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Abstract: Bacteriophage (phage) therapy, i.e., the use of viruses that infect bacteria as antimicrobial
agents, is a promising alternative to conventional antibiotics. Indeed, resistance to antibiotics
has become a major public health problem after decades of extensive usage. However, one of
the main questions regarding phage therapy is the possible rapid emergence of phage-resistant
bacterial variants, which could impede favourable treatment outcomes. Experimental data has shown
that phage-resistant variants occurred in up to 80% of studies targeting the intestinal milieu and
50% of studies using sepsis models. Phage-resistant variants have also been observed in human
studies, as described in three out of four clinical trials that recorded the emergence of phage
resistance. On the other hand, recent animal studies suggest that bacterial mutations that confer
phage-resistance may result in fitness costs in the resistant bacterium, which, in turn, could benefit
the host. Thus, phage resistance should not be underestimated and efforts should be made to develop
methodologies for monitoring and preventing it. Moreover, understanding and taking advantage of
the resistance-induced fitness costs in bacterial pathogens is a potentially promising avenue.
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1. Introduction

Antimicrobial resistance is a major public health problem that could possibly cause an estimated
10 million mortalities per year by 2050 [1]. For this reason, novel therapeutic strategies, beside
traditional antibiotics, must be rapidly developed. One of these strategies is the use of bacteriophages
(phages). Phages are nature’s most abundant bacterial predators. They can be used alone or in
combination with antibiotics against difficult-to-treat infections. Phage therapy has been used since
the 1920s in the Soviet Union, and is still currently used in ex-Soviet countries like Poland, Russia,
and Georgia [2]. Phage therapy is currently being revisited as a potential alternative to antibiotics in
Western countries. However, challenging issues still exist, such as selecting the most adequate phage(s)
against a given infection, the risk of phage resistance development, the immune response to phages by
the host, as well as novel regulatory requirements [3,4].

Bacteria can resist phage attack through different mechanisms, including spontaneous mutations,
restriction modification systems, and adaptive immunity via the CRISPR-Cas system [5]. Spontaneous
mutations are the main mechanisms driving both phage resistance and phage–bacterial coevolution [6].
Spontaneous mutations may confer phage resistance by modifying the structure of bacterial surface
components that act as phage receptors and that also determine phage specificity. These include
lipopolysaccharides (LPS), outer membrane proteins, cell wall teichoic acids, capsules, and other
bacterial appendices, such as flagella, many of which may all be part of virulence factors (e.g., LPS) [7].

However, phage resistance may also induce trade-off costs. Phage-resistant bacteria may become
less virulent in case of mutations in surface virulence factors, such as LPS [8]. Likewise, the maintenance
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of anti-viral defence systems, such as for DNA restriction-modification enzymes and CRISPR-Cas
adaptive immunity, also has its own cost [9,10].

This review discusses the implications of the development of phage resistance in the perspective
of implementing phage therapy. Phage resistance is first considered in the context of population and
phage–bacterial evolutionary dynamics. It is then considered in the frame of experimental therapy
(summarized in Table 1), in order to determine its role in treatment failure or salvage therapy strategies.
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Table 1. Principal in vivo studies investigating the relation between phage therapy and phage resistance.

Bacterium Model Phage Type Treatment Outcome Resistant Found in after
Treatment?

Impact of Resistance on
Virulence Receptor Ref.

In
te

st
in

al
co

lo
ni

za
ti

on

Campylobacter
jejuni

Chicken
intestinal

colonization
CP8 and CP34

Bacterial decrease between 0.5 and 5 log10
CFU/g of caecal contents compared to
untreated controls over a 5-day period

post-administration.

Yes, at a freq. of 4%
Less infective at low dose. Rapid

phenotypic reversion when
reintroduced in chicken.

ND [11,12]

Campylobacter
jejuni

Chicken
intestinal

colonization

phiCcoIBB35,
phiCcoIBB37, and

phiCcoIBB12

Phage cocktail decreases the titre of C.
jejuni in faeces by approximately 2 log10

CFU/g when administered orally.
Yes, at a freq. of 13%

Not less infective. No phenotypic
reversion when reintroduced

in chicken.
ND [13]

Escherichia coli
Calf, piglet,

lamb
Ta diarrhoea

B44/1, B44/2,
B44/3, P433/1,

and P433/2

Protected calves against a potentially
lethal infection, cured diarrhoea in piglets,
improved the course of disease in lambs.

Most calves that did not respond
to phage treatment had a high

number of phage-resistant variants.
No phage-resistant mutants were

isolated from lambs.

Decreased virulence Capsular
polysaccharides [14]

Escherichia coli Calf diarrhoea B41/1 Rapid reduction of bacterial titres to
numbers that are harmless. Yes Reduced virulence Capsular

polysaccharides [15]

Escherichia coli
Sheep, mouse,
steer intestinal
colonization

KH1 and SH1

Oral phage treatment did not decrease
intestinal E. coli in sheep. Decreased the
number of E. coli CFU in cattle. Phage

therapy cleared the bacteria in a mouse
model of intestinal E. coli O157 carriage.

No - ND [16]

Escherichia coli Mouse intestinal
colonization T4 phage, oral ND Phage resistant bacterial strains

dominated gut after 92 days. ND ND [17]

Escherichia coli Mouse intestinal
colonization

cocktail made of
phages CLB_P1,

CLB_P2, and
CLB_P3

No bacterial level change in the faeces
after treatment. No - ND [18]

Enterococcus
faecalis

Gnotobiotic
mouse intestinal

colonization
ϕ VPE25 Threefold drop in E. faecalis total intestinal

load after 24 h of VPE25 treatment.
Phage resistant variant replaced

WT during treatment.
Resistant variants can

colonize intestine.

Integral
membrane

protein PIPEF
[19]

Salmonella
enterica

Chicken
intestinal

colonization

cocktail of phages,
EP2, MUT3, M4,

and YP

Significant difference between
phage-treated and untreated groups. Yes ND ND [20]

Salmonella
enterica

Chicken
intestinal

colonization

ϕ10, ϕ25, and
ϕ151 Phages reduced caecal colonization.

Phage-resistance occurred at a
frequency commensurate with the
titre of phage being administered.

Colonization levels of resistant
variants in the ceca did not differ

from the controls. Reversion
observed after infection.

ND [21]

Vibrio cholerae
Infant mouse

and rabbit
cholera model

ICP1, ICP2, and
ICP3

Oral administration of phages up to 24 h
before V. cholerae challenge reduced

colonization of the intestinal tract and
prevented cholera-like diarrhoea.

Yes Variants can colonize intestine. O-Antigen [22]
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Table 1. Cont.

Bacterium Model Phage Type Treatment Outcome Resistant Found in after
Treatment?

Impact of Resistance on
Virulence Receptor Ref.

M
en

in
gi

ti
s

Escherichia coli Mouse
meningitis phage R

One dose of phage was at least equivalent
to multiple doses of antibiotics, whether

administered intramuscularly or
intrathecally.

Yes Supposably reduced virulence as
described in [14].

