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Summary  

A high fructose intake, mainly consumed with products containing added sugars, is currently 

suspected to be responsible for an increase in the global prevalence of obesity and related 

metabolic diseases. This suspicion rests on several short-term studies showing that a high-

fructose intake negatively impacts cardio-metabolic risk factors in healthy volunteers. Some 

studies however report that fructose’s harmful metabolic effects can be partially prevented by 

other dietary or life-style related factors. Each of the two studies included in this PhD thesis 

aimed to investigate the effects of a candidate factor. The first of them, bariatric surgery, is 

considered as the most effective treatment for grade III obesity, and is known to markedly 

improve obesity-associated metabolic alterations. In the first study, we assessed whether Roux-

en-Y gastric bypass surgery altered postprandial fructose kinetics and de novo lipogenesis, with 

a special focus on intestinal de novo lipogenesis and on blood lipid profiles. Our results indicate 

that this surgical procedure does not induce any fructose malabsorption, but drastically 

decreases postprandial hyperlipemia. The latter effect was observed without any decrease in 

intestinal de novo lipogenesis, however. Second, several studies have also shown that a high-

protein intake was associated with beneficial effects on body weight, glucose homeostasis, and, 

more recently, on intrahepatic fat concentration in obese or in healthy subjects during short-

term overfeeding experiments. In the second study, we assessed in healthy volunteers whether 

the short-term effects of saccharose overfeeding was modulated by the dietary protein and lipid 

intake. Our results indicate that the same excess saccharose and total energy intake caused a 

five-fold larger increase in intrahepatic fat content when associated with a low-protein, high-

lipid diet than with a high-protein, low-lipid diet.  
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Résumé  

Il est soupçonné qu’une consommation excessive de fructose, principalement présent dans 

notre alimentation sous forme de sucres ajoutés, pourrait être responsable de la récente 

augmentation de la prévalence mondiale d’obésité et des maladies métaboliques. Ceci repose 

sur de nombreuses études d’intervention qui montrent qu’une suralimentation en fructose 

influe négativement sur les marqueurs de risque métabolique et cardiovasculaire. Pourtant, 

certaines études démontrent aussi que les effets négatifs du fructose peuvent être partiellement 

atténués par divers facteurs, alimentaires ou liés au mode de vie. Les études effectuées dans le 

cadre de cette thèse avaient pour but de préciser l’effet de certains de ces facteurs. La chirurgie 

bariatrique est actuellement considérée comme la méthode le plus efficace pour le traitement 

de l’obésité de degré III. De surcroit, elle est susceptible d’améliorer les anomalies 

métaboliques associées à l’obésité. Dans une première étude, nous avons évalué si le bypass 

gastrique selon Roux-en-Y altérait la cinétique postprandiale du fructose et la lipogenèse de 

novo. Une attention particulière a été portée à la lipogenèse intestinale de novo et aux 

éventuelles conséquences de sa modification sur les concentrations sanguines de lipides. Les 

résultats indiquent que le bypass gastrique n’entraîne pas de malabsorption de fructose, mais 

diminue l’excursion postprandiale de triglycérides, et ce malgré une lipogenèse intestinale 

préservée. Il a aussi été rapporté à plusieurs reprises, qu’une augmentation de l’apport 

protéique pouvait être associé à une perte de poids, une amélioration de l'homéostasie du 

glucose et, plus récemment, la diminution de la quantité de graisse stockée dans le parenchyme 

hépatique chez l’obèse ou dans des modèles expérimentaux de suralimentation chez le 

volontaire sain. Dans une seconde étude, nous avons donc évalué si les effets d’une surcharge 

de courte durée en saccharose variait en fonction du contenu en protéines et lipides de 

l’alimentation. Les résultats obtenus démontrent que, à même surcharge en saccharose et en 

énergie totale, le stockage de lipides intrahépatique est 5 fois plus important en présence d’une 
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alimentation pauvre en protéines et riche en lipide qu’en présence d’une alimentation hyper-

protéinée pauvre en lipides. 
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Glossary 

Acetyl-CoA Acetylcoenzyme A 
Acyl-CoA Acyl-coenzyme A 
ApoB  Apolipoprotein B 
ATP Adenosine triphosphate 
ADP Adenosine diphosphate 
AMP Adenosine monophosphate 
BA  Bile acids 
BMI  Body mass index 
BP  Blood pressure 
bw  Body weight 
CCK  Cholecystokinin 
CO2  Carbon dioxide 
Ctr  Control 
CVD   Cardiovascular diseases 
DGAC Dietary Guidelines 

Advisory Committee 
DHAP Dihydroxyacetone 

phosphate 
DNL  De novo lipogenesis 
E  Energy 
EAA  Essential amino acids 
EFSA European Food Safety 

Authority 
FFA  Free fatty acids 
FGF19  Fibroblast growth factor 19 
FXRs  Farnesoid X receptors 
GIP Gastric inhibitory 

polypeptide 
GLP-1  Glucagon-like peptide-I 
GLUT  Glucose transporter 
GLUT2 Glucose transporter 2 
GLUT5 Fructose transporter 5 
HbA1c Glycated hemoglobin 

concentration 
HFCS  High fructose corn syrup 
HP-LF High-protein/low-fat diet 

IHCL  Intrhepatocellular lipids 
IL  Interleukin 
IMCL  Intramyocellular lipids 
LP-HF  Low-protein/high fat diet 
MIDA Mass isotopomer 

distribution analysis 
MRS Magnetic resonance 

spectroscopy 
NAFLD Non-alcoholic fatty liver 

diseases 
NHANES National Health and 

Nutrition Examination 
Survey 

P  Phosphate 
PL  Protein, lipid diet 
PLFG Protein, lipid, fructose, and 

glucose diet 
PPARG Peroxisome proliferator 

activated receptor gamma 
RCT  Randomized control trial 
RYGB  Roux-En-Y gastric bypass 
SAT Subcutaneous adipose 

tissue 
SGLT1 Sodium-dependent glucose 

transporter 
SSB  Sugar-sweetened beverages 
TG   Triglycerides 
TRL             Triglyceride-rich lipoprotein 
UA  Uric acids 
USDA  United States Department 

of Agriculture 
VAT  Visceral adipose tissue 
VLDL-TG Very-low density 

lipoproteins bound 
triglycerides 

W  Watt 
WHO  World Health Organization 
WM  Maintenance diet 
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Context 

 

General philosophical introduction on nutrition, health, and well-being 

Equilibrated, balanced, and harmonious are synonyms that are used to describe a successful 

life and happiness by Thomas Merton, an American poet, Trappist monk and theologian1. This 

“balance” concerns all aspects of our life, but especially one that is essential to survival and 

structures daily activity: eating. Eating behavior, which is connected to and influenced by 

social context, cultural values, and personal preferences, can function as an overall indicator 

of health (1). The perception of “good health” over time was and still is, strongly reflected in 

the “body image”. Disequilibrium related to food intake and lifestyle habits may generate 

syndromes such as “binge eating” disorder, excessive fat accumulation and its associated 

comorbidities, or anorexia nervosa and bulimia. These disorders may have an extreme impact 

on body weight, ranging from exaggerated leanness to obesity.  

 

The prevalence of overweightness and obesity in adults has tripled worldwide since 1975 (2). 

As a consequence, obesity prevalence is currently even greater than 50% of the population in 

some countries (3). However, the obese condition is not a new one and was already encountered 

several thousand years ago. Curious archeological discoveries may give another view on the 

excess body weight problem. There is a series of sculptures found across Europe, which 

represent female shapes, known in archeology as “Venus figurines”, created from the lower to 

upper Paleolithic epoch. Interestingly, these figurines represent corpulent female forms. The 

Venus of Willendorf (Figure 1) created about 30000 years before calendar era (BCE) is 

considered as the oldest icon of obesity (4).  

                                                        
1 “Happiness is not a matter of intensity but of balance and order and rhythm and harmony” by Thomas Merton 
in an essays published in 1955 titled “No Man is an Island”, chapter called “Being and Doing”. 
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Figure 1. Venus of Willendorf, made 30,000 BCE. Source: Seshadri K.G. (4). 

This observation suggests that obesity was present from early prehistory and not just from the 

last century. Putting to one side cultural concepts of beauty, recent research has demonstrated 

significant health risks associated with fatness. Today the popular desire for health and a slim 

appearance, juxtaposed with the increasing prevalence of obesity, makes it important to find 

the reasons and solutions for the worldwide increase in adult body weight.  
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For whom, where, and when did fructose become a modern problem? 

 
The main factor contributing to obesity is an imbalance between energy intake and expenditure, 

but other risk factors, such as genetics, socioeconomic factors, lifestyle choices and the quality 

of foods or dietary macronutrient composition, that is, carbohydrate, fat, and protein, may play 

a role. Previously, in the 1990s, fat intake was considered as the main “culprit” or predictor of 

body fat. However, since the 2000s, the focus has shifted toward the role of sugar intake in the 

pathogenesis of obesity (5).  

One of the reasons that sugar is so prevalent in modern diets lies in the development of low-

cost sugar production methods. The price of sugar production spiked during the 1970s and 80s, 

which prompted the development of alternatives to traditional cane and beet sugars.  The USA 

was and still is the highest worldwide producer of corn (6), and the corn wet milling industry 

was looking for new applications for cornstarch manufacturing at this time. The creation of 

liquid sweetener, enzymatically produced from corn, called high fructose corn syrup (HFCS), 

offered a successful alternative to sugar in the USA.  

In the early 1970s, this alternative to sucrose was initiated in the USA. Today, HFCS is widely 

used in beverages and the food industry mainly in North America, but also in some countries 

of Europe and Asia (7). Corn syrup brings several advantages over sucrose production. First, 

it has a lower production cost compared to sugars from cane or beet (8). Second, the similar 

sweetening power of HFCS to sucrose leads to the easy replacement of sucrose in industrial 

products. Additionally, HFCS brings functional advantages, like moisture and microbial 

growth control, extending the shelf-life of baked goods, and water control in a frozen system 

of alimentary products (9).  

