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In the early stages of mitosis, cohesin is released from chromosome arms
but not from centromeres. The protection of centromeric cohesin by SGO1
maintains the sister chromatid cohesion that resists the pulling forces of
microtubules until all chromosomes are attached in a bipolar manner to the
mitotic spindle. Here we present the X-ray crystal structure of a segment of

human SGO1bound to a conserved surface of the cohesin complex. SGO1
binds to acomposite interface formed by the SA2 and SCC1*"?' subunits

of cohesin. SGO1 shares this binding interface with CTCF, indicating that
these distinct chromosomal regulators control cohesin through a universal
principle. Thisinteraction is essential for the localization of SGO1 to
centromeres and protects centromeric cohesin against WAPL-mediated
cohesinrelease. SGO1-cohesin binding is maintained until the formation
of microtubule-kinetochore attachments and is required for faithful
chromosome segregation and the maintenance of astable karyotype.

During mitosis, the duplicated genome needs to be accurately distrib-
uted over the two daughter cells. The cohesin protein complex holds
together the sister DNAs from replication until mitosis' . Cohesin
entraps DNAinsideits ring-shaped structure*, which at its core consists
of SMC1, SMC3 and SCC1 (also known as RAD21 or Mcd1). SCClisbound
by either of two paralogous HEAT repeat-containing proteins, SAl or
SA2 (also known as STAG1 and STAG2)°.

Cohesin complexes have a dynamic mode of DNA binding that
involves DNA entrapment and release. From DNA replication until mito-
sis, the cohesin complexes that hold together the sister DNAs are locked
on DNA to render cohesin resistant to cohesin’s release factor WAPL®.
During mitosis, cohesin is removed from chromosomes in two waves.
First, cohesinis removed from chromosome armsina WAPL-dependent
manner through a process known as the prophase pathway’'°. Cohe-
sionat centromeres is protected by Shugoshin (SGO1)" ™, giving rise to
the typical X-shaped structure of human chromosomes. SGO1 protects
centromeric cohesin by recruiting PP2A to counteract cohesin phos-
phorylation by mitotic kinases, and SGO1also directly competes with

WAPL for cohesin binding*'®. Centromeric cohesion is maintained
until proper attachment of microtubules to the kinetochores, upon
which the remaining cohesinis cleaved by separase to trigger anaphase
onset'. By protecting centromeric cohesion, SGO1 thus ensures faithful
chromosome segregation.

Cohesin has a dual role, as it not only holds together sister DNAs
but also builds the DNA loops that shape the interphase genome. To
control this latter function, cohesin is bound by the architectural fac-
tor CTCF*°. We showed recently that CTCF binds to cohesin through
aconserved YxF motifin the amino terminus of CTCF. This CTCF seg-
mentinteracts directly witha composite binding interface formed by
the SA2 and SCC1 subunits of cohesin?. The SA2 interface is conserved
from fungi to mammals and is known as the conserved essential surface
(CES)*. For simplicity, we refer to the composite SA2-SCC1 binding
pocket as the CES. The direct interaction of the YXF motif of CTCF
with the CESis required for formation of CTCF-anchored loops at TAD
boundaries”. It has also been suggested that the CES region interacts
directly with both SGO1 and WAPL'®, The interaction of SGO1 with
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Fig.1|Structure of the SA2-SCC1-SGO1 complex. a, Structure of the SA2-
SCC1-SGO1complex. SA2 (blue), SCC1 (green) and SGO1 (yellow). b, Domain
architecture and conservation of the YXF motifin SGOL. ¢, Crystal structure (left)
and AlphaFold model (right) of the SA2-SCC1-SGO1 complex. Details of the

CES binding pocket showing the interactions of SGO1 F337 and Y335. AlphaFold
model: SGO1amino acids spanning 341-349 including pT346 are predicted to

form additional interactions with SA2.d, ITC experiments with SGO1amino acids
331-341 SNDAYNFNLEE (left) and 331-349 SNDAYNFNLEEGVHLpTPFR containing
phosphorylated pT346 (right). e, GST pulldown analysis of SGO1and SA2 or SCC1
variants. M, molecular weight marker; 1, input; B, bound fractions, analyzed by
SDS polyacrylamide gel electrophoresis. Controls are showninlanes1and 2.

The experiment was repeated three times with consistency. WT, wild type.
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cohesin is promoted by phosphorylation of SGO1 T346. However,
this phosphorylation does not control the direct interaction between
the CES and SGOI (refs. 17,18). SGO1 contains a YXF motif close to this
phosphorylationsite that could be key to thisinteraction.Inagreement,
previous biochemical experiments have shown that an SGO1fragment
containing the YXF motif can directly compete with CTCF for binding to
the CES?.If so, cohesin complexes may be controlled throughashared
mechanism, irrespective of whether these complexes build DNA loops
or rather hold together the sister DNAs.

Wereporthere the X-ray crystal structure and AlphaFold model of
thecohesinsubcomplex SA2-SCClbound toafragment of SGO1(Fig.1a).
We demonstrate that SGO1 engages the CES of SA2-SCC1 through its
YxF motif. The binding mode is similar to that seen with the YxF motif
from CTCF. Mutations that abolish SGO1-CES interactioninterfere with
the localization of SGO1 to centromeres and lead to severe cohesion
defects. We infer that engagement of the CES surface of cohesin by
distinct chromosomal regulators is a universal principle that allows
control of cohesin function during different chromosomal processes.