Capsular
polysaccharides [23]

En
do

ca
rd

it
is

Pseudomonas
aeruginosa

Rat infective
endocarditis

cocktail made of
phages 12

bacteriophages

3 log reduction or valve sterilisation when
combined with antibiotics. No Reduced virulence LPS and pilus [24]

Se
ps

is

Escherichia coli Rat neonatal
sepsis phage EC200PP

Phage administered 7 h postinfection
rescued 100% of the animals and 50% after

24 h.

Phage resistant variant were found
when phage treatment was

delayed for 24 h.
Avirulence ND [25]

Klebsiella
pneumoniae

Mouse liver
abscess and
bacteraemia

Phage ϕNK5

Intraperitoneal and intragastric
administration of phage 30 min after

infection protected mice from death in a
dose-dependent manner. Decreased
bacterial burden and liver damage.

No Reduced virulence ND [26]

Staphylococcus
aureus

Experimental
cow mastitis Bacteriophage K Decreased bacterial load after treatment. Yes ND ND [27]

Pseudomonas
plecoglossicida

Fish
haemorrhagic

ascites

PPpW-3 and
PPpW-4. Oral

Protective effects of phage treatment with
lower and delayed mortality 1 or 24 h

after bacterial challenge.
No Reduced virulence ND [28]

Klebsiella
pneumoniae

Mice acute
bacteraemia

GH-K1, GH-K2,
and GH-K3

Phage cocktail significantly enhanced the
protection of bacteremic mice against

lethal infection.
ND Reduced virulence ND [29]

Salmonella
enterica

Parathyphi B
Mouse sepsis phage ϕ1

Phage given concurrently with a lethal
dose of bacteria rescued 100% of

the animals.
ND Avirulence O-Antigen [30]

pn
eu

m
on

ia

Pseudomonas
aeruginosa

Mouse acute
pneumonia PAK_P1

Treatment failed to prevent fatality due to
subsequent bacterial outgrowth after 24 h

in immunocompromised mice. 100% of
bacteria recovered from phage-treated at

24 h were resistant.

Yes, in immunocompromised mice ND ND [31]
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Table 1. Cont.

Bacterium Model Phage Type Treatment Outcome Resistant Found in after
Treatment?

Impact of Resistance on
Virulence Receptor Ref.

Ph
ag

e
re

si
st

an
tv

ar
ia

nt
s

fo
r

va
cc

in
e

pr
od

uc
ti

on
an

d
st

ud
yi

ng
vi

ru
le

nc
e

fa
ct

or
s

Vibrio cholerae Infant mouse
cholera model ICP1 ND ND Attenuated in vivo. O-Antigen [32]

Vibrio cholerae Infant mouse
cholera model K139 ND ND

Significantly reduced in its ability
to colonize the mouse

small intestine.

Core
oligosaccharide [33]

Vibrio cholerae Infant mouse
cholera model phage JA1 ND ND Impaired colonization Capsule/O-antigen [34]

Staphylococcus
aureus

Mouse
vaccination MSa phage ND ND Avirulence Teichoic acids [35]

Yersinia pestis Mouse
vaccination

L-413C, P2 vir1, ϕ
JA1a, ϕ A1122, T7,

T7Ype,
Pokrovskaya, Y,

PST, Rh

ND ND Atenuated or avirulent. LPS [36]

Flavobacterium
columnare Zebrafish FCL-1 and FCL-2 ND ND Avirulence ND [37]

Bacillus
thuringiensis Cecropia moth ϕ42, ϕ51,and ϕ64 ND ND Decreased virulence ND [38]

Serratia
marcescens

Cecropia moth,
Drosophila Phages ϕJ and ϕK ND ND Decreased virulence ND [39]

Serratia
marcescens Cecropia moth Phages ϕJ ND ND Decreased virulence ND [40]
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2. The Evolution Dynamics of Resistance

Phage–bacteria coevolution can be defined as a process of reciprocal adaptation and counter-
adaptation between the phage and its bacterial host. It is an important driving force for the ecology
and evolution of microbial communities [6]. Phage–bacteria interactions are mediated first by phages
using their tail fibres to adsorb onto the bacterial surface, through a lock-key mechanism. Since the
complete phage replication life cycle, namely the lytic cycle, relies on the killing and lysis of the host
bacteria, a strong reciprocal selection pressure evolves toward increased infectivity on the side of the
phage, and phage-resistance on the side of the bacterium [41]. Bacteria can evolve phage-resistance
by de novo chromosomal mutations, as well as through an arsenal of antiviral mechanisms targeting
virtually all steps of the phage life cycle (reviewed in [5]). For example, bacteria can prevent phage
adsorption by modifying the structure of their surface phage receptors, or by hindering the access of
the phage to the receptor through the production of an excess of the extracellular matrix, or even by
producing competitive inhibitors [42–44].

The development of phage-resistant bacteria was already described almost a century ago in
a seminal paper by Luria and Delbrück, who observed that the initial phage-induced lysis of a
bacterial population was followed by bacterial regrowth, due to the selection of a phage-resistant
sub-populations [45]. Phage-resistant bacterial variants that were already present in the initial bacterial
culture (at a rate of ca. 10−8) were selected and led to the replacement of the entire culture with the
resistant variant. This extreme situation leads to an evolutionary dead-end, for instance if the phage
receptor is lost, and phage do not have the opportunity to develop a counter-resistance. A large number
of studies concluded similarly on the absence of phage–bacterial coevolution following the emergence
of phage-resistant bacteria (reviewed in [46]). This was the case in chemostat experiments using
Escherichia coli infected with series of T or lambda phages. Phages could not interact anymore with
the resistant E. coli variants [47]. However, phage-susceptible parent bacteria could still be recovered
from sanctuary niches such as biofilms present on the chemostat’s walls. These survivors allowed
maintaining low levels of phage persistence.

Other studies observed more persistent cycles of coevolution between phages and the host bacteria.
This was the case for E. coli O157:H7 and phage PP01 in a continuous chemostat culture [48]. In this
experiment, phages could coexist with phage-resistant variants and evolve different host ranges for
the phage-escape bacterial mutants. Phage-resistance was associated with a dual bacterial population
carrying either LPS alterations or OmpC surface protein silencing. Moreover, a third type of mucoid
colony mutant emerged and could coexist with phages until the end of the experiment. Eventually,
phage mutants with different host ranges also appeared.

One possible explanation was that none of the three phage-resistant bacterial mutants were
completely immune to phage infection and, thus, entered a phage coevolution cycle permitting parallel
phage and bacterial expansion and selection for phage variants with broader host range.

In other experiments, using lambda phages, an arms race was observed when using minimal
media and maltose as the only carbon source [49]. Since the lambda phage uses the maltose
outer membrane porin, LamB, as a bacterial receptor, decreasing LamB synthesis decreased phage
susceptibility. However, this also decreased bacterial fitness in the presence of a lactose-only carbon
source. In parallel, phages selected variants with increased LamB affinity or new variants able to infect
via alternative receptors. Phages shifted from using the LamB to OmpF receptor through amino acid
substitutions in their tail fibre J protein [50]. This mutual counter-selection process between the phage
and the bacterium that enabled each of them to survive, without eliminating the other.

