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Abstract

A selection gradient was recently suggested as one possible cause for a clinal distribution
of mitochondrial DNA (mtDNA) haplotypes along an altitudinal transect in the greater
white-toothed shrew, 

 

Crocidura russula

 

 (Ehinger 

 

et al

 

. 2002). One mtDNA haplotype (H1)
rare in lowland, became widespread when approaching the altitudinal margin of the
distribution. As H1 differs from the main lowland haplotype by several nonsynonymous
mutations (including on ATP6), and as mitochondria play a crucial role in metabolism and
thermogenesis, distribution patterns might stem from differences in the thermogenic
capacity of different mtDNA haplotypes.

In order to test this hypothesis, we measured the nonshivering thermogenesis (NST)
associated with different mtDNA haplotypes. Sixty-two shrews, half of which had the
H1 haplotype, were acclimated in November at semioutdoor conditions and measured for
NST throughout winter. Our results showed the crucial role of NST for winter survival
in 

 

C. russula

 

. The individuals that survived winter displayed a higher significant increase
in NST during acclimation, associated with a significant gain in body mass, presumably
from brown fat accumulation. The NST capacity (ratio of NST to basal metabolic rate)
was exceptionally high for such a small species. NST was significantly affected by a
gender ××××

 

 haplotype interaction after winter-acclimation: females bearing the H1 haplotype
displayed a better thermogenesis at the onset of the breeding season, while the reverse was
true for males. Altogether, our results suggest a sexually antagonistic cyto-nuclear selection
on thermogenesis.
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Introduction

 

Mitochondria provide most of the energy in animal cells
through oxidative phosphorylation. The process involves
four respiratory enzyme complexes, which form the electron
transport chain, also known as the respiratory chain (Saraste
1999). These complexes are encoded by both nuclear DNA
and mitochondrial DNA (mtDNA). Generally, the mito-
chondrial genome codes for 13 proteins, all participating in
electron transport, two rRNAs, 22 mitochondrial-specific
tRNAs and contains genes regulating transcription and

replication (the D-loop). Although evolutionary and popu-
lation genetic studies often assume nearly neutral evolution
(Fay 

 

et al

 

. 2002; Ohta 2002), the important roles of all 13
mtDNA-encoded peptides in cellular energy production
suggest that mtDNA variation could have significant
metabolic and fitness consequences (William 

 

et al

 

. 1995;
Blier 

 

et al

 

. 2001; Gerber 

 

et al

 

. 2001; Rand 2001; Ballard &
Whitlock 2004). However, if statistical tests of neutral
models based on the analysis of sequences have often been
cited in support of the non-neutral evolution of mtDNA
(e.g. Excoffier 1990; Ballard & Kreitman 1994; Nachman

 

et al

 

. 1996; Templeton 1996; Weinreich & Rand 2000; Ballard
2000; Doiron 

 

et al

 

. 2002; Mishmar 

 

et al

 

. 2003), direct evid-
ence is scarce and mostly restricted to insects, especially
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Drosophila

 

 spp. (Nigro & Prout 1990; Fos 

 

et al

 

. 1990;
Kambhampati 

 

et al

 

. 1992; Kilpatrick & Rand 1995; Garcia-
Martinez 

 

et al

 

. 1998; James & Ballard 2003; but see also
Schizas 

 

et al

 

. 2001; Staton 

 

et al

 

. 2002 for copepods exposed
to pesticide; Myres 

 

et al

 

. 2000 for human neonatal death;
Dionne 

 

et al

 

. 1993; Murakami 

 

et al

 

. 2002; Aoyama 

 

et al

 

. 2003;
for human respiratory capacity). Thus, the importance of
selection in shaping regional mtDNA variation remains
largely unknown (Ballard & Whitlock 2004), in particular
the evolutionary significance of mtDNA variation in climatic
or thermal adaptations (Coskun 

 

et al

 

. 2003; Mishmar 

 

et al

 

.
2003; Elson 

 

et al

 

. 2004; Ruiz-Pesini 

 

et al

 

. 2004).
A recent study of mtDNA distribution along an altitudinal

gradient in the greater white-toothed shrew (

 

Crocidura
russula

 

) evidenced a pattern suggestive of selection (Ehinger

 

et al

 