As industrialization increased in the USA, food products became widely available on the 

market. Between 1970 and 2002 the size of the food portions increased between 2- to 8-fold 

(10). In result, total individual food consumption increased by approximately 500 kcal/day per 
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capita (11). The availability of caloric sweeteners (cane and beet sugars, corn sweeteners, 

edible syrups, and honey) in the USA between 1966 and 1999 increased from 51kg/year per 

capita to 69kg/year per capita. Since 2000, added sugars as a fraction of daily caloric intake 

have decreased slightly, but still exceeded dietary recommendations (12). Consumption of 

sugar-sweetened beverages (SSB) has also increased, and total energy intake for soft drinks 

rose from 2.8% in 1977 to 7% in 2001 (13).  

The stark observation of increased obesity and expanded utilization of HFCS in the USA, 

mostly in the sugar-sweetened beverage (SSB) sector, triggered a world-wide debate of 

identifying the causes of weight gain in the population. In 2004, the assumption was made that 

overconsumption of HFCS and in particular its fructose component, which has more lipogenic 

potential than glucose, “may be an important contributor to the epidemic of obesity”(14). It 

was further suggested that SSBs may make an important contribution to an increased total 

energy intake.  

Sugar consumption today represents between 10% and 20% of daily energy (E) intake in North 

America (15). However, in the National Health and Nutrition Examination Survey (NHANES), 

between 2003 and 2006, it was observed that 30% of the population consumed even more than 

25% of energy from added sugars (16). The global average in 2007 showed that consumption 

of fructose as a part of sweeteners corresponded to 65g/day per capita (17). 

Interestingly, while HFCS is widely used in the USA, its use remains low in other part of the 

world. However, in the same period, obesity prevalence increased in Europe, Asia, and 

Australia, where HFCS is little or not used (18). Independently, overweight and obesity as 

defined by body mass index (BMI) (calculated from the weight and height of an individual 

(kg/m2)) in children and adolescents correlated with that of adults, which increased between 

1975 and 2016. Surprisingly, from 2000 until 2016 a plateauing of BMI in children and 
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adolescents was observed in many high-income countries. However, BMI started to increase 

in other parts of the world, and even accelerated, e.g., in Asia (19).  

The role and contribution of sugars and, in particular, fructose, in the current obesity epidemic, 

and the adverse effects on human health that they may cause, will be discussed in the following 

chapters. Moreover, corrective factors in imbalanced behaviors seem to be important. In 

situations of overfeeding with sugar, could some factors have a protective effect on metabolic 

disorders? In extreme situations due to obesity, when surgical procedures are involved, how do 

they affect the normal metabolism of fructose?  

In the present work I will focus on two aspects: 

1. Effect of Roux-En-Y gastric bypass (RYGB) on fructose metabolism. 

2. Effect of dietary protein content on fructose-induced deposition of intrahepatic fat and 

dyslipidemia. 
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Chapter I Introduction  

 

Sugars 

The terms “sugars” or “simple sugars” are commonly used to describe simple carbohydrates 

like monosaccharides (glucose, fructose, galactose) and disaccharides (sucrose, lactose, 

maltose). Sugars occur naturally in foods or are added during food preparation and industrial 

processing (20). High sugar consumption has been proposed to be a cause of increased body 

weight (21), dental caries (22), and cardiovascular risk (23). The mechanism responsible for 

sugar-induced body weight gain may be that the sweet flavor, which gives the particular, 

pleasant taste, and hedonic properties of sugars favor the overconsumption of sweet foods and 

beverages (24).  

In particular, sugar-sweetened beverages are proposed to contribute heavily to the epidemic of 

obesity by adding directly extra energy to the diet (25). Moreover, the hypothesis that sugar is 

the main factor responsible for obesity has been challenged on the basis that there is no clear 

evidence that added sugars or any other nutrients have a unique role in the obesity problem or 

any other health disorders (26).  

It is generally recognized that, besides genetic predisposition, the overconsumption of energy 

and low physical activity are mandatory factors to promote an excess energy balance and cause 

obesity and its associated health problems. Whether this stems from one single macronutrient 

like fructose, or occurs as a consequence of excess calories from any macronutrient class is 

still controversial, and the debate is ongoing. Nonetheless, many national and international 

dietary guidelines proposed to reduce sugar intake, mainly based on the observation that it 

represents an important source of calories, it is a dispensable nutrient, and its major dietary 

sources in western diets (SSBs and confectionary) have relatively low nutritional quality. Some 

of these recommendations are briefly summarized below.
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a) Added sugars 

“Added sugar” is the term proposed in 2000 by the United States Department of Agriculture 

(USDA) to define sugars not naturally found in foods, but which are added during industrial 

food processing and in home preparation (27). It includes, among others: HFCS, white and 

brown sugar, raw sugar, malt syrup, maple syrup, honey, and crystal dextrose. This definition 

excludes all natural sugars present in fruits, vegetables, and their juices or purees, and sugars 

from dairy products (28), but includes fruit juice concentrate (20).  

“Added sugars” is a term that is referred to in different health guidelines. Indeed, this term is 

used in the Dietary Guidelines Advisory Committee (DGAC) in the United States (29), in 

Nordic countries (30), and many other countries and organizations, like the European Food 

Safety Authority (EFSA) (20). Recommendations for added sugar consumption in these 

guidelines are less than 10% of total energy intake (E).  

 

b) Free sugars 

The definition of “free sugars” was initially proposed by the World Health Organization 

(WHO) in 2003. Free sugars represent all mono- and disaccharides added to food and 

beverages through manufacturing or home preparation. This term includes sugars naturally 

present in honey, syrups, fresh fruit juices, and their concentrates (31). However, sugars 

naturally present in whole fruits, vegetables (cooked or dried), and sugars present in dairy 

products are excluded (32). WHO recommendations for free sugars correspond today to less 

than 10% of E, and a conditional recommendation limit of less than 5% of E (31). “Non-milk 

extrinsic sugars” (NMES), is another term that was in use in the UK until recently (until SACN 

report 2015), which is almost synonymous with “free sugars,” and also excludes lactose 

provided in dairy products (20). 
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c) Natural sugars  

Naturally occurring sugars (such as sucrose, fructose, glucose) are present in plants, within cell 

walls of fruits, vegetables, and berries. Moreover, lactose present naturally in dairy milk and 

products also belongs to this group. The WHO guidelines do not refer to the natural sugar 

intake, because there is no reported evidence of adverse effects when consuming these types 

of sugars (32).  

However, in the UK a similar term exists, “intrinsic sugars”, which refers to sugars that are an 

integral part of unprocessed food and naturally enclosed in the cellular structure of food, except 

milk sugar, lactose (33). In contrast, “extrinsic sugars” are defined as all sugars not present in 

the cells and includes lactose from milk. To distinguish sugars provided from extrinsic and 

milk sources, the term “non-milk extrinsic sugars” was established, which corresponds to the 

term “added sugars” in the US. Figure 2 resumes a visual representation of the different terms 

that are used to describe sugars.  

  
Figure 2. Different sugars terms. Source: Scapin et al., 2017, (34). 

None of the governmental organizations base their recommendations on the upper limit of total 

sugar intake, which includes added sugars and sugars provided from natural sources, except
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France, where an upper limit is 100g sugars per day with an emphasis on promoting the 

consumption of fruits and vegetables (35). Furthermore, the lack of harmonization and unified 

definitions of added, free, and total sugar intake may be confusing for consumers. Additionally, 

in the report provided by European Food Safety Authority (EFSA) (36), authors confirm that 

available evidence is insufficient to provide a unique and directly causal role of sugar intake 

with health effects, that is, impaired glucose tolerance and insulin sensitivity, increased serum 

lipids, and cardiovascular risk factors, increased body weight, type 2 diabetes, and caries (36).  

 

Fructose  

Fructose is a monosaccharide naturally present in its free form in fruits, some vegetables, 

honey, and in natural maple and agave syrups. All national and international dietary guidelines 

recommend a large consumption of fruits and vegetables, suggesting that fructose from fruits 

may exert beneficial effects on human health (37). Conversely, fructose consumption from 

added sugar was proposed to have toxic effects and has even been compared to alcohol abuse 

(38). These contradictory statements may be very confusing for the general public. 

It is important to note, that fructose is rarely consumed in its pure form as a sweetener and is 

mainly ingested as a part of complex foods with other macro- and micronutrients and fiber. 

Most commonly, fructose is bound with another monosaccharide, glucose, in the same 

proportion (50%-50%) and is co-ingested in the form of the disaccharide called sucrose, or 

more popularly known as “table sugar” or “white sugar.” Sucrose is naturally present in fruits 

and vegetables and is industrially produced from sugar cane and beets. Fructose is 1.2 times 

sweeter than sucrose and more sweet than most other natural sugars (9). 

Fructose is also present in caloric sweeteners, that is, in high fructose corn syrup (HFCS), 

which is a mixture of free monosaccharides: fructose and glucose. This syrup is obtained 

through an industrial process by extraction of starch from corn and then hydrolysis to glucose. 
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The immobilized isomerase reactors of glucose to fructose allow obtaining of equilibrium 

fructose concentration of 42%. The next step of chromatographic separation technology 

yielded low glucose to fructose ratio, providing 90% of fructose syrup. HFCS 90% is then   

mixed with HFCS 42% to obtain HFCS 55% (39). Generally two types of HFCS are used in 

the food industry. The first type is HFCS-55, which contains 55% fructose, 42% glucose, and 

3% glucose polymers, and is mainly used in soft drink production. Its sweetness is very similar 

(99%) to sucrose and it was designed to serve as a substitute for sucrose in sugar-sweetened 

soft drinks. The second type is HFCS-42 (42% fructose, 53% glucose, and 5% glucose 

polymers), which has a lower sweetness (92%) attributed to its lower fructose concentration. 

