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Abstract
Sampling is informative when probabilities of sample
inclusion depend on unknown variables that are corre-
lated with a response variable of interest. When sample
inclusion probabilities are available, inverse probability
weighting can be used to account for informative sam-
pling in such a situation, although usually at the cost
of less precise inference. This paper reviews two impor-
tant research contributions by Chris Skinner that modify
these weights to reduce their variability while at the
same time retaining consistency of the weighted estima-
tors. In some cases, however, sample inclusion proba-
bilities are not known, and are estimated as propensity
scores. This is often the situation in causal analy-
sis, and double robust methods that protect against
the resulting misspecification of the sampling process
have been the focus of much recent research. In this
paper we propose two model-assisted modifications to
the popular inverse propensity score weighted estima-
tor of an average treatment effect, and then illustrate
their use in a causal analysis of a rainfall enhancement
experiment that was carried out in Oman between
2013 and 2018.
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1 INTRODUCTION

1.1 A brief background on sample weighting and inference

Weighting is at the core of sampling inference. Virtually every procedure used to make an infer-
ence about a population of interest based on data obtained from a sample of population units
depends on the statistic yws =

∑N
i=1wisIiyi being a consistent estimator of the expected value 𝜇

of the finite population mean yU = N−1∑N
i=1yi. Here U denotes the finite population of inter-

est, N is the population size, Ii is a random sample inclusion indicator that takes the value 1
if unit i is in sample and the value zero otherwise, and yi is a random variable with expected
value 𝜇 that is observed for each sample unit and is assumed to be observable for any popula-
tion unit. The set of n population units making up the sample is the largest set {i ∈ U ∶ Ii = 1},
and is denoted s. The sample weights wis are assumed known for each sample unit. They are
also assumed to be computable for any sample s. Definition of wis depends to a large extent
on the type of inference that one wishes to make about 𝜇. If one replaces 𝜇 by yU as the
target of inference then inference is said to be enumerative, while if 𝜇 remains as the target
then inference is often referred to as analytic. We will be concerned with analytic inference in
this paper.

In the case of enumerative inference there are two major approaches. The oldest, first pro-
posed in Neyman (see Splawa-Neyman et al., 1990) only allows random variation in yws because
of variation in the sample inclusion indicators Ii. That is, the only uncertainty is the outcome of
the sampling process. All other finite population measurements, and in particular the values yi,
are considered to be fixed. This is essentially non-parametric inference, typically referred to as
design-based. Within the last half century, however, it has become more common to allow joint
variation in both Ii and yi to underpin inference. This is model-based inference, primarily because
it is standard to use a stochastic model to describe variability in the population yi values, with the
implicit assumption that variability in the population Ii values is under the control of the sample
designer.

Let IU and yU denote the vectors consisting of the population values of Ii and yi respec-
tively. The model-based approach implicitly assumes that the distribution of IU is a function of
population auxiliary information, typically characterized by the values defining a N × p matrix
XU . Consequently, the conditional independence assumption (CIA) is usually made, that is,
(yU ⫫ IU )|XU where ⫫ denotes independence. A sampling procedure for which the CIA is valid
for some XU is commonly referred to as non-informative sampling, with the restriction implied
by the conditioning on XU often ignored. However, as the CIA makes clear, it is this conditioning
that is important. Sampling that is non-informative given XU may not be so if XU is unavailable,
or if just a part of it is available. However, if XU is known then the realized values IU of the sample
inclusion indicators are ancillary for inference about 𝜇 and so inference can condition on them,
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1586 CHAMBERS et al.

that is, condition on the realized value of the set s. In this case it is just the variability in yU that
underpins inference.

Despite efforts over the last 50 years, for example, Brewer (1999), design-based and
model-based inference cannot be reconciled except in the null case where XU provides no infor-
mation about the variability in yU or IU . However, this is usually not the case, and model-assisted
inference is then a widely used compromise between design-based inference and model-based
inference that allows for both sources of variability. This approach is often assumed to pro-
vide both the non-parametric robustness of the design-based approach and the parametric
efficiency associated with the model-based approach. However, this may not be the case, as we
shall see.

1.2 Why this paper?

This paper aims to provide an overview of the important issues that arise when one uses survey
weights for inference, both in the context of Chris Skinner’s major contributions in the area and in
the context of closely related issues that arise in causal inference. The desirable properties of con-
sistency and double robustness for weighted survey estimators are discussed in the next Section,
with Chris’s major contributions to improving the efficiency of weighted survey estimates dis-
cussed in Section 3. Then in Section 4 we focus on causal inference and the problem of estimating
a causal effect. In this section we also develop two doubly robust estimators for an additive causal
effect that behave similarly to a model-assisted estimator, in that they use a model to control for
bias caused by differences in covariate distributions between treated and untreated groups. In
Section 5 we apply the methods developed in Section 4 to a new analysis of a data set collected in a
6-year rainfall enhancement trial. Section 6 completes the paper with a more discursive summary
of the ideas in it and the results obtained.

2 CONSISTENCY AND ROBUSTNESS UNDER WEIGHTED
INFERENCE

Chris Skinner firmly believed that model-assisted inference should be the default approach
to sample survey inference. His basis for this belief was simple: Defining a statistical
model for yU given just the sample values ys = {yi; i ∈ s} will almost inevitably result in
model misspecification, in the sense that it will not lead to the same model as would be
obtained given yU . On the other hand, the properties of the sample inclusion indicators
Ii are known (or at least should be known) to the survey sampler, and these determine
whether an estimator of interest is design-consistent, that is, it converges in probability
to its design expectation as the sample size increases. Restricting weights ws = {wis; i ∈ s}
to use in yws so that this estimator is design-consistent should therefore be a minimum
requirement. Modelling assumptions can subsequently be introduced to improve the effi-
ciency of yws assuming that the model holds. However, this efficiency is a secondary
consideration.

To illustrate, assume that we know 𝜋i(XU) = E(Ii|XU) and consider the classic
design-based version of yws in this case. This is the inverse probability weighted (IPW)
estimator corresponding to the ratio-type Hájek (1971) version of the design-unbiased
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CHAMBERS et al. 1587

estimator for yU under without-replacement sampling (Horvitz & Thompson, 1952;
Narain, 1951). Here

wis = wIPW
is = (𝜋i(XU ))−1

( N∑

j=1
(𝜋j(XU))−1Ij

)−1

.

Put 𝜇i(XU ) = E(yi|XU), so 𝜇 = E(𝜇i(XU )). For notational simplicity we write 𝜇i ≡ 𝜇i(XU) in this
Section and the next. The IPW estimator yIPW

ws is consistent for 𝜇 under any model for 𝜇i when the
CIA is valid and 𝜋i is correctly specified since under suitable regularity conditions it then follows

E(yIPW
ws ) − 𝜇 = E

{

E

( N∑

i=1
wIPW

is Iiyi|XU

)

− N−1
N∑

i=1
𝜇i

}

→ E
⎧
⎪
⎨
⎪
⎩

E
(∑N

i=1𝜋
−1
i Iiyi|XU

)

E
(∑N

i=1𝜋
−1
i Ii|XU

) − N−1
N∑

i=1
𝜇i

⎫
⎪
⎬
⎪
⎭

= E

{∑N
i=1𝜋

−1
i 𝜋i𝜇i

∑N
i=1𝜋

−1
i 𝜋i

− N−1
N∑

i=1
𝜇i

}

= 0.

Unfortunately, as is well known, the IPW estimator can be inefficient. Also, sample inclusion
probabilities for sampled units must be known. This is usually not an issue under full response.
However, full response is rare, and non-response is usually the case. The probability of sample
inclusion then includes the (typically unknown) probability of response. It is also an issue for
observational studies where sample inclusion can depend on characteristics of population units
that are not captured in XU , including the value yi itself.

Improving on the efficiency of the IPW estimator has been the focus of much research over
the last 50 years, with most of it is based on the CIA. As we have already noted, the sam-
ple inclusion indicators are irrelevant for inference about 𝜇 in this case, and so the vector
ws of efficient model-based sample weights can be chosen to minimize Var(yws − yU |XU) sub-

ject to E(yws − yU |XU) = 𝜇ws − 𝜇U = 0. Here 𝜇ws =
∑N

i=1wisIi𝜇i and 𝜇U = N−1∑N
i=1𝜇i. Let wMB

s =

{wMB
is ; i ∈ s} denote these model-based weights, with associated estimator yMB

ws . Then by con-
struction, E(yMB

ws |XU) = 𝜇U and so yMB
ws is model-consistent (but not necessarily design-consistent)

for 𝜇 = E(E(yU |XU)) = E(𝜇U). Note that the final expectation assumes that (yU ,XU) is a ran-
dom draw from a conceptual set of finite population values, often referred to as the underlying
superpopulation.

