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decision-making.
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AS A RESULT OF SPECTACULAR IMPROVEMENTS IN

diagnostics and treatment options, survival of
patients with congenital heart disease (CHD)

has increased dramatically. However, long-term
morbidity and mortality are substantial as is the
need for reinterventions.1

Imaging features prominently in the pre and
postoperative management of patients with CHD.
Diagnostic accuracy, burden to the patient, avail-
ability, and economics all have a role in the choice of
the appropriate imaging modality in clinical practice.
Echocardiography remains the mainstay of cardio-
vascular diagnostics, but other techniques are gaining
in importance, particularly cardiovascular magnetic
resonance (CMR) and computed tomography (CT;
Table 1). Existing expert opinion-based guidelines,
focused on adult populations, for the proper utiliza-
tion of CMR are available.2 Specific challenges apply
to imaging children and adolescents with CHD.
These include the even more pressing need to avoid
the use of ionizing radiation, assessment of anatomy
that is often complex and involves small structures, as
well as imaging at fast heart rates. The current paper
aims to express the consensus among experts in the
field of paediatric CMR regarding its use in young
patients with CHD. It is beyond the scope of this
paper to discuss all technical details of CMR imaging
in CHD, which have been addressed elsewhere
recently,3 much more to describe the use of CMR in
specific paediatric clinical situations.

Settings and techniques

In contrast to scanning adults with ischaemic heart
disease, the CMR approach to paediatric patients
with CHD has to be individualized and nearly all
sequences need to be adapted to the patient’s size,
age, heart rate and, of course, the specific clinical
question.4,5 Therefore, it is of critical importance that
CMR studies of young patients with CHD are per-
formed in centres with expertise in both the haemo-
dynamic situation at hand and the CMR technique
used.4,5 The presence of an expert CMR reader
throughout the length of the study is typically
required, as each heart is different and the sub-
sequent imaging steps need to be individually tai-
lored upon on the findings observed. High-quality
results can be achieved only with a commitment to
invest time and resources for sometimes lengthy scans
and laborious post-processing of the data. Require-
ments regarding dedicated training for performing
congenital CMR have been published.6 Require-
ments for institutional accreditation, and particularly
regarding a minimal case load, are available for adult
general CMR in Europe, but are still lacking for
paediatric heart disease and for CHD.7

Basic sequences used in paediatric CMR
The sequences utilized in routine paediatric CMR can
be divided into three main categories, following their
purpose: to define morphology, to assess function,

Table 1. Comparison of available imaging modalities for assessment of different conditions.

Echo CMR CT Catheterization

Aortic arch + + + ++ ++ + + + +
Pulmonary arteries + + + ++ ++ + + + +
Pulmonary veins + + + ++ ++ + + +

Precise anatomical information
+ flow measurements

Wedge pressure

AV valves + + + + (+) +
Pressure gradients

Semilunar valves + + + + + + +
Quantification of regurgitation Pressure gradients

Complex CHD + + + ++ ++ + +
Precise anatomical information
+ flow measurements

Pulmonary arterial pressure

Coronary arteries + + + ++ + + + +
Only proximal
segments

Gold standard

Tissue characterization (tumours
and cardiomyopathies)

+ + ++ + (+)

Ventricular function + + + ++ (+) + +
ECG-gated CT

Flow measurements + + ++ – –
Shunt quantification + + ++ – + + +

(+): limited application, major limitations; + : can be used in the assessment of this lesion, but has some significant limitations and better alternatives are
available; + + : useful ommonly applied in the assessment of the lesion, and it may present some limitation; ++ + : technique of choice for the assessment
of the lesion; – : cannot be adequately with this modality.
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including ventricular volumes and blood flow, and to
define myocardial tissue properties, including myo-
cardial perfusion as well as fibrosis. Recommenda-
tions for sequences to be used for a given lesion are
summarized in Table 2.
Anatomical imaging. In spin-echo imaging pulse

sequences (often referred to as ‘darkblood’ or ‘black-
blood’ sequences), flowing blood appears dark
whereas stationary tissues appear as varying shades
of grey.8 The main advantage of spin-echo sequences
is that they are less susceptible to artefacts caused by
turbulent flow and metallic implants.9 Respiratory
motion is usually addressed by breath-holding,
multiple averages, or diaphragm tracking.
In steady-state free precession (SSFP) acquisitions,

blood appears bright. Images can be displayed as a
cine loop.8 Two-dimensional (2D) SSFP is the most
frequently used sequence for anatomical imaging in
CHD, as it allows views in any desired plane and adds
qualitative information about function and valve
motion. Image acquisition is usually performed dur-
ing breath-holding. However, images can also be
acquired during free-breathing in most paediatric
patients. Cardiac motion is usually controlled by
means of retrospective gating to ECG as this allows
including the end-diastolic heart phase, as opposed to
prospective ECG-triggering.
Contrast-enhanced magnetic resonance angio-

graphy (CE-MRA) uses intravenously administered
gadolinium-based contrast agents to reduce T1
relaxation time of blood and improve the contrast
between the blood pool and the surrounding tis-
sue.10,11 The increased contrast (signal) allows
adjusting the acquisition parameters for obtaining
high-resolution images.12,13 The dataset – a full
volume composed of a stack of contiguous slices – can
be reconstructed in any desired oblique plane

(multiplanar reformats and maximum intensity
projection images) or volume-rendered in a three-
dimensional (3D) image. For optimal quality of the
CE-MRA images, the sequence and particularly the
timing of image acquisition need to be designed for
the clinical question and the vessels that need to be
assessed. Even in small children, high spatial resolu-
tion with submillimetre resolution can be achieved
with CE-MRA in which the images are acquired
during breath-holding.14,15 Using this technique,
even subtle variations in luminal diameters can be
detected. Thus, CE-MRA has become widely accepted
in the diagnosis of vascular disease in children, and
cardiac catheterization can frequently be avoided.13,16,17

CE-MRA is acquired without ECG-triggering and
the reconstructed images represent an average
appearance over the cardiac cycle. For this reason the
edges of pulsatile vascular structures, such as the
aortic root, as well as the coronaries appear blurry.
In time-resolved MR angiography techniques, the

dynamic distribution of contrast medium into the
pulmonary vasculature can be observed. Without
dedicated timing of image acquisition, artefacts from
motion are minimized and separation of arteries and
veins is possible.18

3D SSFP is an ECG-triggered pulse sequence with
respiratory motion compensation by diaphragmatic
navigators19–21 or navigation on the heart itself,
called self-navigation.19 These sequences can be
combined with contrast media or not and produce a
high-resolution 3D dataset of the whole heart and
intrathoracic vasculature.20–22 Owing to the double
gating (ECG and respiratory), cardiovascular struc-
tures close to the heart, such as the aortic bulb and the
proximal coronary arteries, can be delineated very
clearly.19,23,24 Image reconstruction is usually performed
using multiplanar reformatting.

