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Abstract

Motivation: As the time and cost of sequencing decrease, the number of available genomes and

transcriptomes rapidly increases. Yet the quality of the assemblies and the gene annotations varies

considerably and often remains poor, affecting downstream analyses. This is particularly true

when fragments of the same gene are annotated as distinct genes, which may cause them to be

mistaken as paralogs.

Results: In this study, we introduce two novel phylogenetic tests to infer non-overlapping or partial-

ly overlapping genes that are in fact parts of the same gene. One approach collapses branches with

low bootstrap support and the other computes a likelihood ratio test. We extensively validated

these methods by (i) introducing and recovering fragmentation on the bread wheat, Triticum aesti-

vum cv. Chinese Spring, chromosome 3B; (ii) by applying the methods to the low-quality 3B as-

sembly and validating predictions against the high-quality 3B assembly; and (iii) by comparing the

performance of the proposed methods to the performance of existing methods, namely Ensembl

Compara and ESPRIT. Application of this combination to a draft shotgun assembly of the entire

bread wheat genome revealed 1221 pairs of genes that are highly likely to be fragments of the

same gene. Our approach demonstrates the power of fine-grained evolutionary inferences across

multiple species to improving genome assemblies and annotations.

Availability and implementation: An open source software tool is available at https://github.com/

DessimozLab/esprit2.

Contact: c.dessimoz@ucl.ac.uk

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

Thanks to rapid developments in sequencing technology (reviewed

in Goodwin et al., 2016), individual laboratories now routinely se-

quence and assemble entire genomes and transcriptomes. The most

well-established short-read sequencing protocols are cost effective

and widely applied. However, without reads that are long enough to

span repetitive regions, the assembly step remains a challenge with

negative consequences on downstream analyses (Jiao and

Schneeberger, 2017; Lee and Tang 2012).
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The challenge of genome assembly is particularly acute in plants,

which tend to have large and heavily redundant genomes (Claros

et al., 2012; Jiao and Schneeberger, 2017). Data from such genomes

frequently result in fragmentary assemblies with overestimated gene

counts (Denton et al., 2014) and limited utility for downstream pur-

poses such as creation of physical maps used in marker assisted

breeding. Fragmentary genes not only lack sequence information—

they have been shown to cause problems in downstream analyses,

such as in tree inference (Sayyari et al., 2017) and orthology infer-

ence (Dalquen et al., 2013; Train et al., 2017).

One problem in low-quality genome assemblies is that fragments

of the same gene can be annotated as distinct entries in genome data-

bases; thus such fragments may be wrongly taken to be paralogs.

However, it is possible to use homologous proteins conserved in

other genomes to detect fragments that are likely to be part of the

same gene. To our knowledge, four such approaches have been pro-

posed. First, the Ensembl Compara pipeline (Herrero et al., 2016;

Vilella et al., 2009) infers pairs of apparent paralogs as a

‘gene_split’, if they lie within one megabase on the same strand of

the same region of the assembly and do not overlap in the multiple

sequence alignment of the family. Restricting these predictions to

genes belonging to the same contig greatly reduces the risk of false

positive split gene calling, but particularly for fragmented assemblies

with many short contigs, this approach detects only a fraction of all

splits. Second, ESPRIT (Dessimoz et al., 2011) uses pairwise com-

parisons to identify non-overlapping pairs of paralogs that have a

similar evolutionary distance to homologous sequences in other

genomes. The third approach, SWiPS (Li and Copley, 2013) is con-

ceptually similar in that it also works based on pairwise align-

ments—by identifying sets of non-overlapping candidate sequences

that have a maximal sum of score with homologous sequences in

other genomes. The fourth approach is the computationally efficient

PEP_scaffolder (Zhu et al., 2016), which relies on high-identity

matches of reference proteins to multiple contigs. Thus, like ESPRIT

and SWiPS, the approach relies on pairwise alignments. It also has

the strength of considering a maximum intron length to avoid com-

bining gene fragments that are unrealistically far apart.

Yet for all of these methods, the correct identification of split

genes heavily depends on their ability to distinguish fragments of the

same gene from fragments of paralogous ones. Ensembl Compara

and PEP_scaffolder make no attempt to distinguish between the

two. As for ESPRIT and SWiPS, although they attempt to identify

fragments that match reference proteins consistently—either by

requiring consistent evolutionary distances to the reference for all

fragments or by requiring consistent best matches for all frag-

ments—these comparisons are inherently limited to pairwise com-

parison, which loses out on phylogenetic information available in a

multiple-sequence and tree setting.

