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Abstract-Two environments, each possessing populations described by the homogeneous hawk- 
dove game, are linked via migration. Aggregation techniques are used to simplify the dynamics and 
solve the system analytically. Contrary to the homogeneous hawk-dove model, for certain physically 
realistic parameter values, the final populations structure is found to depend critically upon the initial 
population structure. 
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1. INTRODUCTION 

Hawk-dove game theory applied to a population in a homogeneous environment is well known [ 11. 
The population is composed of individuals which can have two differing “life strategies”, and the 
success or failure of these strategies has a direct consequence upon the continued reproductive 
success of the individuals. These ideas have also been extended to populations possessing more 
than two strategies [2]. For example, there may be an undecided strategy that spends half its 
time being a hawk and the other half being a dove. On the whole, the homogeneous case allows 
analytical progress, and consequently, a good understanding of the dynamical system. 

Heal environments are not homogeneous. Climate alters, food sources move and change, 
available territory expands and contracts, etc. All these changes will have an effect upon the 
behavioural strategy of inhabiting populations. The problem with incorporating these hetero- 
geneous effects into a model is that such systems are often far more complicated than their 
homogeneous counterparts. The variables are functions of at least two quantities (time and dis- 
tance) and analytical results are difficult to obtain. Computer simulation often provides the only 
way ahead. 

Numerical studies of environmental heterogeneous systems, usually using cellular automata 
(analytical analysis of morphological models involving reaction-diffusion equations has had suc- 
cess [3]), have shown a rich structure of population dynamical behaviour. Such environments are 
not continuous, but divided up into a number of patches. On each patch an automata is placed, 
which is allowed to interact with its neighbouring automata. It then reacts to the presence of its 
neighbours by changing its “state” following some predetermined set of rules. Nowak and May [4) 
showed that such a scheme applied to the Prisoner’s Dilemma game can lead to chaotic spatial 
dynamics. Similarly, Hassell et al. [5] have looked at insect populations in general and have also 
shown that chaotic behaviour can result. However, chaotic behaviour need not always result from 
a heterogeneous environment, and the heterogeneous property can have a stabilising effect upon 
a previously unstable homogeneous system. For example, Hassel et al. [6] and Ives [7] have used 
heterogeneous environments to stabilise host-parasite dynamics while Gyllenberg et al. [8] have 
studied the stabilising effect of migration upon previously local populations. 
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Keeping with the idea of patches as opposed to continuously changing environments, the 
simplest possible heterogeneous system that can be considered contains just two homogeneous 
patches. Although such a system is only going to be able to model very coarse scale differences 
in the background, it is nonetheless useful. The two patches could correspond to urban and rural 
environments, or to neighbouring environments in a beach dune system, or to micro-climates 
such as a dry hot rock versus a cool, damp crack. With such a system it is interesting to ask; 
does such a simple heterogeneous environment have important consequences for the population 
dynamics which are not seen for homogeneous environments? 

We have taken a simple two patch system and using aggregation techniques [9] and corre- 
sponding assumptions about the time-scales of processes, we have tried to answer this question. 
Section 2 gives a summary of the model and the equations used, Section 3 discusses the dynamics 
of the migration between the patches, Section 4 looks at the game dynamics on each patch and 
the stability of the various solutions. Finally, Section 5 looks at the effects of the heterogeneity 
before the important points of the analysis are discussed. 

2. THE TWO PATCH MODEL 

The general schema for the model is shown in Figure 1. Two homogeneous patches, labelled 
by 1 and 2 each have a population of individuals, ni(t) for Patch 1 and nz(t) for Patch 2. 
These individuals are all of the same species, and are identical in all but their behavioural traits. 
Thus, they all compete for the same ecological niches, such as food sources, mating partners, 
sleeping areas, etc., and it will be the effectiveness of their different behaviours at coping with 
this competition that will be of interest. The environmental conditions on each patch are not 
necessarily the same, bringing in a possible component of heterogeneity into the model. The two 
environments are not isolated since migration is allowed between the patches. 