To illustrate, suppose that yU = XU𝜷 + eU where the first column of XU is 1U , eU ⫫ XU ,
E(eU) = 0U and Var(eU) = 𝜎

2diag(1U ). Here 0U and 1U are N-vectors with elements equal to
0 and 1 respectively. Then wMB

s = Xs(XT
s Xs)−1xU , where Xs denotes the sampled rows of XU

and xU = N−1XT
U 1U . More sophisticated models (e.g. those with hierarchical random effects) are

discussed in chapters 13 and 15 of Chambers and Clark (2012).
The adage that all models are wrong applies in survey sampling as much as it does in statis-

tics generally. This concern, echoed in many of the papers that Chris Skinner had a hand in, leads
to a compromise between design-based inference and model-based inference that is commonly
referred to as model-assisted inference. The basis of this approach, insofar as estimation is con-
cerned, is the idea of using design-based estimation to ensure that a model-based estimator is also
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1588 CHAMBERS et al.

design-consistent. Let �̂�i ≡ �̂�i(XU) denote an unbiased estimator of 𝜇i under the assumed model,
with associated model-based estimator yMB

ws of yU that satisfies

yMB
ws =

N∑

i=1
wMB

is Iiyi = N−1
N∑

i=1
�̂�i ≡

̂
𝜇U .

This condition is satisfied, for example, by efficient model-based weighting under the linear model
defined in the preceding paragraph. A model-assisted modification yMA

ws to yMB
ws is obtained by

adding a design-consistent bias correction to this estimator, that is,

yMA
ws = yMB

ws + rIPW
ws

where rIPW
ws =

∑N
i=1wIPW

is Ii(yi − �̂�i) is the IPW-weighted estimator of the average of the residuals
rU = yU − �̂�U and �̂�U is the population vector of fitted values under the assumed model. We have
seen that yMB

ws is consistent for 𝜇 when 𝜇i is correctly specified. Furthermore, if the CIA also holds
then rIPW

ws is model-consistent for zero since E(yi − �̂�i|XU) = 0 and so

E(rIPW
ws ) → E

{∑N
i=1𝜋

−1
i E(Ii|XU)E(yi − �̂�i|XU )
∑N

i=1𝜋
−1
i E(Ii|XU)

}

= 0,

irrespective of whether 𝜋i = E(Ii|XU). That is, under correct model specification and the CIA, yMA
ws

and yMB
ws are both model-consistent for 𝜇.

Conversely, we can view the definition of yMA
ws above as adding a model-consistent bias

correction to yIPW
ws . That is, we can also write

yMA
ws = yIPW

ws − rMB
ws

where rMB
ws =

∑N
i=1wIPW

is Ii�̂�i − yMB
ws =

∑N
i=1wIPW

is Ii�̂�i − N−1∑N
i=1�̂�i. Clearly, provided the CIA holds,

and 𝜋i = E(Ii|XU) is correctly specified, then yIPW
ws is design-consistent for 𝜇 and rMB

ws is
design-consistent for zero irrespective of whether �̂�i is model-consistent for 𝜇i.

This dual property of yMA
ws is often referred to as double robustness. Estimators with a double

robustness property have been extensively studied, see Bang and Robins (2005). In a survey sam-
pling context, Chen et al. (2020) have proposed a double robust estimator for the finite population
mean given data from a non-probability survey. These methods have been promoted as allowing
an analyst to have the best of both worlds—protected against misspecification of the model for
yU |XU if the sample inclusion probabilities are correctly specified and protected against misspec-
ification of sample inclusion probabilities (as would be the case under sample non-response) if
the model for yU |XU is correctly specified.

Of course, as has been pointed out by many (see Kang & Schafer, 2007), the usual situation is
where both the sample inclusion probabilities and the model for yU |XU are incorrectly specified.
Because of the ubiquitous nature of non-response, this will still be the case for ‘well-designed and
implemented’ surveys. From a pure model-based perspective there appear to be at least two things
one can do to protect oneself in this case. The first is to adopt a flexible specification for the model
for yU |XU , as in a non-parametric regression specification for 𝜇i. The second is to replace the IPW
weights wIPW

is in the bias correction term rIPW
ws in yMA

ws by alternative weights that allow for more
accurate estimation of the population value of this bias. As Chambers et al. (1993) point out these
two strategies lead to the same estimator if the same non-parametric regression-based weighting
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CHAMBERS et al. 1589

scheme is used in both. They also point out that the idea of nonparametrically bias correcting a
model misspecification bias is essentially an extension of Tukey’s idea of ‘twicing’ when fitting a
potentially incorrectly specified model.

Other approaches to dealing with model misspecification as well incorrect sample inclusion
probabilities that are more in line with the idea of double robustness have also been suggested.
For example, Han (2014) and Chen and Haziza (2017) suggest that alternative models for yU |XU
be considered as well as alternative sample inclusion probability specifications, with yMA

ws then
computed based on a suitably averaged fitted value for 𝜇i and a similar composite value for 𝜋i.
They show that such a multiply robust specification for yMA

ws can improve on any version of this
estimator that uses just one of the alternative models for 𝜇i and just one of the different sample
inclusion probability specifications—provided at least one of these alternatives is correct. This can
be useful if different variable selection methods are used in model identification, and these lead
to competing model specifications. We do not pursue this idea further beyond noting that in most
practical situations it is unlikely that any of the potential alternative specifications will be true,
so the utility of this approach will depend on its capacity to reduce the variability of yMA

ws . Here
we note that several empirical studies have now shown that despite being inconsistent, multiply
robust procedures tend to have good numerical properties, see Han (2014) and Chen and Haziza
(2017, 2019).

3 CHRIS SKINNER’S IMPACT ON SAMPLE WEIGHTING
METHODOLOGY

3.1 Contributions to weighting under non-informative sampling

We assume in this Section that all unit i specific expectations that condition on XU are purely
functions of the vector xi defining row i of XU . We also continue to leave dependence on xi as
implicit. If one accepts the CIA and that the known values of 𝜋i correctly represent the actual
sample inclusion probabilities (as would be the case under controlled probability sampling and
full response), then the main issue with both yIPW

ws and yMA
ws is their variability compared to yMB

ws .
This is basically due to the variability induced by the unit specific ‘representative’ weights 𝜋

−1
i

used in both. In a pioneering paper, Skinner and Mason (2012) showed how this variability can be
reduced while at the same time retaining the desirable design-consistency property. In the context
of the development so far, their approach corresponds to replacing the 𝜋−1

i by modified unit-level
weights of the form

dIPWX
i = 𝜋

−1
i qi

where qi is a function of xi, and is chosen in order to minimize the variance of the solution �̂�i to
the estimating equation

N∑

i=1
wIPWX

is Ii(yi − �̂�i) = 0,

with wIPWX
is = dIPWX

i ∕
∑N

j=1dIPWX
j Ij. Note that with this definition, and assuming the CIA,

E

( N∑

i=1
wIPWX

is Iiyi|XU

)

→ E

( N∑

i=1
𝜋
−1
i qiIiyi|XU

)

∕E

( N∑

i=1
𝜋
−1
i qiIi|XU

)

→
N∑

i=1
qi𝜇i∕

N∑

i=1
qi.
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1590 CHAMBERS et al.

Providing qi is O(1), the q-weighted mean on the right-hand side above will converge to 𝜇. Using a
linearization argument, and assuming Poisson sampling of population units, these authors derive
the optimal value qi = {E(𝜋−1

i )}−1, in which case

wIPWX
is =

𝜋
−1
i {E(𝜋−1

i )}−1

∑N
j=1𝜋

−1
j {E(𝜋−1

j )}−1Ij
.

There is a subtle but important change in the inference framework used in the preceding
development. The sample inclusion probability 𝜋i is now being treated as a random vari-
able rather than as a known function of xi, putting its value on a par with the value yi
of the response variable. This is important in many practical applications where this prob-
ability is an unknown function of xi and, as is often the case with analysis of observa-
tional data, where the value of 𝜋i is only known if unit i is part of the observed sample.
Note also that although the modified IPW estimator yIPWX

ws =
∑N

i=1wIPWX
is Iiyi is model-consistent

for 𝜇, it is not design-consistent for the population mean yU but instead converges to the
q-weighted version of this mean. In effect, Skinner and Mason (2012) implicitly acknowl-
edge that enforcing strict design-consistency is at odds with efficient weighted inference
for 𝜇.

