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Background
Early worsening of plasma lipid levels (EWL; ≥5% change after
1 month) induced by at-risk psychotropic treatments predicts
considerable exacerbation of plasma lipid levels and/or dyslipi-
daemia development in the longer term.

Aims
We aimed to determine which clinical and genetic risk factors
could predict EWL.

Method
Predictive values of baseline clinical characteristics and dyslipi-
daemia-associated single nucleotide polymorphisms (SNPs) on
EWL were evaluated in a discovery sample (n = 177) and repli-
cated in two samples from the same cohort (PsyMetab; n1 = 176;
n2 = 86).

Results
Low baseline levels of total cholesterol, low-density lipoprotein
cholesterol (LDL-C) and triglycerides, and high baseline levels of
high-density lipoprotein cholesterol (HDL-C), were risk factors for
early increase in total cholesterol (P = 0.002), LDL-C (P = 0.02) and
triglycerides (P = 0.0006), and early decrease in HDL-C (P = 0.04).
Adding genetic parameters (n = 17, 18, 19 and 16 SNPs for
total cholesterol, LDL-C, HDL-C and triglycerides, respectively)
improved areas under the curve for early worsening of total

cholesterol (from 0.66 to 0.91), LDL-C (from 0.62 to 0.87), trigly-
cerides (from 0.73 to 0.92) and HDL-C (from 0.69 to 0.89)
(P≤ 0.00003 in discovery sample). The additive value of genetics
to predict early worsening of LDL-C levels was confirmed
in two replication samples (P≤ 0.004). In the combined sample
(n≥ 203), adding genetics improved the prediction of new-onset
dyslipidaemia for total cholesterol, LDL-C and HDL-C (P≤ 0.04).

Conclusions
Clinical and genetic factors contributed to the prediction of EWL
and new-onset dyslipidaemia in three samples of patients who
started at-risk psychotropic treatments. Future larger studies
should be conducted to refine SNP estimates to be integrated
into clinically applicable predictive models.
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Individuals suffering from mental disorders die at least 10 years
earlier than the general population, mainly because of cardiovascu-
lar diseases resulting from metabolic syndrome.1 Multiple genetic
and environmental risk factors may contribute to the observed
excessive propensity for developing metabolic diseases in psychi-
atric patients. Other factors include psychiatric disease-related
(e.g. unhealthy lifestyle, including low physical activity and/or
poor diet combined with a restricted access to somatic care) and
metabolic effects of treatment.2 For instance, the use of psychotropic
medications, such as antipsychotics, mood stabilisers (e.g. lithium
and valproate) and some antidepressants (e.g. mirtazapine), can sig-
nificantly increase the risk of developing metabolic disorders,
including obesity and dyslipidemia.3 As dyslipidaemia (defined as
high total cholesterol and/or low-density lipoprotein cholesterol
(LDL-C) and/or triglyceride and/or low high-density lipoprotein
cholesterol (HDL-C) levels) constitutes a major risk factor for car-
diovascular diseases,4 a close and prospective monitoring of meta-
bolic parameters, including blood lipid levels, is required when
introducing any psychotropic treatment associated with a metabolic
risk.5 Psychotropic drug-induced dyslipidaemia has long been con-
sidered as resulting from psychotropic drug-induced weight gain.
However, alterations of the lipid profile may occur very early
during the psychotropic treatment (and may even precede weight
gain), which can initiate a steady process leading to cardiometabolic

diseases in the long term.6 In that context, 5% or more worsening of
total cholesterol, LDL-C, HDL-C and/or triglyceride levels during
the first month of psychotropic treatment at risk for inducing meta-
bolic disturbances have been previously identified as best predictors
for clinically relevant worsening of blood lipid levels after 3 months
of treatment and for dyslipidaemia incidence in the longer term.7

Plasma lipid levels and/or dyslipidaemia are mostly determined
by clinical and genetic factors.8 Although some forms of monogenic
dyslipidaemia have been reported, most prevalent forms of dyslipi-
daemia are polygenic and result from the combination of multiple
common genetic variants.8 A study conducted in psychiatric
patients receiving psychotropic drugs inducing metabolic distur-
bances observed that polygenic risk scores (PRSs) combining
lipid-associated single nucleotide polymorphisms (SNPs) from
two population-based studies9,10 were significantly associated with
plasma lipid levels, but could not predict the incidence of new-
onset dyslipidaemia (NOD).11 With the rapid emergence of tech-
nical innovation in genotyping tools (e.g. genome-wide association
studies (GWAS)) and exponential decrease in costs, many studies
were conducted to identify new SNPs associated with lipid pheno-
types. Since the previously mentioned study,11 six additional popu-
lation-based GWAS meta-analyses of lipid levels have been
reported, which further expanded the panel of available lipid-
associated genetic variants.12–17 Since the past two decades, a growing

BJPsych Open (2024)
10, e227, 1–9. doi: 10.1192/bjo.2024.757

1
https://doi.org/10.1192/bjo.2024.757 Published online by Cambridge University Press