HAWKS 

It 
12 

DOVES 
Figure 1. A schema of the two patch model. Two homogeneous patches, labelled 1 
and 2. Migration is allowed between the patches. 

Local to each patch, the dynamics follow the usual hawk-dove game. In this game an individual 
can follow one of two possible strategies, either “hawk” or “dove”. A “hawk” strategy entails 
strong dominant behaviour. In clashes with other individuals (where a clash could be a fight for 
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territory, or a mate, or food, etc.) a hawk will persevere until the bitter end, reasoning that to 
“win” the encounter is the most important goal. On the other hand, a “dove” strategy can be 
more conservative. In an encounter with another individual, a dove will be willing to give way 
to his opponent if the clash is likely to dispense too much of his energy. A dove reasons that 
conservation of personai resources is a better strategy than winning at all cost. Thus, if a hawk 
and a dove were to meet the hawk would always succeed, while in encounters with a like-minded 
individual success will only be 50% of the time. This gives a hawk-dove payoff matrix as shown 
in Figure 2. 

Figure 2. The “hawk-dove” payoff matrix. G is the average gain of winning a conflict 
and C is the cost incurred by adopting a hawk strategy in a conflict. 

The total payoff of an individuals strategy is assumed to have a direct effect upon their re- 
productive success. Thus, the rate of change of a strategy’s population can be written in terms 
of the payoff matrix and the numbers of individuals. Then combining the migration and game 
theory, we can write down the dynamical equations governing the total population as 

Game dynamics 
Migratory dynamics , \ 

d , \ 
&x”Hl = (blnH2 - h2nHl) + E 

nH1 GI -CI 

nH1 + 7201 2 nH1+ GlnDl , 1 (1) 

Strategy of Adversary 

Hawk Dove 

(2) 
d ( - - 

E-n01 = kzlnD2 - kmnm + E > nD1 Gl 

dt -nDl, 
nH1 +nDl 2 

d nH2 
&-$“H2 = -(kzlnH2 - h2nHd + EnH2 + nD2 

[ 

G2 - C2 
2 nH2 + G2nD2 1 , (3) 

d 
E-nD2 = - kzlnD2 - klznm + E 

7202 G2 

dt (- > -nD2, 
nH2 +nD2 2 

where subscripts H and D are short for Hawk and Dove, respectively, and 1 and 2 refer to 
Patches 1 and 2, respectively. k12 and &I are, respectively, the migration rates of hawk individuals 
and dove individuals from Patch 1 to Patch 2, G1 is the strategic gain of winning an encounter in 
Patch 1, Cl is the strategic cost of being a hawk in Patch 1, and nHl is the number of hawks in 
Patch 1. e is a “small” parameter, whose significance will be described later. All other variables 
have a similar significance following their subscripts. 

Even though there are just two patches, the solution of these equations is complicated. We 
propose a simplification by assuming that migration is a relatively frequent affair compared with 
the generation time (i.e., the time-scale for the hawk-dove game dynamics). This assumption is 
equivalent to assuming that E < 1, and then using the two time-scales as a means of decomposing 
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the dynamical system following the techniques outlined by Auger and busserie [9]. Using the 
decomposed system analytical headway is much easier. 

By adding equation (1) to equation (3), we obtain the equation governing the total hawk pop- 
ulation nH. This variable is independent of the migratory dynamics and is governed solely by the 
slow game dynamics. By adding equations (2) and (4) a similar result is obtained for nD. Thus, 
there are two slow variables, the total hawk population nH and the total dove population no. 