Results

Structural basis for SGO1-cohesin interaction

Previous dataindicate that SGOl interacts directly with the SA2-SCC1
subunit of cohesin'®. The interacting region contains a YXF motif that
is conserved in vertebrate SGO1 proteins (Fig. 1b and Extended Data
Fig.1a). Phosphorylation of T346, probably by CDK1 (ref.17), enhances
the interaction with SA2-SCC1 but is not essential for binding'®. We
were able to obtain crystals with aSGO1 peptide spanning amino acids
331-341 containing the YXF motif but not with an extended peptide
spanning amino acids 331-349 containing pT346. We determined the
X-ray structure by molecular replacement to aminimum Bragg spacing
of3.2 A (Table1). An Fo-Fc omit electron-density Fourier map exhibited
clear features of the SGO1 peptide (Extended Data Fig. 1b). The SGO1
peptideisboundtothe CES binding pocket (Fig.1c and Extended Data
Fig.1c-e). Aminoacid residues F337 and Y335 of SGO1 bind into hydro-
phobic pockets using a similar binding mode to that seen previously
for CTCF”. Briefly, the binding pocket for F337 of SGO1 contains amino
acidsS334,1337 and L341from SCCl1and Y297 and W334 from SA2 (Fig. 1c
and Extended Data Fig.1d). Y335 of SGO1 bindsin adeep hydrophobic
pocketcontainingL329,L366 andF367 (Fig.1cand Extended DataFig. 1e).
Amodelcalculated using AlphaFold structure prediction® showed an
almostidentical binding mode and suggested additional interactions
between SGO1amino acids 341-349 and SA2 (Fig. 1¢).

Accordingly, isothermal titration calorimetry (ITC) experiments
showed that the T346-phosphorylated SGO1fragment spanning amino
acids 331-349 bound SA2-SCC1with alower equilibrium dissociation
constant (2.3 + 0.4 pM) compared with a nonphosphorylated SGO1
peptide spanning amino acids 331-341 (13.5 uM + 1.4) (Fig. 1d). Using
glutathione S-transferase (GST) pulldown experiments, we found
that SGO1retained SA2-SCC1 on GST beads (Fig. 1e). Mutation Y335A
or F337A of SGOL1 abolished the interaction. Mutation of critical CES
amino acid residues including SA2 W334A, R370Q, SCC11337A L341A
orthe absence of SCClalsoimpaired SGO1binding. Together, our data
confirm the previous biochemical mapping of SGOlinteraction', We
conclude that the YXF motif of SGO1is essential for binding to the com-
posite CES of SA2-SCC1. Phosphorylation of SGO1 at T346 enhances
theinteraction.

The SGO1-CES interaction protects centromeric cohesion

Totest whether the SGO1-cohesininteraction that we identified in our
crystal structure controls sister chromatid cohesion, we mutated the
endogenous SGO1 allelein HAP1 cells using CRISPR-Cas9 technology.
We thereby obtained HAPI cells with SGO1"**#F337A 35 their sole copy
of SGO1 (Extended Data Fig. 2a-d). We then analyzed sister chromatid
cohesioninthese cells by performing chromosome spreads. Wild-type
cells, as expected, displayed robust sister chromatid cohesion.

Table 1| X-ray data collection and refinement statistics

SA2-SCC1-SGO1(PDB 7ZJS)

Data collection

Space group

P2,

Cell dimensions

a,b,c(A) 78.80,181.09, 1M.37
a,B v() 90, 94.25, 90
Resolution (A) 47.8-3.24 (3.35-3.24)"
Riym OF Ronerge 876 (116)’
/ol 8.1(0.74)
CC1/2 0.99 (0.45)'
Completeness (%) 99.8 (90.71)
Multiplicity 2727
Refinement

Resolution (A) 47.8-3.24
Ruori/ Riree 0.25/0.28
Unique reflections 48451 (4517)
No. atoms 16119

SA2 14692

SCC1 1192

SGO1 135

B factors (mean; A%

SA2 114.6

SCC1 99.6

SGO1 1181

R.m.s deviations

Bond lengths (A) 0.008

Bond angles (°) 112

‘Values in parentheses are for the highest-resolution shell.

SGO1Y33AF37A cells, however, displayed severe cohesion defects
(Fig.2c,d). Correspondingly, alarge proportion of these cells failed to
form a proper metaphase plate, leading either to mitotic slippage or
mitotic catastrophe (Extended Data Fig. 3a,b).

Next, we mutated the SGO1 binding interface on cohesin. This CES
interface is conserved in both SA1 and SA2 (Fig. 2a,b). We therefore
first investigated the relative contributions of each of these SGO1
binding interfaces. We thus mutated SA2 W334A and the equivalent
amino acid residue W337A in SA1 (Extended Data Fig. 4a-e). In the
SA2-SCC1-SGO1 crystal structure, as well as in the computational
model containing SAL, this amino acid was sandwiched between Y335
and F337 of SGO1 (Fig. 2a,b). We found that SA1"**’A and SA2W*** cells
displayed different phenotypes (Fig. 2e). Whereas sister chromatid
cohesionappeared to be unaffected in SA1***"* cells, the SA2"***A cells
displayed clear cohesion defects. This indicates that the SGO1-SA2
interactionis moreimportant for cohesion thanthe SGO1-SAlinterac-
tion. A possible explanation for the observed difference between SA1
and SA2 is the relative abundance of each subunit, as SA2 is approxi-
mately tentimes more abundant than SAlin HAP1 cells (Extended Data
Fig. 4f,g)”**. Notably, the SA2"**** phenotype was less dramatic than
that of SGO1Y**AP%7A To test whether wild-type SA1 might compensate
formutation of SA2, we then generated SA1Y**"*SA2"**** double-mutant
cells. These cells indeed displayed cohesion defects that were more
severe than those of the SA2"**** single mutant and were similar to
those of the SGO1Y**AP¥A mutant (Fig. 2e and Extended Data Fig. 5a).
With fluorescenceinsitu hybridization (FISH) experiments, we found
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Fig.2|The SGO1-CES interaction protects centromeric sister chromatid
cohesion. a,Zoomed-in view of the CES binding pocket of SA2 (blue) and
SCC1(green) bound to SGO1 (yellow). b, Computational model containing SA1
(gray). ¢, Representative images of different chromosome phenotypes during
prometaphase. d, Quantification of chromosome phenotypes in prometaphase
wild-type cells and SGO1"**AF3A cells (unpaired ¢ test; ***P < 0.0001).

