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Abstract

Today’s supply networks consist of a certain amount of logistics objects
that are enabled to interact with each other and to decide autonomously
upon their next steps; in other words, they exhibit a certain degree of au-
tonomous cooperation. Therefore, modern logistics research regards them as
complex adaptive logistics systems. In order to analyze evolving dynamics
and underlying implications for the respective systems’ behavior as well as
the potential outcomes resulting from the interaction between autonomous
decision-making “smart parts”, we propose in this contribution a fully solv-
able stylized model. We consider a population of homogeneous, autonomous
interacting agents traveling on R with a given velocity that is itself cor-
rupted by White Gaussian Noise. Based on real time observations of the
positions of his neighbors, each agent is allowed to adapt his traveling veloc-
ity. These agent interactions are restricted to neighboring entities confined
in finite spatial clusters (i.e. we have range-limited interactions). In the
limit of a large population of neighboring agents, a mean-field dynamics can
be derived and, for small interaction range, the resulting dynamics coincides
with the exactly solvable Burgers’ nonlinear field equation. Explicit Burg-
ers’ solution enables to explicitly appreciate the emergent structure due to
the local and individual agent interactions. In particular, for strongly in-
teractive regimes in the present model, the resulting spatial distribution of
agents converges to a shock wave pattern. To compare performances of cen-
tralized versus decentralized organization, we assign cost functions incurred
when velocity adaptations are triggered either by multi-agent interactions
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or by central control. The multi-agent cumulative costs are then compared
with the costs that would be incurred by implementing an effective optimal
central controller able, for a given time horizon, to reproduce an identical spa-
tial probability distribution of agents. The resulting optimal control problem
can be solved exactly and the corresponding costs can be expressed as the
Kullback-Leibler relative entropy between the free and the controlled proba-
bility measures. This enables to conclude that for time horizons shorter than
a critical value, multi-agent interactions generate smaller cumulative costs
that an optimal effective central controller.

Keywords:
Transportation logistics, “Smart parts” dynamics, Multi-agent systems,
Mean-field approximation, Burgers’ nonlinear evolution, Emergent
cooperative pattern, Optimal stochastic control, Kullback-Leibler relative
entropy

1. Introduction - Smart Parts Transportation Logistics

In the daily life, many of our decisions are taken with limited rationality.
Indeed, the lack of complete information, the huge number of control param-
eters and criteria together with their nonlinear relationship and the ubiqui-
tous presence of random fluctuations corrupting preplanned strategies force
us to take actions with relative uncertainty. Highly complex, multicriteria
decision issues in modern management raise basically similar difficulties, thus
questioning the overall relevance of centralized organization processes.

Logistics is one field of application in which recent developments of informa-
tion and communication technologies, such as RFID tags or sensor networks,
enable logistics objects like products, containers or even ships to interact
and autonomously decide on their upcoming actions. These so-called “smart
parts” [1] triggered a discussion about pros and cons of a decentralization
of decision-making in logistics processes, e.g. [2]. The underlying idea is
based on a shift from an important degree of external control to a higher
degree of the organizational principle of autonomous cooperation [3]. Fol-
lowing this concept consistently, supply networks can then be regarded as
complex adaptive logistics systems (CALS) [1, 4, 5, 6, 7]. Inspired by the
exceptional performances obtained by populations of social insects able, via
mutual interaction mechanisms, to self-organize and ultimately produce ro-
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bust and highly efficient patterns (e.g. [8]), modern management aims to
favor decentralized decision processes. Decentralization is implemented by
introducing a collection of suitable agents able to process local information in
real time. These agents are endowed with an autonomous decision capability
and their choices are based on this local and incomplete information (i.e.
only a part of the population is usually observed). The multiple interactions
between neighboring agents are ultimately expected to generate an emergent
global behavior that, due to self-organization, should ideally outperform a
centralized decision process.