3. THE MIGRATORY DYNAMICS 

Since the migration is assumed to be the fastest dynamics of the system, to a first approxima- 
tion [g-11] the equations (l)-(4) can be written as 

d 
&znHl = (k21nH2 - h2nHl), (5) 

d - - 
&-nD1 = dt hnm - hznm , > 
E&H2 = -(hnm - hnm), 

d 
&-nD2 = - k2lnD2 - kl2nDl . 

dt (- > 
Since migration is a conservative process, the variables nH and 7313 are the first integrals of the 
migratory system. This allows us to express the equilibrium, towards which the fast system 
relaxes, in terms of nH and no, giving 

kzl 
nH1 = k12 + lczl nH’ 

hz 
nH2 = k12 + kal nH7 

(9) 

(10) 

h 
nD1 = i& + k21 120, (11) 

h 

This solution is stable so long as k12 + k2l > 0 and kis + &i > 0. Physically we expect 
k12, k21, &2, and &i to be greater than zero. Thus, the realistic solution is always stable, which 
is required if we are to proceed and analyse the slow dynamics using the techniques mentioned 
above. 

If migration is symmetrical between the two patches, then kl2 = k2l and ii2 = &i giving 
nH1 = nH2 = nH/2 and noi = 7102 = nD/2, respectively. Since the symmetrical case is likely to 
be close to the biologically reality, we introduce two new parameters, 2F = 1 - nHi/nH - nDl/nD 
and 2r = nHi/nH - nDl/nD. The SyInInetriCd migration corresponds to f and T both zero. 
Just T = 0 corresponds to the case where the migratory rates of hawks and doves are identical. 
Just F = 0 is the case when the asymmetrical migration rates for the hawks are reserved for the 
doves. Using these new parameters, the behaviour close to symmetry can be easily calculated. 
The physical limits off and T are, l/2 5 F 5 -l/2 and -1 5 T < 1. 

4. THE GAME DYNAMICS 
We now turn to the slow part of the system. By adding equations (l)-(3), and similarly for 

equations (2) and (4), the equations for the slow dynamics are written down. The phase plane for 
the two slow variables, 128 and nn, can be viewed as a a-dimensional surface in the 4-dimensional 
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phase space of the entire system. On this surface, the fast variables are at their equilibrium values 
given by the solutions of (9)-(12). 

Since there is no limiting term for the total population n, there is no nontrivial stationary 
solution for n. Following the usual hawk-dove analysis, we look at the ratio z = nH/n of hawk 
individuals to the total population. For a single patch, the dynamics of z are well known [1,12]. 
There are a maximum of three stationary solutions for 2, the stability of which depend upon the 
ratio of the cost to the gain. The point z = 0 is always unstable, the point z = 1 is stable so long 
as G > C, while the point x = G/C is stable so long as G < C. For two patches, the number of 
possible stationary solutions is now four. This can be seen by looking at the equation for x, 

dx -= 
dt &a - x>f(x), 

where 
f(x) = ax2 + px + y, 

p=2&-;[l-44P(P+r)+3r2]+;r[5r2+4r(2r-T)-l] 

- ; (37. - 2f + 8F3 - 4?r - 2fr2 + T3) ) 

(13) 

(14 

y = 
[ 
1 - (27 + r)2 

I[ 
g - ; (2e + 3T)] ) 

where G = (Gi + G2)/2, g = Gi - G2, 6’ = (Cl + C2)/2, and c = Ci - C2. The multiplying term 
n2/(nrn2) in equation (13) can be written purely in terms of x, and has no dependence upon 
the total population. Since this term is strictly positive, it has no effects upon the stability of 
the equilibrium points. Equation (13) has two stationary solutions at x = 0 and x = 1 and two 
others at the roots of the polynomial f(x), which we shall call xi and 22 (where x1 5 x2). The 
difference with the one patch case lies in f(x). For just one patch, f(x) is linear in X, while in 
our case f(z) has the possibility of being quadratic. If Gr = G2 and Ci = Cz or if 7 = r = 0, 
then (Y = 0 and f(x) is similar in its properties to the single patch case. 