This type of HFCS is mainly used in processed foods, baked goods, and some beverages. In 

general, the fructose to glucose ratio of HFCS is close to the ratio that is found in sucrose (50%-

50%), which means that the proportion of sugars released during digestion of sucrose and 

HFCS is similar (40). 

Daily total fructose intake less than 50g is considered as moderate, between 50g and 100g per 

day as a high intake, and more than 100g per day is excessive intake (41). Fructose is mainly 

consumed with glucose (i.e., sucrose, HFCS), which means that a moderate daily intake of 

fructose will represent 100g/day of sucrose (20% total energy intake calculated for a total 

energy intake of 2000 kcal/day).  

 

a) Fructose absorption 

From the perspective of chemical structure and physiological effects, fructose molecules are 

indistinguishable by source. Therefore, any specific physiological effect of a fructose-

containing food has to be determined by the food matrix. For instance, natural sugars in fruits 

are ingested together with vitamins, minerals, antioxidants, and fiber naturally present in these 

products. Moreover, it was shown that the form in which fruits are consumed (whole fruit vs 
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juice) may indeed have an impact on satiety and energy intake of the meal. Whole fruits have 

a larger satiating effects than isocaloric fruit juices (42). In general, consumption of whole 

fruits has been associated with a lower risk of cardiovascular diseases (43), type 2 diabetes 

(44), and obesity (42). This protective effect of fruits and vegetables, despite their sugar 

content, may be due to various mechanisms. The high fiber content of whole fruits accounts 

for an increased satiety, and slower digestion and absorption of sugars as compared to fruit 

juices (45). Furthermore, fruits and vegetables are rich in antioxidants (including vitamins C, 

E, b carotene, and flavonoids), which may stimulate the immune system and have an impact 

on cholesterol metabolism and blood pressure (46). 

 

b) Enteric metabolism 

Fructose presented in the gut is generally delivered with consumed sucrose or HFCS and rarely 

in free form. Ingested sucrose (disaccharide) is degraded by the intestinal enzyme sucrase, 

which releases fructose and glucose molecules. Absorption of these monosaccharides then 

takes place in the duodenum and jejunum (proximal small bowel) and involves specific 

transporters (Figure 3). At the brush-border membrane of the lumen, glucose is transported into 

enterocytes by the sodium-dependent glucose transporter (SGLT1). The SGLT1 transports 

glucose molecules together with sodium ions and relies on the electrochemical gradient and 

concentration of Na+ regulated by a Na+/K+ ATP-ase situated on the basolateral membrane. 

From the intracellular compartment to the bloodstream, glucose is transported by a facilitated 

glucose transporter GLUT2. It has been also proposed that in the presence of a high 

concentration of glucose, the GLUT2 transporters may be recruited in the lumen membrane to 

facilitate glucose passage (47). 

SGLT1 is used for absorption, not only of glucose, but also of galactose. In contrast, fructose 

is absorbed from the gut lumen through a specific fructose transporter GLUT5 (or SLC2A5), 
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located at the apical pole of enterocytes. This transporter allows a facilitated diffusion of 

fructose, independent of Na+ absorption. Both fructose and glucose are then transferred into 

the bloodstream via the same facilitated transporter, GLUT2. Fructose absorption is slower 

than that of glucose, and the rate of fructose appearance in the blood is correlated with the 

number of GLUT5 transporters in the membrane.  

 

Figure 3. Absorption of monosaccharides in the intestine. Source: Sitrin, 2014, (48). 

 

It was shown that, in healthy humans, the capacity to absorb free fructose varied widely 

between individuals, with a range from less than 5g to more than 50g (49). In many individuals, 

with a high fructose load (e.g., >25g), some fructose will not be absorbed in the small intestine, 

and proceed to the colon where it can exert an osmotic effect, or be fermented by colonic 

bacteria with the concomitant production of hydrogen gas (50). Under such conditions, 

increased intestinal gas production may affect intestinal motility and cause gastrointestinal 

pain, thus eliciting symptoms resembling irritable bowel syndrome. Free fructose alone is 

particularly poorly absorbed however compared to other hexoses (51). However, in typical 

Western diets, fructose is mainly ingested in the form of sucrose (fructose bonded with glucose) 

or as an HFCS (a mixture of free molecules of glucose and fructose) and is better absorbed 
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than free fructose in healthy individuals (52). Indeed, the presence of glucose (49), galactose 

(53) and certain amino acids (54) may increase fructose absorption. It was also observed that a 

chronic, high fructose intake increases the expression of GLUT5, leading to increased 

absorption of fructose (55).  

 

c) Hepatic metabolism 

Unlike glucose, fructose absorbed in the bloodstream cannot be directly metabolized by most 

cells of the body and first needs to be converted to other metabolites (glucose, lactate or fatty 

acids), mainly in the liver, which expresses specific enzymes for fructose metabolism. A small 

portion of ingested fructose may also be metabolized in other splanchnic organs (small 

intestinal mucosa, kidney cortex), where the same fructose metabolizing enzymes are also 

expressed. However, the quantity of fructose metabolized outside of the liver remains 

unknown.  

The initial steps for fructose metabolism in the liver differ markedly from glucose. After having 

been taken up by liver cells, glucose is metabolized to glucose 6-phosphate (P) by glucokinase 

(hexokinase IV), which is characterized by a high Km2 (lower affinity) for glucose, and hence 

glucose metabolism is dependent on glucose concentration. Further down the glycolytic 

pathway, phosphofructokinase catalyzes the conversion of fructose 6-P to fructose 1,6-

diphosphate. This enzyme is a key control point for glycolysis, and is potently inhibited by 

increased intracellular citrate and ATP (56). 

In contrast, the initial steps for fructose metabolism, or fructolysis, are catalyzed by three 

specific enzymes: fructokinase (ketohexokinase), aldolase type B, and a triokinase. The first 

step is phosphorylation by ATP to fructose 1-P, which is catalyzed by the enzyme fructokinase. 

                                                        
2 Km corresponds to the concentration of substrate, which leads the enzyme to obtain half Vmax. A high Km 
indicates a low affinity for the substrate and means a high concentration of substrate is needed to achieve 
maximum reaction velocity.  
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This enzyme is specific for fructose and is characterized by a low Km, which allows rapid 

metabolism of fructose in liver cells (57). Then, an aldolase B (liver aldolase) converts fructose 

1-P into two trioses: glyceraldehyde and dihydroxyacetone-phosphate. Glyceraldehyde is then 

converted into glyceraldehyde phosphate by a third enzyme, a triokinase. Dihydroxyacetone-P 

(DHAP) and glyceraldehyde-3-P are normal glycolytic intermediates that can then be further 

processed into pyruvate (Figure 4). 

   

Figure 4. Metabolism of fructose and glucose and major products of fructose metabolism, A) glucose, B) lactate, 
C) hepatic VLDL-TG secretion, “          “ accumulation of fructose 1-P increase hepatic glycogen synthesis. 
Source: Tran et al., (58) modified. 

 

Aldolase B deficiency (found in the liver, kidneys, and small intestine) is a rare inborn error of 

metabolism in which fructose consumption may irreversibly damage the liver and kidney (59).  

Inability to metabolize fructose 1-P provokes an accumulation of this molecule in the liver 

cells, a consumption of intracellular ATP, an acute intracellular energy crisis, and acute liver 

and renal dysfunctions. 

Of major importance, fructolysis bypasses key regulatory steps of glycolysis at the level of 

phosphofructokinase. In addition, fructolysis, unlike glycolysis, is not regulated by insulin or 

glucagon. As a consequence of this, ingestion of large amounts of fructose may lead to the 
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unregulated generation of large amounts of glyceraldehyde-3-P and DHAP, which will then be 

substrates for various metabolic pathways (Figure 4) (60): 

A. glucose production (gluconeogenesis): trioses-phosphate may join the gluconeogenesis 

pathway to glucose 6-P, and either be released as glucose in blood (about 50% of puree 

fructose) or stored as glycogen in the liver (15%) (61, 62). 

B. lactate production: triose phosphate may be metabolized into pyruvate and then into 

lactate by lactate dehydrogenase (about 25% (61)).  

C. lipid synthesis: both fructose and glucose can be converted into pyruvate, acetyl-CoA 

and then fatty acids via the de novo lipogenesis pathway (DNL), but fructose is more 

efficient in activating DNL and in stimulating hepatic VLDL-TG secretion than glucose. 

However, the conversion of fructose carbons into fatty acids represents quantitatively a 

minor pathway for fructose disposal (1-5%) (62-64).  

It was proposed that the preferential pathways used for fructose metabolism are oxidation 

and/or lactate production, because these pathways do not require any energy consumption (60, 

65). In contrast, gluconeogenesis and DNL require the hydrolysis of considerable amounts of 

ATP, and hence may be used only when oxidation and lactate production have reached their 

maximal levels (66). 

 

In summary, fructose and glucose metabolism have many similarities, sharing several common 

metabolic steps; however, fructose appears to be mainly metabolized in the liver and due to the 

high affinity of fructolytic enzymes with fructose. The first enzyme of fructose metabolism, 

fructokinase, is four times more active than glucokinase and thus results in the faster 

metabolism of fructose than glucose (57). Moreover, fructokinase has no negative feedback 

mechanisms, which means that all fructose entering a liver cell is rapidly phosphorylated to 

fructose-1-P. A high fructose load in cells may produce intracellular phosphate depletion, 
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which can result in harmful effects due to uric acid secretion and other downstream byproducts 

of metabolism, i.e., fatty acids and lactate. One effect of these metabolites is an impaired 

glucose uptake. In contrast, glycolysis is a highly regulated pathway with two levels of 

regulation. Fructose metabolism bypasses these regulated steps of glycolysis and is directly 

catalyzed by glucokinase and phosphofructokinase (Figure 4), which are inhibited by their 

products: citrate, ATP, and glycogen (indirectly).  