e, Quantification of the chromosome phenotypes in prometaphase wild-type,

SAIW7A SA2W3*Aand SA1W37A SA2W33*A cells (unpaired t test; ***P < 0.0004,

****P < 0.0001, NS, not significant). f, Quantification of chromosome phenotypes
in prometaphase wild-type and SGO1'****F3¥A cells after treatment with either
siLuciferase (siLuc), siSGO1 or siWAPL. All panels depict the mean + s.d. of three
independent experiments with more than 70 cells analyzed per experiment
(unpaired t test; ***P < 0.0001).

noevidentrole forthe SGO1-CESinteractionin G2 cohesion (Extended
DataFig. 6 and Supplementary Figure 1). Together, these results indi-
cate thatthe SGO1-CESinteraction plays a crucial partin mitotic sister
chromatid cohesion.

CES binding is amainrole of SGO1 and protects against WAPL
To investigate the contribution of the SGO1-CES interaction to
SGO1-dependent cohesin protection, we compared the cohesion
defects of SGO17**#3374 cells with those of cells in which SGO1 was
depleted by short interfering RNAs (siRNAs). As expected, this SGO1
depletion yielded a massive cohesion defect, but this defect was no
stronger than the defect observed in the SGO1***"37A cells. SGO1 deple-
tion in SGO1Y335AF%7A ce|[s also barely if at all worsened the cohesion
defect of these cells (Fig. 2f). Together, these results suggest that the
SGO1-CES interactionrepresents animportant if not the mainrole of
SGO1in cohesin protection.

Previous work has shown that SGO1 competes with WAPL for
binding to the SA2 subunit of cohesin'®. SGO1 could thereby protect
against the WAPL-dependent prophase pathway of cohesin release.
To investigate whether the SGO1-CES interaction in fact protects
against this WAPL-mediated cohesinrelease, we tested whether WAPL
depletionrescued the cohesion defects observed in cells with impaired
SGO1-CES binding. WAPL depletion indeed rescued the cohesion
defect observed inall cell lines that had impaired SGO1-CES binding,

including SGO1Y3**F3%7A cells, SA1Y*¥A and SA2V*3*A cells, and SA1Y*¥7A
SA2V33*A double-mutant cells (Fig. 2f and Extended Data Fig. 7a,b).
Coimmunoprecipitation experiments showed that WAPL binding to
cohesin was only partially impaired in SA1Y**7A SA2Y33*A mutant cells
(Extended DataFig. 7c). Thus, competition withSGO1-CESinteraction
is a key but not the sole aspect of WAPL function, which presumably
explains why SA1"**ASA2"***A mutant cells did not display an overcohe-
sion phenotype. We conclude that the SGO1-CES interaction protects
against a specific aspect of WAPL-mediated DNA release and thereby
enables centromeric cohesion.

The SGO1-CES interaction dictates SGO1localization

During prometaphase, SGO1 localizes to the inner centromere, where
it protects cohesin. Upon proper microtubule-kinetochore attach-
ment, SGO1relocalizes towards the kinetochores®. To test whether the
SGO1-CESinteractionisinvolvedin SGO1localization, we transfected
cellswithaplasmid encoding agreen fluorescent protein (GFP)-tagged
SGOI that was either wild type or harbored the SGO1Y**AF¥A myta-
tion. We then scored for SGO1 localization by immunofluorescence
chromosome spreads, comparing the absence versus the presence
of microtubule-kinetochore attachments, using nocodazole- or
MG132-treated cells, respectively. In nocodazole-treated cells, wild-
type SGO1-GFP localized to the inner centromere as expected. The
SGO1'¥*AB3A mytant, however, did not localize to the inner centromere
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Fig.3|The SGO1-CES interaction dictates SGO1localization. a, Representative
immunofluorescence images of GFP-tagged wild-type SGO1 or SGO1Y235AF3374
(green) and CENPA (magenta) upon treatment with nocodazole. Scale bar, 5 pm.
b, Quantification of centromeres with GFP signal enriched between CENPA
signal of the two chromatids (dark gray column) or GFP signal enriched at the
CENPA signal (light gray column) in cells transfected with GFP-tagged wild-type
SGO1 or SGO1™*AP3A We analyzed four random centromeres over 30 cells. This
experiment was performed three times; mean * s.d. ¢, Quantification of the
mean +s.d. of the intensity of SGO1-GFP (yellow) and CENPA (magenta) along
the centromeric region on cells treated with nocodazole. The intensity at each
point was normalized to the highest intensity measured per chromosome.