4.1. The Stability of the Stationary Solutions 

Even before the values of xi and 22 are known, we can say something about the stability of 
the solutions. 

x = 0 is stable if 
2G<g(3r+2e), (15) 

which if simplified by saying that Gi = G2 = G tells us that x = 0 is never stable, 
except when G = 0. In this case, the solutions stability is determined at second order 
in x, and although this is technically always unstable (since leading order terms of x2 
are never stable), for realistic cases (x > 0) x = 0 may appear to be stable. These 
results are in fact true even when Gr # G2, thus the solution x = 0 is only stable 
for a very special case, which turns out to be when migration is forbidden, one patch 
contains only dove individuals with a positive gain, and the other a gain of zero. 

x = 1 is stable if 
,o+p+r>o. (1’3) 

If this is simplified by saving that Gi = G2 = G and Cr = C’s = C, then the x = 1 
solution is stable only when G/C > 1 as is expected from the single patch result. 

x = 21 is stable if 

Zl(l - x&7(x1> < 0, (17) 
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where 

9(x1) = 
{ 

o(zi - zz), if a # 0, 

P, if a = 0. 

x = x2 is only a solution if (Y # 0. In this case, it is always unstable if it lies within the 
physical constraints (i.e., 0 5 22 5 1) and if cy > 0. The exception to this case is 
when zi = x2, in which case the stability is determined at second order. 

4.2. The Simplified Case r = 0 

The case when T = 0 corresponds physically to the fact that the migration rates of the doves 
are proportional to those of the hawks. Calculating the coefficients for the polynomial f(x) gives, 

p = _ (I_ 4~2) (’ 4 @I, 
y = (1 _ 4~2) (’ 4 gFJ. (20) 

Since cr = 0, this case has only three stationary solutions, just like the standard homogeneous 
result. In fact, the similarity between the single patch result and this case is even closer, since if 
we rewrite the parameters such that 

G = (1 - 4~~) (c - 97) , (21) 
c = (1 - 43 (C - CF) ) (22) 

we have exactly the single patch equations, where G is the homogeneous gain and C is the 
homogeneous cost. This should not really be that surprising, since if the migratory rates for the 
hawks and the doves are the same, we can “sum” the two patches and consider them as one big 
patch. The composite parameters are given by the right-hand sides of the relations (21) and (22). 

Since the analysis of the homogeneous case is well known, we just review the results. The 
system has three stationary solutions at x, = 0, Xb = 1, and xc = G/C. The solution xa is 
always unstable for positive values of the gain and cost (negative values of gain or cost do not 
have an obvious physical interpretation). If the gain G is greater than the cost then solution 
xc > 1, and thus lies outside the physically realistic domain. In this case, the solution 26 is 
always stable (again we just consider positive values of G and C). For G < C, the solution 
x, enters into the physical domain, and becomes stable while the solution zb becomes unstable. 
Thus for G c C, the stable state is to have a mixture of hawks and doves in a ratio given by G 
and C. 

5. EFFECTS OF HETEROGENEITY 

Even if the conditions upon the two patches differ, the final state of the population may not 
be very different from the homogeneous case, as we saw in the last section. The homogeneity 
becomes important when the parameter cr is nonzero. Then the similarities between our model 
and the homogeneous case come to an end, since the polynomial f(z) now has two roots, giving 
a total of four stationary solutions. 

The heterogeneity of our model is described by three parameters, c, g, and T. If c # 0, then 
the cost of following a hawk-like strategy varies between the two patches. If g # 0, then it is the 
gain involved in winning a confrontation with another individual which differs, while if T # 0, 
then the rates of migration between the two patches for the hawks and doves are no longer the 
same. The parameter V, although it describes the asymmetry between the migration rates, does 
not significantly alter the behaviour of the model if it is nonzero. As seen in the last section, 
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Figure 3. The ratio of hawks (2) plotted against the reciprocal of the total population. 
The heterogeneous model when Q # 0 and the two solutions zl and 22 lie in the 
domain z E (0,l). Circles indicate starting values while the stars at n = 00 indicate 
the stable stationary solutions 21 = 0.22 and ~2 = 0.64. The total population tends 
to infinity because no ceiling has been imposed on the model. Depending upon the 
initial starting value of z, the population tends towards a purely hawk structure or 
a mixture of hawks and doves. 

this is because the symmetry between the hawks and doves is still maintained, even if f # 0. 
Heterogeneity introduces a wide range of dynamical behaviours which are not present in the 
homogeneous case. We review the situations, and discuss their physical significance. 