Hepatic fructose metabolism may further impact on glucose metabolism. Indeed, it was 

observed that small amounts of oral fructose may have a positive impact on postprandial 

glucose levels (67). Fructose may also play the role of regulator of liver glucose uptake, through 

fructose 1-P indirectly increasing the activity of glucokinase and hepatic glycogen synthesis 

(Figure 4) (68, 69). 

 

Effects of fructose on metabolic disease risk factors 

 
The potential adverse health effects of fructose have recently been widely presented in the 

media. Consumption of fructose is proposed to be a key factor in the development of metabolic 

diseases due to its particular metabolism. Moreover, consumption of sugar-sweetened 

beverages (SSBs) has been directly associated with increased body weight (70). Products rich 

in fructose have also been proposed to be linked with the development of metabolic syndrome, 

which corresponds to a cluster of metabolic alterations such as obesity, impaired glucose 

tolerance or insulin resistance, dyslipidemia, and hypertension (71, 72). The potential 

mechanisms by which fructose may cause these adverse metabolic effects will be briefly 

summarized below. The primary topics of the present work will be: a) glucose homeostasis, b) 

lipid profile, and c) ectopic lipids, which are quantifiable levels that can indicate the disorders 

that are also the main topics of my previously published studies. Below, selected literature will 

be reviewed, using a classification for total fructose intake proposed by Livesey et al., (41):  
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- Moderate intake: £ 50g/day (10%E calculated for 2000kcal/day) 

- High intake: > 50-100g/day (100g, 20%E) 

- Very high (excessive) intake: > 100g/day 

 

a) Glucose homeostasis  

Glucose homeostasis consists of maintaining an adequate but not excess level of blood glucose, 

which corresponds to a narrow range of 4 - 6 mmol/l in fasting conditions, and under 7.8 mmol/l 

in fed conditions (73). The balanced action of pancreatic gluco-regulatory hormones is largely 

responsible for maintaining blood glucose. Insulin, secreted by the beta-cells of pancreatic 

islets, is stimulated by the increased blood glucose concentrations occurring after ingestion of 

a meal. Insulin removes glucose from the bloodstream primarily by stimulating its uptake into 

insulin-dependent tissue, such as skeletal muscle and adipose tissue. In contrast, glucagon is 

produced by the alpha-cells of pancreatic islets when blood glucose is low, i.e., between meals 

and during the overnight fasting period. Glucagon stimulates endogenous (hepatic) glucose 

production (glycogenolysis and gluconeogenesis) to prevent hypoglycemia (74, 75).  

Blood glucose homeostasis can be altered by changing total dietary energy intake, the partition 

of total daily energy into several meals, and/or the relative intake of carbohydrates (starch and 

sugars), and type of sweeteners consumed (76). In healthy humans, seven days on a eucaloric3 

diet with low (10%E) and high (25%E) sucrose intake has been shown to not change fasting 

plasma glucose and does not appear to impact insulin sensitivity (77). Of special interest, it 

was observed that a small amount (7.5g) of fructose added to glucose beverages improved 

glucose tolerance in patients with type 2 diabetes without increasing their blood insulin 

concentration (87). The mechanism proposed for this beneficial effect on blood glucose levels 

                                                        
3 Eucaloric diet: kcal from diet corresponds to kcal burned, which means that energy intake and expenditure are 
equal. 
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was the increased presence of fructose’s metabolite fructose 1-P, which increased glucokinase 

activity, and is considered as a key regulator of glycolysis. This pathway may contribute to the 

improvement of glucose homeostasis by increasing hepatic glucose uptake and lowering 

glucose production (88). This indicates that small amounts of fructose may have catalytic 

effects to improve glucose utilization, mainly by enhancing glucokinase activation in liver cells 

independently of changes in insulin secretion.  

The effects of fructose were tested in diabetics, overweight and obese patients who consumed 

isocaloric4 diets containing fructose, glucose or sucrose (78). The amount of fructose was in 

the range between 25g and 104g per day. The postprandial blood glucose and insulin responses 

were lower, which indicated improved glucose homeostasis, after the fructose diet than those 

with sucrose or glucose. In patients with type 2 diabetes a very high dose of fructose (160g/day) 

exchanged for other carbohydrates did not increase fasting glucose and insulin levels (79), but 

decreased glycated hemoglobin concentration (HbA1c). This indicator reflects the average daily 

blood glucose concentration (80). A similar effect was seen in another study, where type 2 

diabetic patients consumed isocaloric diets containing either 20% fructose or 19% sucrose. No 

effect on blood glucose levels was observed after each diet (81). It is therefore suggested that 

in the short and middle terms (1 week to 52 weeks) fructose within an isocaloric diet does not 

harm glucose homeostasis, and may even improve glucose levels in diabetic patients.  

Due these observations, fructose was initially considered for use as a substitute for sucrose in 

the diet of diabetic patients. However, it was observed that despite these acute beneficial effects 

during isocaloric feeding, fructose may cause adverse effects on glucose homeostasis under 

some conditions which will be briefly reviewed here. 

                                                        
4 Isocaloric diet: the same or similar energy provided each day from moderate intake of macronutrients 
(carbohydrates, fats, proteins).  
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Overfeeding of healthy humans with an excess 15% total energy as fructose for four weeks, 

slightly increased fasting plasma glucose levels but did not change whole body insulin 

sensitivity as assessed by a hyperinsulinemic euglycemic clamp (82). In contrast, another study 

assessed the effects of graded doses of fructose (15%, 30%, and 40% of energy added) (83), 

and reported that high doses (30% and 40%) significantly increased hepatic glucose 

production, corresponding to some degree of hepatic insulin resistance. In another study, the 

diet of healthy volunteers was supplemented during three weeks with sweet beverages 

containing fructose in low (40g/day) and high (80g/day) doses (84). It was observed that even 

low amounts of fructose increased fasting glucose levels and caused hepatic insulin resistance. 

However, another study, in which healthy volunteers were supplemented with 150g/day 

fructose or glucose per day for four weeks, reported similar effects on hepatic insulin sensitivity 

with both sugars, suggesting that these effects were not to be specifically attributed to fructose 

(85).  

Interestingly, the effect of fructose may differ according to gender. Overfeeding with fructose 

(35%E) for six days increased fasting blood glucose in both males and females, but increased 

fasting insulin concentration in men only (86). These results may indicate that hepatic insulin 

resistance is more likely to occur in men under this condition than in women. 

Therefore, these results suggested that in the short and middle terms, hypercaloric, high 

fructose diet may impair glucose homeostasis.  

 

b) Lipid homeostasis 

Fructose stimulates more de novo lipogenesis (DNL) than other hexoses. In this pathway, 

acetyl-CoA produced from carbohydrate catabolism is reconverted into fatty acids (Figure 5) 

and by this property may lead to, e.g., hyperlipidemia (89). It has been well documented that 

high fructose intake may increase blood triglycerides (TG) concentration in healthy (90-93), 
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overweight subjects, and patients with type 2 diabetes mellitus (90, 94-96). This effect may be 

associated with deleterious long-term consequences, as elevated fasting and postprandial 

plasma TG are considered to be independent predictors of cardiovascular diseases (CVD) (97).  

 

Figure 5. Hepatic fructose metabolism and de novo lipogenesis pathway. Source: Adeli et al., (71). 

Mechanisms by which high fructose intake may play a role on lipid profiles include providing 

large amounts of hepatic triose-phosphate, and increased unregulated source acetyl CoA, which 

can fuel the de novo lipogenesis pathway in the liver (Figure 5). Increased synthesis of 

intrahepatic lipids lead in turn to their deposition within liver cells, which may contribute to 

cause hepatic insulin resistance (98), and in the long term lead to the development of non-

alcoholic fatty liver diseases (NAFLD) (99). High fructose intake can also stimulate the 

secretion of very low-density lipoprotein (VLDL-TG) and associated apolipoprotein B (apoB) 

(60, 91) and decreased VLDL-TG clearance (63, 100). Moreover, fructose intake activate 

adipose tissue lipoprotein lipase less than glucose (101), which in consequence may decrease 

triglyceride clearance (63). It was also proposed that high fructose intake may be linked with 
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an increased expression of lipogenic enzymes in the liver (61, 98) and can inhibit hepatic lipid 

oxidation (78).  

The effects of dietary fructose on blood lipids appear to be dose-dependent, and are observed 

with amounts > 50g/d (41). There is some controversy on whether this effect is specific for 

fructose, since some studies reported similar effects with glucose (63, 102). However, other 

studies did not report the same observations. An acute, moderate intake of a fructose drink, 

compared to glucose and sucrose drinks, showed no significant changes in plasma TG, but 

increased total cholesterol (103). Also, ingestion of isocaloric loads of fructose, glucose or 

other sweeteners (HFCS and sucrose) all led to similar increases in blood TG, however, without 

a significant difference between them (104).  

The activity of de novo lipogenesis from carbohydrates in normal adults on a typical Western 

diet5 (105) appears to be very low (1-2% fractional DNL in fasting and 5% in fed states) (106). 

Overfeeding with high sucrose or high glucose (50%E) however increases DNL activity 

markedly, but to the same extent with both sugars (107). In contrast, high fructose intake, 

corresponding to 25% of energy in weight maintaining diets in healthy non-obese participants 

consumed over nine days increased DNL significantly compared to the same diet, but with 

complex carbohydrates (108). Additionally, it was shown that increased DNL and VLDL-TG 

may be more important in subjects with NAFLD than for healthy individuals in a study that 

tested an isocaloric diet for 12 weeks with high sucrose intake (26%E) (109). 

Effects of fructose on blood lipids have been assessed with both solid foods containing 

fructose, and fructose drinks, with somewhat differing results. In a study in which a diet 

containing 7.5–21% fructose from solid foods was compared to the same diet containing 

carbohydrates, a modest rise was observed (110). In another similar study, a diet containing 

                                                        
5 Western diet: characterized by highly transformed food rich in fat, protein, refined grains, and lower in fruits 
and vegetable intake. 
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fructose (15-100g/day) but eliminating glucose or sucrose in solid or beverages, did not observe 

any increase of postprandial blood lipid levels. In contrast, a study which compared a 25%E 

from fructose in sugar-sweetened beverages added to an ad libitum6 diet increased fasting and 

postprandial TG, and also hepatic fractional DNL (100).  