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://crossmark.crossref.org/dialog?doi=https://doi.org/10.1192/bjo.2024.757&domain=pdf
https://doi.org/10.1192/bjo.2024.757


interest in genetics in clinical settings has emerged. Recently, a ran-
domised controlled trial on the clinical utility of a pre-emptive phar-
macogenetic panel on the reduction of drug side-effects was
conducted. This recent European trial showed that pharmacoge-
netic-guided prescribing resulted in a 30% reduction of clinically
relevant adverse drug reactions and emphasised the feasibility and
benefits of the consideration of genetic factors across diverse health-
care systems.18 As cardiovascular diseases are the main cause of pre-
mature mortality in the psychiatric population, it is of major clinical
relevance for prescribers to identify predictive tools (e.g. an earliest
detection, even before starting psychotropic treatment) that could
help minimise and/or prevent early worsening of lipid levels
(EWL) and/or NOD during psychotropic treatment. In that
context, the present study aimed to determine whether the consid-
eration of baseline clinical risk factors and lipid-associated genetic
risk factors could predict EWL in patients who start a psychotropic
medication associated with a risk of lipid worsening.

Method

Psychiatric samples

Patients were selected from a previously published prospective
observational study conducted between 2007 and 2024
(PsyMetab), on the basis of clinical guidelines requiring metabolic
follow-up after starting or switching to another psychotropic treat-
ment (antipsychotics, mood stabilisers or certain antidepressants,
i.e. mirtazapine or tricyclic antidepressants listed in
Supplementary Table 1 available at https://doi.org/10.1192/bjo.
2024.757), as described in the flowchart (Supplementary Fig. 1).
Lipid variables (i.e. total cholesterol, LDL-C, HDL-C, LDL-C and
triglycerides) were collected on a regular basis, at baseline (i.e.
before psychotropic treatment introduction) and after 1, 3 and 12
months of treatment, and then yearly. Patients without available
prospective lipid values were excluded from the analyses. They
were included in the present study only when adherence was ascer-
tained by therapeutic drug monitoring. Further details are described
in the Supplementary Material.

A total of 439 patients who met the inclusion criteria were
included in the present study (Supplementary Fig. 1). Patients gen-
otyped using the Global Screening Array (GSA) version 2 were ran-
domly allocated to the discovery (n = 177) or the replication sample
(n = 176) (by using the rbinom function in R, statistical software for
Windows, version 4.1.1 (R Foundation for Statistical Computing,
Vienna, Austria; see https://www.r-project.org)), whereas patients
genotyped using the third version of the GSA were included in rep-
lication sample 2 (n = 86). The splitting was particularly important
to demonstrate the out-of-sample prediction performances.

The authors assert that all procedures contributing to this work
comply with the ethical standards of the relevant national and insti-
tutional committees on human experimentation and with the
Helsinki Declaration of 1975, as revised in 2013. All procedures
involving human patients were approved by the Ethics
Committee of Vaud (CER-VD, Switzerland). Written informed
consent was obtained from all participants.

SNP selection, genotyping and quality control

DNA was extracted from blood samples as described by the manu-
facturer protocol, using Flexigene DNA kit and QIAamp DNA
Blood Mini QIAcube Kit (Qiagen AG, Switzerland). Genetic var-
iants were determined by standard genotyping or imputation
methods. Further details are available in the Supplementary
Material. Only available SNPs of interest (i.e. previously associated
with lipid levels in GWAS meta-analyses,9,10,12–17 not in linkage

disequilibrium with each other, in Hardy–Weinberg equilibrium
and available in GSA or imputed) were considered in the present
study, corresponding to 124 SNPs for total cholesterol, 109 SNPs
for LDL-C, 142 SNPs for HDL-C and 128 SNPs for triglycerides
(more information in Supplementary Table 2). Information on
SNPs that were not included in analyses is available in
Supplementary Table 3.

Statistical analyses
Selection of clinical and genetic variables of early lipid worsening by
≥5% in the discovery sample

In the present article, EWL was defined as early increase by ≥5% for
total cholesterol, LDL-C or triglycerides, or early decrease by ≥5%
for HDL-C, and the rest of the cohort was used as control.

In the discovery sample, clinical variables (i.e. age, gender, base-
line body mass index (BMI), baseline lipid levels, diagnostic group,
medication group, smoking status and psychiatric illness duration)
were considered in logistic models on EWL through a stepwise
model selection on the basis of Akaike information criterion
(AIC), which minimises the distance between the fitted and the
true model if such a model exists.19 Details on diagnostic and medi-
cation group categorisations are available in the Supplementary
Material. It is noteworthy that even if some variables were not sig-
nificantly influencing the distribution of the dependent variable (i.e.
early lipid worsening), these were kept in the final model as advised
by the AIC, to improve the general quality of the fitted model.