Table 2. Summary of the sequences recommended for imaging different conditions.

CMR sequence

Lesion BB SE 2D SSFP PC flow 3D CE-MRA 3D SSFP Perfusion imaging LGE

Aortic arch anomaly + ++ + + + ++ ++ *
Pulmonary arteries + + + + + ++ ++ *
Pulmonary veins + + + + ++ ++ *
Shunt lesions + + ++ + + + + +
TOF + + ++ + + + + + + ++ * + +
Complex CHD + + ++ + + + + + + ++ +
Single ventricles + + ++ + + + + + + ++ * + +
Intracardiac tumours + + ++ + ++ + +
Cardiomyopathies + ++ + + + + + + +
Coronary arteries ++ + ++ + +

+ : may be used in the assessment of this lesion, but better alternatives available or does not provide additional information over other techniques; ++ :
useful technique, commonly applied in the assessment of the lesion; + ++ : needs to be part of any study in this lesion.
*If contrast needs to be avoided. BB SE, Black blood spin-echo.
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Functional imaging. Ventricular volumes and
ejection fraction are assessed by acquisition of a
stack of SSFP cine slices (as described above) covering
the entire heart.8 The stack can be aligned in a ventricular
short-axis plane parallel to the atrioventricular valves or
perpendicular to the ventricular septum or in an axial
plane transverse to the thorax.25–28 Measurements should
be performed consistently using the same orientation, as
results from short axis and axial orientations are not
interchangeable. On the stack of cine slices, end-diastolic
and -systolic volumes and mass of both ventricles are
derived by contouring the endocardial and epicardial
borders. This method is based on Simpson’s summation
of discs method with minimal geometrical assumption.
This is of particular importance in the right ventricle or
in functionally single ventricles. Normal values for both
ventricles and both atria have been published in
children,25–27,29 and high reproducibility of the
measurements has been demonstrated in children with
CHD and with normal hearts.25,30 A consensus policy
regarding ventricular segmentation, i.e. inclusion or
exclusion of papillary muscles and trabeculations, leads to
an even better reproducibility of the measurements.31

Blood flow across a vessel can be measured accu-
rately by using a velocity-encoded phase-contrast
(PC) cine sequence. Typically, a slice is placed per-
pendicular to the vessel of interest. After contouring
the vessel of interest, the volume of blood passing
through the plane is calculated as the product of
velocity and cross-sectional area.32 In general, when
assessing CHD, it is advisable to perform measure-
ments in all large arteries, i.e. aorta, pulmonary
trunk, and side branches, as well as in the caval veins
and to compare the results for internal consistency.
First-pass myocardial perfusion imaging uses the

dynamic inflow of gadolinium-based contrast med-
ium into the myocardium to depict zones of decreased
perfusion. Areas of reduced myocardial perfusion will
remain dark, whereas normal perfusion shows a
bright myocardial signal with the advent of gadoli-
nium. The test can be performed at rest or under
pharmacological stress for more clear depiction of
ischaemia.8,33,34 The option to perform perfusion
imaging at rest and during stress in combination
with superior spatial resolution compared with single
photon emission computed tomography (SPECT)
makes it an attractive technique.35

Stress imaging assesses ventricular function by 2D
SSFP under pharmacological stress with dobutamin
or exercise stress with CMR-compatible equipment.
Stress imaging is performed in some centres in selected
borderline clinical situations to test contractile reserve
of a systemic chamber, such as in a right ventricle in
systemic position or in univentricular hearts.36

Late gadolinium enhancement (LGE), or myocardial
delayed enhancement, is a technique demonstrating

abnormal deposition of contrast agent within the myo-
cardium late after contrast medium injection. The focal
hyperenhanced areas represent regions of myocardial
fibrosis.8 Fibrotic and necrotic areas in the myocardium
appear bright on LGE images in contrast to the dark
healthy myocardium. In children with CHD, LGE may
result from scars after infarction, surgical scars in the
myocardium, and/or from surgically placed patches.37

In younger children, obtaining adequate temporal
and spatial resolutions may represent a technical
challenge, as the structures of interest are smaller and
heart rates higher than in adults.14

Expert consensus key points.

(i) Black-blood spin-echo, 2D SSFP, and 3D SSFP
techniques as well as contrast-enhanced MR
angiography are the most important sequences
for anatomical imaging in CHD.

(ii) In children, higher spatial and temporal resolution
is required to account for higher heart rates and
smaller anatomical structures than in adults.

(iii) CMR is the current clinical gold standard for
measurements of ventricular function and
blood flow. Both are crucial components of a
CMR examination in patients with CHD.