Here, to address this problem, we present two complementary

phylogenetic methods to identify non-overlapping or partially over-

lapping fragments of the same gene that exploit evolutionary rela-

tionships across gene families. The first one exploits bootstrap

support, and the second relies on likelihood ratio tests. We evaluate

their performance on an artificially fragmented version of the refer-

ence sequence assembly of the hexaploid bread wheat chromosome

3B (Choulet et al., 2014). We also compare the two methods, and a

meta-approach combining the two methods with ESPRIT (Dessimoz

et al., 2011), with the Ensembl Compara pipeline and ESPRIT.

Finally, we apply new phylogeny-based methods to the early, highly

fragmented, draft release of the entire hexaploid wheat genome

(International Wheat Genome Sequencing Consortium (IWGSC),

2014) and identify 1221 high-confidence pairs of split genes.

2 Algorithm

We first introduce our phylogenetic tests of split genes, then proceed

to describe the datasets analysed and the evaluation methods. Note

that we provide the fine implementations details in the

Supplementary materials.

2.1 Phylogenetic tests of split genes
Given a genome assembly with a large number of annotated contigs,

the task we face is to figure out which annotated genes actually be-

long to the same gene, due to annotation mistakes or where the as-

sembler failed to concatenate collinear contigs. Consider therefore

two non-overlapping fragments of the same gene sequence. If we

perform a multiple sequence alignment of the two fragments to-

gether with full-length homologs from other species, and infer a tree

based on the alignment, we can expect that the two fragments: (i)

align to different regions of the multiple sequence alignment (since

they are non-overlapping) and (ii) have a similar evolutionary dis-

tance to homologous sequences in other genomes.

However, perhaps surprisingly at first sight, although these frag-

ments will generally be close to one another on the tree, they will al-

most never be inferred as sister leaves. The reason for this is that

since they have no character in common, they cannot be directly

compared with each other, only with the other genes in the tree.

Thus, there is no phylogenetic information available to infer the re-

lationship between them. The location of the split between the two

sequences is therefore undetermined. Furthermore, recall that evolu-

tion is modelled as a stochastic process on a tree, with each column

in the alignment being a realization of the process. Due to this sto-

chastic nature, the two fragments will almost never attach to the

exact same place on the tree.

Under the correct model of evolution, however, if the two frag-

ments originate from the same sequence, the difference in the place

these are attached to the tree should not be significant.

Here, we introduce two tests to infer whether two non-

overlapping or partially overlapping sequences from the same gen-

ome are fragments of the same gene: collapsing branches with low

bootstrap support (Efron et al., 1996) and a likelihood ratio test

(Wilks, 1938).

2.2 Test #1: collapsing ‘insignificant’ branches
Tree branch support measures are commonly used to gauge the reli-

ability of a branch. Since fragments of the same genes can be

expected to be separated by insignificant internal branches on the

tree, collapsing branches with low support should result in frag-

ments becoming sister leaves. Thus, for a given threshold, the test

collapses all branches below that threshold and infers all candidates

that are sister leaves as fragments of the same gene.

2.3 Test #2: likelihood ratio test
The second test to infer fragments of the same gene is a likelihood

ratio test (LRT). Our null hypothesis (labelled ‘s’ for split) is that

fragments come from the same gene, and thus can be concatenated

into one sequence. The alternative hypothesis (called ‘p’ for paral-

ogs) is that the two fragments belong to paralogous genes.

Hs: n � 1 genes (split gene)

Hp: n genes (paralogous genes)

The test statistic is defined as T ¼ 2ln LðHPÞ
LðHSÞ ; where L() denotes the

maximum estimator under each hypothesis (Fig. 1).
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This setup is unusual in two respects. First, considering that we

aim to predict split genes, it may come as a little suspect that we use

Hs as null model. Our motivation for this is however that the model

with split genes is more constrained (the two fragments sit at the

same place in the tree) and thus has fewer free parameters. It is the

‘simpler’ model. For this reason, in absence of evidence to the con-

trary, we deem it reasonable to favour Hs. Second, in a typical set-

ting of the likelihood ratio test, the null model is a special case of the

alternative model. The models are said to be ‘nested’, and theory

tells us that the test statistic—twice the difference in log likeli-

hood—is v2 distributed. Since our models are not nested, the distri-

bution of the test statistic given under the assumption that Hs is

true is unknown. We can bypass this problem by estimating the

empirical distribution under the null using bootstrapping (Efron

and Tibshirani 1993; Goldman 1993). Hence, for a particular sam-

ple, we:

1. Compute the value of the test statistic; let’s denote it by T0

2. Since we have no prior knowledge on the distribution of the test

statistic under the null hypothesis, we estimate the distribution

using non-parametric bootstrapping. First, from the multiple se-

quence alignment used under the Hs, we generate n artificial

alignments of the same length, i.e. n bootstrap samples by sam-

pling columns with replacement. Second, we create alignments

to be used under the Hp by splitting a target full-length gene (i.e.

the one made up of two candidate fragments) at the same pos-

ition as in the original alignment. Finally, we compute the test

statistic for each of the n samples; let’s denote them by T1*, T2*,

. . ., Tn*. If the sampling is correct, the distribution of Ti*, i ¼ 1,

2,. . ., n will converge to the true distribution of the test statistic

when n fi ‘. Hence, if repeated many times, the distribution of

the bootstrap sample test statistic values will approximate the

distribution of the unknown test statistic. Throughout this pro-

ject, we set n to 100 unless otherwise stated.

3. Compute bootstrap p value as the proportion of samples with

likelihood equal or above that of the input data:

pB ¼ fNo: of Ti ��T0g
n

3 Implementation

As input candidate pairs, we identify, among all the protein sequen-

ces of a target genome, those that belong to the same gene family—

either established by Ensembl Compara or defined as deepest hier-

archical orthologous groups (HOGs) as inferred by OMA (Altenhoff

et al., 2013). We further require that fragments be non-overlapping,

or overlapping with less than 10% residues of both fragment being

aligned in the same alignment column, using Mafft v7.164b (Katoh

and Standley, 2013). In other words, we require that a12 < 0.1�l1
AND a12 < 0.1�l2, where l1 and l2 are the number of residues in the

two fragments, and a12 is the number of these residues that are

aligned. Thus, for each gene family, we align the sequences, enumer-

ate all possible pairs of sequences belonging to the target genome

and retain as candidate pairs those that satisfy the aforementioned

overlap requirement.

The LRT requires computing maximum likelihood estimates,

i.e. finding an optimal tree under both Hs and Hp. Under the Hs

hypothesis, fragments are part of the same gene. Hence, in

order to find a maximum-likelihood tree under the Hs, we concat-

enate the candidate fragments into a single sequence. To correct

for some cases when a tree-building method gives a suboptimal

tree, which may result in the estimated T0 < 0, we performed two

tree searches under the Hp model; a tree search without providing

an input topology, and a tree search with an input topology start-

ing with the best tree under Hs with the two hypothetical frag-

ments as sister leaves), and proceeded with the tree with higher

likelihood.

Some genes might be involved in multiple predictions, i.e. in

more than one pair of fragments coming from a split gene. If all

these multiple predictions span different parts of the sequences, we

conclude that the gene is split in more than two pieces and consider

these predictions as non-ambiguous. If in contrast more than one

prediction spans over a common part of the sequence (which might

be the case if the fragments come from very closely related paralogs,

or if alternative splicing variants of the same gene are erroneously

annotated as separate genes), we report the overlapping predictions

as ambiguous.

3.1 Datasets and evaluation methodology
As a test case for evaluation and application of the methods, we

used the proteome of bread wheat, i.e. Triticum aestivum cv.

Chinese Spring. The bread wheat genome is notoriously large (�17

Gbp) and redundant: it is a hexaploid genome which arose from two

recent allopolyploidization events—with the three subgenomes

referred to as A, B and D. Because of this large size and redundancy,

the wheat genome is proving very difficult to assemble and annotate.

In 2014, the International Wheat Genome Sequencing Consortium

(IWGSC) published a highly fragmented chromosome-by-

chromosome survey sequence of the bread wheat genome

(International Wheat Genome Sequencing Consortium (IWGSC),

2014). The same year, Choulet et al. (2014) published a high-quality

reference sequence of bread wheat chromosome 3B (third chromo-

some of subgenome B). The two provide a good basis to evaluate

our methodology on a challenging dataset.

Fig. 1. Conceptual overview of the likelihood ratio test. The null hypothesis is

that the two fragments come from the same gene (Hs) while the alternative

hypothesis is that the two fragments come from different paralogous copies

(Hp). a refers to the significance level, which is the area under the curve above

the rejection threshold. This setup is motivated by the fact that the split gene

hypothesis has fewer parameters. However, it is unusual in that failure to re-

ject the test leads to a prediction, and not the other way round. Furthermore,

because the two models are not nested, we estimate the null distribution

empirically
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We also tested our method on the cassava genome, i.e. Manihot

esculenta, draft version 4.1 (Prochnik et al., 2012) retrieved from

Phytozome v7 (Goodstein et al., 2012).