Distance from reference (um)

The point between two CENPA signals was established as the reference point

for each measurement. We analyzed four random centromeres over 30 cells.
This experiment was performed three times. d, Schematic representation of the
predominant phenotype observed in (a-c). S, SGOL. e, Representative images
of SGO1-GFP wild type (green) location with respect to CENPA (magenta) in
WAPL-depleted HAP1 wild-type and SA1"*7A SA2"33* cells upon nocodazole
treatment. Scale bar, 5 um. f, Quantification of the images depicted in e, using
analysis methods asin b. We analyzed four random centromeres over 30 cells.
This experiment was performed three times; mean + s.d. g, Quantification of the
images depicted in e, using analysis methods as in c. h, Schematic representation
of the predominant phenotype observedin e-g.

and was primarily found at the kinetochores (Fig. 3a-d and Extended
Data Fig. 8a). In MG132-treated cells, the localizations of wild-type
SGO1and the SGO1'*3**F¥7A mutant were similar, in that bothlocalized
to kinetochores (Extended Data Fig. 8a-e).

We then assessed the effects of the SA1Y*** and SA2"**** mutations
on SGO1 localization. To prevent secondary effects due to cohesion
defects, we depleted WAPL using siRNAs. WAPL depletionindeed main-
tained cohesion in wild-type, SA1V***, SA2W3** and SA1W*37A SA2W334A
mutant cells (Extended Data Fig. 7a). Whereas SGOI efficiently loca-
lized to theinner centromeres in wild-type and SA1"*** cells following
nocodazole treatment, this localization was lost in both SA2"**** and
SAIV¥ASA2W3*A mytant cells (Fig. 3e-h and Extended DataFig. 9a-e).
This result, together with the SGO1Y***FA mutant data described
above, shows that SGO1localization to the inner centromere requires
the SGO1-CES interaction, and that this predominantly involves the
interaction with SA2.

At the start of mitosis, cohesin is localized along the entire
length of chromosomes. The WAPL-dependent prophase pathway

then removes cohesin along arms but not at centromeres. This
change in cohesin localization corresponds with SGO1 localiza-
tion'*?®, To assess whether the SGO1-CES interaction plays a part
in SGO1 localization to chromosome arms, we depleted WAPL to
prevent prophase pathway cohesin release. In otherwise wild-type
cells, this yielded a clear localization of SGO1 along the entire
length of chromosomes. This phenotype was also present to a
considerable degree in SA1Y*¥* mutant cells but less so in SA2W3#A
and barely if at all in SA1Y?¥A SA2W33*A mutant cells (Fig. 3e and
Extended Data Fig. 9b,f), again highlighting the key role of SA2 in
SGOl1localization.

Together, these findings show that the SGO1-CES interaction
has a vital role in SGO1 localization to chromosomes. Whereas
SGOL1 localization to kinetochores appears to be independently
regulated, the SGO1-CES interaction, mainly through SA2, is a
determinant of SGOL1 localization to chromosome arms and inner
centromeres. This latter interaction turns out to be key to centro-
meric cohesin protection.
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Fig. 4| A universal mechanism to control cohesin complexes. a, Different
chromosomal regulators control cohesin through a shared mechanism. CTCF
through its YXF motif binds cohesin’s CES (gray circle) to stabilize CTCF-anchored
loops?. SGO1 uses its YXF motif to bind cohesin’s CES to protect centromeric
sister chromatid cohesion. Adapted with permission fromref. 2, Elsevier; ref. 21,
Springer Nature Ltd. b, The SGO1-CES interaction dictates SGO1localization
along chromosomes until the establishment of microtubule-kinetochore
attachments (S:SGO1).

Discussion

Inthis study, we present the first structure of the interaction between
SGO1and cohesin. Thisinteractioninvolves the binding of the YXF motif
of SGO1 to the conserved CES interface of cohesin. This SGO1-CES
interactionis very similar to the mannerin which the architectural fac-
tor CTCF binds to cohesin. We build on previous work, which suggested
that SGOlinteracts with the CES™, and we reveal that SGO1 does so by
using its YXF motif. Both SGO1and CTCF thus turn out to bind to the
same CESinterfacein cohesin, and they do so by using their respective
YxF motifs. Although SGO1and CTCF appear to bind to cohesininvery
similar manners, they control very different chromosomal processes.
Disruption of the CTCF-CESinteractionled to adramatic changeinthe
three-dimensional genome, through the loss of CTCF-anchored loops®.
We now find that disruption of the SGO1-CES interaction, by contrast,
leads to a dramatic cohesion defect. It thus appears that cohesin com-
plexes are controlled through a universal mechanism, irrespective of
whether these complexes build DNA loops or hold together the sister
DNAs (Fig.4a).Both DNAlooping and cohesion are tightly regulated and
areinvolvedinprocesses ranging from DNAreplicationto transcription,
repair and recombination. We should therefore consider the scenario
where different chromosomal regulators involved in these processes
may each employ CES binding to direct cohesin to control different
chromosomal processes. The replicative helicase subunit MCM3 has
for example been proposed to likewise bind cohesin??’, which may
control processes such as cohesion establishment. Assuch, SGO1and
CTCF may merely be the tip of the iceberg.