3.2 Contributions to weighting under informative sampling

The development in the previous subsection assumed the CIA holds. But there are situations
where the CIA does not hold under conditioning on the available values in XU . As noted earlier,
such cases arise when the conditioning is incomplete, that is, XU is only partially known, or some
of its component variables are ignored, as would be the case under variable selection. However,
it can also be the case that even if XU is completely known, sample inclusion can depend on yU
as well as XU . This type of informative sampling is an example of response-dependent sampling,
with the most obvious example being case–control sampling. Another example where informa-
tive sampling is of concern is in the secondary analysis of survey data, where the analyst has
access to the sample values of yi and 𝜋i, as well as the population values of xi, but believes that
the agency that created the sample did so using information on another, unreleased, variable
zi. Furthermore, given xi, the value of zi (and hence the realized value of the sample inclu-
sion indicator Ii) and the response variable yi are correlated. This clearly violates the CIA. In
a subsequent paper, Kim and Skinner (2013) extended the minimum variance weights concept
of Skinner and Mason (2012) to the case of response-dependent sampling, that is, where the
probability of sample inclusion also depends on the value of the response variable of interest.
Inverse probability weights can exhibit wide variability in this situation. In order to address this
problem, Beaumont (2008) assumes that the sample inclusion probability𝜋i is known and satisfies
𝜋i = E(Ii|yi, xi). Put

�̃�i = E(𝜋i|yi, Ii = 1, xi) = {E(𝜋−1
i |yi, Ii = 1, xi)}−1

,

where the last equality follows from Pfeffermann and Sverchkov (1999). Then

E(Iiyi|xi) = E(E(Ii|yi, xi)yi|xi) = E(𝜋iyi|xi) = E(E(𝜋i|yi, Ii = 1, xi)yi|xi) = E(�̃�iyi|xi),
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CHAMBERS et al. 1591

and we have E(�̃�−1
i Iiyi|xi) = E(�̃�−1

i �̃�iyi|xi). It immediately follows that the IPW estimator based
on the smoothed value �̃�i instead of 𝜋 is also consistent for 𝜇. Let ySIPW

ws denote the IPW estimator
based on the smoothed �̃�i. Then, since

E

( N∑

i=1
𝜋
−1
i Iiyi|yU , IU ,XU

)

=
N∑

i=1
E
(
𝜋
−1
i |yi, Ii = 1, xi

)
Iiyi =

N∑

i=1
�̃�
−1
i Iiyi

we have ySIPW
ws ≈ E

(
yIPW

ws |yU , IU ,XU

)
and hence

Var
(

yIPW
ws |XU

)
≥ Var

(
E
(

yIPW
ws |yU , IU ,XU

)
|XU

)
≈ Var

(
ySIPW

ws |XU

)
.

That is, the smoothed version of the IPW estimator will usually be more efficient than the
‘standard’ version of this estimator.

The key contribution of Kim and Skinner (2013) was to improve upon this smoothing
approach to weighting under response-dependent sampling by combining it with the optimal
weighting approach developed in Skinner and Mason (2012). Using similar approximations to
those used in this last reference, including assuming Poisson sampling, they consider a modified
smoothed weighting scheme with unit weights �̃�−1

i qi and seek to identify the value of qi that min-
imizes the asymptotic variance of the IPW estimator based on these unit weights. This leads to
the optimal value qi = {E(�̃�−1

i (yi − 𝜇i)2)}−1 and modified smoothed IPW weights

wSIPWX
is =

�̃�
−1
i

{
E(�̃�−1

i (yi − 𝜇i)2)
}−1

∑N
j=1�̃�

−1
j

{
E(�̃�−1

j (yj − 𝜇j)2)
}−1

Ij

.

Finally, we note that application of both the Beaumont (2008) approach and the Kim
and Skinner (2013) approach to computing a more efficient IPW estimator of 𝜇 under
response-dependent sampling requires estimation of both 𝜇i = E(yi|xi) and �̃�i followed by estima-
tion of E(�̃�−1

i (yi − 𝜇i)2). This can be done by using the sample data to fit appropriate parametric
models to these expectations. Assuming that the model for 𝜇i is given, Kim and Skinner (2013)
suggest that a model for �̃�i based on E(𝜋−1

i |yi, Ii = 1, xi) = 1 + exp(−𝝓T
1 xi − 𝜙2yi) will usually be

adequate, with the values of E(�̃�−1
i (yi − 𝜇i)2) then computed by bootstrapping from the sample

values {{1 + exp(−𝝓T
1 xi − 𝜙2yj)}(yj − 𝜇i)2, j ∈ s}. However, use of a parametric sampling model

like that considered in Kim and Skinner (2013) can lead to inefficient estimators if this model
is misspecified. In contrast, non-parametric machine learning methods such as random forests
and boosting should be more robust to model misspecification, and so have therefore become
more attractive to National Statistical Offices that now have access to a variety of data sources,
potentially containing a large number of observations on a large number of variables (Dag-
doug et al., 2021). It is also important to note that the Kim and Skinner (2013) approach, as
well as its simpler version when the CIA holds, depends crucially on the sample inclusion
probabilities 𝜋i being known. In many practical applications of analysis of observational data
this is not the case, particularly when there is reason to believe that the sampling was infor-
mative. In the next section we address this issue in the context of causal inference, which is
a particular type of missing data problem where just one of two potential outcomes can be
observed.
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1592 CHAMBERS et al.

4 BUT WHAT IF INCLUSION PROBABILITIES ARE
UNKNOWN?

4.1 A brief overview of causal inference

Neyman (see Splawa-Neyman et al., 1990) explicitly defined a framework of potential outcomes
with the aim of making causal inferences using the data collected in a randomized experiment.
The simplest version of this framework is where each unit i in the target population for the exper-
iment has two response values, corresponding to whether or not it is subject to an intervention
of interest, and our focus is on answering the causal question: Does the intervention have a sig-
nificant impact on the associated response? We shall write yi0 as the response when unit i is not
subject to the intervention, and yi1 as the response when unit i is subject to the intervention. Fol-
lowing standard practice, we refer to a unit not subject to the intervention as a control unit and a
unit subject to the intervention as a treated unit. A crucial point to make here is that both response
values are potentially observable, but the one that is actually observed depends on whether the rel-
evant unit is a control unit or a treated unit. Effectively, values of yi0 are missing for treated units
and values of yi1 are missing for control units. The observed data set includes a mix of control
units and treated units, depending on how interventions are distributed among the units making
up the data set. This distribution, also referred to as the assignment mechanism, can be viewed as
the outcome of a process that ‘samples for potential outcomes’, that is, it determines whether yi0
or yi1 is observed. Equivalently it can be viewed as the non-response mechanism underpinning
the missing values of yi0 for treated units and yi1 for control units. Furthermore, unless the data
set is the outcome of an experiment where interventions are allocated according to a pre-defined
randomized sequence, it is a sampling process where we do not know the sample inclusion
probabilities.

As usual, we assume the existence of auxiliary information in the form of a vector of covariates
xi for unit i. A key target of causal inference is the average causal effect

𝛿 = E(yi1) − E(yi0) = E {E(yi1|xi) − E(yi0|xi)}.

Note that 𝛿 is the expected difference between the averages of yi1 and yi0 over the population cor-
responding to the expectation operator. Since both outcomes cannot be observed for the same
unit, estimation of 𝛿 effectively requires us to impute the missing potential outcome for each unit
in this population. It also requires that we specify the population underpinning 𝛿. The narrowest
specification, and the one that we focus on in the following two subsections, is where this popu-
lation coincides with the observed sample data. This allows us to replace the definition of 𝛿 above
with its empirical version

𝛿s = n−1
n∑

i=1
{𝜇1(xi) − 𝜇0(xi)}, (1)

where 𝜇1(xi) = E(yi1|xi) and 𝜇0(xi) = E(yi0|xi). This is sometimes referred to as the sample aver-
age treatment effect (SATE). Imbens and Wooldridge (2009) discuss the use of SATE and similar
measures in program evaluation, while Imbens and Rubin (2015) provide a general background
on causal inference and the estimation of treatment effects.

More generally, the observed data set may be a sample s of size n from a larger population U
of size N, in which case 𝛿 can be defined as
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𝛿U = N−1

[
∑

i∈s
{𝜇1(xi) − 𝜇0(xi)} +

∑

i∉s
{𝜇1(xi) − 𝜇0(xi)}

]

, (2)

and the problem of estimating this population average treatment effect (PATE) is then essentially
the problem of predicting the finite population mean of the individual treatment effects (ITEs)
given by 𝛿i = 𝜇1(xi) − 𝜇0(xi). Unlike the usual model-based sampling situation, though, these ITE
values are not observable, and must be themselves estimated from the sample data. Estimation of
the PATE has been the subject of considerable research effort in recent years, most of which is built
on the concepts of generalizability and transportability, where the ITE estimates contributing to
the first (sample) term on the right-hand side of (2) are weighted so that their weighted sum also
includes an estimate of the contribution to the PATE from the second (non-sample) term. This
includes the situation where the information for this additional weighting step is derived from
another, larger, population sample. We discuss estimation of (2) and this more general situation
in Section 6.

For the SATE to be identifiable, the decision on whether intervention is carried out for a partic-
ular unit, that is, the treatment is assigned to this unit, needs to be restricted so that the assignment
probability is independent of the potential outcomes as well as the values of covariates for other
units. This is usually summarized in three basic properties of the assignment mechanism:

1. Individualistic assignment: The probability of a unit being assigned to the treatment only
depends on the value of the covariate xi for that unit and not on the values of the covariates
for other units.

2. Probabilistic assignment: This condition is familiar to survey samplers and states that every
unit in the population has a probability of being treated that is strictly between zero and
one for all units (Rosenbaum & Rubin, 1983). When the population and sample coin-
cide, as with the SATE, this probability only refers to treatment assignment for the sample
units.

3. Unconfounded assignment: This assumption is essentially the CIA for treatment assignment,
in that it states that this assignment is independent of any potential outcomes conditioned on
known covariates.

The probabilistic and unconfoundedness properties are essentially the strong ignorability
assumption of Rosenbaum and Rubin (1983).