In the discovery sample, each SNP (i.e. 124 SNPs for total chol-
esterol, 109 SNPs for LDL-C, 142 SNPs for HDL-C and 128 SNPs
for triglycerides), coded as having an additive effect, were consid-
ered as a predictor in logistic regressions on EWL using the least
absolute shrinkage and selection operator (LASSO) method that
shrinks regressions coefficients and automatically performs variable
selection by setting some coefficients to zero, thus improving the
predictive performance and introducing parsimony.20 PRS, which
combined the contribution of above-mentioned SNPs and popula-
tion-based estimates (Supplementary Table 2) into a single variable
for each lipid phenotype (further described in a previous study11),
were also included in above-mentioned logistic regressions.

Predictive models of EWL

To assess the predictive value of previously selected clinical (using
the AIC method) and genetic (using the LASSO method) factors
on EWL, receiver operating characteristic (ROC) curve analyses
were conducted to compare predictive powers of models including
only clinical data with models containing both clinical and genetic
data, using pROC and predictABEL packages in R.21,22 ROC
analyses on EWL were first conducted in the discovery sample
(n = 177), and then tested for replication in replication samples 1
(n = 176) and 2 (n = 86), considering regression models refitted in
both above-mentioned samples. More details are available in the
Supplementary Material.

Predictive models of NOD in the combined psychiatric
sample

NOD was defined by the new incidence of high total cholesterol
(≥5 mmol/L), high LDL-C (≥3 mmol/L), high fasting triglycerides
(≥2 mmol/L) and/or low HDL-C (≤1 mmol/L) levels,23 and/or
the new prescription of a lipid-lowering agent during psychotropic
treatment (median treatment duration of 100 days, interquartile
range 40–365). Analyses of NOD were conducted in patients from
the discovery and the replication samples who did not meet dyslipi-
daemia criterion at baseline (n = 203, 210, 290 and 225 for total
cholesterol, LDL-C, HDL-C and triglycerides, respectively).
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Further information is detailed in the Supplementary Material.
Genetic risk scores included SNPs selected in LASSO models
fitted in the PsyMetab discovery sample, with corresponding esti-
mates for each corresponding lipid phenotype (n = 17, 18, 19 and
16 SNPs for total cholesterol, LDL-C, HDL-C and triglycerides,
respectively), to produce the PsyMetab genetic risk score
(psyGRS). Survival analyses were used to compare NOD with
psyGRS for the corresponding lipid phenotypes, using the survfit
package of R.

Analyses in the UK Biobank

Genetic risk scores considering SNPs selected in the discovery
sample (i.e. psyGRS) were tested for association with lipid evolution
in the UK Biobank, a large population-based cohort from the UK,
with rich genotype and phenotype information.24 Two participant
groups were defined. Participants who were taking at least one of
the medications listed in Supplementary Table 1 were included in
the ‘psychotropic treatment’ group, whereas participants not
taking any medication listed in Supplementary Table 1 or any
other medication defined as weight gain-inducing according to
the SIDER database were considered as ‘controls’.25 It is noteworthy
that the psyGRS included SNPs selected in LASSO models fitted in
the PsyMetab discovery sample, with corresponding estimates for
each corresponding lipid phenotype (n = 17, 18, 19 and 16 SNPs
for total cholesterol, LDL-C, HDL-C and triglycerides, respectively;
Supplementary Tables 4–7). Further details are available in the
Supplementary Material.

All tests were two sided and P-values up to 0.05 were considered
statistically significant. Statistical analyses were carried out using R,
statistical software for Windows, version 4.1.1 (R Foundation
for Statistical Computing, Vienna, Austria; see https://www.r-
project.org).

Results

Demographic and clinical characteristics of the
discovery sample

Supplementary Table 8 displays demographic and clinical charac-
teristics of the discovery psychiatric sample. A total of 177 patients
who did not receive any lipid-lowering agent during the first month
of psychotropic treatment were included. The median age was 41
years (interquartile range 29–55), psychotic disorders were the
most frequent diagnosis (25%) and quetiapine was the most fre-
quently prescribed psychotropic drug (25%). During the first
month of psychotropic treatment, 78 (44%), 72 (44%) and 62
(52%) patients developed early increase in total cholesterol, LDL-
C and triglycerides levels, respectively, and 51 (29%) patients
developed early decrease in HDL-C levels. Patients with early
weight gain were more represented among patients with early
total cholesterol and triglyceride increase, compared with others
(18 v. 7%; P = 0.04 and 20 v. 5%; P = 0.04, respectively). The propor-
tion of men was higher among patients with early triglyceride
increase compared with others (55 v. 35%; P = 0.048).

Predictive models
Models considering only clinical variables in the discovery sample

Low baseline lipid levels in total cholesterol, LDL-C and triglycer-
ides, and high baseline HDL-C levels, were significant risk factors
for early increase in total cholesterol (P = 0.002), LDL-C (P = 0.02)
and triglycerides (P = 0.0006), and for early decrease in HDL-C
(P = 0.04) (Supplementary Tables 4–7). Although not significantly
associated with the dependent variable, low baseline BMI and

smoking status improved fitted models on early worsening of
total cholesterol and LDL-C. Men were more likely than women
to have early HDL-C (P = 0.02) and triglyceride worsening
(P = 0.002). In addition, compared with patients who started psy-
chotropic medications with a low propensity to induce metabolic
disturbances, patients who received drugs associated with a
medium or high risk were more likely to develop early decrease in
HDL-C (P = 0.01 and P = 0.005, respectively).