Aswefind that disruption of SGO1-CESinteraction preventslocali-
zation of SGO1 to mitoticchromosomes at all sites except kinetochores,
this suggests amodel for SGO1localization throughout mitosis. At the
start of mitosis, SGO1 would then bind cohesin along chromosomes
through interaction with the CES of cohesin. SGO1 is subsequently

recruited to centromeres, presumably as a consequence of H2A
phosphorylation by the centromeric kinase Bubl (refs. 28-30). Here,
SGO1 through CES binding protects centromeric cohesin from the
WAPL-dependent prophase pathway. Upon establishment of bipolar
microtubule attachment, SGO1 then relocates towards kinetochores®
(Fig. 4b). The SGO1-CES interaction thus plays a vital part in SGO1
localization through mitosis, is key to the protection of centromeric
cohesion, ensures faithful chromosome segregation and thereby main-
tains astable karyotype.
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maries, source data, extended data, supplementary information,
acknowledgements, peer review information; details of author contri-
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Methods

Genome editing and cell culture

HAPI cells were cultured in Iscove’s modified Dulbecco’s medium
(Invitrogen), containing 10% fetal bovine serum (Clontech), 1%
UltraGlutamin (Lonza) and 1% penicillin-streptomycin (Invitrogen).
Mutant cells were generated by CRISPR-Cas9 technology. Guide
RNAs targeting exon 6 of SGO1 (primer, 5-TGATGCTTACAATTT
TAATT-3’), exon 10 of STAG1 (5’- TTGGCTGGACTCTTCATGAC-3’) and
exon 11 of STAG2 (5-GACAGTTATTTAAAATATGT-3’) were annealed
into pX330. To mutate the locus of interest, we cotransfected a
100-120 base pair repair oligonucleotide with the desired mutation
as well as a silent mutation: for SGO1Y335A3%7A (5'.CAAAAAAAAAT
GCACAAATCTGTCAGTTCCAATGATGCTGCCAATGCTAATTTGGAA
GAAGGTGTTCATCTTACTCCTTTCCGACAAAAAGTGAGCAATG-3'),
STAG1Y*¥A (5-AGTACTGAGACAAACATAACTTCCATCAAAGCTTA
GAACAG AGTAACTTACCCTGTCGTGAAGAGTAGCGCCAACATATTT
TAGGTAACTGTCATTTAGGAAGGCATCACTATACATTTTCATC-3’) and
STAG2%33*A (5’-CTTAATGACAGTTATTTAAAATATGTTGGTGCGACTATG
CATGATAAGGTAAGATGTGCCCTTCAGACTGCTTCTTTCTATACATCG
GCGTGGCTGTCTGCACCTCTCATTCATGAG-3’). We cotransfected
pBabePuro at a ratio of 1:10 to the pX330 plasmid. Cells were treated
with2 pg pl™ puromycin for 2 days for selection. Colonies were picked,
genomic DNA of clones was isolated and mutations were validated by
Sanger sequencing.

siRNA transfection

All siRNAs were manufactured by Dharmacon (ON-TARGETplus). For
SGO1 and luciferase we used SMARTpools, and for WAPL we used the
following sequence: 5-CAACAGUGAAUCGAGUAAUU-3'. Transfec-
tion was performed with 20 uM per siRNA final concentration, using
Invitrogen RNAIMAX (Life Technologies), following the manufacturer’s
instructions.

Chromosome spreads

Cells were transfected with the corresponding siRNAs, and after 2
days the cells were treated with nocodazole as described previously?'.
Images were randomized by ahomemade Image) macro and then visu-
ally assigned their corresponding phenotype. A parametric two-tailed
ttest was used to compare the scoring of cohesion phenotypes.

Immunofluorescence

Forimmunofluorescence, cells were treated with nocodazole, fixed and
stained as described previously*. For immunofluorescence spreads,
cellswere treated with the corresponding siRNA. After 24 h, cells were
transfected using FUGENE transfection reagent (Promega) with 0.8 ug
SGO1-GFP plasmid (kindly provided by S. Lens) or a SGO1**AF¥A_GFp
mutant plasmid. One day later, cells were treated with nocodazole for
1.5 horwithMG132for 2 h, and mitotic cells were collected by shake-off.
Cells were washed once in phosphate-buffered saline, followed by a
quick spinonto microscope slides with aShandon Cytospin centrifuge.
Cells were extracted with PBS containing 0.3% Triton-X for 5 min and
fixed in 4% paraformaldehyde for 15 min. The coverslips were washed
three times with PBS containing 0.1% Triton-X before being incubated
with antibodies at a 1:1000 dilution in PBS containing 3% BSA and
0.1% Triton-X overnight at 4 °C. Secondary antibody incubations were
performed by incubation at room temperature for 1 h with DAPI in
PBS containing 3% BSA and 0.1% Triton-X. Coverslips were mounted
inProlong Gold (Invitrogen).

Images were obtained using a DeltaVision deconvolution micro-
scope (Applied Precision), and images were acquired using Softworx
(Applied Precision) and ImageJ. To establishlevels of SGO1in prometa-
phase cells, we used an ImageJ macro that allowed us to calculate the
level of SGO1 relative to CENPA. To identify the location of SGO1-GFP
in mitotic cells, we first blinded the channel corresponding to GFP to
prevent bias towards a phenotype. Next, we drew a straight line on

four random chromosomes that showed two distinct centromeres
and obtained the plot profile of both CENPA and GFP for each location.

Live-cellimaging

Cells were grown on glass-bottomed dishes (LabTek). To visualize the
DNA, 2 h before imaging, a SiR-DNA probe (1:2000, Spirochrome)
was added. Images were taken using a DeltaVision deconvolution
microscope (Applied Precision). Cells wereimaged every 5 min using a
x40 air objective with 4 x 2.5 pm Z stacks. Images were acquired using
Softworx (Applied Precision) and Image].

