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Abstract

In the framework of the classical compound Poisson process in collective risk theory, we study a
modification of the horizontal dividend barrier strategy by introducing random observation times at
which dividends can be paid and ruin can be observed. This model contains both the continuous-time
and the discrete-time risk model as a limit and represents a certain type of bridge between them which
still enables the explicit calculation of moments of total discounted dividend payments until ruin.
Numerical illustrations for several sets of parameters are given and the effect of random observation
times on the performance of the dividend strategy is studied.
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1 Introduction

In the classical compound Poisson risk model, the surplus process {C(t)}t≥0 of an insurance company is
described by

C(t) := x+ c t− S(t) = x+ c t−
N(t)∑
i=1

Yi, t ≥ 0, (1)

where x = C(0) ≥ 0 is the initial surplus level, {S(t)}t≥0 is the aggregate claims process and c >
E[S(1)] is the (constant) premium income per unit time. More specifically, {N(t)}t≥0 is assumed to
be a homogeneous Poisson process with rate λ > 0, and the claim sizes Y1, Y2, . . . form a sequence
of independent and identically distributed (i.i.d.) positive random variables (r.v.’s), independent of
{N(t)}t≥0, and with generic continuous r.v. Y , c.d.f. FY (·), p.d.f. fY (·) and Laplace transform f̃Y (·). If
C(t) < 0 for some t > 0, then this event is called ruin of the risk process (see e.g. Asmussen & Albrecher
[4] for a recent survey of risk models).

Under the horizontal dividend barrier strategy, any excess of the surplus over a pre-defined barrier
level b ≥ 0 is immediately paid out as dividends to the shareholders of the company as long as ruin has
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not yet occurred for this modified process. The effect of this strategy on the risk process and on the
resulting total discounted dividend payments (where the discount rate is usually assumed to be a constant
δ ≥ 0) is extensively studied in the literature. In particular, it turns out that in certain situations the
above model assumptions lead to pleasant and explicit expressions for some quantities of interest, such
as the moments of the total discounted dividend payments until ruin (see for instance Dickson & Waters
[7] and Gerber & Shiu [9]).

However, in a continuous-time model the horizontal dividend strategy implies a continuous dividend
payment stream whenever the surplus process is at level b. In practice, it is more reasonable for the
board of the company to check the balance on a periodic basis and then decide whether to pay dividends
to the shareholders, resulting in lump sum dividend payments at such discrete time points rather than
continuous payment streams. This line of reasoning leads to the study of the horizontal dividend strategy
in discrete-time risk models (cf. e.g. Dickson & Waters [7]). But the latter models have the drawback
of leading to a (often large) system of linear equations for the quantities of interest. Consequently, this
approach usually does not lead to explicit solutions and it is then difficult to gain structural insight in
the influence of parameters and to identify optimal choices, such as the optimal barrier level.

In this paper, we want to pursue the idea of only acting at discrete points in time, but at the same
time maintaining some of the transparency and elegance of the continuous-time approach. For that
purpose we consider the continuous-time compound Poisson risk model (1), but ‘look’ at the process
only at random times {Zk}∞k=0 (called observation times) with Z0 = 0, at which a lump sum dividend
payment of size x − b will take place if the current surplus level x exceeds the barrier level b, and the
process will be declared ruined if x < 0. Note in particular that ruin can now only be observed at these
random observation times and so a surplus level below 0 between observation points will only result in
actual ruin if it is also negative at the next observation time. The randomness of observation times will
allow to carry over some of the properties of the classical continuous-time observation to this discretized
version; in particular, {C(Zk)}k≥1 can be interpreted as a ’new’ random walk.

Let Tk = Zk − Zk−1 (k = 1, 2, . . .) be the k-th time interval between observations, and assume
that {Tk}∞k=1 is an i.i.d. sequence distributed as a generic r.v. T and independent of {N(t)}t≥0 and
{Yi}∞i=1. With the above-defined dividend rule with barrier b, denote the sequences of surplus levels at
the time points {Z−

k }∞k=1 and {Zk}∞k=1 by {Ub(k)}∞k=1 and {Wb(k)}∞k=1 respectively, i.e., {Ub(k)}∞k=1 and
{Wb(k)}∞k=1 are the surplus levels at the k-th observation before (after, respectively) potential dividends
are paid. With initial surplus level Wb(0) = x (0 ≤ x ≤ b), we then have the recursive relationship

Ub(k) = Wb(k − 1) + c Tk − [S(Zk)− S(Zk−1)], Wb(k) = min {Ub(k), b} , k = 1, 2, . . . .

The time of ruin is defined by τb = Zkb , where kb = inf{k ≥ 1 : Wb(k) < 0} is the number of observation
intervals before ruin. A sample path under the present model is depicted in Figure 1.

For mathematical tractability, we will assume that the r.v. T is Erlang(n) distributed with density

fT (t) :=
γn tn−1 e−γt

(n− 1)!
, t > 0

and corresponding Laplace transform f̃T (s) =
∫∞
0 e−stfT (t)dt =

(
γ

γ+s

)n
, where γ > 0 is the rate pa-

rameter. Note that n = 1 refers to exponentially distributed observation intervals (which due to the
lack-of-memory property of the exponential distribution reflects the case where the time until the next
observation (dividend/ruin decision) does not depend on the time elapsed since the last decision).
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Figure 1: Sample path of a compound Poisson risk model under
randomized observations

For any fixed n, the r.v. T converges in distribution to a point mass at 0 for γ → ∞, so this limit
corresponds to the classical continuous-time risk model with horizontal barrier strategy with barrier at b
(i.e. continuous observation of the process and hence continuous decisions on dividends and ruin).

On the other hand, if one fixes E[T ] = h and chooses n sufficiently large, this approximates the
discrete-time risk model with time step h (i.e. deterministic observation intervals h), since the Erlang
distribution for n → ∞ and fixed expected value E[T ] = h converges in distribution to a point mass
in h. This so-called Erlangization technique and its computational advantages were exploited for other
purposes (in particular for randomizing a finite time horizon for ruin problems) by Asmussen et al. [5]
(see also Ramaswami et al. [13] and Stanford et al. [16, 17]). For statistical inference for continuous-time
risk processes with deterministic discrete observation times, see Shimizu [15].

In the companion paper Albrecher et al. [1], we will investigate the expected discounted penalty
function (Gerber & Shiu [9]) under random observation times. In the present paper we study the effect
of the randomized observation times on the moments of the total discounted dividend payments until
ruin for a discount rate δ ≥ 0. Let

∆M,δ(x; b) :=

kb∑
k=1

e−δZk [Ub(k)− b]+

∣∣∣∣Wb(0) = x, x ∈ R. (2)

With time 0 an intervention time, the total discounted dividend payments until ruin are represented by
the r.v.

∆δ(x; b) :=


0, x < 0,
∆M,δ(x; b), 0 ≤ x ≤ b,
x− b+∆M,δ(b; b), x > b.

In particular, the distribution of ∆M,δ(x; b) for 0 ≤ x ≤ b already determines ∆δ(x; b) for arbitrary x.
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Denote the m-th moment of ∆δ(x; b) by

Vm,δ(x; b) := E [(∆δ(x; b))
m] , m = 0, 1, 2, . . . , (3)

which is the main quantity of interest in this paper. We adopt the usual convention that V0,δ(x; b) ≡ 1
and shall use the abbreviation V (x; b) := V1,δ(x; b). The quantities (3) have been studied for the classical
compound Poisson model with continuous observation in Dickson & Waters [7].