There are two main concerns in causal inference based on observational data. The first is the
use of an appropriate covariate adjustment method that achieves balance on relevant covariates,
while the second is satisfying what Rosenbaum and Rubin (1984) refer to as strongly ignor-
able treatment assignment. Weighting is often used to address the first concern. Unfortunately,
strongly ignorable treatment assignment via randomization, although desirable, is not always fea-
sible. Instead, we must often make do with observational data where the probability of treatment
assignment is unknown, and so needs to be estimated from the realized values of these assign-
ments. These estimated probabilities are usually referred to as propensity scores, a convention that
we now adopt. Li et al. (2018) discuss balancing weighted estimators based on propensity scores
and derive the set of overlap propensity score weights that minimize the asymptotic variance of
the corresponding estimated average treatment effect. More generally, covariate adjustment can
be carried out by combining weighting and regression adjustment in order to achieve double
robustness, see Scharfstein et al. (1999).
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There is a huge literature on propensity score weighting in causal inference and the associated
issue of double robustness. In particular, the superiority of double robust estimators compared
to propensity score weighting methods for causal inference has been comprehensively inves-
tigated, see Lunceford and Davidian (2004). The benefits of taking a double robust approach
when estimating an average treatment effect in survival analysis with longitudinal data are dis-
cussed in Yu and van der Laan (2006), while Zhou et al. (2019) develop a double robust estimator
based on a penalized spline propensity prediction method to impute the missing potential out-
comes given time dependent confounders in longitudinal studies. Saarela et al. (2016) discuss
double robustness in causal inference in from a Bayesian perspective, and propose the use of
inverse propensity scores as importance sampling weights in the estimation of the outcome
model.

The three common strategies used to estimate the SATE (1) are model-based imputation,
where a regression model is used to impute the counterfactuals (yi0 for a treated unit and yi1 for a
control, or untreated, unit), weighting estimators and matching estimators. Both weighting and
matching require knowledge of propensity scores. In this paper we discuss three weighting-based
estimators of the SATE that use these scores. The first is the widely used inverse probability
weighted or IPW estimator. The second and third are model-assisted versions of the IPW, based
on differing model assumptions about the specification of the treatment effect. Both have the
desirable property of being doubly robust.

4.2 Estimators of the SATE that use propensity scores

Let yi denote the value of the response for unit i in the observational data set of N units, with
yi equal to yi1 if unit i is exposed to a treatment, and yi0 if not. Put 𝜇1s = n−1∑n

i=1𝜇1(xi) and
𝜇0s = n−1∑n

i=1𝜇0(xi), so (1) becomes 𝛿s = 𝜇1s − 𝜇0s. Let Ii = 1 denote membership of the treat-
ment subsample (i.e. units exposed to the treatment) and Ii = 0 denote membership of the control
subsample (i.e. units not exposed to the treatment), with 𝜋(xi) = Pr(Ii = 1|xi). It immediately
follows that yi = Iiy1i + (1 − Ii)y0i. Furthermore, it is easy to see that a consistent IPW-type esti-
mator of 𝜇1s is �̃�

IPW
1s =

∑n
i=1w̃IPW−1

is Iiyi and a similarly consistent IPW-type estimator of 𝜇0s is
�̃�

IPW
0s =

∑n
i=1w̃IPW−0

is (1 − Ii)yi, with

w̃IPW−1
is = (𝜋(xi))−1

[ n∑

j=1
(𝜋(xj))−1Ij

]−1

,

and

w̃IPW−0
is = (1 − 𝜋(xi))−1

[ n∑

j=1
(1 − 𝜋(xj))−1(1 − Ij)

]−1

.

The corresponding IPW-type estimator of (1) is then 𝛿
IPW
s = �̃�

IPW
1s − �̃�

IPW
0s . However, as we have

already noted, the treatment assignment mechanism underpinning exposure is unknown, and is
therefore modelled as 𝜋(xi; 𝜼), where 𝜋 is a known function and 𝜼 is a vector of unknown param-
eters. The observed values of Ii and xi can be used to estimate 𝜼, leading to propensity scores
�̂�i ≡ 𝜋(xi; �̂�), where �̂� is the vector of estimated parameter values. This leads to the plug-in IPW
estimator for (1)
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𝛿
IPW
s =

n∑

i=1
ŵIPW−1

is Iiyi −
n∑

i=1
ŵIPW−0

is (1 − Ii)yi (3)

where

ŵIPW−1
is = �̂�

−1
i

[ n∑

j=1
�̂�
−1
j Ij

]−1

,

and

ŵIPW−0
is = (1 − �̂�i)−1

[ n∑

j=1
(1 − �̂�j)−1(1 − Ij)

]−1

.

Provided the three basic assignment properties listed in Section 4.1 apply, 𝛿IPW
s is consistent for

the SATE 𝛿s.
The IPW estimator (3) does not explicitly control for differences in the covariate distri-

butions between the treatment and control subsamples, assuming instead that the overlap
of the covariate distributions across these subsamples is sufficient to ensure that these dif-
ferences cancel out. Unfortunately, in many situations these differences account for a signif-
icant portion of the variation in the treatment and control response values. A simple way
of accounting for these sources of variation is to assume additive treatment effects, that is
yi1 = 𝜆i + y0i, with 𝜆i defining the treatment effect for sample unit i. Substituting in 𝛿

IPW
s , we

see that

𝛿
IPW
s = 𝛿

IPW−null
s +

n∑

i=1
ŵIPW−1

is Ii𝜆i,

where 𝛿
IPW−null
s is the value of 𝛿

IPW
s when yi is replaced by yi − Ii𝜆i. Since there are no treat-

ment effects distinguishing the ‘treated’ units from the ‘control’ units in 𝛿
IPW−null
s , we can see

that this term is purely an estimate of the differential impact of the population covariates on the
realized value of 𝛿IPW

s , something that is asymptotically zero under randomized assignment but
will usually be non-zero in observational data. It follows that the difference 𝛿

IPW
s − 𝛿

IPW−null
s is

then a covariate-adjusted estimator of (1). However, calculation of this difference requires esti-
mation of 𝜆i, say by �̂�i. Let 𝛿IPW−null

s denote the value of (3) when yi is replaced by yi − Ii�̂�i. Our
covariate-adjusted estimator of (1) is then

𝛿
IPW−L
s = 𝛿

IPW
s − 𝛿

IPW−null
s =

n∑

i=1
ŵIPW−1

is Ii�̂�i. (4)

We illustrate use of (4) in the application discussed in the next section, while in Section 4.3 we
show that (4) is a double robust estimator of the SATE under unconfoundedness.

In Section 2 we discussed how one could achieve double robustness, or DR, in a
survey-sampling context by adding a design-consistent bias correction to a model-based estima-
tor. This model-assisted approach is based on the CIA, which in the context of estimation of the
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1596 CHAMBERS et al.

SATE corresponds to unconfoundedness. We now apply this idea to estimation of the SATE. To
start, we note that the empirical version of the SATE 𝛿s is

ds = n−1
n∑

i=1
y1i − n−1

n∑

i=1
y0i, (5)

so if we view the whole sample as the population of interest and use the treated subsample to
construct a model-assisted estimate of the first term on the right in (5) and the control subsample
to construct a similarly model-assisted estimate of the second term on the right in (5) then the
difference of these two model-assisted estimates is a model-assisted estimate of ds and hence of
the SATE 𝛿s:

𝛿
IPW−MA
s =

(

n−1
n∑

i=1
m̂1i +

n∑

i=1

𝜋
−1
i Ii

∑n
j=1𝜋

−1
j Ij

(yi − m̂1i)

)

−

(

n−1
n∑

i=1
m̂0i +

n∑

i=1

(1 − 𝜋i)−1(1 − Ii)
∑n

j=1(1 − 𝜋j)−1(1 − Ij)
(yi − m̂0i)

)

.

Here m̂1i = m1(xi; 𝜷1) and m̂0i = m1(xi; 𝜷0) are our model-based estimates of E(y1i|xi) and E(y0i|xi)
respectively, based on separate fits to the treated and control sample units. The corresponding
propensity score-based version of this model-assisted estimator is therefore

𝛿
IPW−MA
s =

(

n−1
n∑

i=1
m̂1i − n−1

n∑

i=1
m̂0i

)

+
n∑

i=1
ŵIPW−1

is Ii(yi − m̂1i) −
n∑

i=1
ŵIPW−0

is (1 − Ii)(yi − m̂0i). (6)

Assuming unconfoundedness, (6) is the difference of two DR estimators. Consequently 𝛿
IPW−MA
s

is DR for the SATE 𝛿s under the same assumption.
Scharfstein et al. (1999) discuss how to construct a DR estimator for causal inference

under unconfoundedness (see also Bang & Robins, 2005). Furthermore, the idea for con-
structing a model-assisted DR correction to the IPW estimator (3) is not new. Robins et al.
(1994) introduced a similar estimator to (6) that adjusts for differences in covariate distribu-
tions between the treated and control samples. This is the augmented IPW or AIPW esti-
mator, see Rotnitzky et al. (1998). Following Lunceford and Davidian (2004) the AIPW is
calculated as

𝛿
AIPW
s =

n∑

i=1
ŵIPW−1

is {Iiyi − (Ii − �̂�i)m̂1i} −
n∑

i=1
ŵIPW−0

is {(1 − Ii)yi − (Ii − �̂�i)m̂0i}, (7)

which after simplification can be written

𝛿
AIPW
s = 𝛿

IPW−MA
s +

n∑

i=1

(
1

∑n
j=1�̂�

−1
j Ij

− 1
n

)

m̂1i −
n∑

i=1

(
1

∑n
j=1(1 − �̂�j)−1(1 − Ij)

− 1
n

)

m̂0i.