Further confirmation of the arms race came from observations with Pseudomonas fluroescens and the
Podovirusφ2 [51,52]. In this case, reciprocal evolution of infectivity and resistance was followed during
>100 bacterial generations, with phages becoming more broadly infectious and bacteria more broadly
resistant over time [41,52]. However, the arms race became progressively weaker, with increasing
fitness cost due to generalist adaptive mutations on both sides [53].
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A common paradigm in evolutionary biology is that evolution tends to maximize the adaptation
ability (in this case phage-resistance) by allocating resources preferentially when they are limited.
If resources are dedicated to phage-resistance, a fitness cost may be associated with a mutation
conferring phage resistance that arises during coevolution, as demonstrated for the altered integrity
of LPS and OmpC resulting in heterogeneous populations in the example of E. coli O157:H7 and
phage PP01 [48], and altered maltose uptake with porin LamB mutation in the example of lambda
phage and maltose restriction [49]. Numerous other examples exist regarding various phage–bacteria
coevolution systems (see [54–57]). Environmental conditions can also greatly impact the coevolution
of virulence and resistance by imposing limits to the arm race, as exemplified by the LamB example
where maltose becomes a limiting factor [49]. This may result in different coevolution routes in natural
settings from what is observed in the test tube. Such exogenous factors can include UV light-induced
mutagenesis, which may induce phage-resistance mutations, but also cause additional mutations
affecting in parallel [57]. Other examples include the influence of still or shaking culture conditions on
population structures, which may influence particle collisions between phages and bacterial preys,
or niche resource availability [58–60].

A recent work with P. fluorescens SBW25 showed that phage–bacterial interaction increased
the bacterial mutation rates as well as its chance to adapt and survive both predation and altered
environmental conditions. This indicates that phage-driven evolution may be ultimately beneficial for
the bacteria [61].

Interestingly, while this phage-stimulated mutation rate of P. fluorescens SBW25 was observed in
laboratory conditions [61], it was not observed for P. fluorescens communities living in the soil [62],
most probably because selection for phage-resistance is higher in the soil than in vitro [63]. It is then
assumed that, unlike in vitro coevolution that is characterized by the so-called arms race of increased
resistance versus infectivity over time, coevolution in natural environments is largely driven by
fluctuating selection, where cycles of phage-susceptible and phage-resistant bacterial populations
intertwine with parent phages and evolved phages (mutant phages) that regain infectivity against the
resistant bacteria [41].

3. Emergences of Phage Resistance in Animal Models

3.1. E. coli Diarrhoea in Cattle

Controlled studies on phage therapy and the emergence of phage resistance started in Western
countries with a series of farm animal trials against experimental diarrhoea with enteropathogenic
E. coli strains. In a first trial, oral phage therapy prevented E. coli-induced diarrhoea in colostrum-fed
calves even when given 8 h after bacterial inoculation [14]. No phage-resistant variants were
isolated from the calves. In another trial, phage therapy was administered at the onset of diarrhoeal
symptoms, but resolved the intestinal symptoms in only half of the animals (14 out of 21 calves
died). Phage-resistant variants were recovered from the small intestine of all calves failing clinical
improvement. In parallel, the faecal bacterial content of 11 calves that responded to phage therapy was
examined over a period of 14 days. E. coli titres progressively decreased over time and phage numbers
increased during the first 48 h, therefore indicating phage replication. Phage-resistant bacteria emerged
after 19 h, peaked at 2 days and decreased to undetectable levels after 10 days. Of note, these resistant
mutants did not proliferate in the small intestine and did not cause diarrhoea when reinoculated
to healthy colostrum-fed calves. The reduced virulence was associated with loss of the K antigen,
which is known to be a virulence factor for enteropathogenic strains [64].

Prevention of diarrhoea by oral phages was also observed in piglets and lambs infected with
E. coli [14]. Resistant variants were also isolated in the piglet faeces, but at relatively low rates.
In contrast, no phage-resistant variants were observed in lambs. Similar results regarding the potential
of phage therapy to prevent or treat E. coli diarrhoea were described in a second study done by Smith
and Huggin [15]. This time, K-positive phage-resistant E. coli variants were isolated in addition to the
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already-observed K-negative variants. However, unlike the K-negative resistant variants, K-positive
resistant variants were as virulent as the parent strain. These resistant variants were isolated only
in vivo from the calves and not in vitro from a broth culture.

In another study in Holstein steers, phage therapy could reduce the average number of E. coli
O157:H7 CFU in the faeces compared to controls, although it did not eliminate the bacteria from the
majority of animals [16]. No phage-resistant E. coli O157:H7 mutants were observed.

Thus, phage-resistant variants are readily selected during phage therapy in vivo, but their
pathological significance is unclear.

3.2. E. coli and Enterococcus faecalis Intestinal Colonization in Mice

Three studies using mouse models of E. coli intestinal colonization have also investigated the effect
of phage therapy on the emergence of phage-resistance. In the first study, E. coli O157:H7 intestinal
carriage could be eliminated within 48 h using three repeated phage oral doses. No resistant colonies
were recovered and untreated control mice remained culture-positive for 10 days [16].

In the second study, an oral cocktail composed of three different phages was administered to
mice colonized with enteroaggregative E. coli O104:H4 [18]. The bacterial titres did not decrease as
compared to controls as expected and remained stable for 21 days, although phages were observed to
replicate continuously during the time of the experiment. In addition, bacteria recovered on day 21
were still susceptible to each of the bacteriophages present in the cocktail when tested separately.

The third murine gut colonization study was a long-term 240 day protocol using oral T4 phages.
Phage-resistant E. coli emerged only on day 92 and resistant variants constituted 100% of bacterial
colonies isolated from phage-treated mice [17]. In comparison, only 20% of untreated mice carried
phage-resistant variants. Moreover, when phage therapy was stopped at day 92, the presence of
phage-resistant E. coli persisted over the 240 experimental days. The mechanism of phage-resistance
was not described.

In an additional work, Duerkop et al. inoculated germ-free mice with E. faecalis V583 before
starting phage therapy, which was first administered by oral gavage 6 h after colonization followed
by administration in drinking water [19]. Phage therapy slightly decreased faecal bacterial loads by
three-fold after 24 h. However, the level of colonization was not different from control animals after
48 h, even if phages were added to the drinking water. While 100% of the E. faecalis isolates remained
phage-susceptible after 6 h of treatment, only 15% were still susceptible at 24 h and 100% were resistant
at two days. Sequencing of 20 resistant bacterial variants revealed that they all had various mutations
in the integral membrane protein PIPef, which was observed to promote phage infection.

Finally, using a model of gnotobiotic mouse intestinal colonization, Reyes et al. analysed the
impact of viral predation on a consortium of 14 human bacterial symbionts [65]. When the community
was subjected to virus-like particles purified from the faecal microbiota of human healthy donors,
changes in the relative bacterial abundance was observed, but not with heat-killed viral-particle
preparations. Especially, Bacillus caccae bacterial communities were observed to first decrease after
phage attack, although they recovered later on. Evidence that phage resistance occurred due to genetic
changes, like acquisition of CRISPR elements, could not be observed. The authors hypothesized that
resistance was more the result of the expansion of an unexposed fraction of the population that could
be protected in intestine microhabitat.