Sedation and anaesthesia
In younger children, typically before school-age,
a CMR examination usually requires sedation or
general anaesthesia. In young patients with complex
CHD, in spite of the burden of general anaesthesia,
CMR can be utilized for completing diagnosis before
surgical repair or for planning other therapeutic
interventions,5,14 and purely diagnostic cardiac
catheter examination with its related potential
complications can usually be avoided.38–40

The preferences and availability of sedation and/or
general anaesthesia differ from centre to centre, and
advantages and risks of each technique are discussed
elsewhere.41,42 When sedation or general anaesthesia
is used, appropriate monitoring of the patient and
presence of an expert team which is versed in the
administration of drugs and equipped to deal with
emergencies is mandatory.
Even though patients under anaesthesia, infants

younger than 1 year, inpatients, and ICU patients are
at higher risk for adverse events during CMR than
the general outpatient population,43 it has been
shown that CMR can be safely performed even in
critically ill infants, if carried out by a dedicated
team.44 Careful analysis of the risks and benefits of a
CMR examination under general anaesthesia needs to
be performed before the procedure.
Certain patient groups, including those younger

than 3 months of age, patients with a functional
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single-ventricle physiology, pulmonary hyperten-
sion, unrepaired cyanotic CHD, or airway pathology,
may require hospitalization.45

Expert consensus key points.

(i) Dedicated staff and MR compatible equipment
are necessary for performing general anaesthe-
sia or deep sedation in children with CHD
undergoing CMR.

(ii) In patients requiring anaesthesia or sedation, the
risks and benefits of the procedure should be
balanced carefully.

Safety and contraindications
Except for patients requiring general anaesthesia, the
safety issues for CMR in children with CHDdo not differ
from those in general paediatric magnetic resonance
imaging, and CMR is a safe imaging procedure. The
main advantages of CMR are the lack of ionizing radia-
tion and its non-invasiveness. Particularly, the use of
radiation-free modalities is very important in children, as
their risk for developing radiation-induced cancer is three
to four times higher than in adults.46 Correspondingly,
CMR has a favourable benefit/risk profile compared with
cardiac catheterization and CT.47

The most important step to reduce potential risks of
CMR scanning is to establish a strict policy of screening
before CMR for the patient and all accompanying per-
sons, including parents and medical personnel.48 This is
particularly important to avoid the so-called missile
effect caused by ferromagnetic objects drawn rapidly
into the scanner by massive magnetic forces.49

Other potential safety issues related to CMR relate
to hyperthermia, acoustic noise, implantable devices,
and nephrogenic systemic fibrosis (NSF).
If used according to the manufacturer’s recom-

mendations, CMR at 1.5 or 3 T does not pose any
safety concerns with regard to energy deposition and
hyperthermia.50 Nevertheless, it is important to note
that thermoregulatory mechanisms are immature in
infants, abnormal in patients with cardiovascular
disease, and can be influenced by some medications
such as diuretics, calcium blockers, beta-blockers,
amphetamines, and sedatives. Acoustic noise during
CMR scanning can cause temporary or permanent
hearing impairment. Adequate precautions to shield
patients, including infants, should be taken at all times.
In general, most cardiovascular devices implanted

nowadays are MR compatible and safe to be scanned.
www.mrisafety.com provides specific safety information
for specific devices and should be consulted before
scanning.51 Cochlear implants and cerebrospinal fluid
shunts are non-cardiovascular implants that may be
present in CHD patients. CMR is contraindicated in
patients who have a cochlear implant. Most cerebrospinal

shunts are CMR compatible, but manufacturer-specific
safety guidelines must be followed.
Cardiac pacemakers and implantable cardioverters/

defibrillators (ICDs) are generally considered a rela-
tive contraindication to entering the MR environ-
ment.52 CMR-compatible cardiac pacemakers have
been recently developed and are currently under-
going testing.53

Severe complications of gadolinium-derived contrast
agents are rare in paediatric patients. Common side
effects include extravasation of the contrast agent and
allergic reactions from mild skin rash to cardiovascular
decompensation. NSF is a rare but serious condition
that consists of fibrosis of skin, joints, eyes, and internal
organs.54 The development of NSF has been linked to
the biochemical structure of gadolinium-containing
contrast agents in the presence of end-stage renal failure.
Thus, all patients who are candidates for gadoli-
niumderived contrast medium administration must be
screened for renal dysfunction, and in infants ionic
macrocyclic contrast agents should be used.55,56

Expert consensus key points.

(i) CMR in children and adolescents with heart
disease has a high safety profile.

(ii) Lack of radiation is the most striking advantage
over other advanced imaging modalities.

(iii) Main contraindications for CMR in childhood
are cochlear implants, old-generation pacemakers,
ICDs, and other noncompatible implants.

(iv) The use of gadolinium-derived contrast agents is
contraindicated in children with end-stage renal
failure, due to the risk for developing NSF.

Clinical applications

Aortic arch anomalies
Common indications for performing CMR in
anomalies of the aortic arch include vascular rings
(Fig 1), interrupted aortic arch, truncus arteriosus
communis, complex forms of aortic coarctation, and
congenital connective tissue disorders, such as Marfan
and Turner syndrome.57,58 CMR can be performed at
the time of diagnosis in order to refine an echocardio-
graphic diagnosis and during follow-up after surgical
correction or catheter intervention, when residual or
recurrent stenoses and/or aneurysms need to be ruled
out.58–60 Stents in the aortic arch are not a contra-
indication for CMR; however, CMR is not suited to
evaluate stent patency. The sequences used for imaging
the aortic arch are summarized in Table 2.
The sensitivity of CMR techniques to detect vas-

cular abnormalities is as good as that of conventional
catheter angiocardiography (Table 1), so that cardiac
catheterization can be reserved for selected cases and
for catheter-guided interventions.61
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The ability to generate 3D anatomical images by
CEMRA or 3D SSFP allows decision-making on the
most appropriate treatment technique, i.e. cardiac
surgery or catheter-guided intervention.61–64 CT
angiography is a sound alternative particularly when
associated airway anomalies are suspected and/or
when the clinical scenario is that of a young and sick
infant or neonate.
In coarctation of the aorta, haemodynamic assess-

ment is performed with a velocity-encoded PC cine
sequence using high velocity encoding typically of at
least 200 cm/s.65 Flow measurements are usually
performed in a perpendicular plane through the
ascending aorta, proximal descending aorta (aortic
isthmus, immediately distal to the stenosis), and at
the level of the diaphragm. An increase in flow
between the distal aortic arch and the descending
aorta at the level of the diaphragm is indicative for
significant collateral circulation. In addition, the
velocity of the jet at the level of the stenotic isthmus,
if PC measurement is performed accordingly, provides
semi-quantitative information about the severity of
vascular narrowing.