Models combining clinical and genetic variables in the discovery
sample

Full information on SNPs considered in the present study is reported
in Supplementary Table 2. LASSO models indicated that 17 (i.e.
rs13114070T >C (TMPRSS11E), rs12588415G >A (YLPM1),
rs2111485G >A (unknown), rs6557781C > T (DMTN), rs2287623A
>G (ABCB11), rs964184C >G (AP006216.10; ZPR1), rs1077514T >
C (ASAP3), rs4738684G >A (unknown), rs174554A >G (FADS1;
FADS2; MIR1908), rs1997243A >G (AC073957.15; C7orf50;
GPR146), rs1800961C > T (HNF4A), rs2758886G >A (unknown),
rs12027135T >A (TMEM57), rs2618568A > C (unknown),
rs10128711C > T (SPTY2D1; SPTY2D1-AS1), rs2954029A > T
(RP11-136O12.2), rs10904908A >G (VIM-AS1)), 18 (i.e.
rs2522061G > T (AC116366.6 ; C5orf56; Y_RNA), rs7902274T >G
(RP11-564D11.3), rs704G >A (CTB-96E2.2; CTB-96E2.3; CTB-
96E2.7; SARM1; SEBOX; TMEM199; VTN), rs648324T >G
(PEX14), rs7538216C > T (unknown), rs4773173A >G (COL4A2),
rs3812945T > C (SCAMP5), rs28555129C >A (OSGIN1; RP11-
505K9.4), rs826682A > C (LIMS1), rs14234A >G (AC022201.5;
FAM136A; SNRPG), rs17404153G >T (DNAJC13), rs1030431G >A
(unknown), rs174583C > T (FADS2), rs11136341A >G (PLEC),
rs1800562G >A (HFE; HIST1H2BB), rs11648003A >G (DHODH),
rs2920503C > T (PPARG), rs9987289G >A (RP11-115J16.1)), 19 (i.e.
rs12529923C > T (GSTA10P; GSTA11P; GSTA3; GSTA5),
rs17576323T >C (AC007319.1), rs11727676T > C (HHIP; uc_338),
rs2683521G >A (Metazoa_SRP; SP1), rs10494363G >A (MTMR11;
OTUD7B), rs10911505T > C (unknown), rs1519480T >C (BDNF;
BDNF-AS), rs2373459T > C (SPIC), rs1126930G >C (PRKAG1;
RP11-386G11.5), rs2280334C > T (MEIS1; MEIS1-AS2; MEIS1-AS3),
rs7730898A >G (RANBP17), rs3173615C >G (TMEM106B),
rs3822072G >A (FAM13A), rs970548A > C (MARCH8),
rs7134594T > C (MMAB), rs11246602T >C (OR4C46), rs7134375C
>A (unknown), rs11869286C >G (STARD3), rs4765127G > T
(CCDC92; FAM101A; RP11-214K3.18; RP11-214K3.25; ZNF664))
and 16 (i.e. rs7519429A > C (DNM3; PIGC), rs4683438G >T (RP11-
372E1.4), rs3851294G >A (DSTYK), rs1133400A >G (INPP5A),
rs6430090G >A (AC092484.1), rs10199914A >G (AC114788.1),
rs382534C > T (SLC33A1), rs12206516A >G (unknown),
rs13266634C > T (SLC30A8), rs4738141A >G (RP11-1102P16.1),
rs3843935C > T (PRSS3; TRBV29OR9-2; UBE2R2-AS1), rs2131925T
>G (DOCK7), rs17585887C > T (unknown), rs1495741A >G
(unknown), rs731839A >G (PEPD), rs72959041G >A (RSPO3)) indi-
vidual SNPs were considered as important contributing factors in the
prediction of early worsening of total cholesterol, LDL-C, HDL-C and
triglyceride levels, respectively (Supplementary Tables 4–7). Of note,
PRS (i.e. combining the contribution of all lipid level-associated
SNPs weighted by their (external) population-based estimates) to
EWL during the first month of treatment were not selected in predict-
ive models.

Figure 1 and Table 1 show that in the discovery sample, com-
pared with the area under the curve (AUC) from models restricted
on clinical factors, the AUC from models including clinical and
genetic factors were significantly improved for early increase in
total cholesterol (from 0.66 to 0.91; P = 7.9 × 10−9), LDL-C (from
0.62 to 0.87; P = 2.7 × 10−7) and triglyceride (from 0.73 to 0.92;
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P = 1.3 × 10−5) levels, and early decrease in HDL-C levels (from 0.69
to 0.89; P = 2.8 × 10−5). Considerable increases in sensitivity, speci-
ficity, positive predictive value, negative predictive value and accur-
acy were also observed (Table 1). Likelihood ratio tests comparing
models considering only clinical variables and models combining
clinical and genetic parameters confirmed that adding genetic
data improved the goodness of fit for EWL (P≤ 4.1 × 10−6),
which also indicated that the observed AUC improvements were
not driven by the inclusion of a higher number of variables in
models that considered genetic factors. Distribution of predicted
risks for EWL were better discriminated in models combining clin-
ical and genetic variables compared with models considering clin-
ical factors only (Supplementary Fig. 2). Similarly, predictiveness

curves, which also reflect the discriminatory power of prediction
models, were better characterised for models including genetic vari-
ables compared with models restricted on clinical variables
(Supplementary Fig. 3).