The effect of fructose on lipid profiles may depend on many factors, including the amount of 

fructose intake, duration of consumption, gender, and health status of patients. 

Hypertriglyceridemia-induced by high fructose intake is mostly observed with hypercaloric 

diets, which may suggest a combined effect, among others, of high fructose intake and an 

excess of energy. It therefore appears that high fructose intake along with high total energy 

may induced hyperlipidemia and insulin resistance.   

 

c) Ectopic lipids  

Overconsumption of energy will in the long term cause an increase in body weight (and an 

increase in fat > lean body mass) and may lead to obesity. Excess energy is primarily stored as 

fat in adipose tissue, but small amounts of fat may nonetheless be deposited in other tissues, 

which do not normally contain lipid droplets to any large extent. Ectopic fat is defined as 

triglycerides stored in such organs that are not physiologically adapted for fat storage, like the 

liver, muscles, pancreas, and kidneys (111). Deposition of ectopic fat may have an impact the 

metabolic activity and/or function of organs. More specifically intrahepatic and 

intramyocellular fat have been associated with insulin resistance, in the liver or muscle, 

respectively (112). 

There are currently two proposed mechanisms for ectopic lipid deposition. The first proposed 

mechanism is that ectopic lipid deposition occurs when subcutaneous adipose tissue (SAT) 

storage becomes saturated or appears dysfunctional, as during a long period of positive energy 

                                                        
6 Ad libitum diet: Corresponds to habitual, “free feeding” diet of participant. 
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balance (113). A second mechanism proposes that carbohydrate overfeeding, and more 

specifically carbohydrate overfeeding with mono- or disaccharides (sucrose, glucose, and 

fructose), may provide an important load of trioses-phosphate as precursors of acetyl-CoA for 

DNL. In turn, DNL can upregulated VLDL-TG secretion and ectopic VLDL-TG extraction. 

Additionally, uncontrolled high fructose metabolism may provoke postprandial 

hypertriglyceridemia, which can increase visceral adipose deposition and ectopic fat (114). 

 

Intrahepatocellular lipid (IHCL) concentration 

Fructose consumption has been proposed to play a causal role in the development of obesity. 

In turn, obesity is associated with nonalcoholic fatty liver diseases (NAFLD). Less than 5% of 

the fat concentration in hepatocytes is considered as “normal”. Higher than 5% is defined as 

steatosis, the first step of NAFLD (115). Accumulation of fat in the liver is the result of an 

imbalance between the overall intrahepatocellular TG influx (triglyceride-rich lipoprotein 

uptake and DNL) and their removal from hepatocytes.   

In healthy subjects fructose intake as an 18% excess of energy during four weeks did not 

change IHCL deposition compared to the isocaloric diet with less than 20g/day of fructose 

(82). In contrast, in healthy subjects, it was observed that higher dose of dietary fructose content 

(25% and 35%) associated with a hypercaloric diet may significantly increase the liver fat 

content as early as after one week of the diet (91, 116). However, similar results on the liver 

were also observed for glucose overfeeding (30% and 35%E) (83, 93). Additionally, a 

hypercaloric, high-fructose diet with the addition of high fat almost doubled hepatic fat 

deposition compared with fructose alone (92).  

Overweight subjects increased non-significantly hepatic lipids to the same extent when 

consuming isocaloric diets with 25% total energy as fructose versus as glucose (117). However, 

in the same subjects, significantly increased of IHCL was observed after both fructose and 
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glucose, when were provided at 25% of energy excess (117). Other studies (109) have shown 

that intrahepatic lipids were higher when subjects consumed weight-maintenance diets with 

high (26%) vs low (6%) sugar content (non-milk extrinsic sugars) during 12 weeks: It also 

reported that, with the high sugar diet, IHCL increased to a larger extent in subjects with 

NAFLD than in healthy subjects (109). In contrast, overweight subjects who reduced their 

sugar intake by replacing their usual sugar-sweetened beverages by artificially sweetened 

drinks showed a decrease in IHCL concentration and a loss of body weight within 12 weeks 

(118).  

Various mechanisms can be involved in ectopic lipid deposition in the liver: 1) increased DNL; 

2) increased adipose tissue lipolysis and liver FFA uptake, and/or from the diet; 3) decreased 

hepatic ketogenesis and/or fatty acid oxidation; 4) decreased VLDL-TG secretion, presented 

in Figure 6 (119).  

 

Figure 6. Regulatory mechanisms of lipid accumulation in the liver. Source, Berlanga et al., (120) modified. 

 

In obese patients with NAFLD, it was observed, using oral stable isotopes (13C1-sodium 

acetate, 1,2,3,4 13C4-potassium palmitate, and 2H31-glyceryl-tripalmitin), that peripheral fatty 

acid as well DNL contribute to the accumulation of hepatic fat and lipidic profiles (121). It was 
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shown that fructose markedly increased hepatic DNL and triacylglycerol production, which 

can then be stored in the liver, be oxidized, or be secreted in the blood in the form of VLDL-

TG.  

 

When taking experimental conditions carefully into account, it appears that experimental 

studies demonstrated adverse effects only when fructose was provided as part of an 

hypercaloric diet, while under weight-maintaining diets, adverse effects were observed only in 

subjects with pre-existing metabolic alterations, such as insulin resistance. In conclusion, we 

observed that: 

• Calories overconsumption (as sugar, fructose, or fat) enhances fructose effect on IHCL 

in healthy (91, 92, 116) and in overweight subjects (109, 117). 

• There was no carbohydrate-specific effect (fructose vs. glucose) of hypercaloric diet 

intake on IHCL in both healthy or overweight subjects (83, 93, 117). 

• There is a dose depends effects associated with hypercaloric diet. No increased of liver 

fat content was observed in healthy subjects at 18% of the excess of energy as fructose 

(82). However, significantly increase of IHCL was seen in the healthy subject at 25% 

and 35% of fructose excess (91, 116). 

• Even without calorie overconsumption, high sugar intake increases IHCL in overweight 

subjects with NAFLD (109).  

• The effects of fructose intake on IHCL is also dependent on pre-existing metabolic 

disorders. A high sugar intake in patients with NAFLD increased IHCL more than in 

healthy subjects (109). In contrast, a reduction of sugar intake in overweight subjects 

reduced IHCL and body weight more than in normal weight subjects (118). 
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Intramyocellular (IMCL) lipid concentration 

There are only a few studies that consider the effect of fructose intake on intramyocellular 

lipids (IMCL). An addition of high fructose (25% and 35%) to an isocaloric diet over seven 

days increased IMCL in healthy participants (91, 116) and in offsprings of type 2 diabetic 

patients (91). However, high fructose (35%) and high glucose (35%) overfeeding during one 

week in healthy volunteers showed that both monosaccharides may increase IMCL (93). 

Moreover, a significantly higher increase was observed after glucose intake compared to 

fructose. These results may reflect the different metabolic pathways used by these two 

monosaccharides. Compared to fructose, which is primarily metabolized in splanchnic organs, 

a major part of glucose is directly metabolized in muscle (123).  

Moderate overfeeding with 15%E from fructose over four weeks did not show changes in 

IMCL in healthy volunteers (82). Similarly, when fructose was consumed in the form of 

sucrose and HFCS in weight maintenance diets, at the levels of 8%, 18%, and 30% over ten 

weeks, it did not increase lipid deposition in muscle (122). 

 

The above described metabolic effects: altered glucose homeostasis, increased lipid profile, 

and ectopic fat deposition, induced by fructose are a main focus of the present work. However, 

fructose may also induce other harmful effects, which are briefly described below.  

 

d) Other metabolic diseases 

Blood pressure 

A direct link between fructose intake and hypertension was shown in a study (124) that used 

data collected from the National Health and Nutrition Examination Survey in the USA 

(NHANES), between 2003 and 2006. It was observed, in healthy adults without a history of 

hypertension, that a fructose intake ³74g per day (obtained from self-reported diet 
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questionnaire) in the form of table sugar and/or HFCS was associated with a higher blood 

pressure than in subjects with fructose intake less than 74g/day. In contrast, a metanalysis of 

randomized control trials (RCTs) having involved fructose interventions showed that 

replacement of other dietary carbohydrate with 9-25% total energy as fructose was associated 

with no change on blood pressure (125). Only with excessive doses of 200g fructose per day 

(40%E) was an increase of ambulatory blood pressure observed (126). However, an acute 

fructose intake showed moderate increased of blood pressure (BP) (127, 128). Moreover, 

elevated uric acid measure was suggested to be a mediator of the effect of fructose on BP (129).  

 

Uric acid  

Results from a national survey (NHANES-III) in the USA, performed between 1988-1994, 

concluded that consumption of sugar-sweetened beverages was associated with elevated serum 

uric acids (UA) compared to artificially sweetened, calorie-free beverages (130). Similarly, a 

hypercaloric diet with the addition of high fructose (35%E) for seven days, increased uric acid 

levels in healthy (91, 93) and type 2 diabetes patients (91). In contrast, a meta-analysis (131) 

that studied fructose exchange of 5% to 33% energy for other carbohydrates in an isocaloric 

diet, did not show an impact on UA levels. 

An acute dose of 26.7g of fructose, administrated in the form of beverages, only slightly 

increased levels of plasma uric acid (132). In obese patients, however, acute fructose (at 30%E) 

intake in the form of beverages, with an isocaloric diet, increased uric acid with significantly 

higher responses observed in women participants than in men (96). Additionally, fructose-

induced hyperuricemia was observed in patients with metabolic syndrome, and more precisely 

with the presence of hypertriglyceridemia and insulin resistance (133).  
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A survey of the literature suggests that conclusions about the potential contribution of fructose 

to the development of metabolic disorders strongly depends on the type of experimental design 

that was used. 

