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Abstract

Background: Tests for recent infections (TRIs) are important for HIV surveillance. We have shown that a patient’s antibody
pattern in a confirmatory line immunoassay (Inno-Lia) also yields information on time since infection. We have published
algorithms which, with a certain sensitivity and specificity, distinguish between incident (, = 12 months) and older
infection. In order to use these algorithms like other TRIs, i.e., based on their windows, we now determined their window
periods.

Methods: We classified Inno-Lia results of 527 treatment-naı̈ve patients with HIV-1 infection , = 12 months according to
incidence by 25 algorithms. The time after which all infections were ruled older, i.e. the algorithm’s window, was determined
by linear regression of the proportion ruled incident in dependence of time since infection. Window-based incident
infection rates (IIR) were determined utilizing the relationship ‘Prevalence = Incidence x Duration’ in four annual cohorts of
HIV-1 notifications. Results were compared to performance-based IIR also derived from Inno-Lia results, but utilizing the
relationship ‘incident = true incident + false incident’ and also to the IIR derived from the BED incidence assay.

Results: Window periods varied between 45.8 and 130.1 days and correlated well with the algorithms’ diagnostic sensitivity
(R2 = 0.962; P,0.0001). Among the 25 algorithms, the mean window-based IIR among the 748 notifications of 2005/06 was
0.457 compared to 0.453 obtained for performance-based IIR with a model not correcting for selection bias. Evaluation of
BED results using a window of 153 days yielded an IIR of 0.669. Window-based IIR and performance-based IIR increased by
22.4% and respectively 30.6% in 2008, while 2009 and 2010 showed a return to baseline for both methods.

Conclusions: IIR estimations by window- and performance-based evaluations of Inno-Lia algorithm results were similar and
can be used together to assess IIR changes between annual HIV notification cohorts.
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Introduction

Information on the incidence of HIV infection is crucial for

monitoring the dynamics of the HIV epidemic in affected

countries. Therefore, ‘serologic testing algorithms for recent HIV

seroconversion’ (STARHS) [1–4], now also more generally called

‘tests for recent infections’ (TRIs) or ‘recent infection testing

algorithms’ (RITA) have been developed [5,6]. STARHS make

use of the fact that the HIV antibody response evolves during the

first few months of infection with respect to concentration [7–9],

proportion of total IgG [10], isotype [11] or avidity [12]. Some

more recently developed TRIs are based on the genomic diversity

evolving in an infected individual [13–15]. The time during which

these properties remain below a predetermined cutoff may greatly

differ individually, and its mean duration or ‘window-period’ has

to be established by testing specimens from individuals with a

known date of HIV seroconversion [16]. Estimation of the

incidence in a population is based on the relationship ‘Prevalence

= Incidence x Duration’ [4,5].

STARHS require a special assay of reduced analytical

sensitivity; hence they are also called ‘detuned’ assays. The

reduced sensitivity renders these tests unsuitable for the diagnosis

of HIV infection and restricts their use to epidemiological studies.

In contrast, we have shown that a patient’s antibody reaction in

a widely used confirmatory line immunoassay, the Inno-LiaTM

HIV I/II Score (Inno-Lia), provides information on the duration

of infection similar to that of a commercial enzyme immunoassay

(EIA), the so-called BED incidence EIA [10,17]. The Inno-Lia is

a type of second-generation Western blot (WB) that measures

antibodies to different HIV antigens in a semi-quantitative way.

As both the pattern and intensity of HIV-specific antibodies

evolve during the first weeks to months after infection, it is

possible to define algorithms (Alg) which, with a certain

diagnostic sensitivity and specificity, differentiate between early

and late antibody patterns. If the diagnostic sensitivity and

specificity of an algorithm are known, which requires prior

testing of suitable reference groups of infections of either less or

more than 12 months duration, it is possible to estimate the

incidence by means of the basic diagnostic rule ‘ntested incident

= ntrue incident +nfalse incident’, whereby true-incident and false-

incident are calculated based on the pre-determined values for

diagnostic sensitivity and specificity [17].

In previous work, we have determined the diagnostic

sensitivity and specificity of more than 20 different Inno-Lia

algorithms for differentiating between HIV-1 infections of less or

more than 12 months duration. A study of 714 patients selected

from the Swiss HIV Cohort Study (SHCS), who had been

infected for at least 12 months and represented all clinical stages

and major clades of HIV-1, showed that none of these variables

affected the incident infection algorithms [18]. Of the 714

patients investigated in that study, only 94 were infected by HIV-

1 subtype B, while 620 patients were infected by one of 15

different non-B clades. The study showed that none of these non-

B clades impaired the diagnostic specificity of the method in

comparison to subtype B. Although a viral RNA load below 50

copies/mL significantly reduced the specificity among patients

receiving antiretroviral treatment (ART), age was the sole factor

which weakly impaired the test specificity in untreated patients

[18]. In another study, we assessed the diagnostic performance of

the algorithms based on 527 incident and 740 older infections.

The ten best-performing algorithms had an unadjusted mean

sensitivity of 59.4% to recognize infections of up to 12 months

duration and a mean specificity of 95.1% among patients

infected for longer than 12 months. Using these ten algorithms in

combination, we were able to identify distinct changes between

the incident infection rates (IIR) of four successive annual cohorts

of HIV-1 notifications [19].

The present study now explores the option to utilize the Inno-

Lia algorithms in the same way as other TRIs, i.e. based on their

window periods. We determined the window periods of all

hitherto published Inno-Lia algorithms and compared window-

based and performance-based incident infection rates in the four

previously studied annual cohorts of HIV-1 notifications [19].