First, if both the roots of f(z) lie outside the domain z E [0, 11, then it is possible that 
the solution 2 = 0 is stable while 2 = 1 is unstable, or vice versa (the stability of 2 = 0 is 
determined by equation (15)). So, the final population is either all doves or all hawks. This 
should be compared to the homogeneous case where only z = 1 (all hawks) was stable. Even 
if one patch apparently supports an obligate hawk-like population (e.g., G1 > Cl), a suitably 
“poor” neighbouring patch (e.g., Gz < C2, G1) combined with a suitably high migration rate is 
enough to make the hawk strategy inviable, and cause an obligate dove population. 

If the solution ~1 lies in the domain z E (0, l), then we have the possibility of a mixed 
population, where hawk and dove individuals cohabit the same regions. So long as o > 0, 
this mixed state is stable. Parameter changes can change the stability. If the quality of the 
environments alter or the migration becomes easier, effects may be seen in the stability of the 
population structure. A similar range of behaviours is possible when only 22 lies in the range 
2 E (0,l). 

The most novel case is when both roots z1 and x2 lie in the physical domain x E (0,l). In 
this case, the final state of the population depends upon its starting state. If ~1 is stable, and 
hence z2 unstable, then for an initial z sufficiently small, the population will tend towards the 
stable mixed state at 21. However, if the initial z exceeds ~2, then the doves no longer have 
any possibility of surviving and the system converges upon an obligately hawk population. A 
numerical simulation illustrating this situation is given in Figure 3. This behaviour is caused by 
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a playoff between patch “quality” and migration. Consider a patch PI, which favours an obligate 
hawk population (i.e., Gr sufficiently greater than Cl), but where migration of hawks from this 
patch is much faster than their migration onto the patch, and where migration of doves onto the 
patch is much greater than their migration off the patch. Now, if we have enough hawks to start 
with they can capitalise upon the high dove concentrations on PI and the favourable environment, 
allowing the hawks to dominate on both patches. However, if the initial population of hawks is 
too small, then the handicap of the less favourable patch become impossible to compensate for 
and a mixed population results. 

The complementary case would be when cv < 0, in which case ~1 is unstable. However, in this 
case, 21 will not lie in the range 0 < x c 1, and thus the two roots are no longer both in the 
physical range. 

6. DISCUSSION 

The aggregation techniques developed using ideas about time-scale hierarchies have permitted 
us to decompose the original system into a fast migratory part and a slow game-dynamics part. 
Assuming stability of the fast dynamics, their equilibrium solution was placed into the slow 
dynamics in order to obtain the dynamics of the full system. It has been possible to obtain 
analytical results from what, in general, is a complicated system. 

The heterogeneous model does contain, as a special case, the homogeneous single patch model, 
as it should. As for the single patch, if parameters of the two patch model, such as the migration 
rates or the gains and costs, are changed then a previously stable solution can become unstable, 
and vice versa. As an example, such parameter change could arise from human intervention, or 
from the slow natural evolution of the environment. The general dynamics of the heterogeneous 
model are considerably richer than those of the homogeneous model, and new effects are seen. 
The effects of adding a second patch, alters the dynamics in a nontrivial way. New stationary 
solutions appear and existing solutions can have their stability properties altered. For example, 
the presence of a stable obligate dove strategy is allowed, albeit in a very special circumstance, and 
two stable physically realistic solutions can occur, where as only one is allowed in the homogeneous 
case. 

Although such a simple model is not going to show the type of chaotic behaviour seen by Nowak 
and May [4] and Hassell et al. [5], it does start to show dependencies upon the initial conditions. 
This is interesting because no parameters have to change in order that the final state changes. 
Only a shift in the variables of the model is required. For instance, a mixed population could 
be turned into a purely hawk population with a suitable input of hawk-like individuals while a 
population, originally destined to be obligately hawk, may become mixed if there is a sudden cull 
of hawk individuals. Other situations are conceivable. 