 

Experimental design of studies 

 
The previous section illustrated that studies reported often divergent effects of fructose on most 

of the metabolic parameters considered. Thus, small amounts of fructose in acute 

administrations were shown to have beneficial effects on postprandial glucose homeostasis, 

while larger doses and longer exposure were sometimes, but not invariably associated with 

altered glucose homeostasis. Part of these discrepancies may be related to the very large 

variation of study designs, ranging from acute administration to medium-term isocaloric 

substitution, to controlled overfeeding and/or supplementation of habitual diet.  

In intervention studies, the metabolic effects induced by fructose may differ according to: 

- study population (i.e., age, gender, health status, and BMI) and individual characteristics 

of volunteers 

- duration of intervention 

- fructose intake  

- total energy ingested 

- co-ingested ingredients  

I will therefore briefly try to separately address the effects of fructose when administered a) as 

a single, acute load, b) chronically when included in an isocaloric diet, or c) in a hypercaloric 

diet, and d) when administered chronically as a fixed controlled supplement while the rest of 

the diet remains “ad libitum diet”. 
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a) Acute fructose administration 

Acute fructose (50g) compared to glucose or sucrose leads to lesser increase in glycemia (lower 

glycemic index) in healthy and diabetic patients (134). In addition, catalytic loads (7.5g) 

decrease glucose-induced hyperglycemia (potentiation of glucokinase and glycogen storage) 

(67). However, the same amount of fructose (50g) may significantly modulate plasma lipids, 

compared to the same amount of glucose and sucrose (103). On the other hand, fructose drinks 

corresponding to 25% of total energy, when included in a weight-maintaining diet, caused a 

greater increase of postprandial plasma TG concentration (monitored over a 24-hour period) 

than isocaloric glucose drinks (104). Another study showed that ingestion of a mixed meal with 

a 0.75 g/kg free fructose load increased postprandial TG concentration, DNL, and as well 

VLDL-TG (63). Similarly, a study with a liquid mixed diet containing 0.5g/kg body weight of 

fructose, compared with the same amount of fructose and glucose together, increased 

significantly higher plasma TG concentration, but not VLDL-TG (135).  

In summary, an acute fructose load does not increase blood glucose, but does enhance 

postprandial blood TG through DNL and impaired postprandial TG clearance (63) compared 

to glucose or sucrose. 

 

b) Isocaloric, low and moderate sugar diet 

An isocaloric diet is defined as containing the same amount of energy daily, but with different 

macronutrient composition. Sometimes an isocaloric diet is meant to mean a weight-

maintenance diet (WM), i.e., consuming the amount of energy corresponding to the energy 

expenditure. Within a WM diet, macronutrient distribution should comply with dietary 

guidelines. In the experimental design of isocaloric diets, the amount of fructose largely 

replaces sucrose or starch, and in specific cases replaces fat content, or in other cases fructose 

or glucose is provided in normal moderate doses.  
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Many studies of short duration (a few days to six weeks) performed on healthy subjects in 

whom fructose replaced starch at very low to moderate (5% and 25%E) intake levels did not 

show effects on body weight (136), postprandial TG levels (137), NAFLD (138), or on uric 

acid concentration (131). Beneficial effects on glucose control (79) and BP (125) were 

observed when fructose (7-25%E) intake was associated with an isocaloric diet. Some studies, 

however, reported that a higher dose in WM diet of free fructose at 25%E (108) and 30%E 

(139) may increase plasma TG and DNL. Meta-analyses (140) bring similar observations that 

high doses of fructose at 25%E compared to glucose, may raise more importantly postprandial 

TG, and uric acid.  

In type 2 diabetic patients, however, isocaloric exchange with a dose of >60g per day was 

shown to increase TG levels modestly (110). On the other hand, improvement of glycemic 

control was observed in this type of patient, where glucose was replaced by fructose (25g–

137g/day) (79).  

It seems that in the isocaloric diet, fructose in general not induce adverse metabolic effects and 

even may have some beneficial impacts. In contrast, some very high amounts of fructose 

intake, even in weight-maintenance diets, may provoke adverse effects. The exact amount of a 

harmful dose of fructose intake is not known and may depend on individual predispositions.  

 

c) Hypercaloric, high sugar diet 

Hypercaloric diets provide an abundance of energy, in excess of personal needs. Imbalance of 

energy intake and expenditure may provoke the accumulation of energy, mainly in the form of 

fat and less in the form of lean mass. Many human short-term studies have compared the effect 

of a hypercaloric diet with a supplementation of fructose to that of a weight-maintenance diet, 

or to that of a similar hypercaloric diet with glucose supplements, in healthy, obese, and 

diabetic subjects. Already a moderate excess of fructose intake (1.5g/kg body weight) over four 
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weeks leads to increased plasma TG and glucose concentrations, but without ectopic lipid 

deposition or insulin resistance (82). In contrast, higher doses of fructose overfeeding (3g/kg 

and 3.5g/kg body weight) increased fasting plasma triglycerides, VLDL-TG, and ectopic lipids, 

and caused hepatic insulin resistance in healthy (91, 141) and healthy relatives of patients with 

type 2 diabetes mellitus (91). A metanalysis of hypercaloric studies concluded that fructose 

supplementation, at doses corresponding to 25% total energy or higher, resulted in an increase 

of fasting and postprandial triglyceride (137). Another meta-analysis observed that 

hypercaloric fructose intake (18-33%) may raise fasting insulin and may hence impact on 

development of hepatic insulin resistance (142).  

Hypercaloric studies comparing fructose to glucose supplementation in healthy subjects 

reported that both sugars caused similar increases in ectopic fat deposition, but that fructose 

stimulated more DNL than glucose (93, 117). Additionally, it was observed that fructose-

induced DNL in obese subjects was enhanced compared to lean subjects (107). Moreover, 

ectopic lipid deposition as well as muscle lipid accumulation is strongly associated with insulin 

resistance (143) and is common in diabetes type 2 and patients with NAFLD (144). It was 

observed that already, short term overfeeding of healthy volunteers with high fructose (3g/kg 

bw) intake induced dyslipidemia and hepatic insulin resistance (98).  

High fructose intake with a hypercaloric diet was associated with increased uric acid 

concentration (131), and BP (145), but also with an increase of whole body weight (136) and 

especially visceral adipose tissue deposition (100).  

 

In summary, it is not well known if an excess of energy intake or fructose per se may have 

metabolic consequences, or maybe it is the synergic effect of both components. Overall, the 

amount of fructose intake combined with overfeeding and in prolonged periods may play a role 

in the development of adverse effects.  
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d) Ad libitum diet with high sugar intake 

In a fructose intervention with ad libitum diet, subjects are instructed to consume an exact 

amount of fructose or glucose or type of food, but remain free to choose the other foods they 

consume and their amount. They may be given instructions (such as: maintain your diet as 

usual), but their actual food intake is not monitored, and hence the intervention is likely to 

modify their usual dietary intake. 

In some ad libitum studies, (100, 146), there was an increase in body weight, visceral fat, 

impaired glucose tolerance, and decreased insulin sensitivity when fructose was added to the 

diet. In other studies (82, 147), there was no effect on body weight, suggesting that additional 

fructose intake was compensated by a reduction of other macronutrients’ intake in the ad 

libitum diet. In both conditions, however, there were alterations of blood lipids, which may 

contribute to IHCL deposition.  

These observations suggest that fructose’s effects may be related, not only to total energy 

intake, but also to changes in protein and fat intake in habitual diet, induced by additional 

fructose consumption. Over a prolonged period, these changes may induce variations in body 

weight and risk of metabolic syndrome, as well as cardiovascular diseases. 

 

Summary  

In summary, there are many discrepancies between studies. Some variances are attributable to 

experimental design. Prospective studies show an association between sugar intake and risk of 

disease, but have not proved causality. This may be due to fructose effects per se but also is 

indirectly mediated by effects on body weight, dietary patterns or other lifestyle factors. 

Outcome of RCTs depend on the dose of fructose: A small dose may be beneficial due to 

catalytic effects; large doses are associated with adverse effects. The metabolic effects also 

depend on overall energy balance. Finally, there are other lifestyle parameters, which 
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significantly modulate effects of fructose and are often not taken into consideration. These 

parameters consist of physical activity and dietary factors such as coffee, fish oil, and protein 

intake, but also bariatric surgery; all these aspects are described below. 

Fructose may exert multiple metabolic effects, which can have an impact on the development 

of metabolic diseases. In the studies presented in this PhD thesis, I will focus on three 

potentially adverse effects of fructose: alterations of glucose homeostasis; abnormal plasma 

lipid concentration; and ectopic fat deposition. A brief review of the literature discussed above 

is summarized in the Appendix, Table 1, with a focus on these three main metabolic outcomes.  

 

Factors influencing the effects of fructose 

There is some evidence that the harmful metabolic effects of a high fructose intake may be 

partially prevented to some extent by some other dietary factors or by lifestyle. The selection 

of dietary factors and parameters are briefly described below. 

 

a) Selected factors 

Physical activity 

Physical activity, in general, is associated with many beneficial health effects, among others: 

the general prevention of overweight and obesity, hypertension, dyslipidemia, glucose 

intolerance and insulin resistance (148). Furthermore, it has been shown that many of the 

adverse effects of a high fructose diet may be prevented by physical activity.  

The healthy volunteers during four days consumed a weight-maintenance diet containing a 

high fructose intake of 200g per day (corresponding to 30% of total energy intake), which 

significantly increased total triglycerides. However, this effect on lipoprotein metabolism was 

completely eliminated when subjects exercised two times per day during 30min on an 

ergometric bicycle at a power output of 125W (139). In another study, healthy volunteers had 
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their usual ad libitum diet supplemented with 75g of fructose per day, during 2 weeks. This 

supplementation was accompanied with either very low (<4500 steps/day) or high (>12500 

steps/day) physical activity (149). Like in the previous study, very low physical activity with 

an excess of fructose intake resulted in increased postprandial TG and VLDL-TG 

concentration, and increased physical activity seems to prevent these effects. Additionally, it 

was observed that the mixed meal of high fructose (0.75g/kg bw) and high fat-diet (0.5g/kg 

bw), may induce postprandial lipemia in healthy volunteers. However, performing the acute 

resistance exercise during 95min the evening prior to the high fructose, high fat meal 

significantly decrease TG concentration due to this meal (150). 

