis such as automating the
patient-specific modeling workflow and applying it to large cohorts of
patients.
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Fig. 3. Glenohumeral joint force components (GHFx, GHFy, GHFz) and magnitude (GHFm) vs. abduction angle predicted by the MSM (curve) and DLM (red points). This virtual
subject was a male, 85.0 kg, 175 cm, having −2.0 degrees of glenoid (retro)version, 6.0 degrees of glenoid inclination, a CSA of 5.5, 7.0, 12.0, and 2.5 cm2 for the SS, IS, SC,
nd TM, respectively, with an anatomical TSA implant, and performing an abduction in the scapular plane with 2 kg in hand. We presented this virtual subject as his parameters
epresented the average values of the generated parameters’ distributions by MCMC (Fig. A2–A9).
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