Validation in replication samples

Demographic and clinical characteristics of replication samples are
shown in Supplementary Tables 9 and 10. Comparison of demo-
graphic and clinical factors between discovery and replication
samples is reported in Supplementary Table 11 and further
described in the Supplementary Material. Clinical and genetic vari-
ables selected in the discovery sample (i.e. listed in Supplementary
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Tables 4–7) were considered in replication samples to predict EWL.
Estimates of each clinical and genetic factors calculated using logis-
tic models on early worsening of total cholesterol, LDL-C, HDL-C
and triglycerides levels are reported in Supplementary Tables
12–15 for replication sample 1 and in Supplementary Tables
16–19 for replication sample 2. In replication sample 1, adding
genetic (i.e. SNPs and estimates from Supplementary Tables
12–15) to clinical factors significantly improved the prediction of
early worsening of LDL-C and of HDL-C levels (with AUC increas-
ing from 0.73 to 0.84 (P = 0.004) for LDL-C, and from 0.73 to 0.81
(P = 0.008) for HDL-C) (Table 2, Supplementary Fig. 4). In replica-
tion sample 2, prediction of early worsening of total cholesterol,
LDL-C and triglycerides increased significantly when adding
genetic (i.e. SNPs and estimates from Supplementary Tables
16–19) to clinical factors (AUC increasing from 0.65 to 0.85 (P =
0.002) for total cholesterol, from 0.66 to 0.90 (P = 0.0004) for
LDL-C and from 0.67 to 0.82 (P = 0.04) for triglycerides) (Table 3,
Supplementary Fig. 5).

Prediction of NOD in the combined sample

In the combined sample consisting of patients from discovery and
replication samples without baseline dyslipidaemia, 40%, 33%,
19% and 16% of patients developed total cholesterol, LDL-C,
HDL-C and triglyceride NOD, respectively. Adding genetic (i.e.
psyGRS) to clinical parameters significantly improved the predic-
tion of new-onset hypercholesterolaemia (P = 0.04), new-onset
LDL-hypercholesterolaemia (P = 0.002) and new-onset HDL-
hypocholesterolaemia (P = 0.01), whereas a trend for improvement
was observed for the prediction of new-onset hypertriglyceridaemia
(P = 0.07) (Supplementary Table 20; Fig. 6). Predictive models
including clinical and genetic factors on NOD for the four lipid
traits provided clinically meaningful AUC (≥0.77) as well as high
negative predictive values (0.83, 0.9, 0.95 and 0.95) for total choles-
terol, LDL-C, HDL-C and triglyceride NOD, respectively, implying
that most patients who were predicted not to develop NOD did not
develop NOD during psychotropic treatment. As an example,
Supplementary Figs 7–9 illustrate, for each lipid trait, the incidence
of NOD in patients with fixed clinical parameters according to
psyGRS groups, using different cut-offs.

Evaluation of the pharmacogenetic screening benefit is fully
detailed in the Supplementary Material.

Association between genetic risk scores and relative
lipid difference in UK Biobank participants

Analyses conducted in the subset of UK Biobank participants taking
a psychotropic treatment revealed a consistent but nominal associ-
ation between psyGRS for triglycerides and a longitudinal increase
of triglyceride levels (P = 0.03). Similar analysis in control partici-
pants yielded a non-significant association (P = 0.74). PsyGRS for
the three remaining lipid phenotypes (i.e. total cholesterol, LDL-C
and HDL-C) were not associated with relative differences of corre-
sponding lipids, neither in ‘psychotropic treatment’ nor in ‘control’
UK Biobank participants (Supplementary Table 21).

Discussion

The present study demonstrated that baseline clinical factors (i.e.
before initiation of psychotropic treatment) combined with lipid-
associated genetic variants are involved in the prediction of early
lipid worsening and NOD in three psychiatric samples.