Methods

Ethics statement
The present study investigated patients of the Zurich Primary

HIV Infection (ZPHI) study [20,21] and data from anonymized

HIV notifications to the Swiss Federal Office of Public Health

(SFOPH). The ZPHI study was approved by the ethical committee

of the Zurich University Hospital, and all participating patients

gave their written informed consent to the study goals. No

informed consent was needed for the anonymized notifications of

newly diagnosed HIV infections to the SFOPH, as these are

required by federal legislation.

Patients and specimens
In order to enable an optimal comparison of window-based and

diagnostic-performance-based estimation of the incident infection

rate (IIR), the patients and specimens were exactly as used in a

previous study [19]. For determination of the window periods of

the Inno-Lia algorithms, we used a group of 527 patients with

HIV-1 infection of up to 12.0 months duration ( = incident

infection). In short, 144 of the 527 patients originated from the

ZPHI study, while the remaining 383 patients were identified

among the anonymized HIV-1 notifications received by the

SFOPH from April 2007 to December 2010.

The ZPHI study is an observational, open label, nonrando-

mized, single-center study (ClinicalTrials.gov identification no.

NCT00537966) [21]. Patients with acute or recent HIV-1

infection were included. Acute HIV-1 infection was defined as 1)

presentation of the acute retroviral syndrome (ARS) and a

negative or indeterminate WB or Inno-Lia results in the presence

of a positive p24 antigen test and/or a detectable viral load; or 2) a

documented seroconversion with or without symptoms no more

than 90 days ago. Recent infection in the context of the ZPHI

study was defined as 3) a possible ARS, a positive WB or Inno-Lia

result, detectable viral load, and a positive HIV gp120 avidity

respectively detuned assay result [22]; or 4) a documented acute

HIV-1 infection with referral to our center within 90 days after

estimated date of infection (EDI). For each patient, EDI was

determined by taking into account the pattern of different assay

results (first positive and last negative HIV-test; negative,

indeterminate and positive WB; positive p24 Ag; antibody avidity

assay), patient’s reports of unambiguous risk contacts, and timing

of onset of ARS symptoms. With respect to WB results, the

following rules were applied to determine the EDI: (i) Negative

WB (Fiebig stages I-III) [23]: If a single risk contact was reported

within the last three weeks before the date of WB, this date was

taken as EDI. In contrast, if no history of risk contacts was

reported, infection was assumed to have occurred 14 days before

the WB date. (ii) Indeterminate WB (Fiebig stage IV): If a single

risk contact was reported between 2 and 6 weeks before the date of

WB, this date was taken as EDI. In case of several risk contacts, a

higher and lower range was estimated and the mean of this range

was taken as EDI. (iii) Positive WB (Fiebig stages V–VI): If a single

risk contact occurred 6 weeks or earlier before the date of the WB,

HIV Line-Immunoassay Incident Infection Algorithms
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this date was taken as EDI if seroconversion was documented. If a

seroconversion within 6 months was clearly documented without

history of risk contact, the mean date between the two tests (last

negative and first positive HIV-test) was taken as EDI. If a patient

had a history of an ARS, a fully converted WB, but no

documented seroconversion and a negative detuned or avidity

assay, the EDI was defined as the date 20 days before the onset of

the ARS. These EDI definitions have been successfully used and

validated in previous publications [13,21,24,25].

Incident infection among the HIV notifications to the SFOPH

was identified exactly as published previously [19], i.e. as a case

that met one of the following definitions. (1) Laboratory evidence

of seroconversion at the time of diagnosis, i.e., a reactive 4th-

generation HIV-1/2/O antibody/p24 antigen combination

screening test and a positive virus component test (HIV-1 RNA

or DNA or p24 antigen) in combination with a negative 3rd-

generation HIV-1/2/O antibody-only enzyme immunoassay

and/or a negative or indeterminate Inno-Lia result according to

the manufacturer’s instructions for result interpretation; (2) a self-

reported or documented negative HIV screening result no more

than 12 months before diagnosis; and (3) documented signs of

ARS no more than 90 days before diagnosis [26]. EDI among the

notifications was defined as 14 days before the reported date of

onset of ARS symptoms or the mean date between the last

negative and first positive HIV-test.

Serological differentiation of incident and older HIV-1
infection

Inno-LiaTM HIV I/II Score assay results (Innogenetics, Ghent,

Belgium) of all investigated patients as well as the incident

infection classifications by 26 published Inno-Lia algorithms (Alg)

were available from the above-mentioned study described in detail

in reference [19]. The Inno-Lia is a CE-marked, Western blot–like

line immunoassay that measures antibodies against recombinant

proteins or synthetic peptides of HIV-1 group M, HIV-1 group O,

or HIV-2. The antigens are coated as 7 discrete lines on a nylon

strip with plastic backing. As each test strip also contains three

quantitative internal standards, a semi-quantitative ranking of the

different antibody reactions is possible [27][28]. Antibody reaction

to each of the 7 HIV antigen bands present on the test strips

(sgp120 [including group O peptides], gp41, p31, p24 and p17 of

HIV-1, and sgp105 and gp36 of HIV-2) was assessed either

visually or by the automated scanner–based LiRAS system

(Innogenetics). Based on the three internal standards, which

define reaction levels of 0.5 (+/2), 1 and 3 for each test strip, the

antibody reaction to each HIV antigen was classified into one of

six possible intensity scores (0, 0.5, 1, 2, 3, or 4). For the present

study, only the antibody reaction to HIV-1 was of relevance.

Therefore, each patient’s pattern of antibodies against the five

HIV-1 antigens gp120, gp41, p31, p24 and p17 was subjected to

analysis by each of the 26 incident infection algorithms.