. 2002). One haplotype (H1), rare in lowland populations
(< 2% of individuals), became common at intermediate
altitude (30% of individuals), and dominant at higher ele-
vation (> 50% of individuals), close to the altitudinal mar-
gin of the species distribution [750–950 m above sea level
(m a.s.l.)]. Originating from Morocco, this shrew reached the
Iberian Peninsula some 50 000 

 

bp

 

 (Cosson 

 

et al

 

. in prep),
then invaded more septentrional parts of western Europe
(France, Switzerland and Germany) with the spread of
agriculture. Its present distribution is limited by the cooler
conditions that prevail at high latitudes and altitudes (Genoud
1985, 1995). In Switzerland, anthropophily is obligatory
above 600 m of altitude (Genoud 1995), because over-winter
survival is not possible without access to sources of warmth
and food (invertebrates), provided by compost piles, stables
and farms in rural habitats. Accordingly, 

 

C. russula

 

 has
developed specific behavioural and physiological strategies
to regulate its energy balance, including communal nesting
and daily torpors when temperature drops and food is
scarce (Vogel 

 

et al

 

. 1979).
Cold acclimation in mammals primarily relies on an

enhanced thermogenic capacity coupled with brown fat
accumulation. Brown adipose tissue, characterized by its
exceedingly high density of mitochondria, is the main
site of nonshivering thermogenesis (NST), a physiological
pathway allowing temperature maintenance during rest
and temperature restoration during arousal from torpor
(Hashimoto 

 

et al

 

. 2002). In all tissues, mitochondrial oxidative
phosphorylation uses energy derived from fuel combus-
tion to create a proton gradient across the mitochondrial
inner membrane. This intermediate form of energy is nor-
mally used by ATP synthase to generate ATP. In the brown
fat, mitochondria display the additional ability to directly
convert this gradient into heat. The key element of this
energy dissipation capacity is the uncoupling protein1
(UCP1), a mitochondrial inner membrane protein encoded
by nuclear genes, which catalyses a highly regulated proton
leak under the control of adrenergic receptors activated
by noradrenalin (Nedergaard 

 

et al

 

. 1999, 2001a). The proton

flux activates the mitochondrial respiratory chain and
increases the respiratory activity of the animal. Consequently,
the NST capacity of an individual can easily be evaluated
by measuring its maximal oxygen consumption triggered
by the injection of noradrenalin.

Thermogenic capacity directly affects the ability of small
mammals to survive periods of energy crisis, as underlined
by direct evidence of selection (e.g. Hayes & O’Connor
1999 on high-altitude deer mice, 

 

Peromyscus maniculatus

 

) as
well as seasonal variation of NST in response to tempera-
ture and photoperiod (e.g. Wang 

 

et al

 

. 1999; Li 

 

et al

 

. 2001;
Nespolo 

 

et al

 

. 2001; Deveci & Egginton 2002). Seasonal
acclimation is primarily acquired via adjustments of the
mass of brown fat, the number of mitochondria in the
brown fat and the number of UCP and/or adrenergic
receptors (Klaus 

 

et al

 

. 1988; Klingenspor 

 

et al

 

. 1996; Yaffe
1999; Liu 

 

et al

 

. 2001; Collins 

 

et al

 

. 2001; Nedergaard 

 

et al

 

.
2001b). Moreover, the activity of the respiratory chain can
also be directly modulated by the regulation of transcrip-
tion or translation of the mitochondrial genes (Klingenspor

 

et al

 

. 1996; Hittel & Storey 2002).
Mitochondrial variants could thus affect the performances

of the respiratory chain, and thereby contribute to climatic
adaptation. The relative allocation of energy between heat
and ATP production is determined by the relative efficiency
of the oxidative phosphorylation and the uncoupled re-
spiration (Ruiz-Pesini 

 

et al

 

. 2004). In cold environments,
mtDNA variants that reduce the coupling efficiency of
oxidative phosphorylation and increase the efficiency of
the uncoupling respiratory chain could be favoured. This
hypothesis has been suggested by Mishmar 

 

et al

 

. (2003)
who examined regional variations of all 13 human mtDNA
protein-coding genes. This study revealed that, even though
the ATP6 gene is one of the most conserved mtDNA pro-
teins, it had the highest amino acid variation, especially in
the human lineages from the Arctic regions. However, this
hypothesis of climatic adaptation of human mtDNA
variants is debated (Elson 

 

et al

 

. 2004; Ruiz-Pesini 

 

et al

 