The question of whether such effects occur in real populations has yet to be shown. The next 
stage of this work will be to apply these ideas to real populations whose individuals are free to 
undertake local migrations in order to change their habitat. Extensions of the migratory part of 
the model to various other patch geometries (e.g., cyclic or branching patters), higher numbers of 
patches, and populations with carrying capacities, may also be possible. The game theory part 
could also be adapted, for example, to include three strategies games, bimatrix dynamics, such 
as a battle of the sexes or density dependent payoffs. Our present work shows that heterogeneous 
environments, even as simple as the one studied here, can have novel consequences which must 
be important if ecology is going to study realistic situations. 

APPENDIX 
DETAILS OF THE CALCULATION OF f(x) 

In order to pass between the full equations (l)-(4) for the system to the equation (13) for the 
slow dynamics of z = nH/n, the steps are complicated, but mathematically straightforward. Our 



Hawks and Doves 107 

calculations were originally done by hand, and then checked and further cases examined using 
the mathematical computer package, MAPLE V. The fast dynamics are calculated, as explained 
in Section 3, giving the variables n~i, nH2 in terms of nH, and nD1, nD2 in terms of nD. Once 
this is done, we can turn to the slow game dynamics. Adding equation (1) to equation (3), and 
equation (2) to equation (4) gives, 

d nH1 Gl -Cl 
nHl+Glnm + 1 nH2 G2 - C2 

znH= 
nH1 +nDl 2 nH2 +nD2 2 nHz+Gsnoa , (23) 1 

d nDl G 
-&nD = -nDl + 

nD2 G2 

nH1 + nDl 2 
-7202, 

nH2 + nD2 2 
(24) 

for the evolutionary equations of nH and nD, where all the parameters are described in the 
introduction. For realistic cases, where the populations are positive, the only stationary solution 
is when nH = nD = 0 and this is found to be unstable. Thus, there is no stable stationary 
solution for the whole system. To proceed, we change variables to be n = nH + no, the total 
population, and 2 = nH/n, the proportion of this populations which is hawk-like. The dynamical 
equations for these new variables are 

dn dnH dnD -- 
dt = dt + dt ’ 

dx (1 - x) dnH 2 dnD 
------. 

dt- n dt n dt 

(25) 

(26) 

The total population is found to have only one stationary point at n = 0 which is unstable, 
but the equation for x, which is independent of n has a more complicated behaviour. This far 
into the game-dynamics, nothing is really new. All these ideas have been well studied before. 
What we must now do is rewrite equation (26) explicitly in terms of x. First of all, we treat the 
ratios nHi/nH, nHs/nH, noi/nD, and nDs/njJ as parameters since they depend only upon the 
constant migration rates. It is quickly seen that the right-hand side of equation (26) can have a 
common factor of x(1 - x) brought out to give us 

dx n2 
x= -(l-x){ [(G-C,, (z)2r2+(G2-c2) (z)2rl 

2nln2 

-~G~~~F~-~G~~=~~+G~ (9rzCG2 (9’4~ (27) 

2G1E zr2 + 2G2z zrl + Gi (92r2+G2 (5’q}, 

where r-1 = (nH1 +nor)/n and ?-2 = (n&?+nDs)/n, which are used to simplify the representation, 
are functions linear in x. The term inside the curly brackets is quadratic in x, and is the 
function f(z) in equation (13). Thus, all that remains to be done is rewrite this bracket in a more 
convenient form. First, we change the parameters so that we can easily look at nonsymmetric 
cases. We define new parameters, G, g, C, c, f, T, such that 

g = GI - G2, (2% 

(30) 

c = Cl - c2, (31) 
F=f ( 1-z-z ) > (32) 

_;(+zL). (33) 
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In the symmetric case when both patches are the same and the migration rates are equally 
balanced, g = c = f = T = 0. Now, we collect the terms inside the curly bracket of equation (27) 
into powers of z and write them as shown in equations (13),(14). 
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