Inno-Lia incident infection algorithms
The 26 algorithms (Algs) for incident HIV-1 infection, all

described in Supporting Material S1, were developed empirically

by investigating which Inno-Lia antibody patterns were found at

maximal frequency in a group of patients with #12 months of

infection ( = incident infections) and at minimal frequency in a

group of patients with .12 months duration of infection, as

described in detail in a previous publication [17]. Twelve of the

algorithms, Alg2 to Alg13, were published in that paper. The other

14 were developed more recently in the same way and based on

the same dataset; they were used in two further studies [18,19]. All

26 algorithms were applied to the collected Inno-Lia data of the

present study. Thus, each Inno-Lia band pattern was classified by

26 algorithms as representing either an incident or older HIV-1

infection.

Determination of window periods and incident infection
rates

The window period of an algorithm was defined as the duration

of HIV-1 infection after which, according to that algorithm, all

investigated samples would be classified as representing an older

infection. This was determined by bivariate plots for each

algorithm as follows: Estimated duration of infection (x-axis) was

divided into consecutive 2-week intervals. If a 2-week interval

contained fewer than 20 data-points, two or more consecutive

intervals were pooled until they contained at least 20 data-points.

The percentage of samples categorized as incident per total

number of samples in each interval (y-axis) was plotted to the

midpoint of the respective interval. In a next step, the curves

(percentage of incident infection in dependence of time of the

various algorithms were inspected in order to identify the time

interval in which the regression curve was linear. This time

interval included at least four consecutive midpoints. Linear

regression was then used in the selected time interval to calculate

the time-point and its 95% confidence interval (95% CI) at which

100% of the patients had converted from incident to older

infection status (intersection of the regression curve with the x-

axis). We also determined the time-points and their 95% CI at

which 0% or respectively 50% of the patients had converted to

older infection status.

For calculation of the incident infection rate (IIR) in annual

cohorts of HIV-1 notifications, i.e., of the proportion of the

notified HIV-1 infections that had occurred within the past

12 months, the equation IIR-W = ntested incident/ntested * 365/window

was used, wherein IIR-W is the window-based IIR and ntested equals

the number of annual notifications [5]. The raw IIR-W thus

obtained for each algorithm was furthermore adjusted for the

algorithm’s pre-determined diagnostic specificity among patients

infected for .12 months (raw IIR-W x %Specificity/100) [19].

The IIR derived from BED-EIA results was based on a window of

153 days, as by the manufacturer’s instructions.

Performance-based IIR (IIR-P) were calculated based on the

relationship ntested incident = ntrue- incident +nfalse- incident, wherein

ntrue- incident = ntested 6 IIR-P 6%Sensitivity/100 and nfalse-

incident = ntested 6(1–IIR-P)6(12%Specificity/100). Therefore, as

published previously [17][19], IIR-P = (ntested incident/ntested

+%Specificity/10021)/(%Sensitivity/100+%Specificity/10021).

Three different diagnostic sensitivities, S1, S2 and S3, were used for

calculation of IIR-P, as described in detail in [19]. In short, S1

averages the diagnostic sensitivities found in that study for each

algorithm in the four quarters of the 12-months recent infection

period. It corresponds to a model that assumes an even

distribution of diagnosing incident infections over all four quarters.

This model is probably incorrect, however, as many HIV-exposed

individuals will seek early clarification of their HIV status.

Sensitivity S2 thus accounts for this bias by weighting the number

of cases each quarter contributes to the total number of cases.

Thus, the adjusted, weighted sensitivities S2 were calculated by

multiplying the quarter sensitivities used for determination of S1

with the percentage of cases a quarter contributed to total cases

and then averaging the products. Sensitivity S3 further adjusts for

bias exerted by symptomatic patients, who are more likely to be

diagnosed than asymptomatic individuals. For determination of S3

all cases judged incident because of reported signs or symptoms of

ARS were excluded and only the notifications with a previous

negative HIV test were considered for the calculation of diagnostic

HIV Line-Immunoassay Incident Infection Algorithms
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sensitivity. In comparison, S1 , S3 , S2, while IIR-P1 . IIR-P3 .

IIR-P3 [19].

Statistics
Frequencies were compared by 262 tables, means by paired t-

test or Wilcoxon’s signed rank test, as indicated in the text; all tests

were two-sided. Correlations were assessed by Pearson’s test using

Fisher’s r to z transformation. Statistical analyses were performed

either in ExcelH or StatViewH 5.0 for Macintosh (SAS Institute

Inc., Cary, North Carolina, U.S.A.).

Results

Inno-Lia data from a total of 527 ART-naı̈ve patients in their

first year of HIV-1 infection were used for determining the

window periods of 26 previously published incident infection

algorithms, as described under Methods. The main characteristics

of the patients are summarized in Table 1. A majority of the

individuals were males. Men who had sex with men (MSM)

represented the most frequent transmission risk. Quartiles indicate

that three-quarters of the patients had been infected for three

months or less.

Determination of algorithm window lengths
The proportions of cases classified as incident infection by 7

selected algorithms at different time-points are shown in Fig. 1,

panel A. The selected curves include six single-band algorithms

based on antibody reaction to gp120, gp41, p31, p24, or p17 and

one combination algorithm (Alg14; see Supporting Material S1 for

the definitions of all algorithms). Conversion from incident to older

infection status among these 7 algorithms occurred first for Alg3

(gp41 band #0.5), tightly followed by Alg3.1 (gp41#1) and Alg5

(p24#0.5), Alg6 (p17#0.5), Alg14, Alg2 (gp120#1) and finally

Alg4 (p31 = 0). The time intervals in which these curves were

considered linear were identified as extending from days 21 to 63

for Algs 3, 3.1 and 5, days 21 to 63 for Alg6 and days 35 to 84 for

Algs 14, 2 and 4. The time intervals exhibiting linearity of the

curve were established in the same way for all other algorithms.