. 2004).
In 

 

Drosophila

 

, several studies also reported that the fitness
of mtDNA variants is temperature dependent (Matsuura
1991, Matsuura 

 

et al

 

. 1997; Tsujimoto 

 

et al

 

. 1991; Doi 

 

et al

 

. 1999).
In the present study, we tested whether mtDNA variants

correlate with thermogenic capacity in 

 

C. russula

 

, by
comparing the maximal oxygen consumption induced
by noradrenalin (an indirect measure of NST) of shrews
carrying lowland vs. highland mitochondrial haplotypes
(Ehinger 

 

et al

 

. 2002). Sixty-two shrews, half of which with
the H1 haplotype, were acclimated in semioutdoor con-
ditions and measured for NST three times throughout
winter: first in November (before winter acclimation), second
in January at the peak of winter conditions, and third in
March, at the onset of reproduction. The basal metabolic
rate (BMR) was also assessed in March, in order to deter-
mine the NST capacity (ratio between NST and BMR).
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In order to precisely quantify the structural differences
between H1 and L1 haplotypes (previously typed on 325 bp
of the D-loop region (Ehinger 

 

et al

 

. 2002)), these two mtDNA
genomes were also entirely sequenced.

 

Materials and methods

 

Animals and winter acclimation

 

Three of the five highland villages from the Swiss Jura
analysed by Ehinger 

 

et al

 

. (2002), namely Bassins, Marchissy
and St George (750–950 m a.s.l.) were resampled in October
2001. Sixty-two individuals of 

 

Crocidura russula

 

 were
captured with longworth traps prebaited with 

 

Tenebrio
molitor

 

 larvae. Tissue samples were collected by toe clipping,
then stored frozen at 

 

−

 

20 

 

°

 

C for DNA analysis. All shrews
were taken to the University of Lausanne, and maintained
in semioutdoor conditions between October 2001 and March
2002 in separate soil bottomed cages (40 

 

×

 

 25 

 

×

 

 15 cm)
containing a nest filled with straw. Animals were fed daily
a controlled amount of minced meat mixed with vitamins
and 

 

T. molitor

 

 larvae, and provided with water 

 

ad libitum

 

.
Minimum and maximum ambient temperatures were
registered daily.

 

Genetic analysis

 

Total DNA was extracted from 62 frozen toes following
a salt/chloroform procedure modified from Miller 

 

et al

 

.
(1988) by adding one step of chloroform/isoamylalcohol
extraction (24/1). As in Ehinger 

 

et al

 

. (2002), we first
analysed the HVII of the D-loop using the primers L16517
(Fumagalli 

 

et al

 

. 1996) and H00651 (Kocher 

 

et al

 

. 1989).
Reactions were performed in a 50 

 

µ

 

L volume containing,
2

 

µ

 

M of each primer, 200 

 

µ

 

m

 

 each dNTP, 2 units 

 

Taq

 

 DNA
polymerase (QIAGEN), 1 

 

×

 

 PCR (polymerase chain reaction)
buffer with 1.5 m

 

m

 

 of MgCl

 

2

 

 (QIAGEN) and 1 

 

×

 

 Q solution
(QIAGEN). The amplification program (93 

 

°

 

C for 45 s, 52 

 

°

 

C
for 45 s and 72 

 

°

 

C for 60 s, 35 cycles) was run on a DNA
Thermal Cycler (Perkin Elmer). PCR products were purified
using the QIAQuick kit (QIAGEN), with a 30 

 

µ

 

L dH

 

2

 

O
final elution volume. Sequencing was restricted to the
single copy DNA between the primer L16517 and the R2
repeats (Fumagalli 

 

et al

 

. 1996), yielding 325 bp sequence.
Sequencing reactions were performed in a 7.5 

 

µ

 

L volume
comprising 0.1

 

µ

 

M primer, 3 

 

µ

 

L BigDye v3.0 mix (Applied
Biosystems) and 2.5 

 

µ

 

L PCR product. The sequencing pro-
gram was 3 min denaturation, 25 cycles of 96 

 

°

 

C for 20 s,
50 

 

°

 

C for 10 s, and 60 

 

°

 

C for 4 min. Sequencing products were
precipitated with ethanol, then run on a 6% polyacrylamide
gel on an ABI 377 sequencer (Perkin Elmer). The sequences
were aligned manually in Sequencher 3.0 (Gene Codes Corp.)
and the haplotypes identified in MacClade 3.08 (Sinauer
Associate).