Fluorescencein situ hybridization

Prometaphase samples cells were obtained as described above. Fixed
cells were dropped on cover slides and then dried. We added probes
against the centromere of chromosome 8 (XCE 8 ORANGE, MetaSys-
tems Probes) and shielded the cells with a coverslip and rubber cement.
The slides were incubated for 2 min at 75 °C, followed by overnight
incubation at 37 °C. The cells were washed with 0.4x SSC at 72 °C for
2 min, followed by washing at room temperature with 2x SSC, 0.05%
Tween-20, for 30 s. The slides were washed with water and stained with
DAPI, followed by mounting with Prolong Gold (Invitrogen).

G2 samples were collected by treating the cells for 18 h with
RO-3306. We verified that the cells were synchronized in G2 by incu-
bationinNicoletti buffer followed by flow cytometry (BD LSRFortessa).
Plots were generated with Flow)o (v.10). G2-synchronized cells were
spun down and resuspended with fixative solution (methanol/acetic
acid, 3:1), followed by the same protocol as described above.

Images were taken using a DeltaVision deconvolution microscope
(Applied Precision), and images were acquired using Softworx (Applied
Precision) and Image). The fluorescence signal was categorized as sin-
glet (distance between the two highest intensity signals <300 nm) or
doublet (distance between the two highest intensity signals >300 nm),
as described previously®.

Immunoblotting and coimmunoprecipitation
Immunoblot and coimmunoprecipitation were performed as previ-
ously described®.

Antibodies

The following antibodies were used as primary antibodies for immu-
nofluorescence microscopy: SGO1 (SAB1405371, Sigma Aldrich), GFP
(ab290, Abcam) and CENPA (07-574, Millipore; and ab13939, Abcam).
For immunoblotting, the following primary antibodies were used:
SAl (ab4457, Abcam), SA2 (A300-158a, Bethyl Laboratories), SMC1
(A300-055A, Bethyl Laboratories), SCC1 (05-908, Millipore), WAPL
(A-7, sc-365189, Santa Cruz), Sororin (ab192237, Abcam), HSP90
(sc-13119(F-8), Santa Cruz) and a-tubulin (T5168, Sigma Aldrich). All
primary antibodies were used at a 1:1000 dilution with the exception
of HSP90 and a-tubulin (1:10000). For coimmunoprecipitation, we
used 4.5 pg of SMC1(A300-055A, Bethyl Laboratories) or IgG (2729 S,
CellSignaling) per sample. Secondary antibodies were used ata1:1000
dilution. For immunofluorescence microscopy we used: Alexa Fluor
488 goat anti-mouse (A-11001, Life Technology), Alexa Fluor 568 goat
anti-mouse (A-11004, Life Technology), Alexa Fluor 488 goat anti-rabbit
(A-11008, Life Technology) and Alexa Fluor 568 goat anti-rabbit
(A-11011, Life Technology). For western blots, we used the following
secondary antibodies: anti-goat-PO (P0449, DAKO), anti-rabbit-PO
(P0448, DAKO) and anti-mouse-PO (P0447, DAKO).

Constructs, protein expression and purification

SA2 amino acid residues 80-1060 were expressed as a GST fusion
protein and SCC1 amino acid residues 281-420 as an N-terminally
6xHis-tagged fragment as described previously”. Expression and
purification were done as described previously”. SGO1 constructs were
cloned into the BamHI and Notl sites of pGEX-6P1. Mutagenesis was
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doneusing a Q5 Site-Directed Mutagenesis Kit (New England Biolabs).
All proteins were expressed in Escherichia coliBL21(DE3) by autoinduc-
tion, and purification was done as described previously?..

Crystallization and structure determination

Crystallization of the SA2-SCC1 complex was done as described pre-
viously'®?, Crystals were soaked for 7 days with a 500 uM peptide
solutionincluding SGO1amino acid residues 331-341 SNDAYNFNLEE.
Crystals were cryoprotected as described previously?. Diffraction data
were collected at100 K at an X-ray wavelength of 0.9687 A at beamline
ID30A-1/MASSIF-1 (ref. 34) of the European Synchrotron Radiation
Facility, with a Pilatus3 2M detector, using automatic protocols for the
location and optimal centering of crystals®.

Data were processed with XDS*® and imported into CCP4 format
using AIMLESS”. The structure was determined by molecular replace-
mentusing Phaser (Phenix 1.14-3260)*. A final model was produced by
iterative rounds of manual model-building in Coot (COOT 0.8.0-3)*
and refinement using PHENIX (1.14-3260)*°. The SA2-SCC1-SGO1
model was refined to a resolution of 3.2 A with R, and Ry, values of
25% and 28%, respectively (Table 1). Structures were rendered with
PyMOL (2.2.3). Analysis with MolProbity (4.3)* showed that there were
no residues in disallowed regions of the Ramachandran plot, and the
all-atom clash score was 12.3 (63rd percentile). The computational
model shown in Fig. 1c was calculated using AlphaFold v.2.1.1 with
multimer model vl weights*’. The computational model shown in
Fig.2b was generated by superposition of an AlphaFold model for SA1
onto SA2inthe SA2-SCC1-SGO1 complex.