Alg10 (if p31 = 0 AND p24$2, then incident, else older), designed

to increase the long-term specificity when combined with other

algorithms, exhibited a tunnel-shaped curve not permitting the

determination of a window. The 25 remaining linear regression

curves are shown in Fig. 1, panel B. The parameters a and b

which, based on the equation y = ax+b, define the linear regression

curve are shown in columns C and D of the Supporting Material

S2. Likewise, the data-points selected and the squared correlation

coefficients R2 are listed in columns N to P of that document.

The time-points at which 0%, 50% or 100% of the investigated

patients had converted from incident to older infection status, as

ruled by a given algorithm, are listed in Table 2. The latest time-

points at which all cases were still ruled as incident infection

extended from 3.2 days for Alg3 to 25.1 days for Alg4.1. The

time-points at which 50% had converted to an interpretation of

older infection varied between 24.5 and 77.6 days (same

algorithms). Finally, the time-points at which all cases were

classified as older infections (full window) extended from 45.8 to

130.1 days (again same algorithms). The 95% confidence intervals

(CI) of the full window are also shown in Table 2. Complete data

including the 95% CI of the 0% and 50% windows are contained

in columns A to P of Supporting Material S2.

Comparison of window-based and performance-based
estimation of incident infection rates

We next compared the window periods of the algorithms with

their previously determined diagnostic sensitivity [19]. As to be

expected, algorithms with a short window (e.g. Algs 3, 3.1, 5)

exhibited a low diagnostic sensitivity for detecting infections of up

to 12 months duration, while those with long windows were more

sensitive (Fig. 2), and there was a good correlation between the two

parameters (R2 = 0.962; P,0.0001). For further evaluation, we

calculated the IIR-W in four annual cohorts of HIV-1 notifications

in which we had previously determined the IIR-P based on the

performance of the 10 best-performing algorithms [19].

The IIR-W calculated for the first of these cohorts (A, 2005/6)

for all 25 algorithms of Table 2 according to Methods, are shown

in Table 3. Shown as a reference at the top of the table is the IIR

of this cohort, as determined previously based on the BED

incidence EIA [17]. Among the total of 748 notifications, the

Inno-Lia algorithms ruled between a minimum of 39 cases (Alg3)

and a maximum of 151 cases (Alg4.1) as incident, compared to as

many as 262 ruled incident by the BED assay. While the number

of cases classified as incident thus varied widely between the

different Inno-Lia algorithms, exhibiting a coefficient of variation

Table 1. Characteristics of the 527 patients with incident HIV-1 infection.

Patient origin, n (%) ZPHI study 144 (27.3)

HIV notifications to SFOPH 383 (72.7)

Sex, n (%) Male 461 (87.5)

Female 66 (12.5)

Risk, n (%) MSM 344 (65.3)

HET 139 (26.4)

IVDU 21 (4.0)

OTH 1 (0.2)

Unknown 22 (4.2)

Age, median (IQR) 35 (29–43)

Months of infection, median (IQR) 1.4 (0.5–3.0)

HIV-1 RNA, median log[copies/mL] (IQR) 5.2 (4.5–6.1)

Abbreviations: SFOPH, Swiss Federal Office of Public Health; MSM, men who have sex with men; HET, heterosexual; IVDU, intravenous drug use; OTH, other; IQR,
interquartile range.
doi:10.1371/journal.pone.0071662.t001
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(CV) as high as 30.8%, the number of cases estimated incident and

the IIR-W varied considerably less (CV, 12.4 %). This was due to

the compensating effect of window length in the equation used for

IIR-W estimation (see Methods). The raw IIR-W extended from

0.368 for Alg18 to 0.611 for Alg6, exhibiting a mean of 0.479

(95% CI 0.456–0.520), while the raw IIR derived from the BED

assay was 0.836. After adjustment for each algorithm’s diagnostic

long-term specificity among infections of .12 months duration, as

determined in [19], the definite, adjusted IIR-W extended from

0.362 to 0.555 and showed a mean of 0.457 (95% CI 0.438–

0.475). In comparison, the adjusted IIR-W for the BED incidence

EIA was 0.669. Thus, the mean IIR-W of the Inno-Lia algorithms

was 32% lower than the BED-derived IIR-W. Individual 95% CI

for the adjusted IIR-W of this cohort A by all 25 algorithms are

shown in columns AB and AC of Supporting Material S2.

We next assessed the changes over time of IIR-W in four

annual cohorts of HIV-1 notifications to the SFOPH (Fig. 3; for

full data see columns AA–AU of Supporting Material S2). The

first of these cohorts, A (baseline), included the patients of

Table 3. Cohorts B, C and D corresponded to the notifications

of 2008, 2009 and 2010. All four cohorts had been used

previously to assess the IIR using various performance-based

approaches (IIR-P) [19].

The mean IIR-W of the 25 algorithms increased from 0.457 in

cohort A to 0.557 in cohort B, which meant an increase by 22.4%,

a difference highly significant by paired t-test (Fig. 3, panel A). The

IIR-W of the 25 algorithms increased individually by a minimum

of 6.4% to a maximum of 39.6% (columns AH and AI of

Supporting Material S2). For 13 of the 25 algorithms, this initial

rise in IIR-W was significant, as shown by the fact that the IIR-W

of 2008 exceeded the upper limit of the 95% CI of the respective

IIR-W at baseline (see columns AC and AH of Supporting

Material S2). In cohort C (2009), the mean IIR-W dropped slightly

to 0.533. For 10 of the algorithms, the individual IIR-W levels

were still significantly higher than at baseline. In cohort D, the

mean IIR-W dropped back to 0.463, which was close to baseline.