Expert consensus key points.

(i) CMR is the first-line advanced imaging technique
beyond echocardiography for the anatomical
assessment of aortic arch anomalies.

(ii) Reconstructed 3D CMR images are helpful for
planning interventions of the aortic arch.

(iii) CMR has an important role in follow-up after an
intervention.

(iv) Blood flow measurements add functional infor-
mation to the anatomical images.

The pulmonary arteries
The advantages of CMR imaging compared with
other modalities are very good anatomical visualiza-
tion of right ventricular outflow tract (RVOT),
pulmonary bifurcation, and pulmonary side bran-
ches, combined with functional information. CMR
is the only technique allowing quantitative flow
measurements in the pulmonary arteries (Table 1).66

Anatomical imaging of the pulmonary arteries can
be done by various angiographic techniques, as
described above and in Table 2.57,67 CE-MRA has
been validated against conventional angiography13

and has also been demonstrated to reliably detect
aorto-pulmonary collateral arteries in tetralogy of
Fallot (TOF) with severe pulmonary stenosis or
atresia.16 Furthermore, CMR provides clear visuali-
zation of the spatial alignment of the pulmonary
bifurcation, as well as of the relationship between the
pulmonary arteries and the surrounding structures,
as the airways and other vascular structures such as
the aorta (Fig 2).67

Flow measurements by velocity-encoded PC cine
add functional information to anatomical findings
and are crucial for assessing the need for interven-
tions (Fig 2). Flow redistribution in the pulmonary
arteries has been observed not only in the presence of

Figure 1.
Double aortic arch as shown in a 3D reconstruction from a contrast-enhanced MR angiography. View from the front (a) and from cranial (b).
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Figure 2.
In a patient with transposition of the great arteries, who underwent the arterial switch operation with Lecomte manoeuvre, contrast-enhanced
MR angiography demonstrates well the relationship between the pulmonary arteries and the surrounding structures, in this case the ascending
aorta (a). Flow measurements in the right pulmonary artery (b) and in the left pulmonary artery (c) show a balanced lung perfusion
with 50%/50% flow to the right and to the left. AO, aorta; MPA, main pulmonary artery; LPA, left pulmonary artery; RPA, right
pulmonary artery.
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pulmonary artery stenosis, but also in pulmonary
venous obstruction.68–70 Beside quantitative flow
assessment, qualitative flow profiles may provide
information about anomalous pulmonary resistance.
The presence of a stent in a pulmonary artery does

not represent a contraindication for performing CMR
imaging during follow-up assessment. Flow mea-
surement can still be performed accurately, if PC cine
images are acquired at a reasonable distance from the
stent. Alternatively, pulmonary venous flow can be
used as a surrogate for ipsilateral pulmonary arterial
flow (Table 3).

Expert consensus key points.

(i) CMR combines a detailed visualization of the
spatial alignment of the pulmonary arterial
bifurcation and the side branches.

(ii) Through-plane flow measurements can accu-
rately quantify differential lung perfusion in
various conditions.

The pulmonary veins
CMR is considered the gold standard for assessing
anomalous connection and stenosis of the pulmonary
veins. CMR combines superb luminal anatomy,
accurate quantification of blood flow patterns and
volume and, importantly, information about the
surrounding structures (Table 1).71,72

To obtain anatomical information about the vessel
lumen in both pulmonary vein stenosis and anom-
alous connection, CE-MRA and/or 3D SSFP can be
used (Fig 3). Alternatively to, or in conjunction with
angiography, SSFP cine imaging along the vessel’s
long axis can provide useful information, particularly
if dynamic external compression is suspected.
Velocity-encoded PC cine is a powerful tool in the

characterization of pulmonary venous pathology. It is

used to measure right and left pulmonary arterial
blood flow, to detect signs of pulmonary hyperten-
sion, and to unveil redistribution of blood flow away
from affected areas of the lung.70

In anomalous pulmonary venous connection, it is
important to detail the course and connection of each
pulmonary vein, diagnose or rule out the presence of

Table 3. Flow measurements for the assessment of pulmonary (Qp) and systemic blood flows (Qs) in extraund intra-
cardiac shunt lesions.

Qp Qs

Intracardiac PVs SVC + IVC
shunt RPA+ LPA SVC +DAO

MPA AAO
Stroke volume RV
(ASD and PAPVC)

Stroke volume LV
(ASD and PAPVC)

Extracardiac PVs SVC + IVC
shunt RPA+ LPA (AP window) SVC +DAO

AAO
Stroke volume LV
(PDA, AP window and AP collaterals)

Stroke volume RV
(PDA, AP window and AP collaterals)

AAO, ascending aorta; AP, aorto-pulmonary window or collaterals; DAO, descending aorta; IVC, inferior vena cava; LPA, left
pulmonary artery; LV, left ventricle; MPA, main pulmonary artery; PDA, patent ductus arteriosus; PVs, pulmonary veins; RPA,
right pulmonary artery; RV, right ventricle; SVC, superior vena cava,

Figure 3.
Maximum intensity projection reconstruction of CE-MRA images
in the coronal plane in a patient with Scimitar syndrome. All
right-sided pulmonary veins drain via a common channel to a
stenotic connection with the inferior vena cava (not opacified). The
pulmonary venous blood from the right lung drains via collaterals
to the dilated hepatic veins. The left-sided pulmonary veins drain
normally to the left atrium (left upper pulmonary vein not shown).
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pulmonary venous obstruction, quantify the degree of
left-to-right shunting (Qp/Qs), and describe asso-
ciated lesions.69,73 A number of indicators during a
CMR examination signal the presence of pulmonary
vein stenosis.71,74,75 The most obvious sign of obstruc-
tion is morphologically narrowing of the pulmonary
venous lumen. This is best imaged by targeted SSFP
cine imaging and CE-MRA. In some instances,
veno-venous collaterals to unobstructed pulmonary
venous channels and/or to systemic veins are present.
Furthermore, higher than normal flow velocity distal
to a suspected narrowing and loss of the normal
phasic velocity flow profile are suggestive of a hae-
modynamically significant obstruction.75 Finally, as
mentioned above, long-standing pulmonary venous
narrowing leads to redistribution of pulmonary blood
flow away from lung segments drained by the stenosed
pulmonary vein, and results in an unbalanced lung
perfusion, as easily detectable by velocity-encoded PC
measurements in the branch pulmonary arteries.