 

Coffee - Polyphenols 

Polyphenols are an abundant group of micronutrients naturally present in plants, herbs, 

vegetables, fruits, nuts, and seeds. They are a large group, consisting of four major classes: 

flavonoids, lignans, phenolic acids, and stilbenes; in total over 500 different polyphenols are 

known. They are characterized by antioxidant and anti-inflammatory proprieties, which are 

recognized in the prevention of degenerative diseases, i.e., cardiovascular (151). 

Coffee is one of the most widely consumed beverages worldwide, and their consumption was 

associated with lower risk of type 2 diabetes (152, 153), and beneficial impact on metabolic 

syndrome and obesity (154). Not only coffee with caffeine but also decaffeinated coffee was 

associated with lower risk of type 2 diabetes (155) when consumed two or more times per day 

(156). This observation suggests that other components than caffeine may be involved in the 

positive effects of coffee. There is more than one mechanism proposed by which coffee may 

exert its protective effects. It was observed that coffee consumption decrease pro-inflammatory 

biomarkers (interleukin (IL)-1 b, IL-6) of type 2 diabetes (157). On the other hand, specific 

coffee components, like chlorogenic acid, also found in fruits and vegetables, may play a role 
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through the gut and liver. In the gut may alter incretin secretion (GIP, GLP-1) and glucose 

absorption. In the liver, it may impact glucose production through decreased hepatic glucose-

6-phosphate (158).  

One of the first and quickly appearing adverse effects observed after consumption of high 

fructose was increased of fatty liver deposition (91), and decreases of hepatic insulin sensitivity 

(83). It was observed that patients with fatty liver disease, who increased consumation of 

coffee, significantly decreased the risk of development of fibrosis (159). However, in healthy 

volunteers, four cups of coffee during 14 days did not prevent IHCL accumulation induced by 

short time fructose (4g/kg body weight daily) overfeeding. In contrast, lipid oxidation was 

significantly increased and positive effects were observed on hepatic insulin resistance (152).  

 

Fish oil - Polyunsaturated fatty acids (omega 3) 

Supplementation with fish oil, rich in omega-3, may have some moderated improvements on 

glycemia and insulin sensitivity in patients with type 2 diabetes mellitus without inducing 

hypertriglyceridemia. Moreover, omega-3 was observed to have some protective effects 

against cardiometabolic diseases, by decreasing triglycerides concentration (160, 161). Fish oil 

added to the ad libitum diet increased basal lipid oxidation, which over time may have some 

improvements in the regulation of fat metabolism (162). During 28 days, supplementation with 

fish oil leads to significantly increased serum in omega-3 but does not increase plasma TG, 

compared to the control diet (98). Previously, it was observed that supplementation of a normal 

diet with 3g/kg body weight per day of fructose during six days increased significantly fasting 

TG concentration. When supplementation with fish oil was combined with high fructose intake, 

during 6 days, plasma TG concentration was significantly lower compared to supplementation 

with fructose alone (98). It seems that the addition of fish oil abolished the effect of fructose 

on plasma TG. 
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b) Gastric Surgery - RYGB 

In the most severe cases of obesity, diet and physical activity often fail to induce long-lasting 

weight loss, and bariatric surgery may be indicated. Roux-en-Y gastric bypass (RYGB), is 

presently considered as the most effective surgical procedure for weight loss. RYGB surgery 

allows an individual to reduce excess weight by more than 50% in the majority of cases, and 

to maintain weight loss over extended periods of time (up to 15 years) in many patients (163).  

With RYGB procedure, the stomach is divided into a very small proximal pouch with a 

capacity of about 10-20 ml, and a larger, distal gastric “remnant”. The proximal small pouch 

accommodates ingested nutrients, and is directly anastomosed to the mid-jejunum. The 

remaining distal stomach, duodenum and proximal jejunum are therefore bypassed and re-

anastomosed “in Y” to allow for the delivery of pancreatic and biliary secretions (164) (Figure 

5). 

 
Figure 5. Source: Anatomical changes in gastrointestinal tract RYGB (165). 

After RYGB, food intake is in part limited by the small size of the remnant gastric pouch 

(restrictive component). It however appears that accelerated nutrient transit, and early secretion 

of gastro-intestinal hormones, may directly signal food intake inhibition in the brain. Finally, 

due to the fact that approximately 100 cm of dueodenum and jejunum are bypassed, some 

nutrient malabsorption may be present as well (malabsorptive component), presented in Figure 
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6. A side-effect of this component is the frequent occurrence of malabsorption of vitamins, and 

minerals after RYGB. 

Due to the bypass of gastric segments primarily involved in carbohydrate absorption, and late 

mixing with pancreatic secretion, one may have expected that carbohydrate absorption would 

have been impaired after RYGB. This is however not the case, and glucose absorption after a 

glucose load is substantially accelerated compared to non-operated controls (166, 167). 

In contrast, postprandial triglycerides and chylomicron-TG responses were completely blunted 

in RYGB patients compared to the non-operated control group after a standardized, solid 

breakfast intake (168). These results may be due to delayed or suppressed intestinal lipid 

absorption after the short intestinal circuit in RYGB (169). Another suggestion proposes faster 

digestion and absorption, but also enhanced clearance of TG-rich lipoprotein (168), which was 

indicated by earlier secretion bile acids (BA). BA are known for their favoring lipid digestion 

and absorption (170). Increased BA may cause stimulation of GLP-1 secretion and impact lipid 

homeostasis, and FGF19, which may stimulate liver lipid oxidation (171). 

 

Figure 6. Nutrient absorption in the digestive tract and RYGB impact. Source: Gropper and Smith, 2016. 
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c) Protein intake – Amino Acid 

Recently, it was also shown that protein intake may significantly reduce hepatic lipid 

deposition induced by overfeeding with a high-fat diet in healthy volunteers (172). 

Additionally, a 4-week supplement with 60g per day of whey protein, for obese female patients 

who otherwise consumed their normal, ad libitum diet, significantly reduced intrahepatic fat 

and fasting plasma triglycerides concentration (173). Moreover, in healthy volunteers, a 

hypercaloric diet with high fructose intake (3g/kg body weight) significantly increased also 

hepatic fat deposition, but this diet combined with an essential amino acid supplementation 

(around 20g per day), was shown to blunt this effect of fructose (141). 

In subjects receiving a supplement of fructose while the rest of the diet was left ad libitum, 

there was a significant decrease in carbohydrates, fat, but also protein (1.8 ± 3.4%) intake (147).  

Given the protective effects of protein supplements on fructose-induced metabolic risk, one 

may wonder whether a reduction in protein intake favors metabolic risk, and contribute to 

fructose’s adverse effects. 

The mechanisms involved in the protective effect of high protein intake during overfeeding are 

not identified yet. On one hand, fractional hepatic DNL was unchanged by essential amino acid 

supplementation; on the other hand, VLDL-TG secretions were significantly increased. This 

may suggest that protein may increase VLDL-TG secretion, thus reducing hepatic lipid storage 

(141). Additionally, it was observed that a high amount of protein added to a high-fat diet, 

compared to high-fat diet only, increased the expression of peroxisome proliferator–activated 

receptor g (PPARG). PPARG is a receptor mostly expressed in adipose tissue, and plays a role 

in the regulation of fatty acid storage (adipogenesis); activation of PPARG also prevents insulin 

resistance and preserves glucose homeostasis (172). Finally, it was observed that secretion of 

bile acids is enhanced with a high protein diet, and bile acids may in turn activate lipid 
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oxidation in the liver by activating bile acid receptors, farnesoid X receptors, (FXRs) (172, 

174). 

 

Summary 

This brief overview of the literature suggests that some effects induced by fructose are 

modulated by other dietary and non-dietary factors. These aspects should also be considered in 

nutritional recommendations and be highlighted in the prevention of obesity.  

The aim of my PhD thesis was therefore to assess two specific conditions for which one could 

postulate that fructose metabolism and its long-term consequences would be altered: 

1. Bariatric surgery  

2. High protein intake 
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Chapter II Aims and hypotheses  

 
 
The aim of the present PhD work was to investigate whether and how the effects of fructose 

on cardio-metabolic risk factors were modulated by other digestive or nutritional parameters. 

We selectively tested whether:  

Study 1. Roux-en-Y gastric bypass surgery altered postprandial fructose kinetics, de novo 

lipogenesis (with a special focus on intestinal de novo lipogenesis), and blood lipid profiles. 

Due to this surgical procedure, the part of intestine areas involved in fructose absorption, and 

then in the gut de novo lipogenesis, is bypassed. 

Study 2.  The effects of a short-term high-fructose diet were modulated by the concomitant 

dietary protein content. Several rapports suggest that a high dietary protein intake may have a 

protective effect on hepatic lipids deposition.  

 

Study I. 

Title: Effects of roux-en-Y gastric bypass surgery on postprandial fructose metabolism. 

 

This randomized controlled study was performed on eight patients, 12-17 months after RYGB 

and on eight control (Ctrl) subjects, matched for age, BMI, and sex. Each participant was 

studied after ingestion of a protein and lipid meal (PL) and after ingestion of a protein, lipid, 

fructose, and glucose meal with labeled 13C-fructose (PLFG). Postprandial blood glucose, 

fructose, lactate, apolipoprotein B48 (apoB48), and triglyceride concentrations were measured. 