When using the algorithms with a performance-based mode of

evaluation (see Methods), the resulting IIR-P curves, shown in

panel B of Fig. 3, depended strongly on how the diagnostic

sensitivity was determined, i.e. whether and how potential

selection bias had been handled [19]. Such bias is exerted by

the fact that many patients diagnosed with incident HIV-1

infection seek clarification of their HIV status early after exposure,

particularly if they exhibit symptoms of an acute retroviral

syndrome. This influences the empirically determined diagnostic

sensitivity and should be adjusted for. Three different diagnostic

sensitivities, S1, S2 and S3 (see Methods), were used in parallel in

order to calculate the IIR-P for the 10 algorithms that had

performed best in distinguishing incident from older infections

[19]; full data are shown in Supporting Material S3.

With sensitivities S1, a mean IIR-P of 0.453 was obtained for

cohort A. This was near-identical with the window-based IIR-W

of 0.457. Between the four cohorts, the curves for IIR-W (Fig. 3A)

and IIR-P (Fig. 3B) had similar shapes. The annual changes were

more pronounced for IIR-P, however, than for IIR-W. The mean

IIR-P showed a steeper initial increase for 2008 (+30.6%) than did

the mean IIR-W (+22.4%), but during 2009 and 2010 it also

dropped back to baseline levels. Diagnostic sensitivities S2 and S3

Figure 1. Percentage of cases ruled incident in dependence of time. A. Curves of selected representative algorithms. For algorithm
definitions refer to Supporting Information 1. Text on top of the panel denotes the interval midpoints and the number of cases in each interval. B.
Linear regression curves of all algorithms except Alg10.
doi:10.1371/journal.pone.0071662.g001
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yielded IIR-P curves that were shifted to lower levels compared to

S1, while maintaining the same relative changes between the four

cohorts (see Supporting Material S3). Thus, the IIR-W corre-

sponded best to an IIR-P that was based on the adjusted, but now

weighted sensitivities S1.

The sensitivities S1 were therefore used for an individual

comparison of the IIR-W and IIR-P of all 25 algorithms (Fig. 3C

and 3D; for full IIR-W data see columns AA to AU of Supporting

Material S2). A first glance reveals a distinct initial increase

followed by a slow return to baseline as the general trend of the

curves. Two algorithms, Alg5 and Alg6, which interprete the

antibodies to Gag antigens p24 and p17, did not follow this trend,

but continued to increase in cohorts C and D with regard to both

IIR-W and IIR-P. The IIR-W and IIR-P of other Algs including

3.2, 4.1, 6, 11, 11.1, 11.2, 12.1, 13.1 and 14 cumulated in cohort C

rather than B, and Algs 3 and 3.1 showed a final decrease in IIR

well below the baseline. Thus, there was considerable variation

among the individual curves for both IIR-W and IIR-P, although

the mean IIR of both methods yielded similar results.

Discussion

The principal goal of this study was to determine the window

periods of the more than 20 Inno-Lia algorithms developed

previously for estimating the proportion of incident infections in

cohorts of HIV-1 infected patients [17–19]. Window periods of the

different algorithms were determined in a group of 527 patients

with incident HIV-1 infection of known duration (Table 1), using

linear regression of the proportion of cases ruled incident in

dependence of time since infection (Fig. 1) for determining the

time-point at which 100% of cases would be classified as older

infection (Table 2). Based on these windows, which correlated well

with the previously determined diagnostic sensitivity of the

respective algorithms (Fig. 2), we calculated the IIR-W for a

cohort of HIV notifications for which results of the BED Incidence

EIA were available [17]. We found that, on average, Inno-Lia

based IIR-W were one-third lower than the IIR-W derived from

the BED assay (Table 3). In comparison of four subsequent annual

cohorts of HIV notifications we further found that the mean

annual IIR-W changes between the four cohorts were similar to

those of IIR-P, provided that calculation of the latter was based on

a diagnostic sensitivity S1 which, like the IIR-W, did not adjust for

selection bias (Fig. 3).

The model which yielded sensitivity S1 [19] assumed that

patients with incident HIV-1 infection would be diagnosed at

similar frequency throughout the 12-months incident infection

period. This assumption is probably incorrect, as many HIV-

exposed patients, especially when experiencing symptoms of acute

HIV disease, seek early clarification of their HIV status. When the

IIR-P was adjusted for these biases by using the diagnostic

sensitivities S2 or S3 (see Methods), the resulting IIR-P curves were

markedly lower than the IIR-W curve (Fig. 3B). Thus, the Inno-

Lia based IIR-W, which involves no adjustment for selection bias,

corresponded best to the S1-based IIR-P, which neither adjusted

for such bias. That the two methods exhibit such good agreement

is remarkable. Nevertheless, the true IIR is probably lower.

One major advantage of Inno-Lia based IIR estimation is the

availability of a whole panel of algorithms, each with its own

window length. In contrast to the BED-EIA or other examples of

TRIs, Inno-Lia provides a whole panel of tools for assessing each

specimen. Thus, all 25 algorithms yielded an increase in the IIR of

2008 compared to 2005/06. Nevertheless, there is considerable

variation in the IIR curves of the individual algorithms as

demonstrated in panels C and D of Fig. 3. The variation remains

high even after removal of Alg5 and Alg6, which are unsuitable for

Table 2. Inno-Lia incident infection algorithms and the
estimated time after infection in days at which 0%, 50% or
100% of the patients have converted from incident to older
infection status.