We present three different approaches to study Vm,δ(x; b) for randomized observation intervals. In
Section 2 we start with adapting the generator approach to the present model. If T is exponentially dis-
tributed, this leads to a system of integro-differential equations (IDEs) defined on different surplus layers
that are connected by certain contact conditions (the resulting analysis has similarities with equations
that appear in multi-layer dividend policies of the classical model, see Albrecher & Hartinger [3] and Lin
& Sendova [12]). This approach is particularly instructive when analyzing conditions for the optimality
of the dividend barrier in this model (see Section 5). In Section 3 the so-called discounted density of
increment will be used to derive integral equations for Vm,δ(x; b) which are more tractable for a large
class of claim and inter-observation time distributions. This is important in the Erlangization procedure
because we would like to increase n gradually in the approximation. As a third alternative, in Section
4 the discounted density of overshoot is used for the analysis. This will lead to a factorization formula
which is of independent interest and plays an important role in Section 4.1 when certain classical formulas
are generalized. Section 6 gives numerical illustrations that underline the computational advantages of
the method for approximating the discrete-time model. Moreover, the effect of random observation times
on the quantity Vm,δ(x; b) is discussed.

2 Method 1: Integro-differential equations

Whenever the risk process has a Markovian structure, the classical approach of conditioning on events
in a small time interval can be used to derive equations for the quantities of interest. In our context,
exponential observation times (i.e. n = 1) lead to such a Markovian structure. For Erlang observation
times the process can also be made Markovian by increasing the dimension of the state space (see e.g.
Albrecher et al. [2] for details), so the method will still work, but in those situations the approaches of
Sections 3 and 4 will be simpler to use, as the complexity of the equations increases substantially. For
this reason, we will restrict the following derivations to the case of exponential observation times and to
the first moment V (x; b) (higher moments Vm,δ(x; b) can be handled analogously, see also Remark 2.2).

Since the conditioning technique exploits the removal of the time stamp, we will need to consider the
definition (2) ∆M,δ(x; b) for all x ∈ R, where now time 0 is a priori not an observation time. Note that
for 0 ≤ x ≤ b, E[∆M,δ(x; b)] and E[∆δ(x; b)] coincide, because no action needs to be taken at time 0.

In this approach, one has to distinguish between the ‘usual’ dynamics of the Markovian uncontrolled
risk process {C(t)}t≥0 and the occurrence of an observation time at which dividends may be paid out
or ruin may be observed. We will see below that this results in an interacting system of IDEs with
certain contact conditions. Both the observation time process and the claim number process are now
homogeneous Poisson processes, independent of each other.

Consider a time interval (0, h) and distinguish the three cases that either an observation time occurs
in this interval before a claim occurs, or a claim occurs before an observation time occurs, or neither a
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claim nor an observation time occurs until time h. By the Markovian structure we then have

V (x; b) = e−(λ+δ+γ)hV (x+ ch; b)

+

∫ h

0
γe−γte−λte−δt

(
[x+ ct− b+ V (b; b)]I{x+ct>b} + V (x+ ct; b)I{0≤x+ct≤b} + 0 I{x+ct<0}

)
dt

+

∫ h

0
λe−λte−γte−δt

∫ ∞

0
V (x+ ct− y; b)fY (y) dy dt. (4)

Here I{A} stands for the indicator function of the event A. Note again that before the first observation
time Z1 the process can become negative without leading to ruin, because ruin can only be observed at
observation times. In addition, it is clear that V (·; b) is bounded by a linear function, hence (by letting
h → 0) one sees that V (x; b) is continuous in x. One can now differentiate (4) with respect to h, and by
taking the limit h → 0 we arrive at the following system of IDEs:

0 = c
d

dx
V (x; b)− (λ+ γ + δ)V (x; b) + λ

∫ ∞

0
V (x− y; b)fY (y) dy, x < 0, (5)

0 = c
d

dx
V (x; b)− (λ+ δ)V (x; b) + λ

∫ ∞

0
V (x− y; b)fY (y) dy, 0 ≤ x < b, (6)

0 = c
d

dx
V (x; b)− (λ+ γ + δ)V (x; b) + λ

∫ ∞

0
V (x− y; b)fY (y) dy + γ[x− b+ V (b; b)], x ≥ b. (7)

Within each of these three layers, V (x; b) is indeed differentiable with respect to x, and upon comparison
of (6) and (7), the continuity of V (x; b) at x = b also implies differentiability of V (x; b) at x = b, i.e.

d

dx
V (x; b)

∣∣∣∣
x=b−

=
d

dx
V (x; b)

∣∣∣∣
x=b+

. (8)

Analogously, one observes that V (x; b) is not differentiable at x = 0, as

c
d

dx
V (x; b)

∣∣∣∣
x=0−

= c
d

dx
V (x; b)

∣∣∣∣
x=0+

+ γV (0; b). (9)

For clarity of exposition, write now V (x; b) as

V (x; b) :=


VL(x; b), x < 0,
VM (x; b), 0 ≤ x ≤ b,
VU (x; b), x > b,

where the subscripts ‘L’, ‘M ’ and ‘U ’ stand for ‘lower’, ‘middle’ and ‘upper’ layer respectively. Then

0 = c
d

dx
VL(x; b)− (λ+ γ + δ)VL(x; b) + λ

∫ ∞

0
VL(x− y; b)fY (y) dy, x < 0, (10)

0 = c
d

dx
VM (x; b)− (λ+ δ)VM (x; b) + λ

∫ x

0
VM (x− y; b)fY (y) dy + λ

∫ ∞

x
VL(x− y; b)fY (y) dy,

0 ≤ x < b, (11)

0 = c
d

dx
VU (x; b)− (λ+ γ + δ)VU (x; b) + λ

∫ x−b

0
VU (x− y; b)fY (y) dy

+ λ

∫ x

x−b
VM (x− y; b)fY (y) dy + λ

∫ ∞

x
VL(x− y; b)fY (y) dy + γ[x− b+ VU (b; b)], x ≥ b. (12)
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For a complete characterization of the solution of the above system of IDEs, one can use the continuity
of V (x; b) at x = 0 and x = b. Furthermore, the linear boundedness and positivity of V (x; b) for x ∈ R as
well as the natural boundary condition limx→−∞ VL(x; b) = 0 can be employed (note that the derivative
conditions (8) and (9) are consequences of the continuity in x = 0 and x = b and hence do not give extra
information).

A crucial equation (in α) for this risk model turns out to be

κ(α) = δ + γ, (13)

where κ(α) := λ[f̃Y (−α) − 1] − c α. It has a unique negative solution −ργ < 0. In addition, under a
light-tailed assumption on the claim size distribution, it also has a positive solution Rγ > 0 in the domain

of convergence of f̃Y (·) (cf. Figure 2). Note that for γ = 0, (13) reduces to the well-known Lundberg
fundamental equation of the compound Poisson risk process.

δ

R

Rδ

−ρω

κ(t)

t

δ + ω Rω

Figure 2: Roots of Equation (13)

2.1 Constructing a solution - the exponential claim case

We now illustrate how the above system of IDEs can be solved for exponentially distributed claim amounts
with density fY (y) = νe−νy for y > 0. We proceed by applying the operator (d/dx+ ν) to (10), (11) and
(12) respectively. First, for the lower layer x < 0, the procedure reveals that VL(x; b) satisfies a second
order homogeneous differential equation in x with constant coefficients and characteristic equation (in ξ)

ξ2 +

(
ν − λ+ γ + δ

c

)
ξ − (γ + δ)ν

c
= 0 . (14)

The roots of the above equation are the negative of those of (13). Hence, the solution of (10) is of the
form

VL(x; b) = C1e
ργx + C2e

−Rγx, x ≤ 0 (15)

for some constants C1, C2. Due to limx→−∞ V (x; b) = 0, one immediately deduces C2 = 0.
For the middle layer 0 ≤ x < b, one accordingly obtains the same homogeneous differential equation

for VM (x; b), but with γ = 0. Hence

VM (x; b) = A1e
ρ0x +A2e

−R0x, 0 ≤ x ≤ b, (16)

where the constants A1, A2 are still to be determined.
For the upper layer x ≥ b, the same procedure results in a second-order differential equation in x for
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VU (x; b) with constant coefficients and characteristic equation (14), but with a non-homogeneous term
that is linear in x. Hence

VU (x; b) = D1e
ργx +D2e

−Rγx +D3x+D4, x ≥ b (17)

for constants D1, . . . , D4. From the linear boundedness of V (x; b) it immediately follows that D1 = 0.