As customary in the field, we determine the quality of the meth-

ods by measuring the precision and recall. Here the recall measures

the proportion of fragmented genes that the methods can identify.

The precision penalizes for erroneous predictions by measuring the

proportion of predictions that are indeed fragmented genes. For

both measures, we simulated fragmentation on the wheat 3B refer-

ence sequence and cassava genome. In a subsequent experiment, we

applied the tests to the wheat 3B survey sequence and validated pre-

dictions using the wheat 3B reference sequence. In this case the total

number of fragmented genes is unknown, so we could only count

the number of correct and wrong predictions, and calculate the

precision.

Finally, we applied the methods to the rest of the wheat survey

sequence to infer split genes in the bread wheat proteome.

3.2 Random fragmentation of the wheat 3B reference

assembly (recall)
To determine the recall of the methods, we simulated fragmentation

on genes assigned to a high-quality assembly of bread wheat

chromosome 3B (3B reference sequence). All genes and their gene

families were obtained from Ensembl Plants, release 31. We ran-

domly chose 100 genes, each at least 100 amino-acids long, and split

them at a random position such that both fragments are at least 50

amino-acids long. All alignments were performed using Mafft

v7.164b with default parameters. Gene trees were built by FastTree

v2.1.8 (Price et al. 2010), also with a default set of parameters.

In addition, we simulated fragmentation in a more challenging

setting, i.e. on small gene families typically containing only evolu-

tionarily very close paralogs. As a source of homologous groups, we

used HOGs. They were computed by the GETHOGs algorithm with

a default set of parameters on the input dataset comprised of 13

plants: bread wheat and 12 flowering plants exported from OMA

Browser (Altenhoff et al. 2014) (Supplementary Table S1).

3.3 Introducing non-overlapping paralogs in wheat 3B

reference assembly (precision)
To inspect cases where the methods incorrectly predict split genes,

we simulated fragments from pairs of paralogs assigned to the bread

wheat 3B reference sequence using the same datasets as above. We

chose 100 pairs of same-species paralogs, cut them at a random pos-

ition and took two complementary fragments (one from each initial

gene) each being at least 50 amino-acids long. Again, MSAs were

obtained by Mafft v7.164b (default parameters) and gene trees by

FastTree v2.1.8 (default parameters).

Similarly as above, we also simulated more challenging cases of

fragmentation. We used the same set of HOGs as in the previous

section.

3.4 Introducing fragmentation in cassava assembly

(recall, precision)
To inspect behavior of the tests on species other than wheat, we

introduced random fragmentation in cassava draft proteome (v4.1)

downloaded from Phytozome v7. As reference species, we used the

16 other dicot species available in OMA Browser, Dec 2017 release

(Supplementary Table S2), of which the closest species is the western

balsam poplar, which has diverged from cassava approximately 80

MYA (Fawcett et al., 2009). Gene families were again obtained by

running GETHOGs algorithm with default settings. Having a set of

rather distant species, we proceeded with families containing no

more than 100 genes where at least two of them were cassava genes

and other genes were assigned to at least nine distinct reference spe-

cies. To calculate recall and precision, we randomly chose 200 cas-

sava genes and 200 pairs of cassava paralogous genes, each of them

being at least 200 amino-acids long, which we fragmented the same

way as in the case of wheat. All alignments and trees were recon-

structed with the same software and settings as for the wheat.

3.5 Validation on 3B survey assembly
To assess predictions on the real data containing fragmented genes,

we applied our approaches to a low-quality assembly of bread wheat

chromosome 3B, the 3B survey sequence (IWGSP1; 2013-11-MIPS),

and compared the predictions with the high-quality assembly of

chromosome 3B (‘3B reference sequence’) downloaded from URGI

(https://urgi.versailles.inra.fr). As a gold standard, we mapped

sequences between the two assemblies using BLASTþ v2.2.30

(Camacho et al. 2009).

For the predictions, we used the same reference species as in the

simulations on HOGs (see sections 3.2 and 3.3) which we again

exported from OMA Browser (Supplementary Table S3). We com-

puted gene families by the GETHOGs algorithm with a default set

of parameters. We generated 500 bootstrap samples for each family

and performed both tests on fragments overlapping less than 10%.

Sequences were aligned with Mafft v7.164b (default parameters)

and trees built with FastTree v2.1.8 (default parameters) as above.

In addition, we also computed HOGs with a different set of parame-

ters and repeated the rest of the experiment.