GST pulldowns

GST pulldowns were done as described previously” with small modi-
fications. Briefly, 50 pM GST-tagged SGO1 constructs were mixed in
50 pl buffer 1 (20 mM Tris-HCI, pH 7.8, 500 mM NacCl, 0.5 mM TCEP,
0.1% Tween-20) containing 25 pl of a 50% slurry of GST Sepharose
beads (Cytiva) per reaction. GST beads were incubated for1 hat 4 °C,
followed by four washes with 500 pl of buffer 1. Then, 2.5 pM of SA2-
SCC1 was added, followed by overnight incubation at 4 °C. A 25-pl
volume of the reaction was withdrawn as the reaction input, and the
remainder was washed five times with 500 pl of buffer 1. Samples were
boiledin1x sodium dodecyl sulfate (SDS) sample loading buffer (New
England Biolabs) for 5 min to obtain the bound fraction, followed by
SDS polyacrylamide gel electrophoresis analysis. ITC was performed
as described previously?. ITC data were analyzed with Origin 7.0.

Statistics and reproducibility

No statistical method was used to predetermine the sample size. No
datawere excluded from the analyses. All experiments with phenotype
calling were randomized, and the SGO1signal was blinded in all experi-
ments for SGO1 localization with respect to the centromere. Data were
visualized with Prism 9. For all pairwise comparisons, we performed
ttest analyses, witha probability threshold of P=0.05. GST pulldowns
were repeated at least three times with consistency.

Reporting summary
Furtherinformation onresearch designisavailablein the Nature Port-
folio Reporting Summary linked to this article.

Data availability

All data and materials generated during this investigation are avail-
able uponrequest from the corresponding authors. Crystal structure
coordinates are available from the Protein Data Bank under accession
number 7ZJS. Source data are provided with this paper.
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Extended Data Fig. 1| Structural analysis of the SA2-SCC1-SGO1 complex. ¢, Surface-rendered cartoon of the SA2-SCC1-SGO1 complex. d, Details of the SA2-
a, Conservation of the YxF motif and CDK1T346 phosphorylation site in SGO1 SCC1binding pocket for SGO1F337 or e, Y335. f, AlphaFold: Predicted Aligned
invertebrates. b, Fo - Fc omit electron-density Fourier map contoured at 20. Error (PAE) plot for each amino acid residue in the SA2-SCC1-SGO1 complex.
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was confirmed by Sanger sequencing. ¢, Expression of endogenous SGO1 (Green) per experiment.
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Extended Data Fig. 7 | Cohesion defects of CES mutant cells are WAPL
dependent. a,Quantification of cohesion phenotypes in prometaphase wild
type, SA1W337A,SA2 W334A, and SA1W337A/SA2 W334A cells upon treatment
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Extended Data Fig. 8| SGO1localization in prometaphase and metaphase
cells. a, Representative immunofluorescence images of SGO1-GFP or SGO1
Y335A/F337A-GFP (green), and CENPA (magenta) upon treatment with either
nocodazole or MG132. Scale-bar: 5 um. b, Merge of the representative images of
GFP-tagged wild type SGO1or SGO1Y335A/F337A (green) and CENPA (magenta)
upon treatment with MG132. Scale-bar: 5 um. ¢, Quantification of centromeres
with the GFP signal enriched in between the CENPA signal of the two chromatids
(dark grey column) or with the GFP signal enriched at CENPA (light grey
column), in MG132 treated cells transfected with GFP tagged wild type SGO1

Distance from reference (um)
or SGO1Y335A/F337A. We analysed four random centromeres over 30 cells.
This experiment was performed three times. Mean +/-SD. d, Quantification of
the Mean +/-SD of the intensity of SGO1-GFP (yellow) and CENPA (magenta)
along the centromeric region of cells treated with MG132. The intensity in each
point was normalized to the highest intensity measured per chromosome. The
point between two CENPA signals was established as the reference point for
each measurement. We analysed four random centromeres over 30 cells. The
experiment was performed three times. e, Schematic representation of the
predominant phenotype observed in (b-d).
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Extended Data Fig. 9| SGO1localization in CES mutant cells. a, Representative
images of SGO1-GFP (green) location with respect to CENPA (magenta) in WAPL-
depleted wild type, SA1IW337A, SA2 W334A, and SA1W337A/SA2 W334A cells
upon treatment with nocodazole. Scale-bar: 5 um. b, Merge of representative
immunofluorescence images of GFP-tagged wild type SGO1 (green), and CENPA
(magenta), in WAPL-depletion SA1W337A and SA2 W334A mutant cells. Wild
type and SA1/SA2 double mutant cells of this experiment are depicted in Fig. 3.
Scale-bar: 5 pm. ¢, Quantification of centromeres with the GFP signal enriched
inbetween the CENPA signal of both chromatids (dark grey column) or with

the GFP signal enriched at CENPA (light grey column) in SA1W337A, and SA2
W334A cells transfected with GFP tagged wild type SGO1. We analysed four
random centromeres over 30 cells. This experiment was performed three times.

Distance from reference (um)

Mean +/-SD d, Quantification of the Mean +/-SD of the intensity of SGO1-GFP
(yellow) and CENPA (magenta) along the centromeric region on SA1W337A,
and SA2 W334A cells. The intensity in each point was normalized to the highest
intensity measured per chromosome. The point between two CENPA signals
was established as the reference point for each measurement. We analysed four
random centromeres over 30 cells. The experiment was performed three times.
e, Schematic representation of the predominant phenotype observed in (b-d).
f, Quantification of the different phenotypes of SGO1-GFP along chromosome
arms of WAPL-depleted wild type, SAIW337A,SA2 W334A, and SA1W337A/SA2
W334A cells upon nocodazole treatment. Mean +/- SD of three independent
experiments, with over 30 cells scored per condition per experiment.
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Data collection  Chromosome spreads were acquired using the Metafer system (Metasystems). Chromosome spreads images were blindly randomized by a in-
house written ImageJ macro. Immunofluorescent and FISH images were taken using a Deltavison deconvolution microscope (Applied
Precision) and image acquisition was done using Softworx (Applied Precision). Analysis of the mean SGO1 intensity in prometaphase cells was
performed using an in-house written ImageJ) macro.