For the determination of the remaining constants, the solutions (15), (16) and (17) are substituted into
the IDE’s (10), (11) and (12). First, (10) does not yield any information. For (11), equating coefficients
of e−νx leads to

A1
1

ν + ρ0
+A2

1

ν −R0
− C1

1

ν + ργ
= 0. (18)

As for (12), equating the coefficients of x yields

D3 =
γ

γ + δ
. (19)

With D3 determined, by equating the coefficients of e−νx along with the use of (18), we arrive at

A1
ν

ν + ρ0
eρ0b +A2

ν

ν −R0
e−R0b −D2

ν

ν −Rγ
e−Rγb −D4 =

γ

γ + δ

(
b− 1

ν

)
, (20)

while equating the constant term results in

γe−RγbD2 − δD4 =
γ

γ + δ

(
b δ − c+

λ

ν

)
. (21)

In addition, the continuity of V (x; b) at x = 0 and x = b leads to the two further equations

A1 +A2 − C1 = 0 , (22)

A1e
ρ0b +A2e

−R0b −D2e
−Rγb −D4 =

γ b

γ + δ
. (23)

Therefore, we now have a system of the five linear equations (18), (20), (21), (22) and (23) for the
five remaining constants A1, A2, C1, D2 and D4. This finally gives, after some elementary algebra and
using equation (14),

VL(x; b) =
(ρ0 +R0) e

ργx

Rγ+ρ0
1−ρ0/ργ

ρ0eρ0b +
Rγ−R0

1+R0/ργ
R0e−R0b

, x ≤ 0,

VM (x; b) =
(Rγ + ρ0)e

ρ0x − (Rγ −R0)e
−R0x

Rγ+ρ0
1−ρ0/ργ

ρ0eρ0b +
Rγ−R0

1+R0/ργ
R0e−R0b

, 0 ≤ x ≤ b. (24)

The result for VU (x; b) is also explicit:

VU (x; b) =
γ(x− b)

γ + δ
+

1

Rγ
(e−Rγ(x−b) − 1)

(
γ

γ + δ
− d

dx
VM (x; b)

∣∣∣∣
x=b

)
+ VM (b; b), x ≥ b,

where VM (b; b) and d
dxVM (x; b)

∣∣
x=b

can be determined from (24).
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Remark 2.1 The crucial result above is formula (24), which gives V (x; b) = E[∆M,δ(x; b)] = E[∆δ(x; b)],
since for 0 ≤ x ≤ b there is no action at time 0 regardless of whether or not it is an observation time.
However, even if one would eventually only be interested in this middle layer, the consideration of all
three interacting layers was necessary to determine the involved coefficients in the present approach. Note
that (24) is expressed solely through the roots of equation (14) for different values of γ. Furthermore, it
is ‘almost’ of the form h(u)/h′(b) for some function h(·), which is the known form of V (x; b) for a general
class of Markov processes that are skip-free upwards (see for instance Gerber et al. [8]). Formula (24)
can hence also be seen as an adaptation of such a form for a model with certain types of upward jumps,
in view of the random walk C(Zk) (k ∈ N) with state space R. See also Remark 4.4.
From Figure 2 it is easily seen that for γ → ∞ we have ργ → +∞ and Rγ → ν so that (24) tends to

V (x; b) =
(ν + ρ0)e

ρ0x − (ν −R0)e
−R0x

(ν + ρ0)ρ0eρ0b + (ν −R0)R0e−R0b
, 0 ≤ x ≤ b,

which is indeed the corresponding formula for the classical continuous-time risk model (see for instance
Gerber & Shiu [9, Eqn.(7.8)]).

Remark 2.2 In principle, the method presented in this section extends to the case of Erlang(n) ob-
servation intervals, to more general claim size distributions as well as to the determination of higher
moments Vm,δ(x, b). However, this will typically lead to considerable computational effort, as one has to
keep track of all three layers for each of the n exponential stages. In particular, 3n IDEs will have to be
solved simultaneously and the complexity of these equations will further increase with the order m of the
dividend moments as well as the claim size distribution. In Section 3 we will investigate an alternative
approach that allows to avoid these difficulties.

3 Method 2: Discounted density of increment gδ(y)

We now follow another approach based on the increment of the uncontrolled process {C(t)}t≥0 between
successive observation intervals, exploiting the random walk structure of {C(Zk)}k≥1. This will simplify
the analysis to some extent. In this setting, time 0 is a first observation point, so we can now directly
work with definition (3).

Suppose we want to keep track of both the length of the interval Tk = Zk − Zk−1 and the change in
the surplus between time Zk−1 and Z−

k (k = 1, 2, . . .). Due to the Markovian structure of {C(t)}t≥0, this

sequence of pairs is i.i.d. with generic distribution (T,
∑N(T )

i=1 Yi − cT ) and joint Laplace transform

E
[
e
−δT−s

(∑N(T )
i=1 Yi−cT

)]
= E

[
e−(δ−cs)TE

[
e−s

∑N(T )
i=1 Yi

∣∣T]] = E
[
e−[λ+δ−cs−λf̃Y (s)]T

]
. (25)

On the other hand, one can also write

E
[
e
−δT−s

(∑N(T )
i=1 Yi−cT

)]
=

∫ ∞

−∞
e−sygδ(y) dy, (26)

where gδ(y) (−∞ < y < ∞) represents the discounted density of the increment
∑N(T )

i=1 Yi − cT be-
tween successive observation times, discounted at rate δ with respect to time T . This quantity will be
particularly useful in the sequel.
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3.1 Exponential claim sizes and exponential observation times

Let us first again return to the case that Y and T are both exponentially distributed with mean 1/ν and
1/γ, respectively. Then (25) becomes

E
[
e
−δT−s

(∑N(T )
i=1 Yi−cT

)]
=

γ

γ + λ+ δ − cs− λ ν
ν+s

,

which by the use of partial fractions can be written as

E
[
e
−δT−s

(∑N(T )
i=1 Yi−cT

)]
=

γ(ν + ργ)

cργ(ργ +Rγ)

(
ργ

ργ − s

)
+

γ(ν −Rγ)

cRγ(ργ +Rγ)

(
Rγ

Rγ + s

)
. (27)

Comparing (26) and (27), it is then clear that

gδ(y) =
γ(ν + ργ)

cργ(ργ +Rγ)
ργe

ργyI{y<0} +
γ(ν −Rγ)

cRγ(ργ +Rγ)
Rγe

−RγyI{y>0}, −∞ < y < ∞

is a two-sided exponential density which is defective when δ > 0. We can now condition on the pair

(T1,
∑N(T1)

i=1 Yi − cT1) to arrive at

V (x; b) =

∫ ∞

b−x

γ(ν + ργ)

cργ(ργ +Rγ)
ργe

−ργy[y − (b− x) + V (b; b)] dy +

∫ b−x

0

γ(ν + ργ)

cργ(ργ +Rγ)
ργe

−ργyV (x+ y; b) dy

+

∫ x

0

γ(ν −Rγ)

cRγ(ργ +Rγ)
Rγe

−RγyV (x− y; b) dy, 0 ≤ x ≤ b. (28)

While the third integral term in (28) is a standard convolution, the first two integrals resemble those
arising in derivations for the dual risk model under a dividend barrier (see e.g. Avanzi et al. [6, Eqns.
(2.3) and (3.1)]).