Alg # 0% conversion 50% conversion 100% conversion

mean mean mean (95% CI)*

2 6.9 55.3 103.8 (92.0–121.7)

3 3.2 24.5 45.8 (33.0–114.0)

3.1 3.9 26.1 48.2 (36.0–94.0)

3.2 5.7 44.9 95.4 (67.0–85.0)

4 19.9 70.4 121.0 (99.0–177.5)

4.1 25.1 77.6 130.1 (94.0–570.0)

5 4.1 26.9 49.7 (38.0–86.0)

6 3.1 38.7 74.2 (63.0–96.0)

7 12.2 58.8 105.3 (92.0–133.0)

8 9.4 59.9 110.3 (90.0–176.0)

8.1 9.4 59.9 110.3 (90.0–176.0)

9 8.1 55.9 103.6 (80.0–250.0)

11 21.6 74.5 127.4 (109.0–162.0)

11.1 21.6 74.5 127.4 (109.0–162.0)

11.2 21.6 74.5 127.4 (109.0–162.0)

12 22.0 75.6 129.3 (106.0–185.0)

12.1 22.0 75.6 129.3 (106.0–186.0)

13 19.9 70.4 121.0 (99.5–178.0)

13.1 24.3 73.8 123.2 (92.0–380.0)

14 8.1 42.8 77.5 (69.0–91.0)

15 24.9 73.4 121.9 (103.0–160.0)

15.1 24.5 72.4 120.3 (112.5–133.0)

16 5.3 52.2 109.6 (88.0–184.0)

17 3.0 51.1 99.3 (82.0–140.0)

18 6.3 45.9 98.1 (77.0–163.0)

*CI, confidence interval.
doi:10.1371/journal.pone.0071662.t002

Figure 2. Correlation of window length and diagnostic
sensitivity of the algorithms. The diagnostic sensitivity data
represent the uncorrected raw sensitivity S0, as determined in [19].
doi:10.1371/journal.pone.0071662.g002
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IIR estimation because the underlying antibodies to p24 and p17

are down-regulated early in patients with disease progression [29–

32], thereby lowering the specificity of these algorithms. We have

pointed out previously that it would be impossible to select a ‘‘best

curve’’ from those displayed in Fig. 3, and the reliability of both

the IIR-W and IIR-P estimates derives from the combination of

different algorithms [19]. How the algorithms are best combined

remains to be seen. It would make sense to combine the same

algorithms for window-based IIR as those that worked best in the

performance-based approach [19]; see also Supporting Material

S3. Using these, the mean IIR-W for cohorts A, B, C and D

amounted to 0.465, 0.564, 0.534 and 0.467, while using the 10

most specific algorithms (according to the long-term specificities of

Table 3) yielded 0.416, 0.529, 0.488 and 0.388. Using only the

three primary algorithms, Algs 2, 3.1 and 4, which measure the

antibody response to gp120, gp41 and respectively p31 and are

truly independent of each other, yielded 0.467, 0.553, 0.507, and

0.428. All these curves are similar in shape, and how the

algorithms are combined may thus not be that important.

Combination of algorithms is also valuable when assessing

differences between annual cohorts of HIV notifications. It should

be considered, though, that most of the algorithms are not truly

independent of each other (see the Supporting Material S1 for

definitions). Comparison of their means by t-test should therefore be

done with caution. More than half of the algorithms showed

individually significant increases, though, as shown by the fact that

the IIR-W of cohort B were above the 95% CI of cohort A (see

Supporting Material S2). Moreover, when using the combination of

the three independent algorithms 2, 3.1 and 4, their mean IIR-W

Table 3. Window-based incident infection rates (IIR) among the 748 HIV notifications July 05–June 06.

ALG #
Window
days

N ruled
incident 1)

N estimated
incident Raw IIR-W

Diagnostic
specificity %1)

Adjusted
IIR-W

BED-EIA 2) 153 262 625 0.836 80.1 0.669

2 103.8 105 369 0.494 95.4 0.471

3 45.8 39 311 0.416 100.0 0.416

3.1 48.2 44 333 0.445 100.0 0.445

3.2 95.4 84 322 0.430 98.1 0.422

4 121.0 130 392 0.524 92.7 0.486

4.1 130.1 151 424 0.566 91.9 0.521

5 49.7 45 330 0.442 95.5 0.422

6 74.2 93 457 0.611 90.8 0.555

7 105.3 92 319 0.426 98.4 0.419

8 110.3 95 314 0.420 96.8 0.407

8.1 110.3 94 311 0.416 96.8 0.402

9 103.6 88 310 0.414 98.4 0.408

11 127.4 128 367 0.490 93.4 0.458

11.1 127.4 128 367 0.490 93.4 0.458

11.2 127.4 127 364 0.486 94.1 0.457

12 129.3 130 367 0.491 93.4 0.458

12.1 129.3 130 367 0.491 93.4 0.458

13 121.0 123 371 0.496 95.0 0.471

13.1 123.2 140 415 0.554 93.9 0.521

14 77.5 73 344 0.460 97.8 0.450

15 121.9 140 419 0.560 94.3 0.529

15.1 120.3 137 416 0.556 95.1 0.529

16 109.6 109 363 0.485 96.6 0.469

17 99.3 89 327 0.438 98.2 0.430

18 98.1 74 275 0.368 98.2 0.362

mean 104.4 103.5 358.1 0.479 95.7 0.457

SD 26.2 31.9 44.3 0.059 2.5 0.047

CV% 25.1 30.8 12.4 12.4 2.7 10.3

lower limit
95% CI

94.1 91.0 340.8 0.456 94.7 0.438

upper limit
95% CI

114.6 116.0 375.5 0.502 96.7 0.475

1)Representing the specificity in infections .12 months; taken with permission from [19].
2)BED data taken with permission from [17].
SD, standard deviation; CV%, coefficient of variation shown as percentage; CI, confidence interval.
doi:10.1371/journal.pone.0071662.t003
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rose significantly for cohort B compared to A. Thus, both the rise

and fall of the IIR-W in the four notification cohorts are confirmed.