During the first month of psychotropic treatment, early worsen-
ing of total cholesterol, LDL-C, HDL-C and triglyceride levels was
observed in 44%, 44%, 29% and 52% of patients, respectively.
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Table 2 Predictive power of models including only clinical variables and including clinical plus genetic variables on early worsening of lipid levels in replication sample 1

Dependent variable Logistic model Sensitivity, % (95% CI) Specificity, % (95% CI) PPV, % (95% CI) NPV, % (95% CI) Accuracy, % (95% CI) AUC (95% CI) P-valuec P-value Likelihood ratio testd

Total cholesterol ≥5% Clinicala 0.69 (0.57–0.87) 0.81 (0.61–0.9) 0.75 (0.64–0.85) 0.75 (0.69–0.85) 0.75 (0.68–0.82) 0.78 (0.70–0.85) 0.2 0.98
Clinical plus geneticb 0.76 (0.63–0.88) 0.73 (0.62–0.87) 0.72 (0.64–0.82) 0.79 (0.71–0.87) 0.76 (0.69–0.82) 0.80 (0.73–0.87)

LDL-C ≥ 5% Clinicala 0.7 (0.57–0.83) 0.68 (0.54–0.8) 0.65 (0.57–0.74) 0.73 (0.66–0.82) 0.69 (0.62–0.76) 0.73 (0.65–0.82) 0.004 0.07
Clinical plus geneticb 0.86 (0.75–0.94) 0.74 (0.64–0.84) 0.73 (0.66–0.81) 0.86 (0.78–0.94) 0.79 (0.73–0.86) 0.84 (0.77–0.90)

HDL-C ≥ 5% Clinicala 0.65 (0.53–0.79) 0.7 (0.56–0.83) 0.63 (0.54–0.73) 0.73 (0.66–0.8) 0.68 (0.61–0.75) 0.73 (0.65–0.80) 0.008 0.06
Clinical plus geneticb 0.8 (0.65–0.91) 0.74 (0.62–0.88) 0.71 (0.63–0.82) 0.83 (0.75–0.91) 0.77 (0.71–0.83) 0.81 (0.75–0.88)

Triglycerides ≥5% Clinicala 0.77 (0.54–0.88) 0.57 (0.45–0.73) 0.62 (0.55–0.71) 0.71 (0.6–0.83) 0.66 (0.58–0.74) 0.68 (0.58–0.77) 0.08 0.88
Clinical plus geneticb 0.75 (0.55–0.86) 0.65 (0.53–0.83) 0.67 (0.59–0.78) 0.73 (0.64–0.83) 0.7 (0.62–0.78) 0.74 (0.65–0.83)

PPV, positive predictive value; NPV, negative predictive value; AUC, area under the curve; LDL-C, low-density lipoprotein cholesterol; HDL-C, high-density lipoprotein cholesterol; AIC, Akaike information criterion; SNP, single nucleotide polymorphism; LASSO, least absolute
shrinkage and selection operator. Significant P-values are indicated in bold.
a. Logistic model conducted in the replication sample 1 including clinical factors selected using the AIC method in the discovery sample.
b. Logistic model conducted in the replication sample 1 including clinical factors selected using the AIC method plus SNPs selected using the LASSO method in the discovery sample.
c. P-values of difference between the AUC of the model containing clinical data and the model containing clinical and genetic data. Two thousand bootstraps were used for the analysis.
d. P-values of likelihood ratio tests to compare the model including only the clinical factors and the model containing clinical plus genetic factors. A significant P-value indicates an improved goodness of fit.

Table 3 Predictive power of models including only clinical variables and including clinical plus genetic variables on early worsening of lipid levels in replication sample 2

Dependent variable Logistic model Sensitivity, % (95% CI) Specificity, % (95% CI) PPV, % (95% CI) NPV, % (95% CI) Accuracy, % (95% CI) AUC (95% CI) P-valuec P-value Likelihood ratio testd

Total cholesterol ≥5% Clinicala 0.69 (0.5–0.85) 0.7 (0.56–0.82) 0.54 (0.42–0.67) 0.81 (0.72–0.9) 0.68 (0.58–0.79) 0.65 (0.51–0.78) 0.002 0.16
Clinical plus geneticb 0.85 (0.69–1) 0.76 (0.62–0.88) 0.65 (0.54–0.79) 0.91 (0.83–1) 0.79 (0.7–0.87) 0.85 (0.76–0.93)

LDL-C ≥ 5% Clinicala 0.64 (0.46–0.82) 0.74 (0.51–0.87) 0.63 (0.49–0.79) 0.73 (0.64–0.84) 0.69 (0.57–0.79) 0.66 (0.53–0.80) 0.0004 0.006
Clinical plus geneticb 0.86 (0.71–0.96) 0.85 (0.72–0.97) 0.81 (0.69–0.96) 0.9 (0.81–0.97) 0.85 (0.78–0.93) 0.90 (0.84–0.97)

HDL-C ≥ 5% Clinicala 0.63 (0.43–0.83) 0.65 (0.44–0.85) 0.53 (0.43–0.7) 0.74 (0.65–0.85) 0.64 (0.54–0.76) 0.64 (0.51–0.77) 0.06 0.86
Clinical plus geneticb 0.7 (0.5–0.9) 0.75 (0.52–0.96) 0.64 (0.5–0.9) 0.8 (0.72–0.9) 0.73 (0.62–0.85) 0.76 (0.64–0.87)

Triglycerides ≥5% Clinicala 0.63 (0.4–0.91) 0.7 (0.41–0.93) 0.72 (0.62–0.88) 0.59 (0.49–0.81) 0.66 (0.55–0.76) 0.67 (0.54–0.80) 0.04 0.36
Clinical plus geneticb 0.77 (0.6–0.91) 0.81 (0.63–0.96) 0.84 (0.73–0.96) 0.73 (0.61–0.87) 0.79 (0.68–0.87) 0.82 (0.72–0.93)