Applying the operator (d/dx− ργ)(d/dx+ Rγ) on both sides, one can transform (28) into a second-
order homogeneous differential equation in x for V (x; b) with constant coefficients which has a solution
of the form

V (x; b) = A1e
α1x +A2e

α2x, 0 ≤ x ≤ b. (29)

The constants A1, A2 and α1, α2 still have to be determined. Substituting (29) into (28) and matching
the coefficients of the various exponential terms, one obtains the equations

γ(ν + ργ)

c(ργ +Rγ)

1

ργ − αi
+

γ(ν −Rγ)

c(ργ +Rγ)

1

Rγ + αi
= 1, i = 1, 2, (30)

A1
α1e

α1b

ργ − α1
+A2

α2e
α2b

ργ − α2
=

1

ργ
, (31)

A1
1

Rγ + α1
+A2

1

Rγ + α2
= 0. (32)

Equation (30) implies that α1, α2 are the roots (in ξ) of the quadratic equation

ργRγ + (ργ −Rγ)ξ − ξ2 =
γν

c
+

γ

c
ξ. (33)
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Since ργ and −Rγ are roots to the quadratic equation (14), by Vieta’s rule they satisfy

ργRγ =
(γ + δ)ν

c
and ργ −Rγ =

λ+ γ + δ

c
− ν.

Applying these relationships to (33), one verifies that indeed α1 = ρ0 and α2 = −R0. In particular, α1

and α2 are independent of γ. The constants A1 and A2 now follow from the system of the two linear
equations (31) and (32) and one finally again obtains (24).

The use of the discounted density gδ(y) turned out to simplify the analysis as compared to the IDE
approach of Section 2, as only the middle layer needs to be considered. In the next subsection we extend
this method to higher dividend moments for Erlang(n) observation intervals and claim sizes with rational
Laplace transform.

3.2 Higher moments of discounted dividends and Erlang observation times

When the observation interval T is Erlang(n) distributed and the claim size Y has an arbitrary distribu-
tion, the joint Laplace transform (25) has the representation

E
[
e
−δT−s

(∑N(T )
i=1 Yi−cT

)]
=

(
γ

γ + λ[1− f̃Y (s)] + (δ − cs)

)n

. (34)

The zeros of the denominator inside the bracket on the right-hand side, namely the roots of the equation
(in ξ)

cξ − (λ+ γ + δ) + λf̃Y (ξ) = 0, (35)

are the negative of those of equation (13). In particular, there is a unique positive root ργ > 0.

Recall (26) in connection with (34). Using the notation

gδ(y) = gδ,−(−y)I{y<0} + gδ,+(y)I{y>0}, −∞ < y < ∞, (36)

along the same line of arguments as in Section 3.1, an integral equation for them-th moment of discounted
dividend payments can be obtained as

Vm,δ(x; b) =

m∑
k=0

(
m

k

)∫ ∞

b−x
[y − (b− x)]m−kVk,δ(b; b)gmδ,−(y) dy +

∫ b−x

0
Vm,δ(x+ y; b)gmδ,−(y) dy

+

∫ x

0
Vm,δ(x− y; b)gmδ,+(y) dy, 0 ≤ x ≤ b (37)

for m = 1, 2, . . .. Here the quantities gmδ,−(·) and gmδ,+(·) refer to a discount rate mδ instead of δ.

Remark 3.1 Also in this approach one can obtain the moments of ∆M,δ(x; b) (for which time 0 is not
an observation time). The corresponding adaptations lead to

Vm,δ(x; b) =

m∑
k=0

(
m

k

)∫ ∞

b−x
[y−(b−x)]m−kVk,δ(b; b)gmδ,−(y) dy+

∫ b−x

−x
Vm,δ(x+y; b)gmδ,−(y) dy, x < 0,
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Vm,δ(x; b) =

m∑
k=0

(
m

k

)(∫ ∞

0
[y − (b− x)]m−kVk,δ(b; b)gmδ,−(y) dy

+

∫ x−b

0
[(x− b)− y]m−kVk,δ(b; b)gmδ,+(y) dy

)
+

∫ x

x−b
Vm,δ(x− y; b)gmδ,+(y) dy, x > b

for m = 1, 2, . . .. For 0 ≤ x ≤ b, the expression obviously coincides with the one where time 0 is an
observation time. Hence the solution of (37) also leads to the formulas for x < 0 and x > b for the
moments of ∆M,δ(x; b).

The quantities gδ,−(·) and gδ,+(·) will not always have a tractable form, but if fY (·) has a rational
Laplace transform, i.e.

f̃Y (s) =
Q2,r−1(s)

Q1,r(s)
, (38)

where Q1,r(s) is a polynomial in s of degree exactly r with leading coefficient of 1 and Q2,r−1(s) is a
polynomial in s of degree at most r − 1 (and the two polynomials have distinct zeros), then it is shown
in [1] that

gδ,−(y) =

n∑
j=1

B∗
j

yj−1e−ργy

(j − 1)!
and gδ,+(y) =

r∑
i=1

n∑
j=1

Bij
yj−1e−Rγ,iy

(j − 1)!
, (39)

where −Rγ,1, . . . ,−Rγ,r are the r roots of equation (35) with negative real parts (with f̃Y (·) analytically
extended beyond the abscissa of convergence), and the constants B∗

j and Bij are given by

B∗
j = (−1)n−j

(γ
c

)n 1

(n− j)!

dn−j

dsn−j

[Q1,r(s)]
n∏r

l=1(s+Rγ,l)n

∣∣∣∣
s=ργ

, j = 1, 2, . . . , n, (40)

and

Bij =
(γ
c

)n 1

(n− j)!

dn−j

dsn−j

[Q1,r(s)]
n

(ργ − s)n
∏r

l=1,l ̸=i(s+Rγ,l)n

∣∣∣∣
s=−Rγ,i

, i = 1, 2, . . . , r; j = 1, 2, . . . , n.

(41)
Since the above quantities depend on δ, we write ργ,m, Rγ,i,m, B∗

j,m and Bij,m if δ is replaced by mδ.

If one now applies the operator (d/dx− ργ,m)n
∏r

i=1(d/dx+Rγ,i,m)n to both sides of (37), it can be
seen that Vm,δ(x; b) satisfies a homogeneous differential equation of order n(r + 1) in x with constant
coefficients and a solution of the form

Vm,δ(x; b) =

n(r+1)∑
i=1

Ai,meαi,mx , 0 ≤ x ≤ b , (42)

for constants {Ai,m}n(r+1)
i=1 and {αi,m}n(r+1)

i=1 . We directly substitute (42) and the densities (39) into the
integral equation (37) and perform some straightforward but tedious calculations. Omitting the details,
the first integral on the right-hand side of (37) is evaluated as

m∑
k=0

(
m

k

)∫ ∞

b−x
[y − (b− x)]m−kVk,δ(b; b)gmδ,−(y) dy

=

n∑
i=1

 m∑
k=0

(
m

k

)
Vk,δ(b; b)

n∑
j=i

B∗
j,m

j∑
l=i

1

ρm−k+j−l+1
γ,m

(m− k + j − l)!

(j − l)!(l − i)!
bl

 (−1)i−1

(i− 1)!
b−ie−ργ,mbxi−1eργ,mx.