For the assessment, the mapping of sequences between the survey

and high-quality genomes was not straightforward because the two

differ not only in the degree of fragmentation, but also in some of

the sequences themselves due to sequencing error, contamination

etc. To allow for a bit of tolerance while still maintaining unambigu-

ous mapping between the two, we required hits to cover at least

95% of the corresponding query, the percentage identity in these

matching regions to be at least 95%, and the hit to be unambiguous.

As a stringent control, we also performed a validation where, in

addition to these two requirements, we only allowed mismatches to

occur at the ends of a query sequence.

3.6 Comparison to established methods and

meta-approach
As a point of comparison, we employed the Ensembl Compara pipe-

line and ESPRIT on the same 3B survey sequence as above. Again,

the obtained predictions from each method were mapped to the 3B

reference sequence by BLASTþ v2.2.30 to inspect if predicted pairs

belong to the same gene or not, requiring both coverage and percent-

age identity to be at least 95%. Validated predictions were com-

pared to the results from Validation experiment on 3B survey

sequence with the same BLASTþ criteria.

To obtain a comparable set of predictions on the 3B survey se-

quence using public results available from the Ensembl Compara

pipeline, we filtered ‘gene_split’ pairs from their homologies file (re-

lease 21). We took only pairs where both genes were at least 50

amino-acids long and such that, when its corresponding gene family

was aligned with Mafft v7.164b, candidate genes overlapped for

less than 10%. We also included cases where more than two genes

were inferred as a part of the same gene given that no two genes

involved overlapped for 10% or more. Since some of the sequences

could not be found in the OMA Browser dataset used for validating

Collapsing and LRT approach, we classified Ensembl predictions
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into two groups: those that could be found in the OMA Browser

dataset, and hence, included in the comparison, and those that could

not.

Another set of predictions was obtained by running ESPRIT on

the same 3B survey sequence data using 12 reference plants (the

same dataset as in the Validation section, Supplementary Table S3)

keeping all parameters default but increasing the required length of

the candidate genes to be at least 50 amino-acids (option

‘MinSeqLenContig ¼ 50’). We only considered a confident unam-

biguous set of predictions (reported in the hits.txt output file).

In addition, we considered a meta-approach ESPRIT 2.0, which

encompasses ESPRIT and the new combined approach. It takes the

union of predictions made by ESPRIT and our joint method (col-

lapsing branches with support lower than 0.95 and likelihood ratio

test with significance of 0.01).

3.7 Inferring split genes on the rest of the wheat survey

assembly
Finally, we employed the tests to infer fragmented genes in the first

draft release of the predicted genes in whole bread wheat genome,

i.e. T. aestivum cv. Chinese Spring proteome (IWGSP1; 2013-11-

MIPS). We considered only candidate fragments assigned to the

same chromosome and the same chromosome arm. We used the

same reference genomes as in the previous analyses with HOGs (see

above). Based on simulations and validation on the 3B survey se-

quence, we determined a set of parameters used for predictions. In

particular, we ran GETHOGs with default parameters and allowed

candidate fragments to mutually overlap less than 10% in the corre-

sponding MSA. We used Mafft v7.164b to get alignments and

FastTree v2.1.8 to construct trees, both with their default set of

parameters. Finally, we chose 0.95 as a threshold for collapsing and

set the significance threshold of the LRT to 0.01.

4 Results

Recall that we aim to identify fragments of the same gene wrongly

annotated as separate genes in a genome of interest, leveraging

genomes of related species. In the previous section, we introduced

two phylogenetic methods: one based on collapsing branches with

low bootstrap support and the other relying on a likelihood ratio

test (LRT). To evaluate the methods and determine parameters for

predictions on the bread wheat assembly, we took two approaches.

First, we simulated fragmentation on the real data to calculate recall

and precision. Then, we applied both methods to the bread wheat

chromosome 3B survey sequence and validated predictions with re-

spect to the 3B reference sequence. Finally, based on the best param-

eters obtained from these analyses, we applied the method to infer

split genes in the 20 other chromosomes of the survey wheat genome

assembly.

4.1 Artificial fragmentation of the wheat 3B reference

assembly
To assess our methods, we first simulated fragmentation in 100 pro-

tein sequences from the high-quality wheat 3B reference assembly

and tried to recover these pairs. Our simulations also included 100

pairs of non-overlapping fragments generated from pairs of random-

ly selected paralogous genes—which can be very difficult negative

cases if the paralogs are near-identical.

On these challenging simulations, the collapsing test yielded high

precision (0.85–0.88) and moderate recall (0.20–0.58), while the

LRT performed the other way round, yielding moderate precision

(0.56–0.64) and high recall (0.81–0.99) (Fig. 2a; Supplementary File

S1, Supplementary File esprit2_simulations.tar.gz).