PPV, positive predictive value; NPV, negative predictive value; AUC, area under the curve; LDL-C, low-density lipoprotein cholesterol; HDL-C, high-density lipoprotein cholesterol; AIC, Akaike information criterion; SNP, single nucleotide polymorphism; LASSO, least absolute
shrinkage and selection operator. Significant P-values are indicated in bold.
a. Logistic model conducted in the replication sample 2 including clinical factors selected using the AIC method in the discovery sample.
b. Logistic model conducted in the replication sample 2 including clinical factors selected using the AIC method plus SNPs selected using the LASSO method in the discovery sample.
c. P-values of difference between the AUC of the model containing clinical data and the model containing clinical and genetic data. Two thousand bootstraps were used for the analysis.
d. P-values of likelihood ratio tests to compare the model including only the clinical factors and the model containing clinical plus genetic factors. A significant P-value indicates an improved goodness of fit.
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These proportions are globally consistent with those reported in our
previous study including a similar number of patients, but with no
genetic data.7 Of note, the prevalence of early decrease of HDL-C
levels was lower than previously observed (42%),7 but this propor-
tion was in agreement with those in replication samples 1 and 2 (43
and 38%, respectively).

Predictive models identified low baseline lipid levels of total
cholesterol, LDL-C and triglycerides, and high baseline HDL-C
levels, as significant risk factors for early worsening of the corre-
sponding lipid levels. These findings are in accordance with our pre-
vious study reporting a lower proportion of baseline hyperlipidaemia
in patients with EWL,7 as well as with other studies reporting low
baseline BMI as a predictor of early weight gain,26–29 and may be
explained by regression to the mean (i.e. low baseline lipid levels
are expected to converge to the population mean during follow-
up) and/or by the fact that low baseline lipid levels may be con-
founded by a short illness history and/or less prior psychotropic
treatment exposure. Male gender was considered as an additional
risk factor for early deterioration of HDL and triglycerides, consist-
ent with a previous meta-analysis on predictors of metabolic dysre-
gulation induced by antipsychotics.3 It is noteworthy that AIC
models did not select illness duration as a predictive variable of
early lipid disturbances.

In the discovery sample, adding genetic risk factors for lipids to
baseline clinical parameters significantly improved the prediction of
early worsening of total cholesterol, LDL-C, HDL-C and triglycer-
ides levels during the first month of psychotropic treatment. The
additive value of genetics to predict EWL was confirmed in the
two replication samples for early worsening of LDL-C levels, and
in one replication sample for early worsening of total cholesterol,
HDL-C and triglycerides levels. Lack of improvement for early
deterioration of total cholesterol in replication sample 1 may be
explained by the relatively elevated and clinically informative pre-
dictive value (i.e. AUC = 0.78) of the model, which exclusively con-
sidered clinical factors.30,31

No PRS for any of the four lipid traits was considered as an
important contributing factor in predictive models for EWL. One
hypothesis to explain the poor predictive power of the PRS may
be that the use of SNP estimates from the population-based
sample could be not appropriate for the psychiatric population.
Indeed, genetic variants can display greater influence on metabolic
features in psychiatric cohorts compared with the general popula-
tion, possibly explained by an intricate interaction between the
mental disorder (or the medications used to treat it) and metabolic
regulations,32–34 as well as a higher prevalence of metabolic abnor-
malities in the psychiatric population.35 Of note, when adding
psyGRS (derived from SNP estimates calculated in the discovery
sample) to clinical variables in replication samples, prediction of
early lipid worsening was not improved. This can be explained by
the fact that SNP estimates may be imprecise and/or unsuitable to
other samples, because of the relatively low sample size of the dis-
covery sample (n = 177). Future studies including a higher
number of patients who start a psychotropic treatment would
help to refine SNP estimates in this specific population.

Interestingly, this study demonstrated that the consideration of
a reasonable number of SNPs (i.e. n≤ 19) significantly improved
predictive values of EWL, reaching AUC≥ 0.8 in three psychiatric
samples for each lipid phenotype (except for triglycerides in replica-
tion sample 1 (AUC = 0.74) and HDL-C in replication sample 2
(AUC = 0.76)). Predictive models combining clinical and genetic
variables to predict early lipid worsening emphasised the additive
value of genetics, displaying high predictive values (i.e. AUC≥
0.8) and high accuracy improvements (≥9% for early worsening
of LDL-C and HDL-C in three samples). The considerable improve-
ments of accuracy (i.e. ≥0.15) and AUC (i.e. ≥0.19) for predicting

EWL when adding genetic factors in the discovery sample can be
explained by the fact that predictive models specifically selected
SNPs (i.e. n≤ 19) that were best predicting EWL. When focusing
on the contribution of each SNP on lipid-worsening outcomes, it
appeared that estimate of each SNP was comparable or even
higher than the estimate of one selected clinical factor (e.g. gender
or smoking status), explaining how the addition of each selected
SNP brought valuable additional information to the prediction of
our outcomes. Of note, in replication sample 2, unexpectedly high
estimates were observed for some SNPs (i.e. rs1800961C > T,
rs1800562G > A, rs1126930G > C), which is explained by the low
number of patients carrying the variant allele for the corresponding
SNPs (i.e. minor allele frequencies of 0.02, 0.04 and 0.02, respect-
ively). Sensitivity analyses showed that excluding these SNPs did
not affect predictive values of outcomes of interest.