3.3. Control of Poultry Pathogens

A large part of the phage therapy application to control pathogenic bacteria in animals has
been done in poultry, in order to prevent Salmonella spp. and Campylobacter spp. gut colonization
and infection. Salmonella enterica is one of the major causes of foodborne infection in humans due
to its symptomless carriage by chickens [66]. Up to now, the use of phage therapy to control S.
enterica in poultry could reduce, but not eliminate, the bacteria. Sklar and Joerger reported that
phage therapy did not significantly decrease S. enterica intestinal carriage in three animal trials [20].
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Although phage resistance was observed after treatment, the authors speculate that other factors, like
the salmonella intracellular lifestyle, could have contributed to the therapeutic failure. Atterbury et al.
observed that low phage concentrations were not efficient in significantly decreasing bacterial loads [21].
They proposed that the low salmonella concentration in the chicken gut, associated with the complexity
of the intestinal milieu—including physicochemical conditions, such as viscosity—was not suitable
for phage amplification. Increasing the phage titre of phage preparations increase efficacy, but did
not result in bacterial eradication. Interestingly, phage-resistance rates were higher following higher
phage titres, indicating phage–bacteria interactions took place. Moreover, phage-resistant bacteria
were not hampered in their ability to colonize the gut, and they often reverted to the susceptible
parent phenotype. These observations were further confirmed by Carvalho et al., including the fact
that phage-resistant mutants were able to colonize the gut, possibly by quick reversion to the parent
phenotype [13].

Carrillo et al. reported somewhat analogous results with Campylobacter jejuni [11]. Phage treatment
resulted in a decrease in the bacterial load ranging from 0.5 to 5 log CFU/g depending on the
amount of phage and time of administration. As for S. enterica, certain phage-resistant isolates were
observed to have decreased colonization abilities, but quickly recovered by reverting to the phage
sensitive phenotype. Interestingly, phage-resistance in C. jejuni entailed a large (90 kb) genomic
inversion at Mu-like prophage DNA sequences. The resulting cells demonstrated resistance to virulent
phages, inefficient gut colonization and production of infectious bacteriophage CampMu particles [12].
Recovering gut colonization capability was associated with re-inversion of the DNA fragment.
The observation revealed unprecedented phase-variation resistance mechanisms that could also occur
in other bacteria. Later observations by Sørensen et al. suggested that phage-resistance phase variation
was associated with excess capsular polysaccharide production in the case of chicken co-infection with
C. jejuni and phage F336 [67]. However, resistant variants had kept their gut colonization capability.

Taken together, these different studies raise the question of the selection of phage-resistance
in the gut environment and its implication for phage therapy. Indeed, the complexity of the gut
environment, kinetics of resistance development with phage concentration dependency [21], resistance
phenotype reversion [11,13] and selection for phase variable receptor structure leading to continuing
co-evolution [12] must be taken into account when developing future phage strategies. One optimistic
view is that, in contrast to antibiotic resistance, phage-resistance will be naturally kept under control via
coevolution. In a longitudinal study on bacteria and phage interactions in a broiler house, Connerton
et al. observed that although phage-resistant bacteria did emerge, they never outgrew and dominated
the susceptible ones [68].

3.4. Vibrio Cholerae

Phages play a critical role in the evolution of pathogenic bacteria and especially that of V. cholerae,
the causative agent of cholera epidemic diarrhoea. This is, for example, the case for the transmission
of the cholera toxin into a nontoxigenic strain via integration of the lysogenic filamentous phage
CTX_3 [69].

Phage-resistance appears to plays a central role in the evolution and regulation of this species in
its natural environment. In a landmark three-year study in Bangladesh, Faruque et al. showed that the
presence of phages infecting a given serogroup of V. cholerae was inversely correlated with the presence
of viable V. cholerae of the same serogroup in the aquatic environment [70]. In addition, if a strain of a
specific serogroup was observed in water samples with a phage infecting strains of the same serogroup,
the strain was resistant to the coincidentally isolated phage in 73% of the case. During that period,
the number of cholera patients correlated seasonally with the presence of V. cholerae in water samples
devoid of cholera phages, and inter-epidemic periods correlated with water samples containing only
cholera phages. These observations strongly confirmed the concept of fluctuating waves of different
environmental V. cholerae serogroups existing in the aquatic environment, with successive rounds
of phage amplification and selection of new resistant serogroups. The timing of phage peaks in the
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environment was also correlated with phage peaks in the stools of the patients, with increasing
amount of phage particles in patients as the epidemic progressed [71]. In addition, phages excreted in
cholera stools were the same as those found in the environment during the late stage of the epidemic
and were expected to mediate V. cholerae elimination and antagonize its transmissibility. Indeed,
V. cholerae populations recovered from phage-positive patient stools were significantly less infective
than phage-negative stools in an animal model [72].

Interestingly, when phage-positive stools were cultured in rich nutrient medium, but not
environmental water, a rapid emergence of phage-resistant variants that had lost the O1 antigen
was observed. Since the O1 antigen is important for protection from the environmental stress and
to escape host immune defences, it was suggested that the dominance of phage-resistant variants
should not be able to sustain an ongoing epidemic. Indeed, phage-resistant V. cholerae variants having
altered O1 antigens were significantly less able to colonize the small intestine of mice [33]. O1 antigen
alteration was also observed to be phase variable due to single nucleotide deletions in two genes
critical for O1 antigenic variation [32]. Indeed, modulation of O1 antigen in V. cholerae is important to
escape O1 antigen specific phages in nature. Although O1 phage variants were attenuated in a mouse
model of intestinal colonization, positive selection of revertants was shown in the intestinal tract. As a
consequence, the intestinal environment favours O1 revertant that are infectious, but simultaneously
susceptible to phages [32,72].

The phage content of patients’ stools was analysed during a 10-year survey in Dhaka,
Bangladesh [73]. One phage, ICP1, was present in all stools from cholera patient and used the O1
antigen of lipopolysaccharide as receptor. This suggests that ICP1 is extremely well adapted to its host
with a high selective pressure to maintain its genomic structure. Two other phages (ICP2 and ICP3)
were only transiently observed. ICP2 and ICP3 are not O1-specific, which explains why they were less
frequent, since V. cholerae O1 is the predominant serotype.

The surface receptor of phage ICP2 is the OmpU outer membrane protein. V. cholerae resistant
variants with decreased OmpU expression were described, and had attenuated virulence in an infant
mouse colonization model in vivo [74].

Since a cocktail composed of phage targeting different bacterial receptor would reduce the
chance of phage bacterial multi-resistance, Yen et al. reasoned that a cocktail composed of the three
different ICP phages could be used to prevent cholera infection [22]. The tree-ICP cocktail could kill
V. cholerae in vitro and prevent intestine colonization or cholera-like diarrhoea of infant mice and rabbit
models. All isolates from mice having received the phage cocktail 6 or 12 h after bacterial challenge
were sensitive to all three phages. Resistance was, however, observed for mice having received the
cocktail 24 h before bacterial infection, raising the question of phage partial washout prior to bacterial
inoculation, and thus incomplete efficacy. These resistant variants had a mutation in the O antigen gene
for phage ICP 1 and ICP 3 resistant variants, and OmpU for phage ICP 2 resistant variants. None of
the isolates were resistant to all three phages.