(43)
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Similarly, the second integral in (37) is∫ b−x

0
Vm,δ(x+ y; b)gmδ,−(y) dy

=

n(r+1)∑
i=1

Ai,m

 n∑
j=1

B∗
j,m

(ργ,m − αi,m)j

 eαi,mx

−
n∑

i=1

n(r+1)∑
p=1

Ap,m

n∑
j=i

B∗
j,m

j∑
l=i

1

(ργ,m − αp,m)j−l+1

1

(l − i)!
bleαp,mb

 (−1)i−1

(i− 1)!
b−ie−ργ,mbxi−1eργ,mx,

(44)

whereas the third integral is given by∫ x

0
Vm,δ(x− y; b)gmδ,+(y) dy

=

n(r+1)∑
i=1

Ai,m

 r∑
k=1

n∑
j=1

Bkj,m

(Rγ,k,m + αi,m)j

 eαi,mx

−
r∑

k=1

n∑
i=1

n(r+1)∑
p=1

Ap,m

n∑
j=i

Bkj,m

(Rγ,k,m + αp,m)j

 (Rγ,k,m + αp,m)i−1

(i− 1)!
xi−1e−Rγ,k,mx. (45)

Incorporating (43), (44) and (45) into (37) and equating the coefficients of xi−1eργ,mx yields

n(r+1)∑
p=1

Ap,m

n∑
j=i

B∗
j,m

j∑
l=i

(
1

(ργ,m − αp,m)j−l+1
− 1

ρj−l+1
γ,m

)
1

(l − i)!
bleαp,mb

=

m−1∑
k=0

(
m

k

)
Vk,δ(b; b)

n∑
j=i

B∗
j,m

j∑
l=i

1

ρm−k+j−l+1
γ,m

(m− k + j − l)!

(j − l)!(l − i)!
bl, i = 1, 2, . . . , n.

(46)

Note that we have separated the term Vm,δ(b; b) and used (42) at x = b in obtaining the above equation.
Similarly, by equating the coefficients of eαi,mx we arrive at

n∑
j=1

B∗
j,m

(ργ,m − αi,m)j
+

r∑
k=1

n∑
j=1

Bkj,m

(Rγ,k,m + αi,m)j
= 1, i = 1, 2, . . . , n(r + 1).

Due to the representation (26) and the form of the densities (39), the above equation implies that for

each fixed m = 1, 2, . . ., {αi,m}n(r+1)
i=1 are roots of the equation (in ξ)

E
[
e
−mδT−ξ

(∑N(T )
i=1 Yi−cT

)]
= 1, (47)

which is the Lundberg fundamental equation of the present compound Poisson risk model under Erlang(n)
observation intervals (this is natural in view of the embedded random walk structure of the uncontrolled

12



process {C(t)}t≥0 observed at discrete time points).
Finally, equating the coefficients of xi−1e−Rγ,k,mx gives

n(r+1)∑
p=1

Ap,m

n∑
j=i

Bkj,m

(Rγ,k,m + αp,m)j
= 0, k = 1, 2, . . . , r; i = 1, 2, . . . , n. (48)

Hence, for each fixed m ∈ N, {αi,m}n(r+1)
i=1 are obtained as the roots of (47), and {Ai,m}n(r+1)

i=1 are the
solutions of the system of n(r + 1) linear equations (46) and (48). Then a complete characterization of
Vm,δ(x; b) is given by (42). In view of (46) this procedure is recursive in m.

Remark 3.2 From the Lundberg equation (47) along with the representation (34), one observes that

the roots {αi,m}n(r+1)
i=1 are independent of γ when claims have rational Laplace transform, as long as the

observation intervals remain exponential (i.e. n = 1). Indeed, they are the roots of (35) with γ = 0 (and
mδ instead of δ) and are hence the negative of the roots of (13) with γ = 0 (also with mδ in place of δ).

However, for arbitrary Erlang(n) observation intervals, {αi,m}n(r+1)
i=1 will in general not be independent

of the value of γ.

4 Method 3: Discounted density of overshoot hδ(y|x; b)

We now present yet another, although related approach to analyze this model. This method is based on
the fact that, from any present surplus level, further dividends can only be collected if the uncontrolled
process overshoots level b before it becomes negative at an observation time. As we shall see towards the
end of the section, this method leads to expressions from which certain classical results can be retrieved
as special cases. These include the Laplace transform of a two-sided upper exit time and the expected
discounted dividends paid until ruin.

Assume that time 0 is the first observation time and let k∗b = min{k ≥ 1 : Ub(k) > b} be the number
of observation intervals before the first overshoot of the process {Ub(k)}∞k=1 over level b. Clearly τ∗b = Zk∗b
is the first time a dividend payment is made as long as τ∗b < τb (i.e. ruin has not occurred yet). In
the spirit of Gerber & Shiu [9], suppose a ‘penalty function’ w∗(·) is applied to the first overshoot of
{Ub(k)}∞k=1 over level b avoiding ruin until then and define the quantity

χδ(x; b) = E
[
e−δτ∗b w∗(Ub(k

∗
b )− b

)
I{τ∗b <τb}

∣∣Wb(0) = x
]
, 0 ≤ x ≤ b. (49)

Recall the discounted density gδ(y) from (26) in its decomposed form (36). Akin to the derivation of
(28), we have by conditioning

χδ(x; b) =

∫ ∞

b−x
w∗(y − (b− x))gδ,−(y) dy +

∫ b−x

0
χδ(x+ y; b)gδ,−(y) dy +

∫ x

0
χδ(x− y; b)gδ,+(y) dy,

0 ≤ x ≤ b. (50)

In Section 4.1 we will solve this integral equation for claim sizes with rational Laplace transform along
the same lines as the one for Vm,δ(x; b) in Section 3.2 was dealt with. We shall now first show how the
quantity χδ(x; b) can be used to study the dividend moment function Vm,δ(x; b).
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Suppose in general that χδ(x; b) can be expressed in the form

χδ(x; b) =

∫ ∞

0
w∗(y)hδ(y|x; b) dy, 0 ≤ x ≤ b, (51)

where hδ(y|x; b) is the discounted density of the overshoot over level b avoiding ruin. Then by conditioning
on such a first overshoot, one arrives at

Vm,δ(x; b) =

m∑
k=0

(
m

k

)
Vk,δ(b; b)

∫ ∞

0
ym−khmδ(y|x; b) dy, 0 ≤ x ≤ b. (52)

Moreover, for m = 1 this simplifies to

V (x; b) =

∫ ∞

0
[y + V (b; b)]hδ(y|x; b) dy, 0 ≤ x ≤ b. (53)

Putting x = b in (52) and solving for Vm,δ(b; b) yields

Vm,δ(b; b) =
1

1−
∫∞
0 hmδ(y|b; b) dy

m−1∑
k=0

(
m

k

)
Vk,δ(b; b)

∫ ∞

0
ym−khmδ(y|b; b) dy. (54)

Thus, (54) is a recursive formula to evaluate Vm,δ(b; b) for all m, and then Vm,δ(x; b) for 0 ≤ x < b can
be obtained via (52).

Remark 4.1 The representations (52) and (54) are valid for arbitrary distributions for the claim size
and the observation intervals.

Remark 4.2 Assume again that both the claim sizes and the observation intervals are exponentially
distributed with mean 1/ν and 1/γ, respectively. Then, skipping the details, the solution of (50) leads to

χδ(x; b) =

(∫ ∞

0
e−ργyw∗(y) dy

)
(ργ − ρ0)(ργ +R0)[(Rγ + ρ0)e

ρ0x − (Rγ −R0)e
−R0x]

(Rγ + ρ0)(ργ +R0)eρ0b − (Rγ −R0)(ργ − ρ0)e−R0b
, 0 ≤ x ≤ b,

and therefore

hδ(y|x; b) = e−ργy (ργ − ρ0)(ργ +R0)[(Rγ + ρ0)e
ρ0x − (Rγ −R0)e

−R0x]

(Rγ + ρ0)(ργ +R0)eρ0b − (Rγ −R0)(ργ − ρ0)e−R0b
, y > 0; 0 ≤ x ≤ b.

This factorization form makes it particularly easy to compute the integral terms in (52) and (54).