Secondly, in order to fully characterize the two haplo-
types H1 and L1, we used primer walking to sequence
entirely the mtDNA genomes of two individuals from
Ehinger 

 

et al

 

. (2002), previously typed on the basis of the
second hypervariable domain (HVII) of the mitochondrial
control region (D-loop).

Finally, the distribution of a nonsynonymous mutation
at position 8493 in the ATP6 gene, revealed by sequencing,
was analysed among the 62 individuals used for the present
study by restriction fragment length polymorphism (RFLP).
A 131 bp region was amplified using the specific primers
L8399 (ATTCAACTTATAGCGTTGGC) and H8530 (AAT-
GAATGTAATGAGTGCGG). Reactions were performed
in a 25 

 

µ

 

L volume containing, 2

 

µ

 

M of each primer, 200 

 

µ

 

m

 

each dNTP, 0.5 units 

 

Taq

 

 DNA polymerase (QIAGEN), 1 

 

×

 

PCR buffer with 1.5 m

 

m

 

 of MgCl

 

2

 

 (QIAGEN) and 1 

 

×

 

 Q
solution (QIAGEN). The amplification program (93 

 

°

 

C for
45 s, 52 

 

°

 

C for 45 s and 72 

 

°

 

C for 60 s, 35 cycles) was run
on a DNA Thermal Cycler (Perkin Elmer). A small aliquot
(10 

 

µ

 

L) of PCR reaction was treated with 1 units of 

 

Tru

 

1I
(Fermentas) at 65 

 

°

 

C for 2 h, and subsequently run on 1.5%
agarose gel.

 

Nonshivering thermogenesis (NST) and basal metabolic 
rate (BMR)

 

We measured the NST of each individual three times: in
November 2001 (before winter), in January 2002 (at the
top of winter conditions), and in March 2002 (at the onset
of reproduction). NST was recorded as the highest oxygen
consumption over the 45-min period following subcu-
taneous injection of Chlorhydric-Noradrenalin (Fluka). The
peak was clear and unambiguous in most cases. Measures
were dropped in the few ambiguous cases (multiple peaks).
The doses of noradrenalin (solution at 0.1 mg/mL) were of
1.4 mg/kg body mass according to dose-dependent response
curves (Sparti 1992). For the last measure of NST (after the
winter), the noradrenalin doses were increased to 1.8 mg/
kg body mass to ensure a maximum metabolic response
after acclimation.

Oxygen consumption was measured using an open-air
flow respirometer (Depocas & Hart 1957; Withers 2001).
Animals were placed in a metabolic chamber (1.4 litre air
volume) containing a small plastic shelter (reassuring effect).
Ambient temperature was maintained at 20 

 

±

 

 0.1 

 

°

 

C by
submersing the metabolic chamber in a water bath. The
metabolic chamber received dried air at a rate of 850 mL/
min. The effluent air was sequentially passed through a
column of KOH (in order to fix the expired CO

 

2

 

) and a silica
gel column. The flow rate was controlled and measured
continuously by a calibrated mass flow controller (model
5850E, Brooks Instruments) which was connected to control
and read out equipment (model 5878, Brooks Instruments).
Finally, oxygen concentration was measured using an oxygen
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analyser (Gas purity analyser Xentra 4100, Servomex).
The oxygen analyser was calibrated monthly using pure
nitrogen gas (95%) and pure oxygen gas (95%). Oxygen
concentration was recorded on paper by a potentiometric
recorder (recorder 320, Scientific Instruments).

In March, the basal metabolism rate (BMR) was measured
before analysis of NST. Each shrew was placed in the meta-
bolic chamber in a water bath thermo-regulated at 30 

 

°

 

C
(thermoneutral zone) and oxygen consumption was recorded
for 4 h. The animal was then injected with noradrenalin
and replaced immediately in a metabolic chamber thermo-
regulated at 20 

 

°

 

C and oxygen consumption measured
for 45 min, as previously described. BMR represented the
lowest level of oxygen consumption maintained during at
least 10 min, excluding the first hour of measure in order to
avoid any bias resulting from the stress of the animal. Body
mass was determined before and after each measure on an
electronic balance.

All statistical tests were computed with 

 

r

 

 (Ihaka &
Gentleman 1996).