Data analysis Molecular replacement was done with Phaser (Phenix 1.14-3260).
Structure refinement was done with Phenix (1.14-3260). Computational models were calculated using AlphaFold v2.1.1 Structure building
was done with COOT 0.8.0-3, Structure renderings were done with Pymol (2.2.3), Structure analysis was done with MolProbity (4.3), Gel band
quantification was done with imageJ (1.8.0_112), ITC data were analyzed with Origin 7.0. Graphical representation and analysis was done
using Prism 9. For data analysis in Fig. We used ImageJ 1.52p
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Sample size For biochemical experiments, population sample size statistics do not apply. For Figures
showing GST-pulldown analyses (Fig.1, Extended Data Fig. 1), appropriate controls are used to compare binding side-by-side. Wherever
statistics have been derived, the number of repeat measurements and their consistency is mentioned in the figure legends.

Data exclusions  No data was excluded from the analysis.

Replication We have indicated the number of repeat measurements made and consistency of the results obtained in the figure legends. All attempts the
results were successful.

Randomization  For phenotype calling experiments were randomized.

Blinding Investigators were blinded to allocation during experiments and outcome assessment.
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Antibodies

Antibodies used The following antibodies were used as primary antibodies for immunofluorescence microscopy: SGO1 (SAB1405371, Sigma Aldrich),
GFP (ab290, Abcam), and CENP-A (07-574, Millipore, and ab13939, Abcam). For immunobloting the following primary antibodies
were used: SA1 (ab4457, Abcam), SA2 (A300-158a, Bethyl laboratories), SMC1 (A300-055A, Bethyl Laboratories), SCC1 (05-908,
Millipore), WAPL (A-7, sc-365189, Santa Cruz), Sororin (ab192237, Abcam), HSP90 (sc-13119(F-8), Santa Cruz), and tubulin (T5168,
Sigma Aldrich). For coimmunoprecipitation we used SMC1(A300-055A, Bethyl Laboratories) or IgG (2729S, Cell Signaling). Secondary
antibodies were used at a 1:1000 dilution. For immunofluorescence microscopy we used: Alexa FlourTM 488 goat anti-mouse, Alexa
FlourTM 568 goat anti-mouse, Alexa FlourTM 488 goat anti-rabbit, and Alexa FlourTM 568 goat anti-rabbit (Life Technology). For
western blots, we used the following secondary antibodies: anti-goat-PO and goat anti-mouse-PO (DAKO).
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Validation SGO1 : https://www.sigmaaldrich.com/NL/en/product/sigma/sab1405371
GFP: https://www.abcam.com/gfp-antibody-ab290.html
CENP-A: https://www.merckmillipore.com/NL/en/product/Anti-CENP-A-Antibody, MM_NF-07-574
CENP-A: https://www.abcam.com/cenpa-antibody-3-19-chip-grade-ab13939.html
SA1: https://www.abcam.com/sal-antibody-ab4457.html
SA2: https://www.fortislife.com/products/primary-antibodies/goat-anti-sa2-antibody/BETHYL-A300-158
WAPL: https://www.scbt.com/p/wapl-antibody-a-7
HSP90: https://www.scbt.com/p/hsp-90alpha-beta-antibody-f-8
SMC1: https://www.thermofisher.com/antibody/product/SMC1-Antibody-Polyclonal/A300-055A
Sororin: https://www.abcam.com/cdca5-antibody-epr16331-c-terminal-ab192237.html
Tubulin: https://www.sigmaaldrich.com/NL/en/product/sigma/t5168

Eukaryotic cell lines

Policy information about cell lines and Sex and Gender in Research

Cell line source(s) HAP1 wild type from Carette et al., Nature 2011 gift from the authors.
HAP1 SGO1Y335A/F337A, SA1 W337A and SA2 W334A generated in this study in HAP1 wild type background cells using
CRISPR/Cas gene editing. SA1 W337A/SA2 W334A generated generated in this study in a HAP1 SA2 W334A background cells
using CRISPR/Cas gene editing.

Authentication Karyotyping. Point mutations were authenticated by Sanger sequencing

Mycoplasma contamination All the cell lines were confirmed negative for mycoplasma contamination

Commonly misidentified lines  No commonly misidentified line was used

(See ICLAC register)

Flow Cytometry

Plots

Confirm that:
|:| The axis labels state the marker and fluorochrome used (e.g. CD4-FITC).

|Z| The axis scales are clearly visible. Include numbers along axes only for bottom left plot of group (a 'group' is an analysis of identical markers).
|:| All plots are contour plots with outliers or pseudocolor plots.

A numerical value for number of cells or percentage (with statistics) is provided.

Methodology

Sample preparation Cells were incubated in Nicoletti buffer

Instrument Cell were analyzed by flow cytometry (BD LSRFortessaTM).




Software Plots were generated with FlowJo (v.10)
Cell population abundance We did not quantify the abundance of the G2 population

Gating strategy Cells were gated into single cells and plotted in a histogram

Tick this box to confirm that a figure exemplifying the gating strategy is provided in the Supplementary Information.
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