However, effects of a reduction of external control and an increase of the
degree of autonomous cooperation in transportation logistics on performance
indicators, such as delivery time or delivery costs, have not been shown yet
in analytically solvable models. Inspired by this logistics field of application,
the aim of the present paper is to propose a stylized, fully solvable trans-
portation problem for which this paradigmatic view can be mathematically
observed. Benefits of self-organization have notably been pointed out in the
context of urban road networks. In [9], a fluid-dynamic model is proposed to
unveil that self-control of traffic lights and vehicle flows might lead to efficient
traffic processes. As intersecting flows of vehicular traffic are often managed
by an external control that might lead to oscillatory behaviors, decentralized
control strategies become thus interesting and fruitful alternatives, [10, 11].
Also somehow related to the present study, a model of commuters having the
choice between alternative roads and basing their routing decisions on their
neighbors’ most recent waiting experience and on their own complete waiting
history (i.e. on their exponentially weighted average experimented waiting
times for each road) is proposed in [12]. This contribution explicitly exhibits
the striking feature that a self-organizing system based on local information
and locally rational agents might outperform (i.e. the average travel time of
commuters is reduced) the Nash equilibrium (that assumes full information).

The complex evolution of statistical mechanics models involving multi-agent
features usually precludes any analytical approaches, with the exception of
the case when large and intimately connected populations are considered. In
this case, the law of large numbers enable to collect the numerous mutual
interactions due to neighboring agents into an effective external field. The
resulting mean-field approximate dynamics is described by time-dependent
nonlinear field equations for which some analytical information can be ex-
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tracted. This is precisely the method that we will follow in this contribution
and which will lead to explicit solutions.

Stylized models, as the one introduced in this work, handle the complex-
ity by reducing drastically the number of considered parameters. The aim of
such kind of models is to remain analytically tractable but to allow never-
theless for a detailed understanding of the origin and nature of the emerging
phenomena. Moreover, the desired simplicity of these models implies that
changes and variants can be addressed in a simple way, in order to eventu-
ally incorporate additional features. The approach consisting in developing
such type of stylized models has been recently adopted in economics [13, 14].
In these contributions, a minimal agent-based model for financial markets
is developed in order to understand the essence of several collective self-
organized patterns that appear in price evolution. Closely related to the
present methodology and without being exhaustive, let us also quote styl-
ized multi-agent models in the field of investment behaviors in stock markets
[15] and autonomous routing in queueing systems [16].

The paper proceeds as follows: Section 2.1 depicts the basic dynamics of the
model under consideration and thus consists in a description of the regarded
population of agents, their decision rules and interaction patterns as well as
the noise sources affecting the agents’ dispersion over time. Taking this as
a basis for the analysis that follows, Section 2.2 provides under a mean-field
approach (i.e. we consider homogeneous agents) an analytical solution to
the considered dynamics, notably with regard to the resulting acceleration
effects of the whole cluster of agents. Section 2.3 consists in a cost function
analysis, the aim of which is to compare the cumulative costs that result from
autonomous agents’ interactions with those that would occur if an effective
optimal central controller would lead the cluster of non-interacting agents to
an equal dispersion. Section 3 is devoted to concluding remarks; the findings
are summed up and future and further research requirements are pointed
out.
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2. Self-Organized Transportation Based on an Idealized Smart Parts
Paradigm

2.1. Basic Dynamics

Consider a collection of agents Ak, k = 1, 2, ..., N , with evolution given by
the stochastic dynamics:

Ẋk(t) = vk(t) + γk Ik( ~X(t))
︸ ︷︷ ︸

agent interactions

+qk( ~X(t), vk(t))dBk,t, (1)

where Xk(t) stands for the traveled distance by agent Ak, ~X(t) is defined as:

~X(t) = (X1(t), X2(t), ..., XN(t)) ,

vk(t) are individual velocities and Ik( ~X(t)) is a dimensionless coupling term
with velocity strength γk describing interactions between the agents. When
γk = 0 (i.e. no interactions between the agents) we define an ideal distance
Wk(t) traveled during time t as1:

Wk(t) =

∫ t

0

vk(s)ds. (2)

The terms qk( ~X(t), vk(t))dBk,t stand for the respective noise sources the am-
plitudes of which may generally depend on the agents’ positions and veloc-
ities. The term γkIk( ~X(t)) ≥ 0 describes how agent interactions affect the

agents’ individual velocities (Ik( ~X(t)) is dimensionless and γk has the dimen-
sion of a velocity).