That is, the AIPW is (6) plus two correction terms, each of which is asymptotically zero provided
the propensity model is correctly specified. In practice the correction terms will be small since
∑n

j=1�̂�
−1
j Ij ≈

∑n
j=1(1 − �̂�j)−1(1 − Ij) ≈ n, so the AIPW will also be DR.
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Beyond the fact that they are calculated using data from the treated and control subsamples
separately, the estimates m̂1i and m̂0i are not constrained in any way above. However, suppose that
we proceed as we did in the development leading up to (4), assume an additive treatment effect
and so write y1i = 𝜆i + y0i. Then

𝛿s = n−1
n∑

i=1
𝜆i.

For identifiability, we also assume that we have access to a covariate zi measuring the amount of
exposure to the treatment and write 𝜆i = f (zi;𝜽). The model

yi = f (zi;𝜽) +m(xi; 𝜷) + ei (8)

can be fitted to the data from the entire sample to obtain estimates �̂� and �̂�. Setting �̂�i = f (zi; �̂�)
then leads to a model-based estimator of 𝛿s:

𝛿
MB
s =

∑n
i=1�̂�iIi
∑n

i=1Ii
. (9)

It turns out that the model-assisted estimator (6) and this model-based estimator (9) are iden-
tical when we put m̂0i = yi − �̂�iIi and m̂1i = �̂�i + m̂0i = yi + (1 − Ii)�̂�i, that is, we include all
non-treatment related sources of variability in our estimate of m0i. To see this, note that (6) in this
case is

𝛿
IPW−MA
s = 𝛿

MB
s +

n∑

i=1
ŵIPW−1

is Ii(yi − m̂1i) −
n∑

i=1
ŵIPW−0

is (1 − Ii)(yi − m̂0i)

= 𝛿
MB
s +

n∑

i=1
ŵIPW−1

is Ii(yi − yi − (1 − Ii)�̂�i) −
n∑

i=1
ŵIPW−0

is (1 − Ii)(yi − yi + �̂�iIi)

= 𝛿
MB
s .

It only remains to note that the model-assisted estimator (4) and the model-based estimator (9)
will usually be close. This is not surprising, since the development leading to (4) makes the same
additive treatment effects assumption about the relationship between y1i and y0i that underpins
(9). As a consequence we expect (4) to be a more efficient model-assisted estimator of 𝛿s than (6)
unless the latter is also based on an additive treatment effects model.

4.3 �̂�
IPW−L
s is DR under unconfounded treatment assignment

and additive treatment effects

We assume unconfounded treatment assignment and the general additive treatment effect spec-
ification:

yi = Ii𝜆i +m(xi; 𝜷) + ei = Ii𝜆i + y0i,

so 𝛿s = n−1∑n
i=1𝜆i. We shall also assume that we have unbiased estimators �̂� of 𝜷 and �̂�i of 𝜆i. Put

ŷ0i = ŷ1i − Ii�̂�i = m(xi; �̂�) + êi, where êi = yi − Ii�̂�i −m(xi; �̂�). Substituting in (4) leads to
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𝛿
IPW−L
s =

n∑

i=1
ŵIPW−1

is Iiyi −
n∑

i=1
ŵIPW−0

is (1 − Ii)yi −
n∑

i=1
ŵIPW−1

is ŷ0i +
n∑

i=1
ŵIPW−0

is (1 − Ii)ŷ0i

=
n∑

i=1

(
ŵIPW−1

is Ii − ŵIPW−0
is (1 − Ii)

)
(yi − ŷ0i)

=
n∑

i=1

(
ŵIPW−1

is Ii − ŵIPW−0
is (1 − Ii)

)
(Ii𝜆i +m(xi; 𝜷) + ei − ŷ0i)

=
n∑

i=1
ŵIPW−1

is Ii𝜆i +
n∑

i=1

(
ŵIPW−1

is Ii − ŵIPW−0
is (1 − Ii)

)
(m(xi; 𝜷) + ei − ŷ0i).

That is, (4) can be written

𝛿
IPW−L
s =

n∑

i=1
ŵIPW−1

is Ii𝜆i +
n∑

i=1
ŵIPW−1

is R0i −
n∑

i=1
ŵIPW−0

is (1 − Ii)R0i, (10)

where R0i = y0i − ŷ0i is the population residual for y0i. The sample mean of these residuals will
be a consistent estimator of zero if the model for the control or untreated outcome is valid, in
which case the second and third terms on the right-hand side of (10) will also each be consistent
estimators of zero provided unconfoundedness applies. Similarly, the first term is consistent for
the sample mean 𝛿s of the 𝜆i in this case. That is, under unconfoundedness, (10) is consistent
for 𝛿s provided the model for yi is correctly specified, irrespective of the validity of the model
for treatment assignment. Alternatively, if the model for the treatment assignment is correctly
specified then unconfoundedness again implies that the asymptotic distributions of the R0i will
be the same in both the treated and untreated parts of the sample, in which case the second and
third summations on the right-hand side of (10) correspond to the difference of two consistent
estimators of the same expected value, and so this difference converges to zero irrespective of
whether the control model is valid or not. Furthermore, the first term on the right-hand side of
(5) then converges to the IPW estimator of 𝛿s. This estimator is design-unbiased for 𝛿s under a
correctly specified treatment assignment model. That is, under unconfoundedness and additive
treatment effects, (5) is consistent for 𝛿s when the model for treatment assignment is correctly
specified, irrespective of the validity of the control model. We conclude that (10) is a DR estimator
of 𝛿s provided the assumptions of unconfounded treatment assignment and additive treatment
effects hold true.

5 AN APPLICATION OF MODEL-BASED CAUSAL
INFERENCE: RAINFALL ENHANCEMENT IN OMAN

5.1 Background

A randomized trial of a ground-based rainfall enhancement technology was carried out in the
Hajar Mountains of Oman 2013–2018. The hypothetical mechanism for rainfall enhancement
using this technology is via downwind transport of natural aerosols that have become ionized fol-
lowing exposure to an operating ionizer, resulting in larger raindrop formation downwind and
hence heavier rain than would be the case if the ionizer was not operating. During the trial,
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ionizers were operated according to a randomized daily operating schedule, subject to equal num-
bers of deployed ionizers being switched on and switched off each day. However, it is impossible to
randomize the exposure of any particular downwind rain gauge to an operating ionizer since this
depends on whether the gauge is downwind of the operating ionizer, and the downwind direction
changes daily according to prevailing meteorological conditions.

Our aim here is to test the causal hypothesis that exposure to an operating ionizer led to
enhanced rainfall in rain gauges that were downwind of installed ionizers in the Hajar Mountains
over 2013–2018. Our observation units are gauge-days, with a positive rainfall value at a gauge on
a day classified as a target value when that gauge is downwind of at least one operating ionizer
on the day. Otherwise, it is classified as a control value. From a causal perspective, target values
are ‘treated’ values, while control values are ‘untreated’. We consider two types of rainfall mea-
surements, actual rainfall (Rain), defined as positive values of rainfall, and the logarithm of actual
rainfall (LogRain), with the latter of more interest given the huge skewness in the distribution of
actual gauge-day rainfall measurements in the Hajar Mountains 2013–2018.

Let Y denote either Rain or LogRain for an actual rainfall gauge-day, and let I denote the
zero-one indicator for whether an actual rainfall gauge-day value is a control value (I = 0) or a
target value (I = 1). Put 𝜋(x) = Pr(I = 1|X = x) = E(I|X = x), where X denotes a vector of covari-
ate measurements such that it is reasonable to assume that Y and I are conditionally independent
given X. Over 2013–2018 there were 488 days when positive rainfall was measured downwind of
the installed ionizers. Over these days there were n = 4168 gauge-day values of positive rainfall
that were recorded. We seek to test the causal hypothesis that the expected gauge-day value for
positive rainfall that was recorded downwind of the ionizers on these 488 days was significantly
larger when downwind of at least one operating ionizer. In particular, we focus on estimation of
the SATE (1) in this situation, with the average there taken over the 4168 gauge-days when pos-
itive downwind rainfall was observed and with the conditional expectations in (1) defined with
respect to the covariate X.