4.1 Solution of χδ(x; b) for claims with rational Laplace transform

If (as in Section 3.2) the claim sizes have rational Laplace transform and the observation intervals are
Erlang(n) distributed, then (50) can be solved to give

χδ(x; b) =

n(r+1)∑
i=1

ηie
αix, 0 ≤ x ≤ b, (55)
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where {αi}n(r+1)
i=1 ≡ {αi,1}n(r+1)

i=1 , and {ηi}n(r+1)
i=1 are the solution of the system of n(r+1) linear equations

consisting of

n(r+1)∑
p=1

ηp

n∑
j=i

B∗
j

j∑
l=i

1

(ργ − αp)j−l+1

1

(l − i)!
bleαpb =

n∑
j=i

B∗
j

j∑
l=i

bl

(j − l)!(l − i)!

(∫ ∞

0
yj−le−ργyw∗(y) dy

)
,

i = 1, 2, . . . , n, (56)

n(r+1)∑
p=1

ηp

n∑
j=i

Bkj

(Rγ,k + αp)j
= 0, k = 1, 2, . . . , r; i = 1, 2, . . . , n. (57)

For exponential observation times (i.e. n = 1) one can get more explicit results and we shall restrict
ourselves to this case for the rest of this subsection. Equations (56) and (57) then reduce to the set of
linear equations

r+1∑
p=1

ηp(b)
1

ργ − αp
eαpb =

∫ ∞

0
e−ργyw∗(y) dy, (58)

r+1∑
p=1

ηp(b)
1

Rγ,k + αp
= 0, k = 1, 2, . . . , r, (59)

where we emphasized the dependence of {ηi}r+1
i=1 on the barrier b. For i = 1, 2, . . . , r + 1, we define ζi

to be the cofactor of the (1, i)-th element of the coefficient matrix of the above linear system (with (58)
listed in the first row). It is instructive to note that {ζi}r+1

i=1 do not depend on b, since b only appears
in the first row of the above-mentioned coefficient matrix. Moreover, each ζi can be computed via the
determinant of a Cauchy matrix with the appropriate sign (see the Appendix of Gerber & Shiu [10]).
Then, solving the system by Cramer’s rule followed by cofactor expansion (along the i-th column for the
numerator and along the first row for the denominator) in the evaluation of determinants, we arrive at

ηi(b) =

(∫ ∞

0
e−ργyw∗(y) dy

)
ζi∑r+1

p=1 ζp
1

ργ−αp
eαzb

, i = 1, 2, . . . , r + 1. (60)

Incorporating (60) into (55) (for n = 1) gives

χδ(x; b) =

(∫ ∞

0
e−ργyw∗(y) dy

) ∑r+1
i=1 ζie

αix∑r+1
i=1 ζi

1
ργ−αi

eαib
, 0 ≤ x ≤ b.

Due to relationship (51), one concludes that hδ(y|x; b) admits the factorization as a product of a function
of y, a function of x and a function of b as

hδ(y|x; b) = ργe
−ργyϖ1(x)

ϖ2(b)
, y > 0; 0 ≤ x ≤ b, (61)

where

ϖ1(x) =

r+1∑
i=1

ζie
αix and ϖ2(b) =

r+1∑
i=1

ζi
ργ

ργ − αi
eαib.
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Remark 4.3 The definition (49) together with the representation (51) with w∗(·) ≡ 1 means that∫ ∞

0
hδ(y|x; b) dy =

ϖ1(x)

ϖ2(b)
=

∑r+1
i=1 ζie

αix∑r+1
i=1 ζi

ργ
ργ−αi

eαib
, 0 ≤ x ≤ b

is the Laplace transform of the time of the first overshoot above level b avoiding ruin, when the initial
capital is Wb(0) = x. If, for example, the claim size follows a mixture of exponentials with distinct means
1/ν1, 1/ν2, . . . , 1/νr, then a simple graphical plot reveals that, as γ → ∞, one can write ργ → ∞ and
Rγ,k → νk for k = 1, 2, . . . , r, so that

lim
γ→∞

∫ ∞

0
hδ(y|x; b) dy =

∑r+1
i=1 ζie

αix∑r+1
i=1 ζie

αib
, 0 ≤ x ≤ b, (62)

where {ζi}r+1
i=1 are now calculated from the coefficients of the system (59) with Rγ,k replaced by νk. Note

that with γ → ∞, the time of first overshoot over level b avoiding ruin in the present model is essentially
the time of first upcrossing level b avoiding ruin in the classical continuous-time barrier model. Indeed,
(62) coincides with Gerber & Shiu [11, Eqn.(A.9)].

Remark 4.4 It is also worthwhile to note that (61) implies the normalized discounted density of the
amount of overshoot to be exponential with mean 1/ργ , regardless of the initial capital x and the barrier
level b.

Finally, substitution of the factorization (61) into (53) leads to

V (x; b) =
ϖ1(x)

ργ [ϖ2(b)−ϖ1(b)]
, 0 ≤ x ≤ b.

As expected, the optimal barrier level b = b∗ which maximizes V (x; b) with respect to b is independent
of the initial surplus 0 ≤ x ≤ b∗. Note also that in the limit γ → ∞, (due to ργ → ∞) the denominator
in the above expression is

lim
γ→∞

ργ [ϖ2(b)−ϖ1(b)] = lim
γ→∞

r+1∑
i=1

ζi
ργαi

ργ − αi
eαib =

r+1∑
i=1

ζiαie
αib = ϖ′

1(b),

with the understanding that {ζi}r+1
i=1 are calculated at the limit as γ → ∞ (see Remark 4.3). Hence, in

the limit one obtains the well-known form V (x; b) = ϖ1(x)/ϖ
′
1(b) of the continuous-time model.

5 On the optimal barrier choice for exponential inter-observation times

In this section we will discuss the issue of the optimal dividend barrier further according to the definition
(2), i.e. time 0 is not an intervention time. For the entire section we assume that the inter-observation
time T is exponentially distributed with mean 1/γ. Let us start with the case of exponential claims.
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Example 5.1 Assume the claim size Y is exponentially distributed with mean 1/ν. Since in equation
(24) only the denominator depends on the barrier level b, one can identify the optimal barrier b∗ which
maximizes V (x; b) for a given initial capital x by minimizing the denominator with respect to b. This
immediately leads to

b∗ = max

{
0,

1

ρ0 +R0
ln

(Rγ −R0)(ργ − ρ0)R
2
0

(Rγ + ρ0)(ργ +R0)ρ20

}
, (63)

which generalizes Gerber & Shiu [9, Eqn.(7.10)]. Also, one readily checks that

d

dx
V (x; b∗)

∣∣∣∣
x=b∗

= 1. (64)

At the same time, b∗ is the only value b for which (64) holds. 2

Recall that in the classical continuous-time model d
dxV (x; b)|x=b = 1 for all b, whereas in the above

example with exponential observation times and exponential claims, this derivative was equal to 1 at the
barrier only if the barrier is optimal. In the sequel we will show that this property holds more generally.

With a general claim size density fY (·), differentiating (11) and (12) and evaluating in x = b, together
with the continuity conditions VL(0; b) = VM (0; b) and VM (b; b) = VU (b; b) that were established in Section
2 we obtain

0 = c
d2

dx2
VM (x; b)

∣∣∣∣
x=b

− (λ+ δ)
d

dx
VM (x; b)

∣∣∣∣
x=b

+ λ

∫ b

0

(
d

dx
VM (x− y; b)

∣∣∣∣
x=b

)
fY (y) dy

+ λ

∫ ∞

b

(
d

dx
VL(x− y; b)

∣∣∣∣
x=b

)
fY (y) dy,

0 = c
d2

dx2
VU (x; b)

∣∣∣∣
x=b

− (λ+ γ + δ)
d

dx
VU (x; b)

∣∣∣∣
x=b

+ γ + λ

∫ b

0

(
d

dx
VM (x− y; b)

∣∣∣∣
x=b

)
fY (y) dy

+ λ

∫ ∞

b

(
d

dx
VL(x− y; b)

∣∣∣∣
x=b

)
fY (y) dy.