The use of an HIV confirmation assay for IIR estimation is a

further advantage because, with a well organized national HIV

confirmation strategy, near-complete Inno-Lia data can be

obtained. In Switzerland, federal regulations issued in 2006 by

the SFOPH [33] request that all newly diagnosed cases of HIV

infection are tested by the Inno-Lia. This test is valuable for

confirming HIV infection and for differentiating between HIV-1

and HIV-2 [27,28]. Timely diagnosis of HIV-2 infection is

important, because HIV-2 requires different viral load tests than

the widely used and FDA-approved tests for HIV-1 RNA

quantification from Roche, Abbott, BioMérieux, or Bayer. Neither

a positive, nor a negative result of these viral load tests excludes an

HIV-2 infection. Importantly, treatment of HIV-2 requires

different antiretroviral drug regimens, as the virus is naturally

resistant to some frequently used drugs including the whole class of

non-nucleoside reverse transcriptase inhibitors (NNRTI) [34–37].

In Switzerland, HIV confirmation is organized in such a way

that detailed Inno-Lia results and other data important in the

context of HIV diagnosis and confirmation are collected by 11

regional HIV notification labs and reported by e-mail to the

SFOPH using a dedicated ExcelH based form. At the SFOPH, the

data are linked with supplemental information obtained from the

patient’s treating physician, archived and evaluated at regular

intervals. This schedule works very well, and in this way it has

become possible to receive Inno-Lia data for a very high

proportion of the new HIV diagnoses. For example, in 2010,

Inno-Lia data were available for 99.3% and in 2011 for 555 of the

556 newly diagnosed and notified patients (99.8%). Therefore, the

IIR estimates can be considered representative. Inno-Lia based

IIR estimation does not require additional tests, nor is shipping of

samples to a central lab required. Whether one uses a single

algorithm or a combination of different ones has no effect on costs,

as these population-based evaluations, once set up, can be done in

an automated way, e.g. by pasting the annual Inno-Lia dataset

into a simple, pre-formed evaluation table, e.g. based on the

Microsoft ExcelH software. Linking Inno-Lia based IIR estimation

to the context of prospective, individual confirmation of an HIV

diagnosis is of advantage, because newly diagnosed patients are

generally ART-naive. Prolonged aviremia due to long-term ART,

which has been shown to lower the specificity of Inno-Lia based

incident infection algorithms [18], will thus not be present. We do

not recommend the Inno-Lia for IIR estimation outside of the

context of prospective individual confirmation of newly diagnosed

HIV infections. It is also clear that the Inno-Lia, a relatively

expensive test, is not affordable to low-income countries.

Regarding window length, the present study allows comparison

with the findings of other studies. As shown in Table 2,

seroconversion in the Inno-Lia starts with antibodies to gp41

(Alg3), which became detectable (intensity $0.5) a median

24.5 days after estimated date of infection. Antibodies to p24

(Alg5) appeared almost as fast with a median of 26.9 days, while

the median windows of antibodies to p17 (Alg6) , gp120 (Alg2) and

p31 (Alg4) were at 38.7, 55.3 and 70.4 days respectively. The

sequence of antibody appearance was the same as in a study based

on 8 prospectively followed patients with known date of infection

[38]. According to other studies with a high number of cases, the

Figure 3. Comparison of window-based and performance-based incident infection rates (IIR) in four annual cohorts of HIV-1
notifications. A) Mean IIR-W and their 95% confidence intervals (CI) of the 25 algorithms of Table 3. The numbers at the bottom of the panel
indicate the means of the IIR, numbers in italics on top of the curves denote the P values for the differences according to t-test. B) Mean IIR-P and
their 95% CI derived from the 10 best-performing algorithms (Algs 4.1, 7, 8.1, 9, 11.1, 11.2, 12.1, 13, 15, 15.1), as determined in [19]. Shown are the IIR-
P curves of three models calculated with diagnostic sensitivities S1, S2, and S3, as defined under Methods; see also Supporting Material S3. C)
Individual IIR-W of all 25 algorithms. D) Individual IIR-P of all 25 algorithms based on the diagnostic sensitivities S1.
doi:10.1371/journal.pone.0071662.g003
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mean seroconversion time of IgM-sensitive HIV 3rd generation

screening tests is estimated at 22 days with a 95% CI of 18.5 to

25.5 days [23,39]. Our 24.5 days median for gp41 antibodies is

compatible with these estimates. According to another study,

Western blot becomes positive a median 26 days after detection of

HIV-1 RNA [40]. Again, our 24.5 days median for gp41

antibodies combined with the 26.9 days median for p24 antibod-

ies, which is equivalent to a definition of WB positivity, is

compatible with these findings. Regarding p31 antibodies, their

mean window, as estimated by Fiebig et al. [23], amounts to about

100 days, with a wide confidence interval of 58 to 140 days. Our

median of 70.4 days for Alg4 is again compatible with that

estimate. Thus, the shortest and longest windows of our algorithms

are in accordance with published findings.