The full duration of the Hajar Mountains trial over 2013–2018 was 849 days. However, wind
direction data were missing for 109 of these days, all between 2016 and 2018. This was essen-
tially due to problems with the operation of the radiosonde at Muscat International Airport. Since
these wind direction data are necessary to determine whether a gauge-day rainfall measurement
is downwind or not (and hence can be allocated as either a target or a control value), this meant
that the final analysis of the trial data is restricted to the 740 days for which wind direction data
were available. Ionizer operations over the entire trial were carried out according to a balanced
randomized operating schedule, so a more detailed analysis of the trial reported in Chambers
et al. (2022) treats the missing days as missing completely at random, since there seems no obvi-
ous reason to link issues with radiosonde operation at Muscat International Airport with ionizer
operation in the Hajar Mountains. Here though we proceed more cautiously, noting that it can
also be argued that despite the randomized operating schedule for the ionizer mechanisms, this
did not necessarily translate into a randomized target versus control allocation for downwind rain
events. In particular, the missing days for operation of the Muscat radiosonde were all in the last
3 years of the trial: 2016 (18.3% days missing), 2017 (29.4% days missing) and 2018 (43.1% days
missing). Furthermore, as can be seen in Figure 1, these years corresponded to both a drying out
of the trial region and, in 2018, a switch in the meteorological conditions (and hence rainfall over
the mountains) to which target and control gauge-days were exposed. This raised the prospect
of a lack of independence between the gauge-day rainfall measurements and their target∕control
status. Consequently, it becomes important that one also takes account of the possible informa-
tiveness of the sample of days when wind directions were available. This is the issue that we
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1600 CHAMBERS et al.

F I G U R E 1 Annual average values of key meteorological indicators for target gauge-days (filled circles) and
control gauge-days (open circles), Hajar Mountains trial 2013–2018. The variables are defined in Section 5.2.

address in this section, referring the reader to Chambers et al. (2022) for a more comprehensive
model-based analysis of the trial data that ignores this potential source of bias.

5.2 Estimation of an average target effect using propensity score
weighting

Let i index gauge and j index day. We define the average target effect 𝛿s as the difference between
the average response values for the 2176 target gauge-days and the 1992 control gauge-days over
the trial when actual rainfall was recorded downwind of the installed ionizers. In order to calcu-
late the IPW estimator of this effect we first need to model the propensity score associated with
gauge-day ij. This is the estimate of the expected value 𝜋(xij) for the binary indicator Iij defined by
the target status (target∕control) of rainfall on gauge-day ij conditional on a covariate xij reflecting
observed meteorological conditions on day j. We use a logistic specification for 𝜋(xij). Standard
model searches lead to the specification, with associated estimated parameter values, set out in
Table 1. All terms are highly significant and are given by:

1. An index for storm development potential (Total.totals);
2. First principal component of average dry air temperature (PC1 Dry Temperature);
3. First principal component of average relative humidity (PC1 Relative Humidity);
4. First principal component of average ground level air pressure (PC1 Ground Air Pressure).

Note that principal components were based on daily 10:00–20:00 average values computed
across the network of automatic weather stations located in the Hajar Mountains.
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CHAMBERS et al. 1601

T A B L E 1 Parameter estimates for fitted propensity score model

Term Estimate Std error t ratio

Intercept 0.753 0.225 3.342

Total.totals −0.016 0.005 −3.240

PC1 Dry Temperature 0.172 0.040 4.282

PC1 Relative Humidity 0.110 0.025 4.454

PC1 Ground Air Pressure 0.115 0.024 4.766

Propensity score weighted average actual rainfall based on the 2176 target gauge-day values
is 4.853 mm, with a corresponding weighted average value for LogRain of 0.554. In compari-
son, propensity score weighted average actual rainfall based the 1992 control gauge-day values
is 4.640 mm, with a corresponding weighted average value for LogRain of 0.480. However, there
was a large outlier in the control values of actual gauge-day rainfall. When this value is removed,
weighted average actual rainfall for control gauge-days reduces to 4.560 mm. These values imply
IPW estimates of 0.293 mm (with outlier removed) for Y = Rain and 0.074 (using all values) for
Y = LogRain.

The sample design for the Hajar Mountains trial was such that on any given day a random
half of the installed ionizers were operated, with the remaining half not operated, with the aim
of ensuring treatment-control balance in exposure to daily meteorological conditions. Assum-
ing these conditions were uniformly distributed across the trial area, this should have led to the
number of target gauge-day observations downwind of the operating ionizers each day being
approximately the same as the number of control gauge-day observations that were downwind of
the non-operating ionizers. However, spatial variability in rainfall meant that numbers of targets
and controls varied significantly from day to day. For the 488 days when rainfall was recorded
downwind, 165 days either have no target data, or no control data. And, of the remaining 323
days, only 115 have at least 5 target values and at least 5 control values. These “Good Data” days
correspond to solid circles in Figure 2. Furthermore, daily sums of propensity scores for the 323
days when there are data for both targets and controls track daily sample sizes but are very vari-
able. See Figure 3. Finally, we note that refitting the propensity score model just using the data
from the ‘Good Data’ days leads to a rather different model specification compared to that shown
in Table 1, which uses the data from all 488 days.

The propensity scores defined by the model set out in Table 1 are constant within a day (since
they are a function of daily meteorological measurements), so the IPW estimate is the weighted
sum of daily differences equal to average target rainfall minus average control rainfall on the day.
Averages of these differences based on data from 323 days with both target and control gauge-day
data are positive but not significantly greater than zero for both Rain and LogRain. When based
on data from the 115 ‘Good Data’ days, they are larger and significantly different from zero. This
appears to be a consequence of their lower variability on ‘Good Data’ days, when rainfall is more
widespread. This implies correlation between these daily differences and meteorological condi-
tions. However, there is no evidence of correlation with the meteorological variables defining the
propensity scores, indicating other factors beyond target∕control propensity may be present. It is
possible that one or more of these factors may be correlated with the response variables (Rain,
LogRain), suggesting that a more complex analysis of the rainfall data collected in the Hajar
Mountains trial is necessary.
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1602 CHAMBERS et al.

F I G U R E 2 Scatterplot showing daily numbers of target and control gauge-day observations with actual
rainfall, Hajar Mountains trial 2013–2018. Solid circles are ‘Good Data’ days.

F I G U R E 3 Daily numbers of downwind gauge-days with actual rainfall (vertical axis) vs. daily sums of
propensity scores for target gauge-days (horizontal axis, left) and control gauge-days (horizontal axis, right). Plots
restricted to days when both target and control rainfall observed. Line is the identity fit. Solid circles are ‘Good
Data’ days. [Colour figure can be viewed at wileyonlinelibrary.com]

5.3 Using a random effects model for LogRain to control
for unobserved sources of variation in rainfall

An alternative model-based approach to estimation of ionizer impact on rainfall enhancement
was used in the analysis of the Hajar Mountains trial data described in Chambers et al. (2022).
This approach explicitly estimated the counterfactuals corresponding to control values for target
gauge-day observations. A key component of this analysis involved fitting a linear model with ran-
dom day effects to the downwind LogRain values obtained in the trial. This model is specified in
Table 2. It indirectly depends on the same meteorological variables shown in Table 1 via another
linear model with random day effects fitted to LogRain values from gauges that were upwind of
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CHAMBERS et al. 1603

T A B L E 2 Fitted parameter values with estimated standard errors and associated t ratios for the downwind
LogRain model. Based on 4168 gauge-day observations

Term Estimate Std error t ratio

Intercept 0.077 0.121 0.633

y2013 0.406 0.113 3.581

y2014 0.336 0.106 3.153

y2016 0.259 0.115 2.241

y2017 0.092 0.119 0.774

y2018 0.041 0.146 0.277

Gauge Elevation 1 −0.200 0.164 −1.217

Gauge Elevation 2 −0.096 0.071 −1.357

Upwind LogRain 0.945 0.059 15.983

Target H01 0.481 0.247 1.946

Target H02 0.840 0.293 2.867

Target H03 0.241 0.092 2.613

Target H04 −0.114 0.089 −1.283

Target H05 0.499 0.132 3.788

Target H06 −0.136 0.149 −0.916

Target H07 0.336 0.188 1.785

Target H08 0.131 0.129 1.023

Target H09 0.711 0.307 2.319

Target H10 0.196 0.170 1.149

Gauge Elevation 1*Target H01 −0.488 0.363 −1.342

Gauge Elevation 1*Target H02 −1.272 0.469 −2.714

Gauge Elevation 2*Target H01 −0.163 0.159 −1.026

Gauge Elevation 2*Target H02 −0.458 0.172 −2.667

Notes: Entries for variables with absolute values of t ratios greater than 2 are in bold. Estimated target effects are greyed out.

the ionizer sites each day. These upwind gauge-day readings should be unaffected by ionizer oper-
ation but should also be strong predictors of ‘natural’ rainfall downwind of the ionizers. Fitted
values from this upwind model (denoted Upwind LogRain in Table 2) are linear functions of the
meteorological variables in Table 1 and are predictors of expected downwind control values for
LogRain. They are combined in the downwind model for LogRain with two elevation measures
Gauge Elevation 1 (equal to gauge elevation when this value is 1 km or less and is zero other-
wise) and Gauge Elevation 2 (equal to gauge elevation when this value is greater than 1 km and
is zero otherwise) together with indicator variables for the year the data were obtained. These
variables are denoted y2013, y2014, y2016, y2017 and y2018 below with the year 2015 serving as
the reference year. Over the course of the trial, there were 10 ionizers, denoted H01–H10, that
were operated, with H01 and H02 operated in 2013, H01–H04 operated in 2014, H01–H06 oper-
ated in 2015, H01–H08 operated in 2016 and H01–H10 operated in 2017 and 2018. The downwind
model therefore included indicator variables (denoted Target H01–Target H10 below) for whether
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1604 CHAMBERS et al.