Since we know from (8) that the derivative of V (x, b) in x = b exists, from the above expressions it is
clear that the second-order derivatives of VM (x, b) and VU (x, b) in x = b match (i.e. the second derivative
of V (x, b) in x = b exists) if and only if d

dxVM (x; b)
∣∣
x=b

= d
dxVU (x; b)

∣∣
x=b

= 1.

If V (x, b) is differentiable in its second component b, then an obvious necessary condition for optimality
is ∂

∂bV (x; b) = 0 at b = b∗ for x ∈ R. But we will now show that this implies (64). For fixed b, Dynkin’s
formula (see e.g. Rolski et al. [14]) can be applied for V (x; b) and states that

e−δtV (C(t); b)− V (C(0); b)

−
∫ t

0
e−δs

(
c
∂

∂x
V (x; b)

∣∣∣∣
x=C(s)

− (λ+ δ)V (C(s); b) + λ

∫ ∞

0
V (C(s)− y; b) fY (y) dy

)
ds

defines a zero-mean martingale (note that the generator of the uncontrolled surplus {C(t)}t≥0 applied to
e−δtV (x; b), namely

c
∂

∂x
V (x; b)− (λ+ δ)V (x; b) + λ

∫ ∞

0
V (x− y; b)fY (y) dy, (65)
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is part of the IDEs (5), (6) and (7) for V (x; b) in Section 2).
Let us condition on the observation time T = t and replace (65) by the specific inhomogeneities, then

for 0 < b < b′ we obtain

V (x; b)− V (x; b′) = E
[
E
[
e−δt[V (C(t); b)− V (C(t); b′)] (66)

−
∫ t

0
e−δs

(
γ[V (C(s); b)− V (C(s); b′)]I{C(s)<0}

+ γ
{
V (C(s); b)− V (C(s); b′) + b− b′ − [V (b; b)− V (b′; b′)]

}
I{C(s)>b′}

+ γ {V (C(s); b)− [C(s)− b+ V (b; b)]} I{b<C(s)≤b′}

)
ds

∣∣∣∣ T = t

]]
.

Before dividing by b − b′ we look at γ{V (C(s); b) − [C(s) − b + V (b; b)]}I{b<C(s)≤b′} and notice that for
|b′ − b| small we can apply a second-order Taylor expansion around b, for a fixed surplus path,

V (C(s); b) = V (b; b) + [C(s)− b]
∂

∂x
V (x; b)

∣∣∣∣
x=b

+
[C(s)− b]2

2

∂2

∂x2
V (x; b)

∣∣∣∣
x=ξ

for some ξ ∈ (b, b′) such that the second derivative exists and is finite. Now let us divide equation (66)
by b− b′,

V (x; b)− V (x; b′)

b− b′
= E

[
E
[
e−δtV (C(t); b)− V (C(t); b′)

b− b′

−
∫ t

0
e−δs

{
γ
V (C(s); b)− V (C(s); b′)

b− b′
I{C(s)<0}

+ γ

(
V (C(s); b)− V (C(s); b′)

b− b′
+ 1− V (b; b)− V (b′; b′)

b− b′

)
I{C(s)>b′}

+ γ
[C(s)− b] ∂

∂xV (x; b)
∣∣
x=b

+ [C(s)−b]2

2
∂2

∂x2V (x; b)
∣∣
x=ξ

− [C(s)− b]

b− b′
I{b<C(s)≤b′}

}
ds

∣∣∣∣ T = t

]]
.

(67)

Note that
[C(s)− b] ∂

∂xV (x; b)
∣∣
x=b

+ [C(s)−b]2

2
∂2

∂x2V (x; b)
∣∣
x=ξ

− [C(s)− b]

b− b′
I{b<C(s)≤b′}

tends to zero if b → b′ exactly if limb→b′
∂
∂xV (x; b)

∣∣
x=b

= 1, or equivalently ∂
∂xV (x; b)

∣∣
x=b′

= 1. When

writing V (b;b)−V (b′;b′)
b−b′ = V (b;b)−V (b;b′)

b−b′ + V (b;b′)−V (b′;b′)
b−b′ in (67) we get that ∂

∂bV (x; b) = 0 for some b = b∗

and arbitrary x ∈ R can only hold if (64) holds.
Because V (x; b) is linearly bounded and monotone we are allowed to interchange expectations and the
limit b → b′ and can conclude that a positive maximizing barrier height b∗ implies (64), which itself
implies that V (x; b∗) is twice differentiable in x at x = b∗. These arguments are also valid for b > b′

and b → b′, therefore the fact that V (x; b∗) is twice differentiable in x at the barrier turns out to be a
necessary criterion for the optimality of the barrier in this model.
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6 Numerical illustrations

Let us now look at some numerical illustrations. Consider first the case of exponential claims with mean
1/ν and exponential inter-observation times with mean 1/γ. In this situation, the optimal barrier level b∗

can be calculated via formula (63). Figure 3 depicts b∗ as a function of γ for a particular set of parameters.
As can be expected, b∗ increases with γ, as a larger value of γ leads to more frequent observations of the
process, which implies a higher chance of observing early ruin, and as a result a higher b∗ is required for
safety (otherwise ruin may occur before dividends are paid). Let us now fix the value of γ = 10, for which

2 4 6 8 10 12 14
Γ

1

2

3

4

5

6

7

b*

Figure 3: Optimal barrier b∗ as a function of γ for exponential
claims and exponential inter-observation times with c = 6, ν =
3, λ = 15, δ = 0.05.

the optimal barrier level is b∗ = 7.379. Figures 4 and 5 give V (x; b) for three different barrier levels b and
illustrate the smooth-fit property of the maximizing barrier b∗. We see that the first order derivatives
with respect to x fit together in x = b for each of the three barrier levels. However, only for the barrier
level b∗ we have that V (x; b) is twice differentiable in x and the necessary criterion (64) for the optimal
barrier level b∗ holds.

Next, we compare the values of the expected values V (x; b) and standard deviations SD(x; b) of
the total discounted dividend payments until ruin for our model with random observation times to the
ones of the classical continuous observation model for three different parameter sets. At the same time,
we investigate how much the values of V (x; b) and SD(x; b) are affected by the ‘randomness’ of the
observation times. This is done by using observation intervals with Erlang(n) distribution, for which we
fix the expected time between observations (E[T ] = 2.5), but increase the value of n. Note again that
for large n we approach the case of deterministic periodic observation intervals (i.e. the discrete-time
risk model), yet utilizing the computational advantages of the random approach. We shall consider three
different claim size distributions, each of which leads to an expected value of 1. Concretely, we consider
a sum of two exponentials with mean 1/3 and 2/3 (Table 1), an exponential claim size distribution with
mean 1 (Table 2) and a mixture of two exponentials (one exponential with mean 2 (mixing probability
1/3) and one exponential with mean 1/2 (mixing probability 2/3)) (Table 3). The variances of these
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Figure 4: V (x; b) for three barrier levels b = 5 (dotted line), b =
b∗ = 7.379 (solid line) and b = 10 (dashed line) and parameters
c = 6, ν = 3, λ = 15, δ = 0.05, γ = 10.

claim distributions are 0.56, 1 and 2, respectively.
Note that all the above claim distributions have rational Laplace transforms f̃Y (s) in the form of

(38). Therefore, in producing the following tables, the algorithm in Section 3.2 for Erlang(n) observation
intervals can be used. Our procedure is summarized below.

1. For various positive integers m (up to the order of dividend moments of interest), solve (35) with δ
replaced by mδ, which has a unique positive root ργ,m and r roots with negative real parts, namely
−Rγ,1,m, . . . ,−Rγ,r,m.