3.5. Experimental Meningitis and Endocarditis

The intrinsic bactericidal properties of anti-infective compounds such as phages can be reliably
studied in models where host defences are poorly involved. Such models of therapeutic sanctuaries
include experimental meningitis and experimental endocarditis (EE). Experimental meningitis
implicates a special anatomical setting where drug distribution depends on the blood–brain barrier.
In contrast, EE mirrors the general situation encountered in many deep-seated infections where
pathogens on the cardiac valves surround themselves with amorphous aggregates of platelet-fibrin
clots, which cellular host defences cannot penetrate (for review see [14]). Thus, the capability of
antimicrobials to cross the blood-brain barrier for meningitis or to penetrate into cardiac valve lesions
(also called vegetations) are critical issues in these models.

Early studies by Smith and Huggins used a mouse model of meningitis. Mice were infected
with E. coli 018:K1:H7ColV+ and treated 16 h later with one intramuscular dose of anti K phage or 12
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doses of tetracycline, ampicillin, chloramphenicol, or a mixture of trimethoprim and sulfamethoxazole.
The mortality was significantly lower in phage-treated mice than in the different antibiotics groups.
Isolates recovered from mouse brains were tested for phage and antibiotic resistance. No antibiotic
resistance was detected. In contrast, 6 out of 360 independent colonies (observed in 5/36 of the mice)
recovered from phage-treated mice were phage resistant. All six phage-resistant isolates were K1
antigen negative, predicting decreased infectivity.

Oechslin et al. examined the efficacy of an antipseudomonal cocktail of 12 phages, used alone
or in combination with antibiotics, in a dual in vitro and in vivo model of P. aeruginosa experimental
endocarditis [24]. First, ex vivo fibrin-platelet clots were inoculated with 108 log CFU of P. aeruginosa.
Phage treatment rapidly decreased bacterial counts by 6 log CFU in 6 h. However, bacterial regrowth
was observed after 24 h due to the selection of resistant variants. The rate of phage-resistance
mutation in the original inoculum was of ca. 10−7, and resistant mutants expectedly took over
after initial phage-induced killing, as described by Luria and Delbrück [45]. Bacterial regrowth after
6 h was prevented by the addition of sub-inhibitory concentrations of antibiotics, namely ciprofloxacin
or meropenem.

In rats with experimental aortic endocarditis, phage therapy decreased vegetation bacterial counts
by 2.3 to 3 log CFU, depending on the mode of administration. Phage therapy alone was comparable
to ciprofloxacin. However, combining both treatments resulted in a highly synergistic effect with 7/11
(64%) of rats having culture-negative vegetations after only 6 h, an unprecedented efficacy in this very
experimental setting.

Most importantly, phage-resistant pseudomonas variants were not observed in in vivo endocarditis
therapy, either before or after treatment, therefore suggesting that phage-resistance could result
in altered virulence or altered fitness of bacteria in animals. The hypothesis was investigated by
characterizing two phage-resistant variants recovered from the ex vivo fibrin clot experiments, which
displayed either transient resistance to all phages present in the cocktail or total resistance against 10
of the 12 phages. Total genomic sequencing and comparison disclosed that one of the variants had a
15 bp deletion in the pilt ATPase gene involved in pilus retraction, thus resulting in altered twitching
motility. The other phage-resistant variant had lost the O-antigen and LPS core due to a large 350 kb
deletion encompassing the galU gene, which is involved in LPS synthesis. Both resistant variants were
less able to infect sterile vegetations than the parent strain. Since both pilus and LPS are virulence
factors, it was concluded that mutations conferring phage-resistance come at a high physiological cost
in fitness and virulence.

3.6. Sepsis and Acute Infections

Pouillot et al. evaluated phage therapy in a murine model of fatal neonatal sepsis [25]. Rat pups
received intraperitoneal injections with a virulent strain of E. coli O25b:H4-ST131 and were treated
7 h or 24 h post infection with subcutaneous injections of monophage EC200PP. Phage therapy
administered 7 h post infection rescued all the rats, whereas delaying therapy until 24 h rescued
only 50% of the animals. Phage-resistant colonies with rough morphologies were recovered from
the treatment failures. However, these variants were more susceptible to serum-induced killing and
their virulence was dramatically attenuated in a sepsis model. Smith and Huggins made similar
observations when injecting mice in one gastrocnemius muscle with E. coli 018:K1:H7 and injecting
phages in the contralateral muscle [23]. Phages were efficient in decreasing bacterial muscle densities,
and only very few phage-resistant variants were recovered at the inoculation site. These isolates were
K1 antigen negative, which was previously shown to decrease virulence in mice [75].

Hung et al. used an experimental mouse model of Klebsiella pneumoniae liver abscess. Both intraperitoneal
and intragastric administration of a single phage NK5 protected mice from death in a dose-dependent
manner [26]. K. pneumoniae-induced liver injury and inflammatory cytokine production were
significantly decreased by phage therapy. As in the experimental endocarditis study [24], phage-
resistant variants emerged after 6 h or 12 h during phage time-kill curves in vitro, but no phage-resistant
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variants were observed in vivo. The resistant variants selected in vitro had lost the hypermucoviscosity
characteristic of K. pneumoniae NK-5. Five individual resistant variants were tested for virulence
in an intragastric model of infection and were significantly less virulent than the parent strain.
The phage-resistant variants were more susceptible to phagocyte-induced killing. Gu et al. also
observed the emergence of phage-resistant K. pneumoniae variants in vitro that were less virulent
in vivo [29]. These variants exhibited colony morphology variations with a rough phenotype,
as compared to the large and smooth wild-type colonies. This morphological feature of variant
strains remained stable even after repeated subculture and storage at –80 ◦C. Variants also displayed
much weaker virulence when intraperitoneally injected into mice.

Using a different type of model, Park et al. observed the effect of oral administration of
phage-impregnated food (mixture of two different phages PPpW-3 and PPpW-4) to ayu fish infected
by Pseudomonas plecoglossicida [28]. P. plecoglossicida were always detected in the kidneys of non-treated
control fishes, while they were rapidly eradicated in fishes receiving phage therapy. Bacteria recovered
from dying non-treated controls were susceptible to both phages. In contrast, phage-resistant variants
were observed in liquid cultures after exposure to phages PPpW-3 and PPpW-4. Four individual variant
isolates (three resistant to both phages and one resistant to phage PPpW-4 only) were tested in vivo by
intramuscular injection. While the parent strain was highly virulent, all four resistant variants were
avirulent, even at high inocula. In addition, one peculiar strain of P. plecoglossicida, which was highly
virulent following intramuscular injection in ayu fish, was also tested and became poorly virulent after
selection for phage-resistance. Moreover, bacterial growth in freshwater was observed to be lower in
the presence of phages, and the number of phage PFUs increased rapidly, indicating phage predation
and replication. These results are reminiscent of the V. cholerae phage ecology, and suggest that it might
be possible to use phages to control P. plecoglossicida-induced disease in fish.

Finally, Lerodelle and Poutrel evaluated the potential of phage therapy to cure sub-clinical mastitis
due to Staphylococcus aureus in lactating cows [27]. Udders were inoculated with S. aureus 106-6 and
107-59 via the mammary ducts and bacteriophage K lysates were administered by the same route once
sub-clinical mastitis was confirmed. Phage therapy decreased S. aureus bacterial loads in 60% to 100%
of the animals within 48 h of treatment, but could not sterilize all the udders. Treatment failures were
attributed to the deep-seated and intracellular localization of S. aureus in mastitis, which hide bacteria
from extracellular phages. Phage resistance was not responsible for treatment failure, as virtually no
resistant variants were recovered.