Having in mind a logistics context, we may view Xk(t) as the position of
a “smart container” (i.e. agent Ak) traveling with vk(t) as an ideal pre-
defined velocity. Random environment is idealized with the noise source
qk( ~X(t), vk(t))dBk,t. Numeral sources of fluctuations are conceivable, for ex-
ample environmental and/or measurement noises can be considered. The
“smart” agent character is introduced via the Ik(·) term which we will define
as:

1The functions vk(t) denote velocities, hence the physical dimension of Wk(t) is a
distance.
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Ik( ~X(t)) =
1

Nk

Nk∑

j 6=k

Ik(Xj(t)), (3)

where Nk is the set of “neighboring” agents observable by agent Ak and, for
j ∈ {1, 2, ..., k − 1, k + 1, ...,Nk}:

Ik(Xj(t)) =







0 if 0 ≤ Xj(t) < Xk(t),

1 if Xk(t) ≤ Xj(t) < Xk(t) + U, (U > 0),

0 if Xj(t) > Xk(t) + U.

(4)

In words, agent Ak observes the positions occupied by Nk of its neighbors:

• When Xk(t) ≥ Xj(t), agent Ak does not modify its velocity (Ak feels that
he is in advance).

• When Xk(t) ≤ Xj(t) < Xk(t) + U , agent Ak feels that he is late com-
pared with Aj, accordingly he increases his velocity this to try to match Aj’s
behavior.

• When Xj(t) > Xk(t) + U, agent Ak feels that he is far too late and he does
not attempt to catch Aj.

Thanks to the introduction of White Gaussian Noise (WGN) into the dynam-
ics given by Eq.(1), the system evolution is described by a N -dimensional
diffusion process which we may alternatively represent as a N -dimensional
transition probability density P ( ~X(t), t | 0, 0) := P ( ~X, t) solving a Fokker-
Planck (parabolic) diffusion equation. This alternate representation be-
comes straightforward in the case of a population of homogeneous agents
(i.e. vk(t) ≡ v(t) and γk ≡ γ) without interaction (i.e. Ik(Xj(t)) ≡ 0)
and when dBk,t are independent White Gaussian Noise (WGN) processes,
∀ k = 1, 2, ..., N . From now on we will moreover focus on additive noise
sources for which we have qk( ~X(t), vk(t)) ≡ q. In this case, we obtain the

following N -multivariate Gaussian distribution for P ( ~X(t), t | 0, 0):

P ( ~X(t), t | 0, 0) =
{
G(W (t), σ2

q (t))
}N

, (5)

where G(m, σ2) denotes a Gaussian density with mean m and variance σ2.
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2.2. Mean-Field Approach for Homogeneous Agents

To discuss analytically the model given by Eq.(1), we now focus on situations
with large number of observable agents Nk >> 1, ∀k = 1, 2, ..., N , and
specifically we will consider the cases where Nk = χkN , with χk ∈ ]0, 1] fixed
proportions, and Nk → ∞ (every agent observes a very large neighbouring
population). As before, the noise generators dBk,t, k = 1, 2, ..., N , are taken
to be independent WGN processes. In the homogeneous case where χk ≡ χ
and when Nk ≡ N → ∞, the Mean-Field Dynamics (MFD) approach
consists in writing:

P ( ~X(t), t | 0, 0) = {P (x, t)dx}N , (6)

where the single effective transition probability density P (x, t) solves the
Fokker-Planck equation:

∂

∂t
P (x, t) = − ∂

∂x
[Dv(x, t)P (x, t)] +

1

2
q2 ∂2

∂x2
[P (x, t)] , (7)

where the drift field Dv(x, t) reads as:

Dv(x, t) = v(t) + γ

{
∫ x(t)+U

x(t)

P (x, t)dx

}

︸ ︷︷ ︸

ϕU (x,t)

, (8)

with γ as before having the dimension of a velocity. The dimensionless
term ϕU(x, t) represents the probability density to find, at time t, agents
at position x(t) satisfying x(t) ≤ x ≤ x(t) + U . The amplitude of ϕU(x, t)
therefore modulates the velocity correction due to the agent interactions and
hence U has to be interpreted as a dimensionless sensitivity factor. For
homogeneous agents (i.e. Nk ≡ N ), the MFD approach consists in writing
Eqs.(3) and (4) as:

1

N
N∑

j 6=k

Ik(Xj(t)) ≈
∫ x(t)+U

x(t)

P (x, t) dx. (9)

Solving the diffusion given by Eq.(7) with the drift given by Eq.(8) offers in
general little hope for analytical discussion (one deals with non-linear and
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non-local field equation). However for small sensitivity factor U , we may
Taylor expand Eq.(8) and, to first order in U , Eq.(7) can be rewritten as:

∂

∂t
P (x, t) = − ∂

∂x

[
v(t)P (x, t) + γUP 2(x, t)

]
+

1

2
q2 ∂2

∂x2
[P (x, t)] . (10)

Introducing the change of variables

x 7→ y = x − W (t), (11)

the systematic deterministic velocity drift v(t) will be removed from Eq.(10)
and we obtain:

∂

∂t
P (y, t) = −γU

∂

∂y
[P (y, t)]2 +

q2

2

∂2

∂y2
[P (y, t)] , (12)

which is the famous viscous Burgers’ equation. We have to complete
Eq.(12) with an initial condition which we will take here as:

P (y, t = 0) = δ(y), (δ is the Dirac measure) . (13)

By introducing the rescaling

t 7→ τ = γt, y 7→ z =
y

2U
, (14)

we transform Eq.(12) into the dimensionless Burgers’ equation:

∂

∂t
P (z, t) =

1

2

∂

∂z
[P (z, t)]2 +

[
q2

8U2γ

]
∂2

∂z2
[P (z, t)] , (15)

It is well known that Eq.(15) can be linearized into the heat equation via a
logarithmic transformation discovered by Hopf and Cole, [17]. This transfor-
mation reads as:

P (z, t) = − ∂

∂z
ln (Φ(z, t)) ⇒ Φ̇(z, t) =

[
q2

8U2γ

]
∂2

∂z2
Φ(z, t). (16)

Using Eq.(16) and for the initial condition given by Eq.(13), the solution of
Eq.(15) is easy to derive and is given in [17]. According to the change of
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variables given in Eq.(14), the normalized solution of Eq.(12) reads hence as:

P (y, t) = − q2

4γU2

∂

∂y
ln

[

1 +

(
eR − 1

)

2
Erfc

(
y

q
√

t

)]

=
1

R







(eR−1)√
πq2t

e
− y2

q2t

1 + (eR−1)
2

Erfc
(

y

q
√

t

)







=:
1

R

(eR − 1)G(y, t)

E(y, t)
, (17)

where G(y, t) and E(y, t) are defined as:

G(y, t) =
1

√

πq2t
e
− y2

q2t , E(y, t) = 1 +

(
eR − 1

)

2
Erfc

(
y

q
√

t

)

(18)

and where the dimensionless parameter R is defined as:

R :=
4U2γ

q2
.