2. One may use (40) and (41) (with ργ and Rγ,i replaced by ργ,m and Rγ,i,m respectively) to determine
B∗

j,m and Bij,m. However, they also may be determined as the coefficients in the partial fractions
expansion(γ

c

)n [Q1,r(s)]
n

(ργ,m − s)n
∏r

i=1(s+Rγ,i,m)n
=

n∑
j=1

B∗
j,m

(ργ,m − s)j
+

r∑
i=1

n∑
j=1

Bij,m

(s+Rγ,i,m)j
.

3. Solve the Lundberg fundamental equation (47) for {αi,m}n(r+1)
i=1 with its left-hand side evaluated

using the right-hand side of (34).

4. Solve the system of n(r+ 1) linear equations (46) and (48) to obtain {Ai,m}n(r+1)
i=1 , where Vk,δ(b; b)

appearing in (46) (for k = 1, 2, . . . ,m− 1) is given by (42) at x = b with the trivial starting value
V0,δ(b; b) = 1. This procedure is recursive in m.

5. The dividend moment Vm,δ(x; b) is finally given by (42).

In Tables 1–3, the optimal barrier b∗ in the respective scenario is used as the barrier level for the
calculations. Note that b∗ does not depend on the initial surplus x (for 0 ≤ x ≤ b∗), so that the value of
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Figure 5: First and second derivative in x of V (x; b) for three barrier levels b = 5 (dotted line), b = b∗ = 7.379
(solid line) and b = 10 (dashed line) and parameters c = 6, ν = 3, λ = 15, δ = 0.05, γ = 10.

b∗ is the same within each column, but usually will be different for different columns.
From Tables 1–3, one can observe that for initial surplus x = 0, the discrete random observation model

produces much higher expected total discounted dividends than the classical continuous-time model in
the first column. The reason is that with random observation ruin cannot occur very early (namely not
before the first observation time). Another observation is that in all cases the maximizing barrier b∗ in
the classical continuous case is larger than the ones for discrete observations, while for x sufficiently larger
than zero the expected discounted dividends are of a similar size. Hence, not observing instantly allows
to lower the dividend barrier without lowering the dividend performance. This again can be explained by
the fact that in the random observation model ruin between observations is not observed if the process
is again positive at the next observation time and so on average one can expect dividend payments to
occur for a longer time period than in the classical model (this seems to be realistic, since in practice the
risk process will also be monitored at certain time points only). One also sees from the tables that the
standard deviation of the total discounted dividend payments decreases for increasing initial capital.

Comparing the values of the same cells across Tables 1–3, the optimal barrier level b∗ appears to
increase with the variance of the claim size distribution (which can again be explained by the need to
avoid early ruin so that later dividend payments can take place). Moreover, the expectation V (x; b∗)
appears to decrease as the variance of the claim size increases for any given initial capital x.

It is worthwhile to mention that moderate values of n (say, n = 7 or n = 8) already seem to be
a good approximation of the discrete-time model, as the values do not change significantly any more
when increasing n. One particular benefit of the present method hence also is in terms of a ‘randomized
approximation scheme’ for the discrete-time model. Due to the compound Poisson aggregate claims
distribution, it would be computationally very hard to obtain these numbers with the usual techniques
for discrete-time risk models.
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Sum Exp Classical n = 1 n = 2 n = 3 n = 4 n = 5 n = 6 n = 7 n = 8

b∗ 15.81 12.98 13.27 13.37 13.42 13.45 13.47 13.49 13.50
V (0; b∗) 29.20 55.46 55.27 55.34 55.42 55.48 55.52 55.56 55.59
SD(0; b∗) 42.19 43.81 43.93 43.94 43.94 43.93 43.92 43.92 43.91
V (5; b∗) 83.17 86.83 86.67 86.61 86.57 86.55 86.53 86.52 86.52
SD(5; b∗) 28.04 23.39 23.80 23.94 24.02 24.07 24.10 24.13 24.14
V (10; b∗) 93.17 94.27 94.30 94.30 94.30 94.30 94.30 94.30 94.30
SD(10; b∗) 17.98 17.08 17.18 17.22 17.23 17.24 17.25 17.26 17.26
V (b∗; b∗) 99.29 97.34 97.68 97.79 97.84 97.88 97.90 97.92 97.93
SD(b∗; b∗) 16.57 16.50 16.53 16.54 16.54 16.54 16.54 16.54 16.54

Table 1: c = 1.5, λ = 1, δ = 0.005, fY (y) = 3 e−1.5y − 3e−3y, T ∼ Erlang(n) with E[T ] = 2.5

Exp Classical n = 1 n = 2 n = 3 n = 4 n = 5 n = 6 n = 7 n = 8

b∗ 19.06 15.93 16.28 16.40 16.46 16.50 16.53 16.54 16.56
V (0; b∗) 28.45 51.66 51.18 51.10 51.09 51.10 51.11 51.11 51.12
SD(0; b∗) 41.38 43.71 43.84 43.87 43.88 43.89 43.89 43.89 43.89
V (5; b∗) 76.49 81.48 81.17 81.05 80.98 80.94 80.91 80.90 80.88
SD(5; b∗) 33.15 28.43 28.90 29.07 29.15 29.21 29.24 29.27 29.28
V (10; b∗) 88.86 90.56 90.50 90.48 90.46 90.45 90.45 90.44 90.44
SD(10; b∗) 22.29 20.67 20.85 20.91 20.94 20.96 20.98 20.99 20.99
V (15; b∗) 94.88 96.02 96.02 96.01 96.01 96.01 96.00 96.00 96.00
SD(15; b∗) 19.24 18.88 18.94 18.96 18.97 18.98 18.98 18.99 18.98
V (b∗; b∗) 99.00 96.95 97.30 97.42 97.48 97.52 97.54 97.56 97.57
SD(b∗; b∗) 18.88 18.81 18.83 18.84 18.85 18.85 18.85 18.85 18.85

Table 2: c = 1.5, λ = 1, δ = 0.005, fY (y) = e−y, T ∼ Erlang(n) with E[T ] = 2.5

Mixed Exp Classical n = 1 n = 2 n = 3 n = 4 n = 5 n = 6 n = 7 n = 8

b∗ 25.49 21.87 22.35 22.51 22.60 22.65 22.69 22.72 22.73
V (0; b∗) 27.03 46.22 45.58 45.40 45.31 45.27 45.24 45.22 45.20
SD(0; b∗) 39.87 42.90 42.97 42.99 43.00 43.00 43.00 43.01 43.01
V (5; b∗) 64.91 71.03 70.47 70.26 70.15 70.09 70.04 70.01 69.98
SD(5; b∗) 38.58 35.18 35.60 35.75 35.83 35.88 35.91 35.93 35.95
V (10; b∗) 79.11 82.03 81.78 81.68 81.62 81.59 81.57 81.55 81.54
SD(10; b∗) 30.42 28.17 28.46 28.57 28.62 28.65 28.67 28.69 28.71
V (15; b∗) 86.88 88.72 88.59 88.53 88.50 88.48 88.47 88.46 88.45
SD(15; b∗) 25.71 24.66 24.81 24.86 24.89 24.91 24.92 24.92 24.93
V (20; b∗) 92.55 94.05 93.96 93.91 93.89 93.88 93.87 93.86 93.86
SD(20; b∗) 23.80 23.42 23.49 23.52 23.53 23.54 23.54 23.54 23.55
V (b∗; b∗) 98.11 95.94 96.32 96.45 96.52 96.56 96.58 96.60 96.61
SD(b∗; b∗) 23.34 23.28 23.31 23.31 23.32 23.32 23.32 23.32 23.33

Table 3: c = 1.5, λ = 1, δ = 0.005, fY (y) = (1/6) e−0.5y + (4/3)e−2y, T ∼ Erlang(n) with E[T ] = 2.5
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