We also evaluated an approach that combines our two methods.

A split gene was inferred if both methods were in agreement. This

approach resembled the recall and precision of the collapsing ap-

proach (with the same threshold) but with slightly higher precision

(Fig. 2a, Supplementary File S1).

As a control, we performed another set of simulations using a

different set of input homologous sequences—OMA HOGs contain-

ing protein sequences from thirteen plants including wheat

(Supplementary File S1, Supplementary File esprit2_simulation-

s.tar.gz). Precision of the collapsing test was again high (0.73–0.81)

while recall varied between 0.30 and 0.78. Precision of the LRT

was moderate to high (0.51–0.89) and the recall was high (0.70–

0.75) (Supplementary Fig. S3a). As additional controls, we also

(a) (b) (c)

Fig. 2. Evaluation of the methods. (a) Wheat genes from the high-quality wheat 3B chromosome were artificially fragmented and recovered by the collapsing, like-

lihood ratio test (LRT) and a combination of the two. Numbers indicate the threshold used for each datapoint. (b) Split genes inferred on the low-quality (‘survey’)

wheat genome were validated using the high-quality wheat 3B, and comparison with three other approaches (Ensembl Compara, ESPRIT and the meta-method).

Numbers indicate the threshold used for each datapoint. The meta-method takes union of ESPRIT’s and the predictions inferred when combining collapsing ap-

proach (threshold 0.95) and LRT (significance 0.01). (c) The number of predictions on 3B survey sequence classified as correct in the BLASTþ validation. ’New ap-

proach’ denotes a combination (intersection) of collapsing approach (threshold 0.95) and LRT (significance 0.01)
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repeated the analysis by changing one parameter of the pipeline at

a time:

1. alignment mode in Mafft that relies on local alignments, which

could conceivably deal better with fragments (L-INS-I instead of

FFT-NS-2)

2. special mode in FastTree that reportedly deals better with frag-

mentary genes (option ‘-pseudo’)

3. increasing the number of bootstrap replicates from 100 to 500

in the likelihood ratio test

4. increasing the number of artificially introduced split genes from

100 to 500.

All these variants yielded qualitatively similar results

(Supplementary Fig. S4).

4.2 Artificial fragmentation of the cassava genome
To assess whether our approach also works on a different set of spe-

cies, we performed the artificial fragmentation analysis on 200 sin-

gle and 200 paralogous pairs of randomly selected the cassava

genes. As reference species, we used the 16 other dicot species avail-

able in OMA version December 2017, of which the closest species is

the Western balsam poplar, which has diverged from cassava ap-

proximately 80 MYA (Fawcett et al., 2009).

Using the combined approach of collapsing (threshold

0.95)þLRT(significance 0.01), we observed a recall of 63% and a pre-

cision of 40% (Supplementary File esprit2_simulations_cassava.tar.gz).

Inspection of the false positives revealed that nearly all mistakes were

due to fragmentation of close (i.e. species-specific) paralogs, which to

our method are indistinguishable from split genes. Thus, the lower pre-

cision is explained by the much higher frequency of species-specific

paralogs in cassava (75% of sampled paralogs in cassava versus 13%

in wheat). Indeed, when we repeated the analysis excluding artificial

fragmentation of such species-specific paralogs, the precision increased

to 65%, in line with the results on wheat (Supplementary Fig. S4c).

4.3 Validation on 3B survey assembly
To further assess the tests and identify suitable parameters, we

applied our methods on the chromosome 3B of the draft-quality

bread wheat survey genome (International Wheat Genome

Sequencing Consortium (IWGSC), 2014). We focused on this

chromosome arm because it was one for which a much higher-

quality reference assembly was available, obtained through pains-

taking piecewise sequencing and assembly using 8452 bacterial

artificial chromosomes (Choulet et al., 2014). To give an idea of the

improvement between the two, the N50 statistic, which measures

the assembly quality by reporting the minimum contig/scaffold

length needed to cover 50% of the assembly, is 2.7 kb for the draft

genome 3B chromosome versus 892 kb for the high-quality 3B

chromosome. Thus, the latter could be treated as ground truth—

thus enabling us to gauge, in a realistic setup, how well our

approaches can infer split genes in a highly fragmented genome with

abundant potential paralogs.

Overall, the methods achieved higher precision than when

applied to simulated fragmentation (Fig. 2b). The analysis showed

particularly high precision with the collapsing approach. The abso-

lute recall rate could not be easily assessed on these real data; in-

stead, we considered the number of correctly predicted HOG

annotations as a surrogate for recall, yielding results highly consist-

ent with the simulations (Fig. 2b).