4. Phage Resistant Variants for Vaccine Production and Studying Virulence Factors

The potential of phages to select for resistant variants with decreased in vivo virulence was used
to generate vaccines against S. enterica or S. aureus. Capparelli et al. isolated a phage-resistant variant of
S. enterica serovar Paratyphi B selected with phage ϕ1. The resistant variants formed smaller colonies
and had lost their O-antigen; this phenotype was stable over many subculture passages. In addition,
phage-resistance was also associated with impaired transcription of six virulence factors, resulting
in an avirulent phenotype when inoculated intravenously into mice. Remarkably, immunization of
mice with the resistant variant protected the animals against infection with the lethal parent strain,
with 100% efficacy. As a control, vaccination with the heat-killed parent strain did not elicit protection.

The authors also observed that immunization of mice with phage-resistant S. aureus mutants
conferred broad-spectrum immunity against this pathogen [35]. Acquisition of phage-resistance against
phage MSA resulted in several altered properties from the S. aureus parent strain, including teichoic
acid alteration—which was responsible for resistance—reduced growth rate, decreased expression of
several virulence factors, and increased production of capsular polysaccharides. All these features were
stable during prolonged subculturing. Intramuscular administration of the phage-resistant variant
protected mice from lethal doses of the wild-type parent strain in 90% of the animals.

Regarding virulence factor studies, Filippov et al. used site-directed mutagenesis of different LPS
genes involved in the inner and outer core synthesis, followed by trans-complementation, to determine
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six Yersinia pestis phage receptors [36]. Phage-resistant mutants had attenuated virulence with increased
LD50 and time-to-death in mice, including five mutants that became totally avirulent. Likewise, Lannto
et al. reported loss of virulence driven by phage-resistant Flavobacterium columnare in a zebrafish model
of infection [37]. Phage-resistant variants produced rough colony morphotypes and exhibited impaired
gliding motility, a phenotype that was maintained over ten serial passages in liquid culture. Virulence
of the parental morphotype was compared to the phage-resistant R type in a zebrafish infection model.
The R type mutant became completely avirulent.

Heierson et al. reported that phage-resistant mutants of Bacillus thuringiensis had a decreased
virulence phenotype in pupae of the Cecropia moths, which correlated with flagella loss and an
increased susceptibility to methicillin [38]. In two studies performed by Flyg et al., phage-resistant
variants of the insect pathogen Serratia marcescens were also observed to have decreased resistance to
insect immunity and decreased virulence in a drosophila infection model, although the exact reason
for this virulence decrease was not described [39,40]. Finally, Regeimbal et al. also observed that
Acinetobacter baumannii phage-resistant variants that had lost their capsule became avirulent in a
Galleria mellonella model [76].

While alterations of virulence features related to phage resistance might be useful for vaccination,
they also help understand bacterial pathogenesis. In this regard, the above-mentioned studies support
the fact that phage resistance may be accompanied by fitness costs for the bacteria that may benefit the
host. As a result, the emergence of phage resistance during phage therapy is not always synonymous
with treatment failure.

5. The Biological Cost of Antibiotic Resistance and the Combined Action of Phage and Antibiotics

As for phage–bacteria coevolution, antimicrobial resistance is an ancient process that results
from the complex interaction between many microorganisms in their natural environment. Indeed,
most antibiotics are naturally-produced toxic molecules against which bacteria had to evolve
protective mechanisms in order to survive [77]. Antibiotic-resistant bacteria are an increasing problem
in human and veterinary medicine, as well as in the farming industry, due to the overuse of
antibiotics over the last half century. Antibiotic resistance may be intrinsic (i.e., bacteria may be
naturally resistant to certain antibiotics) or may result from spontaneous mutations or from the
acquisition of horizontally-transferred resistance genes [78]. Foreign gene acquisition may involve
DNA transformation, cell-cell conjugation, and phage-mediated transduction.

Resistance mechanisms include structural alteration or decreased expression of the antibiotic
target, decreased drug accumulation (via decreased permeability or increased drug efflux), or changes
in global metabolic pathways (for review on the topic see [79]).

Since antibiotics target important physiological functions, such as protein synthesis, cell wall
synthesis, or DNA replication, antibiotic resistance often implies a certain fitness cost (for a review
on the topic see [80]). However, the fitness cost associated with resistance may sometimes become
counterbalanced by compensatory mutations. This was the case in E. coli, were streptomycin resistance
conferred by mutations in the ribosomal protein RpsL first decreased the speed of protein synthesis,
but were compensated after several passages (evolved cultures) by neighbouring mutations
that restored the speed of protein synthesis [81]. Likewise, acquisition of the tetracycline and
chloramphenicol resistance plasmid pACYC184 by E. coli decreased its growth rate. The growth
speed was recovered, and even surpassed in evolved cultures, thanks to adaptive mutations present
on the bacterial chromosome (not on the plasmid), which took advantage of the tetracycline-resistance
efflux pump [82]. Thus, it was the bacterium that took advantage of the presence of the plasmid, not the
plasmid that took advantage of the bacterium. Numerous other examples of adaptive mutations exist
both in vitro and in vivo [83,84]. In addition, the acquisition of mobile genetic elements can also
lead to co-selection to more than one antibiotic resistance if different resistance genes are genetically
linked [85], and such multi-resistance is not incompatible with the restoration of fitness, as exemplified
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in the pACYC184 experiments [82]. Therefore, as with phages, bacteria undergo dynamic evolutionary
processes when challenged with antibiotics.

On the other hand, combining both phages and antibiotics could act in synergism to prevent
resistance or increase therapeutic efficacy (for review on the topic see [86]). Verma et al. showed
that combining ciprofloxacin and phages prevented the emergence of phage-resistant variants during
treatment of K. pneumoniae biofilms, although no direct bactericidal synergism between phages and
antibiotics was observed [87]. The emergence of phage-resistance was also prevented by treating
S. aureus (in continuous culture) with a combination of phages and gentamicin [88]. Torres-Barcelo et al.
confirmed the potential benefit of combining phages and antibiotics (in this case, streptomycin) against
P. aeruginosa [89]. The phenomenon of phage-antibiotic synergism was also observed in animal experiments
of P. aeruginosa endocarditis [24], as well as with the multi-resistant bacterium Burkholderia cepacia [90].

In addition, Chan et al. showed that selection of phage-resistance could also restore antibiotic
susceptibility [91]. When using a lytic phage specifically targeting bacterial receptors that are part
of the multidrug efflux systems, MexAB and MexXY—for instance, the outer membrane porin
OprM—phage-resistance restored antibiotic susceptibility because the efflux pump, which confers
resistance to several antibiotic classes, was no longer functional.