Two limiting regimes can be identified:

(a) Strongly diffusive regime obtained for large fluctuations amplitudes, i.e.
when R → 0 (in this case, the random perturbations are predominant
compared to the self-organized process involved by the agent interac-
tions). In this limiting regime, we approximately have:

P (y, t) ≃ 1
√

πq2t
e
− y2

q2t . (19)

(b) Strongly interactive regime obtained for vanishing fluctuations ampli-
tudes, i.e. when R → ∞ (in this case, the self-organized mechanism
involved by the agent interactions predominates over the random fluc-
tuations). In this limiting regime, we obtain:

P (y, t) ≃ y

4U2γt
, for 0 ≤ y ≤

√

8U2γt. (20)
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The moments of the density given by Eq.(20) read as:

〈Y n(t)〉 =

∫
√

8U2γt

0

yn+1 dy

4U2γt
=

2n+1 Un

n + 2
(2γt)n/2. (21)

Hence in this limiting regime, the increase of the average traveled dis-
tance due to agent interactions is obtained by taking n = 1 in Eq.(21),

yielding 〈Y (t)〉 = 4U
√

γt
3

.

Comparing the two limiting regimes given by Eqs.(19) and (20), it is interest-
ing to observe that P (y, t) has unbounded support when R → 0 but bounded
support when R → ∞ (shock wave behavior).

As intuitively expected, when γR > 0, agent interactions enhance the
velocity of the entire population of agents. Numerical computations
of the first moment of the density given by Eq.(17) are reported in Table
1 where the global velocity increase of the whole cluster of agents can be
quantitatively appreciated. The solutions given by Eq.(17) of the Burgers’
equation, for different values of R, are illustrated in Fig. 1 and the dynamics
of the spatial dispersion of the agents over time is sketched in Fig. 2.

Table 1: Average traveling enhancement 〈y(t)〉 of the whole population of agents. The
values presented below correspond to the probability density functions of Fig. 1, again
with fixed time t = 10.

R 〈y(t)〉 =
∫ +∞

−∞
yP (y, t)dy

0 0
0.2 0.012
2 0.126
8 0.424
20 0.804
40 1.219
100 2.023
200 2.914
400 4.163
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Figure 1: Probability density function P (y, t) characterizing the spatial dispersion of the
agents at time t = 10 for N = 2000 and q = 0.1. This graph is a representation of
the solution of the presently considered Burgers’ equation, given by Eq.(17), for different
values of the control parameter R. The two limiting regimes are clearly observable in blue
(R → 0) and in red (R → ∞). Note that the solutions have been translated around zero

(i.e. the point y = 0 in the graph corresponds actually to the point y =
∫ t=10

0
v(s)ds of

the dynamics).

2.3. Cost Function Analysis

Having observed the acceleration effects that are due to autonomous agent
cooperation, we may now infer on its efficiency. To this aim, we introduce a
class of effective centralized controllers yielding, for a given time horizon T ,
a similar agent probability distribution.

For the MFD regime, we have obtained the multivariate probability density
P (~x, t)dx1dx2.....dxN = [P (x, t)dx]N with P (x, t) solving, up to the transla-
tion given by Eq.(11), the Burgers’ equation. The same probabilistic behavior
can also be obtained by introducing an effective centralized controller
which takes care of each agent by simultaneously implementing a
set of identical drifts ck(Xk, t) controlling each individual agent. We
will focus on a class of effective centralized controllers that only depend on
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Figure 2: Dynamics of the agents’ spatial dispersion for N = 2000, q = 0.1, γ = 1 and
v(t) = 1, ∀t > 0. A pool of entities are traveling from point A= 0 to point B= 70.
Initially (i.e. at t = 0), all the items are located at y(t = 0) = y0 = 0− (which is
represented by the green delta-peak function on the graph above). At time t = 20, due to
the noise affecting their evolution, the entities are dispersed around the originally planned

trajectory y(t = 20) =
∫ 20

0
v(s)ds = 20. Without almost any control on the dynamics

of the entities (R = 1.6 · 10−7, i.e. practically no interactions between the agents), the
dispersion follows a Gaussian distribution with mean y(t = 20) = 20 (in blue on the
graph). When agents are strongly interacting (R = 100), the dispersion is deeply modified
by the agents’ autonomous local interactions and follows the density drawn in red above.
At t = 40, the originally planned schedule is obviously found to be even closer to B, at

y(t = 40) =
∫ 40

0
v(s)ds = 40, and the densities describing the dispersion of the agents are,

due to diffusion, more flat compared with t = 20. However, one might observe in this
graph that the Kullback-Leibler distance between the blue and red lines remains constant
at any time of the dynamics.