One challenge with this setup was the fact that the draft survey

sequence assembly contains other types of problems, such as

sequencing errors or �10% contamination from other chromosomes

(International Wheat Genome Sequencing Consortium (IWGSC),

2014). If we only consider fragments that can be perfectly mapped

between the draft whole-genome assembly and the reference assem-

bly (no mismatch in their central part, see Supplementary materials),

the number of predictions that could be validated diminishes, but on

the remaining set, our approaches showed even higher precision

(Supplementary Fig. S3c and d), indicating that the performance

reported in Figure 2b is conservative.

Control experiments also gave consistent results (Supplementary

File S2, Supplementary File esprit2_validation.tar.gz). As expected,

relaxing parameters yielded more predicted split genes, but at a cost

of lower precision (Fig. 2b versus Supplementary Fig. S3b).

4.4 Comparison to established methods and meta-

approach
To gain further insights into the performance of the proposed

approaches, we compared them to two existing methods, namely

Ensembl Compara pipeline (which however cannot easily be run on

custom genome data) and ESPRIT, as described in Section 3. Both

methods were applied to the 3B survey sequence and then validated

against the 3B reference sequence using BLASTþ (Supplementary

File esprit2_comparison.tar.gz). We also considered a meta-

approach, which we call ESPRIT 2.0, comprising ESPRIT and a

combination of the collapsing approach (threshold 0.95) and LRT

(significance 0.01).

In terms of the number of correct predictions, Ensembl Compara

and ESPRIT performed equally well or better than our approaches

(a) (b)

Fig. 3. High-confidence inferred gene splits on the wheat genome. A, B and D

refer to the three subgenomes of the hexaploid wheat genome. (a) Number

of unambiguous predictions for each chromosome arm. (b) Number of am-

biguous predictions (i.e. for which there are more than two candidate frag-

ments for a single juncture). Pairs of fragments are inferred separately for

each chromosome arm of flow-sorted Triticum aestivum cv. Chinese Spring,

except chromosome 3B, for which the analysis was performed on the entire

chromosome
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displaying high precision (Fig. 2b and Supplementary Table S4).

Further analysis showed that predictions from different methods are

rather complementary and worthwhile to take into account

(Supplementary Fig. S5). Hence, the meta-approach, ESPRIT 2.0,

inferred by far the biggest number of correct predictions with high

precision (Fig. 2b and Supplementary Table S4).

4.5 Predictions on the rest of the survey assembly
Finally, we applied our tests to infer split genes on the rest of the

bread wheat genome, i.e. all chromosomes other than 3B. Based on

the analyses on simulated fragmentation and between two assem-

blies (see above), we determined parameters for the tests. For each

chromosome arm, we obtained gene families by running OMA

GETHOGs with default parameters. In the collapsing approach, we

collapsed all branches with bootstrap support less than 0.95, and we

performed the likelihood ratio test with the significance level of

0.01. The intersection of predictions identified 1442 pairs in total:

1221 unambiguous and 221 ambiguous cases. The distribution of

the number of predictions per chromosome is shown in Figure 3 (see

also Supplementary File S3) while fragment IDs are provided in

Supplementary file esprit2_predictions_wheat.tar.gz.

5 Discussion and outlook

Despite technological and algorithmic advances, genome assembly

and annotation remain a challenge, especially for large polyploid

genomes with complex evolutionary histories. Genes often remain

fragmented and fragments get annotated as separate genes. Our

work demonstrates that using available assemblies of related species

can provide enough information to recognize some of those cases

and obtain full-length genes.

We developed two approaches and showcase their good per-

formance on a challenging proteome of hexaploid bread wheat

(T. aestivum cv. Chinese Spring). In simulations and validation, both

of which were performed on the real data taking into account all its

complexities, the approach relying on collapsing gene tree branches

showed lower recall and higher precision than a likelihood ratio test

(Fig. 2). As a trade-off between precision and recall, we propose tak-

ing an intersection of their predictions, as we did in the quest for

fragmented genes in the wheat survey sequence dataset. As our strin-

gent simulation and real data assessment shows, the inferred split

genes are highly specific. The performance is even better when we

combine the new phylogeny-based tests to our earlier pairwise ap-

proach ‘ESPRIT’.