However, phage-antibiotic synergism may be dependent on experimental systems, and especially
antibiotic dosages. Cairns et al. showed that using sub-inhibitory concentrations of streptomycin,
as might be found in natural environments or sewage, could increase the rate of phage-resistance
mutations in Pseudomonas fluorescens, and, conversely, phage exposure increased the rate of mutation
to streptomycin resistance [92], which is compatible with phage-induced bacterial mutations described
by Pal et al. [61]. Nevertheless, looking at the association between antibiotic and phage-resistance in a
large collection of laboratory or clinical E. coli isolates, Allen et al. did not find a positive or systematic
correlation between drug-resistance and phage-resistance, suggesting that antibiotics used in medicine
or agriculture are unlikely to induce changes in phage resistance or phage-antibiotic cross-resistance in
the environment [93].

Taken together, while different kinds of positive or negative phage–bacteria interactions can be
observed in the laboratory or under natural conditions, potentially useful synergistic interactions do
exist and could be valuable to use in specific clinical situations.

6. Phage-Resistance in the Setting of Phage Therapy

While the use of phages as therapeutic agents is conceptually simple, complex questions still
exist regarding host range, route of administration, pharmacokinetic/pharmacodynamic parameters,
and managing the risk of resistance. One of the main differences between phages and antibiotics is
the ability of phages to self-replicate at the infection site. Therefore, the pharmacokinetics of phage
therapy is closer to the population dynamics of predator-prey models described in co-evolutionary
studies (see Section 1) than classical peak-distribution-elimination phases classically measured for
antibiotics. Levin and Bull proposed theoretical predictions for modelling interactions between phages
and bacteria during phage therapy of acute infections [94]. Assuming that there is a bacterial density
threshold beyond which the patient dies, and a limit in host defences, below which bacterial growth
cannot be controlled, the absence of therapy may lead to a situation where host defences cannot keep
bacteria in check in order to prevent death. By combining host defence and phage therapy, the bacterial
growth rate becomes negative before it reaches the lethal density threshold. In addition, the remaining
host defences are likely to more easily hinder the delayed growth of phage-resistant bacteria before
they reach the lethal threshold. In a recent study done by Roach et al., the effect of host immunity
and phage-mediated bacterial clearance was investigated in a mouse model of acute P. aeruginosa
pneumonia [31]. Phage therapy using healthy mice and mice with various immune defects revealed
that neutrophil-phage synergism was essential for the resolution of disease. Indeed, phage therapy
failed to prevent fatal outcomes in mice with neutrophil signalling defects due to the outgrowth of
phage-resistant variants. In silico analysis also predicted that neutrophils were important to prevent
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the emergence of phage-resistant variants and to efficiently clear infection. Thus, without immune
activation, phage-resistant mutants overwhelm the basal immune defences and lead to a resurgence of
a phage-resistant population that ultimately causes mortality.

Two general models of phage therapy implementation were proposed in order to manage the risk
of phage-resistance. First using phage cocktails and second adapting single phages to each patient
condition, referred to as personalized phage therapy.

The main reason for combining multiple phages in cocktails is to broaden the phage host range
and improve effectiveness by increasing the number of potential target pathogens. This results
in a greater potential for empirical treatment [95,96]. Regarding the emergence of resistance,
the different phages present in the cocktail are expected to synergize by targeting different receptors
on the bacterial surface, resulting in a lower statistical chance of bacterial co-resistance, as with
combined phage-antibiotic therapy. This was supported by Gu et al. who observed significantly lower
frequencies of phage-resistant K. pneumoniae mutants using a cocktail of three phages, compared to
monotherapy [29]. Similar observations were made with E. coli, where phage cocktails decreased the
frequency of phage-resistance or delayed the emergence of phage-resistant variants [97,98]. This broad
spectrum antimicrobial strategy is reminiscent of the model developed by pharmaceutical companies
for antibiotics, with the risk of treatment failure in case of a lack of susceptible bacteria, as well as the
risk of selecting resistance in fortuitous innocuous bacterial bystanders [96]. This approach is used in
countries such as Georgia, where phage cocktails are administered as an empiric treatment, although
the phage content may change over time in order to adapt to the most prevalent pathogens [99].
Alternatively, existing phages can also be adapted to existing phage-resistant strains [100].

The personalized phage strategy uses single phages or targeted phage cocktails directly
formulated from a phage bank according to the pathogen isolated from the patient [96,100]. Although
this strategy entails a higher cost associated with personalized treatment, it offers much more flexibility
regarding the spectrum of the phage and can counter the emergence of bacterial resistance more
efficiently. In one of the few well-documented phage therapy clinical trials that took the emergence of
phage-resistance into account, Międzybrodzki et al. achieved ca. 40% of a positive clinical outcome with
20% pathogen eradication using phage monotherapy [101,102]. Following phage therapy, phage typing
patterns of the pathogens were modified in 70% of the patients treated for S. aureus infection (53 patients
in total), 91% for P. aeruginosa (11 patients in total), and 100% for E. faecalis (14 patients in total),
and E. coli (14 patients in total). Resistance of the target pathogen to the therapeutic phage was also
observed in up to 17% of S. aureus cases, 36% of P. aeruginosa, 43% of E. faecalis, and 86% of E. coli.
The high frequency in the E. coli infection group was a cause of frequent change of the phage during
the treatment. Complete resistance to any of the phages present in the phage collection of the Ludwik
Hirszfeld Institute, Poland, was observed in 7% of the S. aureus cases, 27% of the P. aeruginosa cases,
21% E. faecalis cases, and 27% of the E. coli cases.

Emergence of resistance during phage therapy was also documented by Zhvania et al. in a
recent case study of chronic S. aureus skin infection at the Eliava Phage Therapy Center, Georgia [103].
Treatment with two anti-staphylococcal products greatly improved the patients’ symptoms starting
from seven days posttreatment. However, phage-resistance to the phage cocktail (Pyobacteriophage)
was observed after three months of treatment and an alternate phage cocktail had to be substituted.

The use of personalized phage therapy was also exemplified in a case report by Schooley et
al., where personalized-based therapeutic phages were administered parenterally to successfully
treat one patient with a disseminated multidrug resistant A. baumannii infection. Different phage
cocktails were assembled based on time-kill assays using a library of 96 phages. In vitro tests by
serial passages revealed a stepwise selection of resistance to two of the cocktails. A third phage
cocktail was prepared using the resistant isolates, which was then administered to the patient until the
successful outcome of the infection. Of note, the phage-resistant phenotype that arose over time was
associated with increased antibiotic susceptibility when phage and antibiotics were simultaneously
administered. In addition, differences in colony morphology were observed during the therapy, with
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the eventual loss of the capsule. The authors speculate that the capsule loss may have contributed
to the phage-antibiotic synergy, which included decreased virulence that had also been observed by
the same author in previous studies [76]. In addition, another case of successful personalized phage
therapy was reported in a lung transplant patient suffering from multi-drug resistant P. aeruginosa
pneumonia [104]. Different phage cocktails were administered to the patient intravenously or by
inhalation. Susceptibility of the bacteria to the phage was monitored during the treatment. New phage
cocktails were administered as bacteriophage resistance emerged. As above, a shift in the antibiotic
susceptibility pattern was also observed during phage treatment. Thus, while phage resistance does
emerge, it is not prohibitive to phage therapy as long as it is carefully monitored in order to adapt the
phage composition, and additional synergistic interactions with host defences or antibiotics may occur.