the final state to be reached by the population of agents at a given time
horizon T . Despite to the fact that our class of effective controllers involves
state- and time-dependent drifts, it has to be clearly distinguished from
the class of real time information controllers which permanently
re-actualize their states based on updated local information sets
(here only the initial and the final states to be reached are taken into ac-
count). To construct our effective centralized controller, one considers N
independent diffusion processes of the type:
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dXk,t = ck(Xk, t)dt +
q

2
dBk,t, Xk,0 = 0, k = 1, 2, ..., N, (22)

yielding a set of probability densities Pck
(x, t) ≡ Pc(x, t), for k = 1, 2, ..., N .

For a given time horizon T > 0, we will impose that:

[Pc(x, T )dx]N = [P (x, T )dx]N , (23)

i.e. the dynamics obtained for centralized and decentralized controls lead to
the same final dispersion of agents. However, it is important to note here
that, while the final probability measures (i.e. at time T ) coincide for both
type of controls, the dynamics differs during the time interval ]0, T [. Such
distinct transient evolutions give rise, as we will observe in Section 2.3.3, to
different global cumulative costs.

Let us now define and compare the costs incurred under the original decen-
tralized multi-agent evolution given by Eq.(1) with those resulting from
the implementation of an optimal effective centralized controller with
drift c∗k(Xk, t) and for which Eq.(23) is satisfied. We will consider a cost rate
function based on the ratio between the kinetic energy due to the ve-
locity adjustments and the diffusion rate due to noise. Hence, roughly
speaking, our cost rate function can also be understood as a signal-to-noise
ratio.

2.3.1. Costs Incurred by Decentralized Velocity Adjustments

Let us assume that a cost is only incurred when an agent is speeding up
according to the rule given by Eq.(4). For a collection of N agents and for a
time horizon T , the global (cumulative) costs Jagents,T can formally be written
as:

Jagents,T =
N∑

k=1

∫ T

0

1

q2

γ2

2

[

1

N
N∑

j 6=k

Ik(Xj(t))

]2

︸ ︷︷ ︸

kinetic energy of agent Ak

dt ≤ N
γ2U2

2q2
T, (24)

where according to Eq.(4), the term 1
N

∑N
j 6=k Ik(Xj(t)) ∈ [0, 1] stands for the

proportion of agents among the whole population currently interacting with
agent Ak at time t.
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2.3.2. Costs of an Equivalent Effective Central Controller

Let us now examine the possibility to reach the probability density state
given by Eq.(17) by using, instead of interactive agents, an effective central
controller of the form introduced in Eq.(22). Remember that costs are in-
curred here only for velocity increase. We now focus on a diffusion process
given by:

dYt = c(Y, t)dt +
q

2
dBt, Y0 = 0, (0 ≤ t ≤ T ) , (25)

where c(Y, t) is a drift controller. The dynamics given by Eq.(25) leads to
the following Fokker-Planck equation:

∂

∂t
Pc(y, t) = − ∂

∂y
[c(y, t)Pc(y, t)] +

q2

2

∂2

∂y2
Pc(y, t). (26)

Given a time horizon T > 0, we would like now to construct a controller
c(Y, t; T ) which ultimately produces (i.e. at time T ) the same final effect as
the spontaneous agent interaction mechanism. In other words and in view of
Eq.(23), we would like to find c(Y, t; T ) such that the solution:

Pc(y, T )
︸ ︷︷ ︸

solution of Eq.(26)

= P (y, T ).
︸ ︷︷ ︸

density given by Eq.(17)

(27)

In full analogy with Eq.(24), we can associate a cost function Jcentral,T [c(y, t; T )],
representing the global (cumulative) costs incurred by the effective central-
ized control, defined as:

Jcentral,T [c(y, t; T )] =

〈{∫ T

0

c2(y, s; T )

2q2
ds

}〉

, (28)

where 〈·〉 stands for the averaging over the realizations of the underlying
stochastic process. Now we consider the optimal control problem consist-
ing in the construction of the optimal controller c∗(y, t; T ) which simul-
taneously fulfills Eq.(27) and minimizes the cost function given by Eq.(28),
namely:

Jcentral,T [c∗(y, t; T )] ≤ Jcentral,T [c(y, t; T )] (29)

over all possible controls c(y, t; T ).
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The explicit solution of this stochastic optimal control problem has been
given by P. Dai Pra in [18] and can be summarized as follows:

(a) Optimal controller c∗(y, t; T ).

The optimal effective controller is given by:

c∗(y, t; T ) =
∂

∂y
ln [h(y, t)] , (30)

with

h(y, t) =

∫

R

G [(z − y), (T − t)]
P (z, T )

G(z, t)
dz

and where the functions P (y, t) and G(y, t) are defined in Eqs.(17) and
(18).

(b) Minimal cost value.

The optimal minimum cumulative costs Jcentral,T [c∗(y, t; T )] = D(P |G)
where D(P |G) is the Kullback-Leibler relative entropy (or pseudo-
distance) between the free evolution (here given by G(y, t)) and the
controlled density P (y, t) given by Eq.(17).

Remember that for two probability densities p(y) and q(y), the Kullback-
Leibler relative entropy D(p|q) reads as:

D(p|q) =

∫

R

p(y) ln

[
p(y)

q(y)

]

dy. (31)

Here, we have p(y) = P (y, t) given by Eq.(17) and q(y) is the normalized

Gaussian density q(y, t) = G(y, t) = 1√
πq2t

e
− y2

q2t . Using the properties:

∫

R

G(y, t)dy = 1,

∫

R

P (y, t)dy = 1,
∂E(y, t)

∂y
= (eR − 1)G(y, t),

E(∞) = 1 and E(−∞) = eR,

15



we can write:

D(p|q) =

∫

R

(
eR − 1

)
G

R E
ln

[(
eR − 1

)
G

R E G

]

dy

=
1

R
ln

(
eR − 1

R

)

ln(E) |∞−∞ −
∫

R

(
eR − 1

)
G

R E
ln(E)dy

= ln

(
eR − 1

)

R
− 1

R

∫

R

(
d

dy
ln(E)

)

ln(E)dy

= ln

(
eR − 1

)

R
− 1

2R
[ln(E)]2 |∞−∞

= ln

(
eR − 1

)

R
+

R

2
.

Hence, for a population of N agents, we end with a global (cumulative) costs
value equal to:

Jcentral,T [c∗(y, t;T )] =

{

ND(P |G) = NR
2 + N ln

[
(eR−1)

R

]

for T > 0,

0 for T = 0.
(32)

For time horizon T = 0, the result follows directly as, for time t = 0, we have
assumed that P (y, 0) = G(y, 0) = δ(y = 0−) (see [19]). One might observe in
Eq.(32) the truly remarkable feature that D(P |G) is, for T > 0, only depen-
dent on R (and not on the time horizon T ). As the solutions of the Burgers’
equation and the heat equation are, for all times, connected via the Hopf-
Cole transformation given by Eq.(16), their relative entropy is a constant
of the motion. For strongly diffusive regimes, we have limR→0 D(P |G) = 0
as it should be since agent interactions are nearly negligible in this limit and
hence no costs are incurred. Conversely for strongly interacting regimes, we
have limR→∞ D(P |G) ≃ R/2.