T A B L E 3 REML variance component estimates for the downwind model for LogRain

Source Var comp Pct of total

Day 0.225 10.836

Residual 1.853 89.164

F I G U R E 4 Distribution of predicted day effects generated by the fitted downwind model for gauge-day
values of LogRain. [Colour figure can be viewed at wileyonlinelibrary.com]

the gauge-day observation was a target value for each of these 10 ionizers H01–H10 on the day.
The REML estimates of the variance components for the downwind LogRain model are shown in
Table 3, with the distribution of predicted Day effects generated by this model shown in Figure 4.
The usual assumption of Gaussian random effects seems reasonable. Six of the 14 target-related
effects in the fitted model are clearly significant, in the sense of having t ratios greater than 2. One
more (Target H01, t ratio = 1.946) is very close to being classified as significant.

At the end of Section 5.2 we expressed concern that the propensity scores defined by Table 1
are not sufficient to control for the impact of unobserved variables on the difference 𝛿s between
the target average value of LogRain and the control average value of this variable. In particular,
for the reasons outlined at the end of Section 5.1, it is possible that the achieved target∕control
allocation in the available data (i.e. for those days when radiosonde operation made it possible to
identify a wind direction) may in fact be informative. As a consequence, we now investigate how
combining the model for LogRain defined by Tables 2 and 3 with the propensity scores defined
by the model set out in Table 1, and using the alternative DR estimators (6), (7) and (4), which we
now denote by IPW-MA, AIPW and IPW-L respectively, as well as the model-based estimator (9),
now denoted MB, allows us to at least achieve some measure of protection against this scenario.

Let yij denote the value of LogRain for gauge i and day j. We start by writing the model (7) for
LogRain set out in Tables 2 and 3 in mixed linear model form:

yij = zT
ij𝜽 + xT

ij𝜷 + ui + eij
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T A B L E 4 Fitted parameter values with estimated standard errors and associate p-values for separate
LogRain models for target and control cases

Term Estimate Std error t ratio

Target model (based on 2176 gauge-day observations over 407 days)

Intercept 0.439 0.147 2.992

y2013 0.389 0.145 2.681

y2014 0.454 0.138 3.286

y2016 0.347 0.148 2.351

y2017 0.222 0.147 1.509

y2018 0.085 0.185 0.459

Gauge Elevation 1 −0.694 0.198 −3.503

Gauge Elevation 2 −0.296 0.083 −3.590

Upwind LogRain 0.942 0.076 12.413

Control model (based on 1992 gauge-day observations over 404 days)

Intercept 0.025 0.147 0.172

y2013 0.491 0.146 3.372

y2014 0.248 0.135 1.835

y2016 0.277 0.147 1.884

y2017 0.096 0.153 0.627

y2018 0.097 0.191 0.508

Gauge Elevation 1 −0.066 0.204 −0.325

Gauge Elevation 2 −0.062 0.088 −0.702

Upwind LogRain 0.903 0.079 11.459

Notes: Entries for variables with absolute values of t ratios greater than 2 are in bold.

where i indexes gauge and j indexes day, zij is the vector of target indicator variables Tar-
get H01-Target H10 plus the four interaction terms Gauge Elevation a * Target H0b; a, b =
1, 2; xij is the vector of other fixed effects in the model for LogRain, including the inter-
cept, ui is a random day effect and eij is the gauge-day residual. Note that zij is a zero vector
when the gauge-day observation is a control value. Put �̂�ij = zT

ij �̂�. Then IPW-L can be calcu-
lated using (4), that is, the propensity score weighted average of the sum of the greyed out
‘target effects’ defined in Table 2, with MB defined analogously via (9). Note that these esti-
mates relate to Y = LogRain. They can be extended to Y = Rain by exponentiating yij, ŷ0ij
and �̂�ij.

In order to compute IPW-MA and AIPW we first need to fit separate mixed linear
models to the target and control values of Y = LogRain. Estimates for the fixed effects
in these models are shown in Table 4, while variance component estimates are shown
in Table 5.

Let �̂�1 and �̂�0 denote the parameter estimates shown in Table 4, where a subscript of ‘1’ indi-
cates target and ‘0’ indicates control. Then, after setting m̂1ij = xT

ij �̂�1 and m̂0ij = xT
ij �̂�0, we calculate

IPW-MA and AIPW using (6) and (7) respectively. We again note that these estimates relate to
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T A B L E 5 REML variance component estimates for the target and control models for LogRain

Source Var comp Pct of total

Target model

Day 0.297 13.983

Residual 1.827 86.017

Control model

Day 0.281 13.641
Residual 1.779 86.359

Y = LogRain, with the corresponding estimates for Y = Rain obtained using exponentiated ver-
sions of m̂1ij and m̂0ij. We also note that the estimates for Rain could be improved by correcting
for back transformation bias, which we ignore here.

We use a two level semi-parametric block bootstrap (Chambers & Chandra, 2013) to calcu-
late standard errors and associated p-values for these estimates, using a total of 10,000 bootstrap
samples. Table 6 shows the estimates for 𝛿s, as well as their bootstrap standard errors and
key points in their bootstrap distributions, for both Rain and LogRain based on the downwind
rainfall recorded on the 488 days of the trial when rain was recorded as being identifiably down-
wind of the ionizer mechanisms. Figure 5 shows the bootstrap distributions for IPW, IPW-MA
and IPW-L. The bootstrap distribution for AIPW is virtually indistinguishable from that for
IPW-MA, and the bootstrap distribution for MB is also essentially indistinguishable from that for
IPW-L.

It is noteworthy that the model-assisted estimator IPW-MA that only corrects for vari-
ability in the expected value of the response (LogRain here) due to differences in target and
control exposure to meteorological and topographical conditions leads to estimates that are
very close to those obtained using IPW, an estimator that does not control for this variabil-
ity. In contrast, the model-assisted estimator IPW-L that corrects for all non-treatment related
sources of variability leads to substantially greater estimates of 𝛿s and noticeably less variabil-
ity. Furthermore, all five propensity score based estimators that we considered in our analysis
recorded bootstrap probabilities of less than 5% for zero or negative rainfall enhancement
effects from exposure to ionization operation, and in the case of IPW-L and MB, vanishingly
less.

Following Chambers et al. (2022), we also report a randomization analysis of the significance
of the effect of ionizer operation on positive rainfall as measured by the different estimators
of 𝛿s shown in Table 6. This was done by independently randomly permuting the operating
states of each ionizer each day (while maintaining the requirement that there were an equal
number of operating and non-operating ionizers each day). This was done 10,000 times. The
permutation p-value for an estimator was then calculated as the proportion of permuted val-
ues for that estimator that were greater than the observed estimate value. These p-values are
set out in Table 7 below, with the randomization distributions for the permuted values shown
in Figure 6. Again, we just show the distributions for IPW, IPW-MA and IPW-L. Note that on
both the natural (LogRain) and the raw (Rain) scales there is a very low probability that our
estimated values of IPW-L and MB could have occurred by chance. This probability is greater
for the more variable estimators IPW, IPW-MA and AIPW, but still only around 10% on the
natural scale.
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CHAMBERS et al. 1607

T A B L E 6 Estimated values of 𝛿s for Rain and for LogRain for all 488 days when downwind rain was recorded
in the Hajar Mountains trial, 2013–2018. Block bootstrap standard errors and one-sided bootstrap p-values
(bootstrap probability of no effect or negative effect) are shown as well as key points in the bootstrap distribution

IPW IPW-MA AIPW IPW-L MB
Rain

Estimate 0.213 0.179 0.178 0.576 0.591

Std Dev 0.376 0.372 0.372 0.176 0.178

Pr < 0 0.280 0.312 0.314 <0.001 <0.001

0.1% −1.043 −1.082 −1.084 0.070 0.081

0.5% −0.792 −0.824 −0.825 0.153 0.162

2.5% −0.506 −0.536 −0.537 0.254 0.270

50% 0.201 0.167 0.166 0.567 0.582

97.5% 0.992 0.946 0.944 0.949 0.970

99.5% 1.296 1.224 1.222 1.087 1.102

99.9% 1.610 1.562 1.560 1.190 1.214
LogRain

Estimate 0.074 0.073 0.073 0.124 0.126

Std Dev 0.043 0.042 0.042 0.031 0.031

Pr < 0 0.043 0.039 0.039 <0.001 <0.001

0.1% −0.060 −0.063 −0.064 0.025 0.027

0.5% −0.039 −0.039 −0.039 0.040 0.042

2.5% −0.010 −0.009 −0.010 0.062 0.064

50% 0.074 0.074 0.073 0.124 0.126

97.5% 0.158 0.154 0.153 0.184 0.187

99.5% 0.184 0.179 0.178 0.203 0.205

99.9% 0.206 0.201 0.201 0.217 0.219

F I G U R E 5 Two level semi-parametric block bootstrap distributions for IPW, IPW-MA and IPW-L
estimates for Rain (left plot) and for LogRain (right plot). Estimates for LogRain are multiplied by 100.
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1608 CHAMBERS et al.