 

Results

 

Genetic analysis

 

The sequence analysis of the mitochondrial control-region
(HVII) revealed 32 shrews (13 females and 19 males) with
the highland haplotype H1, vs. 29 shrews (16 females and
13 males) with the lowland haplotype L1, and one female
with the haplotype L2, closely related to L1 (see Ehinger

 

et al. 2002 for nomenclature).
The complete sequencing of two individuals (GenBank

accession nos AY769263 and AY769264) from the Ehinger

et al. (2002) study evidenced several structural differences
between haplotypes H1 and L1 (Table 1). Over the whole
of 17 202 bp, 45 mutations were observed, among which
one deletion and three transversions. Nine mutations
affected rRNAs and tRNAs (which might play a role in the
regulation of translation), 17 mutations concerned the
D-loop, and 19 substitutions occurred in protein-encoding
regions, of which four were nonsynonymous (two in ND1,
one in COX1 and one in ATP6).

The RFLP analysis of the ATP6 gene among the 62 shrews
used for the present study showed that all individuals with
haplotype H1 displayed a Leucine (codon: TTA) whereas
all individuals with haplotype L1 or L2 had a Serine
(codon: TCA). For the remainder of this study, the single
L2 individual will be pooled with the L1 haplotypes.

Acclimation

The acclimation period (Fig. 1) started with a mild and
temperate phase until 10 December 2001, followed by a
cold period from 10 December 2001 to 15 January 2002,
then a warmer one until March. Our second series of NST
analysis (10 January) thus occurred after 1 month of harsh
conditions, while the third series followed nearly 2 months
of mild and relatively stable temperatures.

Body weight

Body mass correlated with sex, males being of significantly
heavier than females (c. 6%) but not with mitochondrial
haplotype (repeated-anova; sex: F1,58 = 7.4, P < 0.01; haplo-
type: F1,58 = 0.8, P = 0.37; sex × haplotype: F1,58 = 0.9, P = 0.35).
Body weight increased during acclimation (Fig. 2), being

Table 1 Position of mutations between complete H1 and L1 mtDNA haplotypes [In grey: nonsynonymous mutations; In bold:
transversions; Black square: the HVII region of the D-loop analysed in Ehinger et al. (2002) and in the present study]
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11.5 g on average in October–November, 12.3 g in January
and 12.8 g in March. This increase was independent of
sex and haplotype (repeated-anova; month: F3,137 = 16, P <
0.001; month × sex: F3,137 = 2.3, P = 0.08; month × haplotype:
F3,137 = 2, P = 0.12; month × sex × haplotype: F3,137 = 0.5,
P = 0.66).

NST and BMR

Maximal oxygen consumption increased significantly (P <
0.05; multiple comparisons with Tukey’s method) between
November (112 ± 16 mL/h) and January (156 ± 19 mL/h),
then stabilized (in March 153 ± 19 mL/h). It also correlated
positively with body mass (Fig. 3). The three slopes (for
November, January and March) differed significantly from
zero (P < 0.001) but also from each other (ancova; month:
F2,143 = 118.8, P < 0.001; mass × month: F2,143 = 4.9, P < 0.001),
mostly because of a large increase between November
(4.81 mL O2 h−1 g−1) and the following months (9.98 and
8.5 mL O2 h−1 g−1, respectively). Thus, the NST increase be-
tween November and January was more pronounced in
larger shrews, being 23% for a 9 g shrew (100–123 mL O2 h−1)
vs. 38% for a 13.5 g shrew (122–168 mL O2 h−1). In other
words, a 50% increase in body mass led to a 67% increase
in thermogenic capacity. The explained variance (R2) also
increased during acclimation, from 0.18 in November to
0.59 in January to 0.72 in March.

As the effect of body mass on NST changed throughout
winter, the three series of measures were checked separ-
ately for a possible association between NST and sex or
haplotypes, using body mass as a covariate (Fig. 2). No
such association was found in November (ancova; sex:
F1,53 = 1.84, P = 0.18; haplotype: F1,53 = 0.50, P = 0.48; sex
× haplotype: F1,53 = 0.25, P = 0.62) or January (ancova;
sex: F1,47 = 0.70, P = 0.41; haplotype: F1,47 = 0.60, P = 0.44;
sex × haplotype: F1,47 = 0.007, P = 0.93). By contrast, March
exhibited a marginal effect of haplotype, and a significant
interaction between sex and haplotype (ancova; sex: F1,34
= 0.005, P = 0.95; haplotype: F1,34 = 3.4, P = 0.07; sex ×
haplotype: F1,34 = 6.3, P = 0.017). Haplotype H1 females
had a higher relative oxygen consumption than L1 females,
whereas H1 males showed a lower consumption than L1
males (Fig. 2). The pairwise difference between males was
significant, and that between females marginally so, using
multiple comparisons (Toothaker 1993) with Dunnett’s
method (H1 males vs. L1 males P < 0.05; H1 females vs. L1
females P < 0.1).