Observe that while the global cumulative costs given by Eq.(32) remain con-
stant and independent on the given time horizon T , the effective optimal
drift itself, as given by Eq.(30), strongly depends on T . Hence, defining an
optimal average cost rate r∗central,T := 1

T
Jcentral,T [c∗(y, t; T )], we then conclude

that the larger is T , the smaller will be r∗central,T .

2.3.3. Costs Comparison

Let us now compare the global cumulative costs Jagents,T and Jcentral,T [c∗(y, t; T )].
Invoking Eqs.(24) and (32) and due to the fact that the multi-agent cumula-
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tive costs are monotonously increasing with T , we can conclude that it exists
a critical time horizon Tc such that:

Jagents,T < Jcentral,T [c∗(y, t; T )] , for T < Tc. (33)

Hence, in this stylized modelling framework, we are able to explicitly observe
that for time horizons shorter than Tc, the agent-based self-organization
beats the optimal effective centralized controller. This striking feature
can actually be intuitively understood. For small horizons T < Tc, all agents
are confined in a relatively compact cluster and therefore, according to the
interaction rule given by Eq.(4), almost all agents accelerate. This almost
global change of velocities generates, for small time horizons, a very high cost
rate r∗central,T for the effective central control. This phenomenon favors the
self-organized behavior when a short time horizon T is considered. Alter-
natively, for larger values of T , the noise-induced diffusive behavior strongly
reduces the effective strength of the interactions, thus decreasing r∗central,T .
In our model, this cost reduction for time horizons T > Tc favors the opti-
mal effective centralized controller. This picture is sketched in Fig. 3. Note
that, for the goal of the present contribution, the upper-bound for the de-

time horizon T

cumulative costs

0

actual decentralized costs 

upper-bounded decentralized costs 

centralized costs 

T < Tc

time horizons for which agent 

interactions beat the optimal

 effective centralized controller
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Figure 3: Qualitative sketch of the global cumulative costs incurred by decentralized and
effective centralized control.
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centralized costs (see Section 2.3.1) is sufficient to establish the existence of
an interval [0, Tc] of time horizons for which decentralization is advantageous
and should hence be favored.

3. Conclusion

The aim of this paper was to present a stylized, fully solvable model that rep-
resents a logistics transportation scenario in which decision-making has been
decentralized and shifted to single logistics objects that are able to interact
with the help of modern information and communication technologies, such
as RFID tags or sensor networks. It is rather widely accepted that the man-
agement and control of highly complex production systems and/or supply
chains networks does, at least partly, rely on such decentralized mechanisms
of the multi-agent type. For given utility functions, the hope is that from the
agent interactions will ultimately emerge adaptive, self-organized and hope-
fully efficient management policies.

Complex adaptive logistics systems, realized through the application of tech-
nologies based on autonomous cooperation, exhibit exactly these character-
istics and provide therefore potentialities to enhance the performances of the
underlying supply networks [7]. However, as it is the rule for most actual situ-
ations, it is very likely that the optimal management rules will be an optimal
mix of centralized and decentralized policies. This hence raises a somehow
philosophically inspired question, namely to determine the right compromise
between interventionism and autonomy ? Our present model, though highly
stylized, exhibits quantitatively the somehow intuitive feeling that if, in a
short time slot, a huge number of interactions occur, a decentralized control
of the multi-agent type outperforms an effective central management. We
hope that our present model contributes to transform what perhaps could,
at first sight, be ranked as a hollow wish into a more palpable management
possibility.

Therefore, future research is required that deals with an increase of the com-
plexity, such that the model is able to represent and to achieve less general
but instead more specific results. In analogy to these future requirements
and specific research on complex adaptive logistics systems, advances would
result from the need for a further specification and adaptation of the un-
derlying agents’ interaction and decision mechanisms as well as the applied
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cost functions, in order to implement the shown performance improvements
in real logistics scenarios.
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