Finally, Khawaldeh et al. reported a successful case of adjunctive bacteriophage therapy for
a refractory P. aeruginosa urinary tract infection [105]. The phage cocktail used for the study was
composed of six lytic bacteriophages coming from existing bacteriophage libraries at the Eliava Institute
in Tbilisi and were selected based on several isolates of the infecting P. aeruginosa. Bacteriophage
counts was observed to remain high until after the disappearance of the target organism and then
diminished sharply. Urine samples remained sterile for six months after the completion of antibacterial
treatment and no bacteriophage-resistant bacteria arose during the time of the treatment.

7. Conclusions and Perspectives

Early studies suggested that phage–bacterial coevolution was limited to a few rounds of infection
cycles. Resistance emerges following the selection of bacterial subpopulations carrying preexisting
mutations and results in alterations in envelope determinants used by phages to adsorb on the
bacterial surface. Hence, phage-resistant variants were totally immune to further infection and
coevolution was rapidly stopped. These initial observations raised doubts regarding the use of phages
as therapeutic agents because such rapid emergence of phage-resistance could hamper treatment
effectiveness. However, phage-resistance is often balanced with resulting fitness costs for the bacteria.
Indeed, abiotic/biotic factors, including environmental conditions, multiple bacterial exploiters, and
resource availability, can greatly impact the successful emergence or stability of phage-resistance in
natural environments.

The altered fitness of phage-resistant bacteria is believed to be important in phage therapy,
where resistance mechanisms have been shown to alter virulence factors. In this literature review,
the cost of phage-resistance was associated with virulence reduction in 17/22 (78%) of the articles
(summarized in Table 1). Phage-resistant variants emerged in up to 82% of cases during phage-induced
gut decolonization (out of 11 studies). Resistant variants were also reported after treatment of acute
infection such as meningitis or sepsis, in up to 50% of the studies (out of six studies). Regarding the
studied organisms, only 3/28 studies assessed the emergence of phage-resistance in Gram-positive
bacteria, including two in S. aureus and one in E. faecalis. This focus on Gram-negative bacteria raises
the question as to whether Gram-negative bacteria are more problematic regarding resistance selection.

Several lessons can be extrapolated from the reviewed studies. First, phage-resistant variants are
often recovered after experimental therapy. Second, the intestinal milieu seems to be more prone to
the evolution of phage-resistance, possibly due to its complexity, including mechanical viscosity and
limited host defences in the lumen. Third, although phage-resistance often has a cost for the bacteria,
it is not always associated with decreased infectivity, at least in the intestinal milieu.

From the five studies that clearly linked the emergence of resistance during phage therapy with
alteration of a known virulence factor, like the O-antigen or LPS [14,15,22–24], four still reported
resistant variants after therapy. The question then arises as to whether these variants were mere
innocuous bystanders on the way of being eliminated by host defences, or whether they could still
produce infection.

In any case, the ideal experimental setting should be to apply the Koch postulate and inoculate
the variants to the animals in order to re-evaluate their infectivity. Indeed, recovering phage-resistant
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variants from in vivo samples may not be automatically synonymous with therapeutic failure,
a counter-intuitive concept that appears to apply to phage therapy.

Regarding phage therapy clinical trials in human, the emergence of resistance seems to be a
serious case of therapy failure if not monitored correctly. In three out of four clinical studies that
monitored resistance, phage resistance led to adaptation of the composition of administered phages.
Moreover, additional factors other than spontaneous mutations could also impact clinical resistance,
including the immune status of the patient, the presence of biofilm, bacterial persistors, a chronic
type of disease, and the possibility that the pathogenic strain possesses acquired types of resistance,
like CRISPR [5,31,94,106].

It remains unclear whether the widespread use of phages to treat infections might lead to a
problematic increase in phage-resistant bacterial pathogens in an analogous way that resistance
developed to antibiotics. Although fitness cost may be associated with phage-resistance, this may
depend on the environment, e.g., less virulence reduction associated in the intestinal milieu. Fitness was
mainly assessed in the context of virulence, not in the bacterial survival in the environment. The initial
fitness cost associated with antibiotic resistance could be compensated by adaptive mutations that
stabilized resistant bacteria in the environment. In addition, as for antibiotics, horizontal transfer of
phage resistance by plasmid acquisition was observed, which could be a problem in the long-term [107].

The real question is whether or not phages will be as widely used as antibiotics in the future.
Antibiotics are used in medicine not only to prevent and combat infection, but also for other industrial
applications in agriculture, which used up to 63,000 tons of antibiotics for livestock production alone
in 2010 [108]. For now, it is more likely that phage therapy will be utilized as a more personalized
medicine. In this case, the emergence of resistance will be manageable thanks to careful monitoring
during therapy.

It is interesting to note that in the hypothetical emergence of a phage-resistant superbug, coevolution
studies suggest that new phages will always be available in nature. Indeed, from environmental
perspectives, bacteria were observed to be more resistant to their contemporary phages than to
past or future phages and that hard-to-infect bacteria were infected by generalist phages and not
specialists [63,109].

Finally, in addition of the use of phage particles themselves, or phage-antibiotic combinations, it is
also possible to use purified phage lysins as a potential therapy. Recombinant phage lysins demonstrate
high antibacterial activity, although they are mainly restricted to Gram-positive pathogens (reviewed
in [110]). Regarding resistance, the lysin PlyG was evaluated for the possible resistance emergence after
repeated treatment of Bacillus anthracis [111]. Spontaneous resistant mutants could not be detected,
even when a compound like ethyl methanesulfonate was used to increase the bacterial mutation rate.
This suggests that phage lysins target essential cell wall components that are unlikely to be modified
by the host bacteria. Similar observations were made for Streptococcus pneumoniae and the phage lysin
Pal, where repeated exposure to low concentrations of enzyme did not lead to resistant mutants [112].
More recently, Totté et al. successfully treated three cases of chronic dermatoses due to S. aureus with
topical applications of the Staphefekt SA.100 endolysin product [113]. For all cases, resistance induction
was not observed during long-term treatment, which is usually observed with antibiotic therapy.

The reviewed studies highlight both the potential power and the limits of phage therapy.
Phages and bacteria are longstanding partners that have learned how to respect each other and
coevolve together. The use of phages for therapy might be highly efficacious to eradicate pathogens in
well-defined and circumscribed infected niches, particularly if used in combination with antibiotics.
Their great advantage over antibiotics alone is their extremely rapid killing kinetics, which surpasses
any known antimicrobial molecules, and the fact that they can self-replicate at the infection site.
Other advantages are that they may increase antibiotic susceptibility in specific cases, and that the
emergence of phage-resistant escape mutants may be prevented by antibiotics, or may carry alterations
in virulence factors. These developments are promising, but should follow a thorough step-by-step
developmental process, in order to avoid creating a resistance dead-end like that of antibiotics.
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On the other hand, large scale or open field utilization of phage therapy, such as gut decolonization
for the agricultural industry, is less certain. The coevolution dynamics of phage and bacteria is
extremely sophisticated in such complex environments. Moreover, although the fascinating example of
cholera control is inspiring, it is clear that phages never eradicated V. cholerae, whereas V. cholerae never
got rid of the phage. As enlightening as this example may be, it primarily underlines coevolution, but
not eradication, and not even efficacious population control, as epidemics still proceed.
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