Expert consensus key points.

(i) CMR is considered the gold standard for assessing
anomalous connection and stenosis of the
pulmonary veins.

(ii) Combined blood flow measurements in the pul-
monary veins and in the pulmonary arteries allow
understanding the complex flow redistribution
occurring in the presence of pulmonary venous
obstruction and aorto-pulmonary collateral flow.

Shunt lesions
The exact quantification of intracardiac shunts is part
of the comprehensive haemodynamic evaluation in
many patients with CHD and often a determinant
factor for surgery. CMR is an established modality for
the non-invasive assessment of shunt location, flow
direction, and magnitude.76 Anatomical detection of
lesions resulting in shunt flows is typically performed
with cine acquisitions.When obtained perpendicular or
parallel to the intracardiac shunt direction, they provide
a valuable assessment of the defect location and size of
intracardiac shunt lesions throughout the cardiac cycle.
Extracardiac shunts, such as major aorto-pulmonary
collaterals and anomalous pulmonary venous connec-
tion, are readily delineated by CE-MRA.71,77

Shunt calculation is one of the major strengths of
CMR. As it provides accurate flow measurement in
every desired vessel, CMR can overcome the well-
known limitations of the traditional Fick’s method
by oximetry as obtained with invasive techniques, or
of Doppler echocardiography, which cannot quantify
flow reliably.32,78

By using the velocity-encoded PC cine sequence,
the ratio of pulmonary blood flow (Qp) and systemic

blood flow (Qs) can be accurately quantified and
reflects the size of shunt.
Independently of the location of the shunt, Qp is

always the sum of pulmonary venous flow and Qs is
always the sum of inferior and superior venae cavae
flows, measured close to the heart.79 Flow in the
descending aorta may be used as a substitute for
inferior vena cava flow and is technically easier to
obtain. Depending on the anatomy, i.e. the location
of the shunt, flows other than the pulmonary veins
and the caval veins can be used as Qp and Qs,
respectively (Table 3).
Another method to assess the magnitude of net

shunts is to compare the selective cardiac output of
the right with that of the left ventricle (Table 3). This
method is commonly thought to be less accurate than
velocity-encoded PC by many, owing to difficulties
in accurately contouring the right ventricular (RV)
endocardium including its trabeculations. Further-
more, this approach is inherently invalid in the pre-
sence of valvular regurgitation. For the purposes of
‘internal validation’, that is, to assess the accuracy of
the flow measurements, Qp and Qs measured by
different methods should be compared.

Expert consensus key points.

(i) CMR can be used for the anatomical detection
of intracardiac and extracardiac shunts.

(ii) Shunt calculation is one of the major strengths
of CMR.

(iii) Comparison of shunt quantifications using various
measurements is recommended for ‘internal
validation’ of the data and to increase accuracy.

Tetralogy of Fallot
TOF has become one of the main indications for
performing CMR during follow-up of CHD after
surgical repair.2 In young children, preoperatively,
advanced imaging with CMR is only required in
few selected cases with associated lesions such as
situs anomalies, aortic arch anomalies, disconnected
branch pulmonary arteries, and/or aorto-pulmonary
collaterals. After initial surgical repair, typical resi-
dual findings during mid- and long-term follow-up
include moderate to severe incompetence of the pul-
monary valve, obstruction of the RV outflow tract,
and/or branch pulmonary arteries. These findings
cause chronic volume and/or pressure load of the right
ventricle, with well-described and potentially lethal
complications.80

Over the past two decades, CMR has been firmly
established as the key imaging modality for serial
follow-up in TOF patients.2 CMR is the only technique
that allows accurate quantification of pulmonary
incompetence with measurement of regurgitation
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volumes and regurgitation fraction (both should be
documented) by PC cine imaging (Table 1).81,82

The volume and systolic function of both ventricles
are determined by acquiring a stacked 2D-cine SSFP
covering the ventricles in short-axis or axial orienta-
tion25,28 (Fig 4). This method has excellent reprodu-
cibility if performed in a standardized manner across
institutions.31,83 Tricuspid valve regurgitation can be
depicted using 2D SSFP, but is difficult to be correctly
quantified due to the movements of the annulus plane
during the cardiac cycle and to the usually co-existing
pulmonary incompetence. Tailored 2D SSFP images
through the RVOT, 3D SSFP, and/or CE-MRA give
clear views of the anatomy of the RVOT and the
pulmonary side branches. Additional functional infor-
mation can be obtained by measuring the differential
pulmonary perfusion and assessing the backflow
separately in both pulmonary side branches.84,85

All this information is generally used in the clin-
ical management of these patients and considered of
particular importance in timing decisions regarding
pulmonary valve replacement.
In this context, RV size and function are the main

factors to be considered in addition to clinical
symptoms and findings. Although there is no universal
agreement on cut-off volume, an indexed end-diastolic
RV volume of 160ml/m2 and an end-systolic RV
volume of 80ml/m2 have been shown to predict
normalization of RV size after pulmonary valve
replacement.86 Proper selection of patients undergoing
percutaneous pulmonary valve implantation requires
accurate description of the geometry of the RVOT by
CE-MRA or 3D SFFP and exclusion of anomalies of the
coronary arteries by 3D SSFP.
The presence of myocardial scarring is detected by

LGE of the myocardium, the extent of which has been
found to be related to exercise intolerance, regional wall
motion abnormalities, and propensity for arrhythmia.
Targeted 2D SSFP or CE-MRA may additionally

detect dilatation of the ascending aorta, demonstrate
arch sidedness (right aortic arch in 20% of patients
with TOF), and exclude potential major aorto-
pulmonary collateral arteries.87

Expert consensus key points.