Limitations
A possible weakness lies in the relatively imprecise information

regarding the duration of the infection in some patients that is

inherent to such studies and in the low number of cases available

at later time-points of the incident infection period (Fig. 1A). As a

result, the windows of some algorithms may be underestimated,

while others may be overestimated. Use of several different

algorithms will level out the resulting differences in the IIR-W

calculations, as shown in Table 3 and Fig. 3. It should also be

noted that the estimated dates of infection of the 144 patients

originating from the ZPHI were available at a very high accuracy

and time-dependent resolution, as verified by additional measures

such as viral diversity based on clonal HIV-1 env C2-V3-C3

sequences [13,20,24].

A systematic under- or overestimation of the time since infection

would be another possibility. This would affect all windows in the

same way, either by increasing or shortening them by a certain

number of days. We have studied the effect of such changes.

Shortening the windows increased all IIR-W, increasing them

diminished the IIR-W. The relative differences between cohorts A,

B, C and D did not change, however (data not shown). Thus,

independently of how accurate our window estimates are on an

absolute scale, we will obtain the same relative changes between

these cohorts. The same effect was also found for IIR-P when

changing the diagnostic sensitivity [19]; see also Supporting

Material S3, which contains IIR-P calculations based on the three

different sensitivities S1, S2 and S3.

A further question relates to the diagnostic sensitivity and

specificity of the Inno-Lia algorithms. Regarding sensitivity, we

defined our windows in such a way that 100% of the newly

infected patients would switch from incident to older infection

status within the window period (see Methods), which implies a

100% diagnostic sensitivity. Thus, in contrast to other methods

where the window was selected differently, e.g. as the mean or

median or the time interval within which the method differenti-

ated best between older and incident infection, there is no need for

us to correct the sensitivity for cases that had not switched to older

infection status at the closure of the window. All cases with such a

delayed conversion to older status can be handled as false-incident,

as they exhibit an incident antibody pattern in the period defined

as older infection. Cases with a delayed conversion thus affect only

the diagnostic specificity, but not the sensitivity. As shown in

Table 3, all our IIR values are corrected for their imperfect long-

term specificity due to the vaning antibody concentrations seen in

advanced disease. However, as the specificities of Table 3 relate to

an incident infection period definition of 12 months, the short-

term specificity of the algorithms from the closure of the window to

the end of these 12 months could possibly differ from the long-

term specificity. We have investigated this question by determining

the percentage of false-incident cases in this period for the

algorithms and comparing them to the long-term specificity. Using

the subset of well-characterized patients of the ZPHI study, we

found a significantly higher frequency of false-incident cases for

Algs 7–9 and 18 by 262 table test. For all other algorithms, the

short-term specificity was similar to that listed in Table 3. The

cases diagnosed in this short interval are probably rare, and the

impact of a diverging short-term specificity on the IIR should thus

be limited. Furthermore, when combining the algorithms for IIR

estimation, the influence of a transiently lower specificity should be

minimized even further, as such individual errors are ‘‘diluted out’’

by the majority of the unaffected algorithms (see Fig. 3C and 3D).

This should also apply to any other possible weakness of individual

algorithms. We therefore recommend again that IIR estimation

should be based on combinations of algorithms.

In conclusion, Inno-Lia based estimation of the HIV-1 incident

infection rate in populations of newly diagnosed patients can also

be based on the window periods of the Inno-Lia algorithms. The

IIR-W estimates were similar to Inno-Lia based IIR-P estimates,

provided that the latter were not corrected for selection bias with

respect to patients who seek early clarification of their HIV status

after a suspected exposure. We believe, however, that such

corrections would be important, and in this respect the lower IIR-

P estimates, particularly that based on the diagnostic sensitivity S3,

probably better reflect the truth (Fig. 3B). It remains to be seen

whether such adjustments can also be made for the IIR-W.

Even without such further correction, the Inno-Lia based IIR-

W in one of the cohorts was about one-third lower than that based

on the BED EIA, which is important when considering that this

widely used test frequently yields unrealistically high incident

infection rates and has to be corrected for its well-known imperfect

sensitivity and specificity [5,41–45]. Unlike the BED EIA, the

specificity of the Inno-Lia algorithms in ART-naı̈ve patients is

neither affected by the severity of the immunodeficiency, nor by

the genetic diversity of HIV [18]. Therefore, Inno-Lia based

assessment of incident infection rates does not require prior

exclusion of the patients in an advanced stage of disease. We have

demonstrated in a large study of patients predominantly infected

with non-B subtypes and circulating recombinant forms (CRF)

that the clade of HIV-1 does not influence the incidence result

[18]. Technically, the method should thus also be feasible for

countries that already use the Inno-Lia, yet have an HIV-1

subtype distribution different from that of Switzerland, where

subtype B dominates the newly diagnosed infections with about

60% (as based on the sequences of 2670 new patients entered into

the national HIV resistance database from 2009–2012).

In short, Inno-Lia based assessment of incident HIV infection

rates can be performed without a need for clinical information

other than that the patients are treatment-naı̈ve, a requirement

always met when a patient is newly diagnosed with HIV infection

and undergoes confirmation with supplemental tests. Inno-Lia

based IIR estimation in the context of HIV confirmation

represents a free, additional public health benefit of the use of

this relatively costly test for confirmation of HIV infection and

differentiation between HIV-1 and HIV-2.

Supporting Information

Supporting Material S1 Definitions and diagnostic per-
formance of Inno-Lia algorithms for incident HIV-1
infection.
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Supporting Material S2 IIR-W calculations based on
time as a linear entity. Complete data.
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