The BMR measured in March averaged 22.3 mL/h ± 4.1.
It was unrelated to body mass, sex and haplotype (anova;
mass: F1,44 = 0.2, P = 0.67; sex: F1,44 = 0.02, P = 0.84; haplotype:
F1,44 = 1.1, P = 0.31; sex × haplotype: F1,44 = 0.6, P = 0.44).
The ratio of average NST to average BMR (153 and
22.3 mL/h, respectively) provided a very high value of
686% for the NST capacity in March.

Fig. 1 Minimal and maximal daily temperatures recorded in the
semioutdoor facilities during the cold-acclimation period (winter
2001–2002).

Fig. 2 Body mass and nonshivering thermogenesis (NST) measured
as the maximum oxygen consumption after an injection of
noradrenalin are given for the three series of measurements
(November, January and March). White boxes for mtDNA
haplotype H1 and black ones for mtDNA haplotype L1. F stands
for female and M for male. Boxplots with median, first quartile
and standard span (1.5 × interquartile range) and outliers as circle.
*: P < 0.05.



666 P I E R R E  F O N T A N I L L A S  E T  A L .

© 2005 Blackwell Publishing Ltd, Molecular Ecology, 14, 661–670

Mortality

Thirteen shrews died during acclimation (three between
November and January and 10 between January and
March), none of which during NST or BMR measurements.
This mortality (21%), which is low compared to recorded
field values at low altitudes (c. 40%, see Bouteiller & Perrin
2000; Reuter-Bouteiller & Perrin 2005) was unrelated to
sex or haplotype, but correlated with body mass (Fig. 3):
the shrews that died during winter had a lower initial

body mass. The trend was highly significant in November
(anova; dead: F1,56 = 8, P < 0.01) and marginally so in
January (anova; dead: F1,56 = 2.9, P = 0.09). Excluding these
individuals from statistical analyses did not change the
relationship between NST and body mass.

Discussion

Winter acclimation and body weight

NST increased by 40% during winter acclimation, a con-
siderable value for a species with a body mass of roughly
12 g (see Klaus et al. 1988; Merritt 1995; Harlow 1997; Li
et al. 2001). Indeed, as the acclimation is primarily acquired
via adjustments of the mass of brown fat, large species
have a bigger capacity to increase the mass of brown fat
and thus a better ability to increase their NST (Nedergaard
et al. 2001a). The high value found here suggests that
brown fat accumulation plays an essential role for winter
survival in Crocidura russula. This is also supported by the
higher mortality of lighter individuals, the 10% increase in
body mass of surviving shrews, as well as the increase in
both the correlation and slope of regression between NST
and body mass throughout winter. Furthermore, the ratio
between NST and BMR, which defines the NST capacity of
a species, appears exceptionally large (c. 700%). The NST
capacities of small mammals usually do not exceed 350–
400% (Shabtay et al. 2000; Li et al. 2001; Nespolo et al. 2001;
Scantlebury et al. 2002). Altogether, these observations
quantitatively confirm that NST, associated with the ability
to enter torpor, is a crucial mechanism for C. russula to
survive periods of energy crisis in winter.

Complete mtDNA genome and ATP6

The haplotypes H1 and L1 are clearly divergent (0.26%),
and differ structurally on three of their proteins. Structural
differences, however, do not necessarily imply functional
differences. The replacements of amino acid pairs Thr/Ile,
Thr/Ala and Val/Ile, observed in ND1 and Cox1, are frequent
in mtDNA genomes (Liò & Goldman 2002), suggesting a
weak effect, if any, on protein activity. By contrast, the
transition between Leu/Ser observed in ATP6 is rare. This
mutation allows a perfect discrimination between indi-
viduals H1 and L1, and thus potentially relates to the
observed respiratory differences between these haplotypes.