(i) CMR is the key imaging modality for serial
follow-up in TOF patients.

(ii) CMR enables the assessment of RV outflow
tract, pulmonary bifurcation, and pulmonary
arteries as well as quantification of RV volume
and function and regurgitant blood flow in
pulmonary regurgitation.

(iii) This information features prominently in surgi-
cal decision making around pulmonary valve
replacement.

Complex CHD
Complex CHD frequently consists of a combination of
situs anomalies, abnormal atrioventricular and/or
ventriculo-arterial connections, and/or additional defects,
including septal defects, ventricular looping anomalies, as
well as malformations of the outflow tracts. In addition,
malformations of the extracardiac thoracic vessels and
tracheobronchial anomalies may be present.
Planning and performing CMR examinations in

patients with complex CHD require thorough
expertise in congenital malformations to avoid mis-
interpretation or incomplete results.
Dedicated CMR examinations provide a comprehen-

sive picture of complex CHD, including anatomy and
haemodynamics (Table 1). Three-dimensional reformat-
ting algorithms may enhance surgical decision-making
and planning of operative procedures.46

In complex CHD, views in axial, coronal, and sagittal
orientations should always be at the beginning of every
CMR exams to facilitate orientation within the thorax.
Oblique imaging planes are tailored towards individual
aspects of anatomy and for ventricular function and flow
analyses. The abdomen should be covered in the loca-
lizer/scout images and by techniques, enabling the
identification of vessel anatomy and size as well as
anatomy of the upper abdominal organs88 (Fig 5).
Turbo spin-echo sequences are particularly useful for

the evaluation of tracheo-bronchial anomalies and their
relationship to the pulmonary vascular tree which pro-
vides important clues to the thoracic situs and for the
detection of anomalies of the great arteries.
The use of CMR in complex CHD including het-

erotaxy syndrome has been validated in numerous
studies89 and has been demonstrated to provide
superior delineation of the abdominal situs, of pul-
monary and systemic venous malformations, and of
the relationship of the heart to abdominal and med-
iastinal structures compared with echocardiography
and cardiac catheterization.88,90–92 Thus, CMR has
been recently recognized as the first-line imaging
modality for imaging complex CHD.2

Expert consensus key points.

(i) CMR is an important adjunct to echocardiogra-
phy for imaging complex CHD in children and
in adults.

(ii) CMR provides complete information about situs,
segmental cardiac connections, additional
intracardiac and extracardiac malformations,
and accurate haemodynamic information.

Single ventricles throughout staged palliation
The palliative treatment strategy for functionally
univentricular hearts may require between two
and three or more procedures before achieving the
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Figure 4.
2D SSFP of the ventricles in a patient with dilated RV after TOF repair as demonstrated in an axial stack (a) and in a short-axis
stack (b).
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stage of the Fontan-type circulation.93,94 Strengths
of CMR in the setting of single-ventricle circulations
include the detailed assessment of potentially complex
anatomy, particularly of the large vessels, functional
imaging of the ventricles and large vessels throughout
the stages, and assessment of flow, particularly of the
pulmonary/Fontan circulation (Fig 6).
Prior to the creation of a partial cavopulmonary

connection, imaging of the ascending aorta and aortic
arch, of the pulmonary arteries, and of the systemic
and pulmonary veins are mandatory.95 Ventricular
size and function, valve function, and the subaortic
outflow tract should be studied. A combination of 2D
and 3D SSFP, black-blood, phase-contrast sequences
and/or CE-MRA can be used for these purposes
(Table 2).96 A combined protocol using echocardio-
graphy and CMR may result in less complications
when compared with cardiac catheterizations and
similar long-term outcomes in properly selected
patients.97 Imaging of an aorto- or ventriculo-
pulmonary shunt can also be achieved with CMR by
using 3D SSFP or CE-MRA.14

Before completion of a total cavopulmonary con-
nection (TCPC), a similarly detailed work-up is
required. In addition, the connection between the
superior vena cava and the pulmonary arteries has
to be visualized. The presence of significant

aorto-pulmonary collateral vessels can be demon-
strated by using CE-MRA. The difference of total
pulmonary venous flow and the total branch pul-
monary arterial flow allows quantifying the addi-
tional blood flow to the lungs due to aorto-pulmonary
collaterals.98 The use of only CMR for planning the
TCPC stage is being discussed;19 however in most
centres, haemodynamic studies before the completion
of a Fontan-type circulation are still performed
including cardiac catheterization (Table 1).
After completion of the Fontan circulation, CMR is

recommended for serial follow-up of systolic and dia-
stolic ventricular function, ventricular geometry, and
serial quantification of valvular incompetence. 94,95,99

Stress imaging can be used for testing ventricular con-
tractile reserve in selected cases.36 Additional useful
information provided by CMR during follow-up
includes anatomy and function of the Fontan pathway,
identifying obstructions, baffle leaks, thrombus forma-
tion, and collateral flow.

Expert consensus key points.

(i) In patients with single ventricles, CMR is
recommended after Fontan completion for serial
follow-up of ventricular function and anatomical
assessment of the Fontan pathway.

Figure 5.
Four-year-old boy with right atrial isomerism, bilateral superior caval veins, univentricular atrioventricular connection to a solitary ventricle,
pulmonary atresia, and right aortic arch developed severe hypoxaemia after Fontan completion due to a non-included left-sided hepatic vein.
(a) Multiple intrahepatic collateral channels underscoring a right-to-left shunt from the right hepatic vein (RHV; asterisk) to the left hepatic
vein (LHV) and to the left-sided atrium. Contrast agent is applied via the left lower limb. (b) T2-weighted SSFP transverse plane "'3 cm
below the diaphragm. Visceral heterotaxia. Both descending aorta (Ao) and inferior caval vein (IVC) are right-sided. RHV and LHV are
arranged in nearly parallel fashion midline. (c) Flow measurement using velocity-encoded PC for quantification. Flow direction is encoded by
optical density. Dark lumens indicate flow directed caudally. Reversely, bright lumens indicate flow directed cranially.
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(ii) During staged palliation, CMR can be used to
detect residual findings requiring additional
interstage interventions.