With regard to the incidence of NOD during psychotropic treat-
ment, 40%, 33%, 19% and 16% of patients developed total choles-
terol, LDL-C, HDL-C and triglyceride NOD, which is in
accordance with NOD incidences reported in a previous study.7

The clinically meaningful predictive values of models considering
clinical and genetic factors on NOD phenotypes observed for total
cholesterol, LDL-C, HDL-C and triglycerides (AUC = 0.77, 0.81,
0.82 and 0.84, respectively; negative predictive value = 0.83, 0.9,
0.95 and 0.95, respectively) validates the relevance of their consider-
ation. Of note, NOD incidence varied depending on percentile
groups of psyGRS (i.e. genetic risk score considering only the
most relevant SNPs for EWL; n≤ 19), which also further confirmed
the added value of considering these selected genetic variants in the
prediction of lipid phenotype deterioration under psychotropic
treatment.

Although UK Biobank participants taking a psychotropic
treatment were selected to reflect, as best as possible, PsyMetab
participants, both samples varied considerably. For instance, in
the UK Biobank, lipid values were measured independently of psy-
chotropic treatment timeline. In addition, duration between both
lipid measurements varied from 2 to 12 years in the UK Biobank
sample, which is much longer than in PsyMetab (1 month).
Despite these considerable differences, a consistent but nominal
association between psyGRS and triglyceride relative difference
was observed in UK Biobank ‘psychotropic treatment’ (but not
‘control’) participants. Hypotheses to explain the lack of associ-
ation between psyGRS and relative difference of other lipid pheno-
types (i.e. total cholesterol, HDL-C and LDL-C) in ‘psychotropic
treatment’ and ‘control’ UK Biobank participants may reside in
substantial design differences across PsyMetab and UK Biobank
samples.

Of note, considering additional clinical variables (e.g. daily
doses or plasma concentrations of psychotropic drugs) or genetic
variants of enzymes involved in the metabolism of psychotropic
drugs inducing worsening of lipid levels may potentially be of inter-
est. However, since previous studies reported a small to moderate
influence of doses of psychotropic drugs on weight gain,36–39 and
because the association between psychotropic doses and/or
plasma concentrations and worsening of lipid levels has never
been assessed previously, these two variables were not included
within the scope of present predictive analyses. In addition, multiple
enzymes are involved in the metabolism of psychotropic drugs
included in the present study (e.g. CYP1A2, CYP2C19, CYP2D6,
CYP3A4 and CYP3A5). The influence of their genetic polymorph-
isms on lipid level worsening should be assessed in a second step,
once (and if) future studies observe an association between lipid
level worsening and psychotropic drug doses and/or plasma
concentrations.

Findings of the present study should be considered with limita-
tions. First, this study included only White patients and results are
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not transposable to other ethnicities. Second, most of the patients
were not drug-naïve and would have probably already experienced
lipid profile disturbances with previous psychotropic treatments.
However, as in real-world clinical settings most psychiatric patients
are not drug-naïve, these results may be relevant to the majority of
patients who start a psychotropic medication inducing metabolic
disturbances. Third, lifestyle modifications throughout psycho-
tropic treatment (e.g. physical exercise or diet habits) or family
history of atherosclerosis, which could have influenced lipid
levels, were not available in this study and could not be taken into
account. Fourth, SNP estimates calculated in the discovery sample
are not appropriate for consideration in other samples, and future
larger studies should be conducted to appraise SNP estimates to
be integrated into clinically applicable predictive models.
Strengths of the study include the fact that patients who were not
adherent to the psychotropic medication were excluded from the
study, which reduced the impact of possible false-negative patients
(e.g. patients whose lipid levels remain stable because they do not
adhere to the psychotropic drug). In addition, the longitudinal
and naturalistic design of the study and the confirmation of our
results in two replication samples represent major assets. Also,
the present study was conducted in adherence with transparent
reporting of a multivariable prediction model for individual
prognosis or diagnosis + artificial intelligence statement guidance
(Supplementary Material).40

In conclusion, we demonstrated that the consideration of base-
line clinical variables combined with lipid-associated genetic risk
factors could accurately predict early lipid worsening and dyslipi-
daemia development in patients who start a psychotropic treatment
inducing metabolic disturbances. Future larger studies should be
conducted to refine SNP estimates to be integrated into clinically
applicable predictive models. Eventually, in the prospect of indivi-
dualising psychotropic treatment, prospective validation studies
should be implemented in clinical settings to evaluate the clinical
utility of these predictive models, as well as to appraise their cost-
effectiveness.
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