T A B L E 7 Permutation p-values for estimators of 𝛿s for Rain and for LogRain for the 488 days when
downwind rain was recorded in the Hajar Mountains trial, 2013–2018

Y IPW IPW-MA AIPW IPW-L MB

Rain 0.254 0.296 0.299 0.015 0.012

LogRain 0.096 0.115 0.117 0.013 0.011

F I G U R E 6 Permutation distributions for IPW, IPW-MA and IPW-L for Rain (left plot) and for LogRain
(right plot) generated by randomly permuting ionizer operating states over 2013–2018. Actual values for these
estimators are shown as vertical lines in the plots. Values for LogRain are multiplied by 100.

6 SUMMARY AND SOME CONCLUDING REMARKS

As we stated at the beginning of this paper, weighting is at the core of sample survey infer-
ence. However, that does not mean that it is always required when analysing sample survey
data. In fact, in situations where the survey variable of interest can be modelled using covariates
that include the factors that underpin the sample design, or when the sample design is com-
pletely random (a very rare event!), then the survey weights play a much-reduced role. Thus, if a
strict design-based approach to inference is taken, and so the survey weights are essentially the
inverses of the sample inclusion probabilities, then it is easy to see that these weights are ancil-
lary, and their use leads to potentially inefficient inference. Much more efficient model-based
or model-assisted methods of inference are possible, with the primary distinction between
these two approaches being that the first takes the model seriously and consequently leads to
more efficient inferences than the second—provided the assumption that the sample inclusion
probabilities are ancillary is valid. On the other hand, the second approach is more cautious,
allowing for model misspecification by including a design-based bias correction. This insur-
ance comes at a cost, however, with typically reduced efficiency if in fact the model is correctly
specified.

This paper has been written for a special issue of Series A of the Journal of the Royal Sta-
tistical Society commemorating the research achievements of Fred Smith and Chris Skinner in
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CHAMBERS et al. 1609

survey sampling. Both men were giants in the field, and it was Chris Skinner who produced
groundbreaking research on survey weighting. Again, as noted earlier, Chris was very definitely
a proponent of the model-assisted approach, in that he viewed a model for a survey variable
as essentially a working hypothesis and so inevitably a misspecification of reality. However,
he also recognized that the insurance premium in terms of loss of efficiency when adopting a
model-assisted approach could be high, and so looked for ways to minimize it. This led to two
papers that described methods for stabilizing the variability in inverse probability-based weights
(Kim & Skinner, 2013; Skinner & Mason, 2012). These are discussed in Section 3, with the lat-
ter contribution focusing on the case of informative sampling, that is, where there is incomplete
knowledge of the factors underpinning the sample design, or where the survey response itself is
a design factor.

In both papers referred to in the previous paragraph, there is an implicit assumption that the
sample inclusion probabilities are available. This may be reasonable when the same organization
carrying out inference is also responsible for the survey design. However, it is usually not reason-
able for secondary analysis, where the analyst and the sample designer may have no contact at all.
In this situation heroic assumptions are often made about the non-informativeness of the sample
design.

One important area of application where this assumption is usually avoided is in causal infer-
ence, where explicit models are built for sample inclusion probabilities. A key property of the
resulting inference is then its double robustness, where the inference remains valid if either the
sample inclusion (or allocation) model is correctly specified or if the assumed model for the sur-
vey variable is correctly specified. In fact, it turns out that this is precisely the insurance provided
by adopting a model-assisted approach. In Section 4 we therefore focused on the most straight-
forward causal inference scenario, where the interest is in estimating the difference 𝛿 between
the expected values of a ‘treated’ response and an ‘untreated’ response. Here we discussed the
standard inverse probability weighted (IPW) estimator 𝛿

IPW
s for the sample average 𝛿s of these

differences, as well as two alternative model-assisted estimators, (4) and (6), that modify 𝛿
IPW
s

in order to control for differences in covariate distributions between treated and untreated sam-
ple units. Being the difference of two double robust model-assisted estimators of sample means,
the estimator (6) is double robust. This not obvious for (4), so in Section 4.3 we show that this
estimator is also double robust.

In Section 5 we provide a realistic application of causal inference based on data obtained
in a multi-year randomized experiment investigating the use of ionization devices for rainfall
enhancement in the Hajar Mountains of Oman. A model-based analysis of these data that ignored
missing wind direction data (Chambers et al., 2022) indicated that these devices led to an increase
of around 15%–18% in rainfall over the trial. To account for this missingness, the estimators (4)
and (6) were applied to these data using the same rainfall model specification as in this reference,
together with a propensity score model for whether a rainfall gauge was impacted by operation of
one or more of these ionization devices on a day. This analysis indicated that over those days dur-
ing this period when rainfall was recorded at rain gauges known to be downwind of the devices,
there was a highly significant average increase of 0.576 mm per gauge per day of rainfall for target
gauge-days when estimated using (4) and a significant increase of 0.179 mm per gauge per day
when estimated using (6), with bootstrap variability and permutation test diagnostics indicating
the former estimate is preferable. In attribution terms, that is, as a percentage of expected control
rainfall under the same conditions, this corresponds to a 13.9% increase in rainfall when estimated
using (4) and 10.4% increase when estimated using (6). These values are somewhat lower but
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1610 CHAMBERS et al.

still consistent with the estimated attribution values obtained by the pure model-based analysis
reported in Chambers et al. (2022). Since both the model-based and double robust methods show
enhancement at over 10% for this trial, with both methodologies indicating significant results, it
seems reasonable to conclude that the ionization-based rain enhancement technology used in the
Hajar Mountain trial did lead to increases in rainfall. This has quite significant implications for
the use of this technology in other arid areas like those that exist in Oman.

In Section 4.1 we briefly introduced the problem of population causal inference, and in par-
ticular estimation of the PATE (2). In this case we are interested in external, rather than internal,
validity for our causal inference, that is, we are interested in its ‘generalizability’. Staying with
the idea of a single treatment, we can consider the situation where every unit in a population has
either been exposed (treatment) or not (control), and we have observational data corresponding
to a sample from the population. In this sample we observe treatment∕control status as well as
values of the response of interest, and our target of inference is the PATE defined by (2). Estima-
tion of this quantity depends on what information we have about the distribution of treated and
control units in the non-sampled part of the population. The simplest case is where we do not
have this information, but we do have sample weights that are functions of the auxiliary popu-
lation information XU . These will reflect variability in sample inclusion probabilities as well as
differences between the sampled and non-sampled population units with respect to this auxiliary
population information. Let vis(XU) denote the sample weight for unit i in this case. We can then
replace w̃IPW−1

is and w̃IPW−0
is in the IPW development at the start of Section 4.2 by

w̃IPW−1
is = vis(XU)(𝜋(xi))−1

[ n∑

j=1
vjs(XU )(𝜋(xj))−1Ij

]−1

and

w̃IPW−0
is = vis(XU)(1 − 𝜋(xi))−1

[ n∑

j=1
vjs(XU)(1 − 𝜋(xj))−1(1 − Ij)

]−1

respectively. It is clear that the IPW estimator (3) defined in terms of these ‘externally valid’
weights will be a design-consistent estimator of the PATE. Extension to corresponding externally
valid versions of IPW-MA and IPW-L is straightforward.

The above scenario represents just one example of a situation where considerations of external
validity are important. For example, Stuart et al. (2011) describes a propensity-weighted approach
to an externally valid analysis of a randomized trial of a treatment effect. Here, under essen-
tially the same assumptions as outlined in Section 4.1, a propensity modelling exercise is used
to estimate trial inclusion probabilities relative to a population of interest, enabling the ‘popu-
lation representativeness’ of an internally valid IPW-based analysis of the treatment effect to be
assessed. Furthermore, these authors then suggest estimation of the PATE via the same simple
weighted extension of the IPW estimator (3) discussed above, with the sample weight vis used
there replaced by the inverse of the estimated trial inclusion probability. More recently, Ackerman
et al. (2021) consider estimation of the PATE under a scenario where the concept of ‘portabil-
ity’ is crucial. This is where trial inclusion probabilities are not known (or cannot be estimated
with adequate precision) but where there is access to a separate random sample with sample
inclusion probabilities that are functions of known covariates available for both the trial partic-
ipants as well as the survey participants. By concatenating the trial and sample data, the odds
ratio for a randomly selected unit from this concatenated data set being a sample unit versus
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being a trial unit can be estimated as a function of these covariates. Furthermore, provided pop-
ulation values of auxiliary variables are available, allowing the sample to be compared with the
underlying population, the probability of being sampled from the population of interest can be
estimated as a function of these auxiliary variables. The value of the estimated odds ratio for a
trial unit is then multiplied by the inverse of its estimated probability of being sampled to create
a ‘population representative’ weight for the unit that can be used in the same way as the sam-
ple weight is used in the preceding paragraph to extend the IPW for the SATE to an IPW for the
PATE. Again, extension of these ideas to ‘transportable’ versions of IPW-MA and IPW-L seems
straightforward.

Finally, we comment briefly on variance estimation issues for the estimators developed in
Section 4 and on making causal inferences about a target population based on sample data. As far
as variance estimation is concerned, analytic approximations can clearly be developed. However,
the bootstrap method that we use in Section 5 seems a good general-purpose tool for this purpose,
albeit one that is computationally intensive.
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