Cardiac tumours
Paediatric cardiac tumours are rare and usually
benign (75–90%). Rhabdomyomas and fibromas are
the most frequent cardiac tumours in children.
Among malignant tumours, metastatic involvement
from non-Hodgkin lymphoma, leukaemia, neuro-
blastoma, nephroblastoma, or sarcoma is much more
common than primary cardiac sarcoma or lymphoma.100

CMR fulfils all the diagnostic goals of tumour
imaging in one single examination (Table 1).101,102

Thus, a CMR examination should describe size and
location of the tumour; evaluate any haemodynamic
relevance, such as obstructions to inflow or outflow
and impairment of myocardial and/or valvular

function; describe the specific tissue properties of the
mass, including signal/intensity ratio, infiltration of
adjacent tissue, tissue appearance. Exact location in
relation to the cardiac structures (endoluminal,
floating, intramyocardial) should be included (Fig 7).
For a comprehensive evaluation of an intracardiac

mass, the following imaging sequences and orientations
are recommended: cine SSFP in an axial and oblique
imaging plane across the tumour, T1-weighted TSE
with and without fat suppression covering the tumour
as well as the uninvolved ventricular myocardium,
T2-weighted TSE, first-pass perfusion and LGE100

(Table 2). First-pass myocardial perfusion imaging may
provide useful information about tumour vascularity.
Moderate and strong enhancement is more indicative
of malignant processes, whereas mild enhancement is
found in up to 40–50% of benign tumours as well as
in highly vascularized tumours.101,103 LGE does

Figure 6.
Two-year-old girl with hypoplastic left heart syndrome (a) and status post-bilateral cavopulmonary anastomosis and Fontan completion. 3D
SSFP images reconstructed with an MIP technique illustrate a patent Damus–Kaye –Stancel (DKS) anastomosis (***) with the origin of the
right coronary artery (b); the segment between the right and left pulmonary artery (**) was reconstructed at time of Fontan completion, as it
was subatretic due to external compression of the dilated neo-aortic root (DKS) and presents now with recurrent narrowing (c and d). AO,
aorta; C, extracardiac Fontan conduit; MPA, main pulmonary artery; LA, left atrium; LV, left ventricle; LSVC, left superior vena cava;
RA, right atrium; RV, right ventricle.
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not predict malignancy, but is very helpful in tissue
characterization. When an intracardiac thrombus is
suspected, LGE imaging with a long inversion time
(600ms) is recommended (Fig 8).104

After having acquired all the different images, a
correct diagnosis of the type of tumour can be derived
by using the criteria proposed from a recent
multicentre paediatric data collection.103 These cri-
teria based on tissue characteristics shown by the
different sequences used achieved a diagnostic
accuracy of up to 97%, with a single correct diagnosis

in 55% and a correct differential diagnosis in 42%,
respectively.103 Diagnosis of malignancy can be at
least suspected on the basis of tumour location,
tissue inhomogeneity, and/or pericardial/pleural
effusions with a sensitivity of 0.88 and specificity of
0.92.105

Expert consensus key points.

(i) CMR is an important part of non-invasive tumour
characterization by providing information on

Figure 7.
Embryonic rhabdomyosarcoma (**) in the apex of the right ventricle in a 3-month-old boy. SSFP (a), T1-weighted (b), and T2-weighted
images (c) in an axial plane demonstrate different tissue characteristics in different sequences. Short-axis post-contrast images (d) show contrast
medium enhancement particularly in the superficial tissue layers and less in the core of the tumour. LV, left ventricle; RV, right ventricle.

Figure 8.
Appearance of intracavity thrombus on 2D SSFP (a) and LGE images (b).
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size, location, haemodynamic relevance, rela-
tionship to the adjacent structures, infiltration,
as well as tissue properties.

Cardiomyopathies
The two most common forms of paediatric cardio-
myopathy are dilated cardiomyopathy (DCM; annual
incidence 0.57 cases per 100,000) and hypertrophic
cardiomyopathy (HCM; 0.47 per 100,000
persons).106

In addition to echocardiography, recognized as
first-line imaging modality in children with cardio-
myopathy, CMR provides noninvasive myocardial
tissue characterization. In particular, CMR can detect
the presence and extend of myocardial oedema, scarring
and replacement fibrosis with high spatial resolution. In
adults, pattern of fibrosis on LGE images may point
towards the aetiology of the disease, and may influence
decision-making and patient management.107,108

A wide range of abnormalities detectable with
CMR have been related to the DCM phenotype,
including coronary artery anomalies, idiopathic dis-
ease (majority of cases), or secondary causes, such as
myocarditis or neuromuscular disorders. CMR is able
to exclude anomalies of the origin and proximal
course of the coronary arteries without the use of
radiation and non-invasively.109 In the acute phase of
myocarditis, CMR can be used to assess global ven-
tricular function, detect regional wall motion
abnormalities (2D SSFP cine imaging), early myo-
cardial inflammatory changes (T2-weighted ima-
ging), as well as myocardial cell necrosis/fibrosis
(LGE imaging) (Table 2).110 In chronic myocarditis,
CMR can be used for monitoring biventricular
function111 and demonstrate resolution of the
inflammatory processes as well as late myocardial
remodelling.107 The pattern of contrast distribution

using LGE imaging is typically nodular, patchy, with
a subepicardial and mid-wall myocardial distribution
most commonly seen in the lateral and inferior walls
of the left ventricle. In children, the extension of
contrast is usually subepicardial, but may become
transmural (Fig 9).110 The presence of pericardial
effusion provides supportive evidence for myocardi-
tis. CMR parameters significantly associated with
poor outcomes in adult patients are: transmural
myocardial late enhancement, global hypokinesia,
LV dilation, and LV ejection fraction, 30%. In neuro-
muscular disorders, CMR provides information about
the degree of myocardial fibrosis, inflammation and
impairment of myocardial contractility and relaxa-
tion. In patients with Duchenne muscular dystrophy,
LGE allows identification of subjects at risk for
progressive heart failure.112