NST, mitochondrial haplotype and gender

Can our results help to interpret the haplotype distribution
described by Ehinger et al. (2002)? The response is not
straightforward. Haplotype variants did affect NST in our
experiments, but only at the onset of the breeding season,
and only in interaction with sex.

Fig. 3 Correlation between body mass and maximal oxygen
consumption (a measure of nonshivering thermogenesis, NST) for
the three series of measurements (November, January and March).
Solid dots indicate shrews that died during winter acclimation.
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Gender differences in metabolism have already been
firmly established, especially concerning the thermogenic
capacity of adipose tissues (Quevedo et al. 1998; Kaciuba-
Uscilko & Grucza 2001; Rodriguez et al. 2001; Rodriguez-
Cuenca et al. 2002; Monjo et al. 2003). Sex hormones have
been pointed out as the main factor responsible for sex-
associated differences in thermogenesis. Rodriguez et al.
(2002), for instance, demonstrated that testosterone and
progesterone have opposite effects on the expression of
brown adipocyte uncoupling proteins (UCP) in mouse
brown fat: testosterone inhibits the expression of UCP1
mRNA whereas progesterone stimulates it. A changing
concentration of sexual hormones, related to the arousal of
sexual activity, could account for the emergence of sex
specificity in March, which marks the onset of the breeding
season in C. russula.

Our findings, however, are more complex, pointing to
sex-linked cyto–nuclear interactions (females had higher
NST when carrying the H1 haplotype, while the reverse
was true for males). Such interactions are not unexpected,
since the different inheritance modes of nuclear and
cytoplasmic genomes allow sexually antagonistic selection
(Holland & Rice 1999; Arnqvist & Rowe 2002). Several
mitochondrial disorders are known to show more severe
effects in males than in females (Frank & Hurst 1996). Rand
et al. (2001) also showed sexually antagonistic cyto–nuclear
interaction in Drosophila melanogaster: mtDNA variants
appear ‘good’ in females but ‘bad’ in males, and vice versa.
Although published studies on this topic are still scarce,
the importance of such conflicts between sexes is probably
underestimated (Ballard & Whitlock 2004).

Mitochondrial haplotypes can undergo sex-specific
selection if they bear direct effects on the phenotype of gen-
ders, or act on nuclear-encoded proteins imported into the
mitochondrion. Alternatively, they might associate, through
linkage disequilibrium, with nuclear genes involved in the
sexual hormone pathway. Some disequilibrium between
the mtDNA and the X chromosome might occur because in
mammals (as in fruit flies) the mtDNA is cotransmitted
with two-thirds of the X chromosome copies but only half
of the autosomal copies (Gibson et al. 2002). This hypothesis
has some potential in our case because the X carries the main
testosterone receptor gene (Brown et al. 1989; Brockdorff
et al. 1991). This gene obviously promotes male phenotype
differentiation but is also implicated in many other meta-
bolic pathways.

Consequently, if haplotype H1 does directly or indirectly
benefit female shrews in cold habitats through its higher
thermogenic capacity, a sexually antagonistic selection might
explain why this haplotype is not fixed at high-altitude
localities. Theoretical (Babcock & Asmussen 1996, 1998) as
well as simulation studies (Rand et al. 2001) indicate that
sexually antagonistic selection can maintain permanent joint
cyto–nuclear interaction polymorphisms. The point must

also be made, however, that high-altitude populations
are smaller and undergo recurrent extinctions (Genoud
& Hausser 1979; Fontanillas et al. in prep), so that regular
immigrants from lowland populations might prevent
fixation of locally adapted haplotypes.

Owing to the complex interactions involved, our results
must be taken as provisional. The role of mtDNA haplo-
types on individual fitness remains speculative, and open
for future research. In particular, the hypothesis of direct
selection on the mtDNA could be further tested by extending
the sampling of Ehinger et al. (2002) in order to confirm or
falsify the altitudinal distribution on a wider geographical
scale, and by measuring the thermogenic capacity of
mitochondrial variants put into different nuclear back-
grounds. Although provisional, however, our present results
do promote the idea that gender differences reported in
metabolism, in particular regarding thermogenic meta-
bolism and UCP-related diseases (as obesity or diabetes,
see Rodriguez & Palou 2004), should be interpreted
with caution, and checked for possible cyto–nuclear
interactions.
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