The two main inherent challenges of in silico split gene inference

are the confounding effect of close paralogs and the variation in the

rate of evolution along the sequences. Indeed, sometimes fragments

come from identical or nearly identical paralogs, and there is not

enough information to distinguish fragments belonging to one gene

from another. Hence, we are more likely to make a false positive

prediction (Supplementary Fig. S6). This was particularly salient in

the artificial fragmentation analyses on the cassava genome. Indeed,

cassava is known to have undergone a whole-genome duplication

around 35–47 MYA ago (Bredeson et al., 2016), which is not shared

by another reference species in our analysis. As a result, many pairs

of paralogs are specific to this species, and thus virtually indistin-

guishable from fragments of the same gene by our method.

As for the second main challenge, evolutionary rate heterogeneity

across the protein length, this can pose problem because fragments of

the same genes can wrongly appear to be coming from distinct

sequences. Consider for instance a protein composed of two

domains—one slowly evolving and one fast evolving. If we consider

each domain as a distinct sequence and look at their position in a

gene tree including full-length homologous counterparts, the branch

lengths connecting these fragments to the rest of the tree may have

markedly different lengths. As a consequence, the increase in likeli-

hood obtained by having distinct branches for each fragment may be

sufficiently large for our test to erroneously infer that the fragments

come from distinct sequences (see Supplementary Table S5 for an ac-

tual example). It may be possible to address this problem by more ex-

plicitly modelling variation of rate among sites.

At a practical level, predictions heavily depend on the choice of

two parameters: a threshold for collapsing branches and a signifi-

cance level for the likelihood ratio test. Lower, more stringent thresh-

olds for collapsing yield more confident predictions, while higher,

less conserved thresholds will produce more predictions but less con-

fident. Similarly, a higher significance of the likelihood ratio test will

result with less but more confident predictions. Obtaining more pre-

dictions can be achieved by lowering the significance of the test at the

cost of their lower confidence. Overall, it is important to choose

thresholds depending on the application. For example, a higher num-

ber of predictions can be favourable for comparison with other data.

Predictions also depend on the input families. Bigger gene families

facilitate more predictions (Fig. 2, Supplementary Fig. S3) but also re-

sult in more ambiguous calls, i.e. cases where a fragment is involved

in multiple predictions (Supplementary File S2). We observed fewer

false positive predictions when we simulated fragmentation on bigger

gene families where we were more likely to randomly split a pair of

more distant paralogs in comparison to small gene families which are

more likely to contain only very close paralogs (Fig. 2a,

Supplementary Fig. S3a). However, the results of validation indicate

that the methods are still able to identify a reasonable number of split

genes with high precision even when small gene families are used.

Throughout this project, we fixed some of the parameters. First,

we considered only genes at least 50 amino-acids long. Shorter

sequences contain less information thus make phylogeny reconstruc-

tion more challenging; at the same time, the benefit of putting to-

gether short fragments is also more limited. Second, we required

candidate fragments to overlap less than 10%. Increasing the over-

lap increases the number of candidate pairs and, consequently, the

number of predictions including false positive and ambiguous pre-

dictions. Finally, we used Mafft v7.164b to align gene families and

FastTree v2.1.8 to reconstruct gene trees, both with their default

parameters due to their convenience and speed. Exploring their par-

ameter space or using more suitable tools for the dataset of interest

could contribute to higher precision and recall.

As often with new approaches, the likelihood ratio test still has

room for improvement. Currently, we compute the distribution of

the test statistic empirically, via resampling. We computed up to 500

samples per test which, given the simulations and validation, seems

to be enough here; yet the convergence of the distribution could be

explored. Increasing the number of samples might lead to signifi-

cantly better approximation of the distribution and more accurate

results. In addition, parameterizing the distribution of the test statis-

tic would reduce computational time and memory usage.

Since both tests rely on evolutionary relationships, some of the

mistakes could be avoided by implementing a more realistic evolution-

ary model. This is of particular importance for cases which are missed

due to differences in evolutionary rates across the length of the gene.

To further improve the performance, one could try to find opti-

mal parameters for the dataset of interest and application in
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question. Different strategies could be used to obtain input families

as well as alternative tools for alignments and methods with more

exhaustive optimal tree search. For datasets with relatively close lev-

els of divergence, tree inference based on nucleotide instead of

amino-acid sequences might confer more statistical power to our

tests. It may also be possible to exploit transcriptome data as add-

itional source of information (Zhang et al., 2016).

But already in its present form, as the large number of detected

split genes in the wheat genome illustrates, our approach is already

proving highly useful. All computer code is available for reuse as a

user-friendly package named ‘ESPRIT 2.0’ (https://github.com/

DessimozLab/esprit2) that we hope will help make phylogeny-based

detection of split genes a routine step in genome assembly and

annotation.
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