In HCM, CMR provides accurate quantification of
ventricular mass and function of both ventricles. The
distribution of hypertrophy can be best delineated by
acquiring images in several planes, and particularly
apical hypertrophy can be detected more accurately
than with echocardiography. The presence of fibrosis
on LGE imaging is a potential risk factor for ventricular
arrhythmias in adults113 and is observed more rarely in
children. If HCM is related to an inborn error of meta-
bolism (8%), such as Fabry’s or Pompe’s diseases, CMR
may be used to serially monitor the effects of enzyme
replacement therapy.114

In left ventricular non-compaction, definition of
criteria is challenging and controversial. LGE may
not be present in children.115 Nevertheless, CMR has
increased diagnostic accuracy compared with echo-
cardiography, given that the anatomy of the cavity
and trabeculae can be more clearly visualized.116

Assessment of myocardial iron load using T�
2

measurements is an established tool in the diagnosis

Figure 9.
Focal myocarditis in a 4-year-old child who presented with chest pain and elevated cardiac enzymes. LGE images in a horizontal long-axis
view (a) and in short axis (b). Enhancement is found in the mid-wall of the lateral wall (arrows). 2D SSFP cine showed mild
hypocontractility of the lateral wall, correspondingly.
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of cardiac haemochromatosis in patients requiring repe-
ated blood transfusions. The optimal timing for screening
young patients by CMR is under debate, and depends on
patient age and transfusion burden. Often, CMR can be
postponed until 8 years of age so that anaesthesia is not
required. A single measure of mid-septal T�

2 is sufficient
and correlates well with the global T�

2.
117

CMR imaging of arrhythmogenic right ventricular
cardiomyopathy (ARVC) in children is challenged by
the evolving nature of the disease.118,119 Thus, repe-
ated studies have been recommended. Morphological
and regional wall motion abnormalities must be
evaluated by careful analysis of SSFP cine images in
different planes and orientations. CMR-based criteria
for ARVC according to the revised Task Force Cri-
teria include RV akinesia/dyskinesia, but only when
combined with RV dilatation and/or reduced ejection
fraction.120 Imaging of fatty infiltration or LGE
appears to be of low yield in children.119

Expert consensus key points.

(i) At time of diagnosis and during follow-up of
patients with cardiomyopathies, the strengths
of CMR are specific tissue characterization and
accurate quantification of ventricular volume
and function.

(ii) In dilatative cardiomyopathy, CMR can aid in
determining the aetiology of the disease.

(iii) In HCM, CMR is used for exact quantification of
myocardial mass, delineation of the distribu-
tion of hypertrophy, as well as for detection
and quantification of myocardial fibrosis.

Coronary arteries/perfusion
In children, imaging of the coronary arteries (CA) and
evaluation of myocardial perfusion with first-pass
myocardial imaging as well as the presence of

myocardial scars are indicated in suspected congenital
anomalies of the CA, CA fistulas, after surgery for
CHD involving CA transfer, before percutaneous
pulmonary valve replacement with a valve veering
stent, and in patients with vasculitis (e.g. Kawasaki,
Takayasu arteritis, or after heart transplanta-
tion).33,121,122 Even though the capability to provide
all this combined information makes CMR a unique
modality, cardiac catheterization currently remains
the gold standard for CA imaging in children
(Table 1). ECG-gated multidetector row CT is an
established non-invasive alternative for CA assess-
ment because it is easy to use, generally available and
exploits fast acquisition times compared with CMR
in adults. However, important limitations in children
remain radiation exposure and fast heart rate.123

Magnetic resonance coronary artery (MRCA) ima-
ging of the proximal and mid regions of the major
epicardial CA by using 3D SSFP can be performed in
infants and children19,24,124 (Fig 10). As the patients
growth and heart rate decreases, image quality
increases. This technique can be used to detect an
anomalous origin and proximal course of the CA.109

Although the ability to asses CA in children with
Kawasaki disease and to evaluate the vessel wall of the
CA has been reported,122 the validity of MRCA for
reliable detection of CA stenoses is unclear.
Assessment of myocardial perfusion with first-pass

myocardial imaging has been validated in the adult
population and has been demonstrated to have a
diagnostic performance superior to SPECT.125,126

The clinical experience in children is limited, but
good sensitivity and specificity have been demon-
strated in comparison with X-ray coronary angio-
graphy.33,34 Performing first-pass imaging in
children (see basic sequences) requires adapting the
acquisition parameters to the higher heart rate and
the small dimensions of the heart. Age and body size

Figure 10.
3D SSFP images of a 7-year-old boy with Kawasaki disease. A curved multiplanar reformat (a) and a volume-rendered 3D reconstruction
(b) demonstrate five aneurysms (asterisks) of the right coronary artery. AO, aorta; IVC, inferior vena cava; RA, right atrium; RV, right
ventricle; A, anterior; I, inferior; L, left; P, posterior; R, right; S, superior.
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are still limiting factors, and infants below the age of 1
year are still considered suboptimal candidates. Never-
theless, myocardial perfusion imaging in older children
may provide crucial additional dynamic information in
addition to static conventional coronary angiography
performed by catheterization. Moreover, myocardial
perfusion imaging can be used for selecting patients,
who really necessitate invasive coronary angiography.
LGE imaging provides information regarding the

viability of myocardial tissue. Areas of late enhance-
ment correlate well with areas of fibrosis (scars).127

Frequent paediatric indications for LGE imaging
include myocardial infarctions after surgery, CA
thrombosis in Kawasaki disease, follow-up of different
CHD, HCM, and myocarditis (Fig 9).34,128,129

Expert consensus key points.

(i) In children, CMR can be used for imaging of the
proximal segments of the coronary arteries and
for assessment of myocardial perfusion.

(ii) High heart rate and small size remain limiting
factors in young children.

Conclusions

CMR has become a widely accepted technique for a
large number of different indications in children with
heart disease. Specific cardiac, paediatric as well as
imaging expertise is required and should be available
in centres applying CMR in these patients, as the
imaging approach requires careful tailoring to the
specific question and individual patient.
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