In addition, isotopic-based methods were used to assess the relative fructose disposal pathways 

(i.e., oxidation, gluconeogenesis, lactic acid production, or de novo lipogenesis). 
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Specific hypotheses: RYGB, may impact gut fructose metabolism by decreasing fructose 

absorption, intestinal gluconeogenesis, and de novo lipogenesis, which may have an impact on 

postprandial glucose and TG plasma levels.  

 

Personal contribution: Analyzed data and prepared the draft of the manuscript.  

 
Manuscript I. 
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Materials and Methods 
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Results 
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Study II. 

Title: Effects of Dietary Protein and Fat Content on Intrahepatocellular and Intramyocellular 
Lipids during a 6-Day Hypercaloric, High Sucrose Diet: A Randomized Controlled Trial in 
Normal Weight Healthy Subjects. 
 

This randomized, crossover-controlled study performed on twelve healthy young males and 

females. Participants were studied after a 3-day controlled, weight maintenance (WM) diet 

providing 100% daily energy needs with 45% starch, 10% sucrose, 33% lipid, 12% protein, 

and after 6-day hypercaloric diets containing 150% daily energy needs with 29% starch, 34% 

sucrose, 7% lactose, and with 5% protein and 25% lipid (low-protein/high-fat, LP-HP) or 20% 

protein and 10% lipid (high-protein/low-fat, HP-LF). Intrahepatic (IHCL) and intramuscular 

(IMCL) lipid deposition were measured (magnetic resonance spectroscopy, MRS) and energy 

expenditure (indirect calorimetry) after WM, and again after HP-LF/LP-HF. 

 

Specific hypotheses: High sucrose overfeeding associated with a high-protein, and low-fat, 

diet would blunt intrahepatocellular and intramyocellular lipid storage compared to the same 

high-sucrose intake with low-protein, but with high-fat diet.  

 

Personal contribution: Recruitment and screening of volunteers. Participated in preparation 

of dietary intervention (diet elaboration), meal preparation, and distribution. Performed 

metabolic tests with nurses of the clinical research center. Data analysis. Preparation of the 

manuscript.  

 
Manuscript II. 
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Chapter III Discussion and perspectives  

 

This work intended to provide complementary information to existing knowledge on the 

interactions between dietary fructose intake and other digestive or nutritional factors. 

In grade II obesity, energy intake chronically exceeds daily recommendations. In this 

condition, dietary therapies often fail to induce long-term weight loss, and RYGB is presently 

considered to be the most effective treatment. It however induces drastic changes in gastro-

intestinal anatomy and physiology. In the first study, we evaluated the impact of these changes 

on the metabolic fate of an acute fructose load. We had specifically postulated that RYGB 

would decrease intestinal de novo lipogenesis, which normally takes place in the proximal 

small bowel. 

 

Discussion Study I. 

Gastric bypass is known to enhance the speed of nutrients’ delivery to jejunum and ileum, and 

of their gut absorption. This has been documented for carbohydrate and lipids. We further 

documented in this study that the same is true for fructose. Postprandial fructose concentration 

increased early after meal ingestion in RYGB patients, but thereafter decreased quickly, 

suggesting rapid absorption. Similar results were observed for glucose, insulin, and lactate 

concentration. Additionally, there was no significant difference between RYGB and control 

group for the total incremental fructose area under the curve, for calculated fructose oxidation, 

and for fructose storage. Our results confirmed previous observations concerning 

monosaccharide absorption (166, 175), and show a lack of evidence for malabsorption of 

fructose in RYGB patients.  
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Addition of the labeled 13C fructose to the meal allowed us documenting DNL from fructose. 

13C palmitate concentration in chylomicrons-TG and VLDL-TG increased similarly in both 

RYGB and control groups. The concentration of 13C palmitate-chylomicrons-TG reflects the 

contribution of fructose-induced DNL to intestinal chylomicrons’ secretion. No quantitative 

evaluation could be obtained, however, due to the fact that our protocol did not allow us to 

measure intestinal or hepatic 13C acetyl-CoA enrichment. Contrary to our hypothesis, we did 

not observe evidence that intestinal or hepatic DNL were inhibited after RYGB. 

This study, allowed us to observe the impact of dietary sugars on postprandial dietary lipid 

handling after RYGB. It was previously observed that sugars enhance postprandial TG 

concentration after ingestion of a mixed meal (135). Indeed, we observed higher TG plasma 

concentration after addition of sugars to the meal in the control group. The mechanisms 

proposed to be involved are hepatic (176) or intestinal (177) lipogenesis and/or inhibition of 

TG clearance (90). In contrast, in RYGB patients, postprandial TG and chylomicrons-TG 

responses were nearly abolished, suggesting that bariatric surgery may simultaneously increase 

lipid absorption rate and increase their plasma clearance. We also considered the possibility 

that RYGB may result in some degree of fat malabsorption (178). However, in a previous study 

we observed that postprandial responses of CCK and bile acids occurred after ingestion of a 

mixed meal early and with the higher pick in RYGB than in controls, which may rather indicate 

an enhanced rate of lipid absorption (168). This observation may highlight other possible 

mechanisms involved in RYGB effects on blood lipid profiles.  

 

Perspectives Study I. 

Immediate impact and novel questions  

We observed that total fructose absorption after RYGB surgery does not differ compared with 

the healthy volunteers. This observation suggests that the same amount of fructose carbons 
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may be available for metabolic pathways, i.e., DNL, in RYGB patients and in non-operated 

controls. Whether and how the early postprandial hyperfructosemia happens in real-life 

conditions after RYGB remains unknown. Some cell types have GLUT5 transporters, and may 

directly take up fructose. It is possible that, at high fructose concentrations, direct fructose 

metabolism increases in the kidney, or in other non-fructolytic tissues such as the brain, and 

muscle. What impact that may have on health deserves attention. 

 

Pursuing this line of research 

To further the findings of this study I propose running a study in which intestinal de novo 

lipogenesis would be quantitatively assessed by measuring fractional DNL with acetate, and 

using mass isotopomer distribution analysis (MIDA), together with kinetics of TRL-associated 

apoB48 with a labelled amino acid. Moreover, running the same study, but with labelled dietary 

lipids to monitor their absorption and clearance would allow to further investigate the 

mechanisms involved in the normalization of blood lipids after bariatric surgery. 

 

 

Discussion Study II. 

Several studies indicate that a high sugar intake may induce a different metabolic response 

according to concomitant changes in other dietary nutrients’ intake. In this study, we observed 

that a high sugar consumption causes intrahepatic fat accumulation, but that this effect is much 

more important when sugar is consumed with a low-protein, high-fat diet that with a high-

protein, low-fat diet. This may suggest that hepatic lipid deposition may be induced by a 

combination of high-sucrose and high-fat intake. However, a beneficial impact of protein on 

intrahepatic fat accumulation induced by a high-fat diet was previously shown in our 
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laboratory, suggesting rather a protective effect of a high-protein intake, independent of excess 

kilocalories in the diet (172). Various potential mechanisms were proposed: 

- The protein may inhibit DNL by increasing hepatic lipid oxidation (179). But we do not 

observe increased whole-body lipid oxidation; in another study (172), with a similar 

technique, no DNL change was observed. The protein also increased bile acid secretion, 

and possibly increase hepatic lipid oxidation (172, 180). This has however not been 

assessed in our present study. 

- Protein-induced hyperglucagonemia (181) may channel fructose carbons into 

gluconeogenesis and therefore lead to a mirror decrease in DNL. Indeed, in our study, 

we observed lower systemic fructose concentration and higher glucagon production 

after an HP-LF diet. 

- Protein may stimulate VLDL-TG secretion and increase their clearance, which has been 

proposed in a previously performed study in our laboratory (141). However, in our 

study, it was not measured.  

 

Perspectives Study II. 

Immediate impact and novel questions  

Results from our study indicated that high-protein intake has an immediate positive effect on 

ectopic fat deposition in situations of overfeeding. In this perspective we can challenge other 

questions:  

- By which mechanisms do proteins or some amino acids abolish ectopic lipid deposition? 

Can these effects be reproduced by branched-chain amino acid supplements (182) ? 

Does the type of protein and its source, i.e., protein provided from dairy products, 

animals, and from plant origins, have a different impact on health effects i.e., reduction 

of ectopic fat deposition? Moreover, dairy products being rich in calcium, does calcium 



Chapter III - Discussion 
 

 81 

intake may play a role in prevented dyslipidemia in overfeeding situation (183) ? 

Additionally, fermented dairy products were inversely associated with CV risk (184).  

- What is a quantitative participation of sugars/fructose in intestinal and hepatic DNL with 

high-protein compared with low-protein intake?  

- What will be an impact of the treatment over a prolonged period? 

- What effects of the treatment will be in a different type of population, i.e., overweight 

persons? 

- What does it mean for dietary guidelines; should present recommendations concerning 

protein intake and type/source be revised?  

- What about protein intake in the treatment of NAFLD?  

- What does it mean for personalized nutrition? In our study, we observed the divergence 

between participants concerning ectopic fat deposition. Should personalized amounts of 

protein depend on IHCL accumulation? 

Similar questions are also relevant for other nutrient intake as well. Polyphenols and 

polyunsaturated fatty acids were shown to inhibit or reduce the metabolic effects of a high-

fructose intake. These alimentary factors should be further assessed as natural methods to 

inhibit the adverse effects of fructose overfeeding. 

 

Pursuing this line of research 

To broaden the significance of this study, my next steps will include, for example, the addition 

of a tracer, i.e., labelled acetate to monitor quantitively DNL to observe how or if high protein 

may impact directly DNL. A similar study will be performed on a different type of population 

(i.e., overweight, obese, or with NAFLD). Additionally, I will increase the number of subjects 

in the study and observe gender differences and the impact of female sex hormones in ectopic 

lipid deposition.



 

 82 

  



 

 83 

Conclusions  

 

Metabolic disorders induced by imbalanced diet, rich in fructose, provided with high amounts 

of sucrose and HFCS, can be reduced to some extent by nutritional and non-nutritional factors. 

In the first of two studies, we examined the impact of bariatric surgery on fructose metabolism. 

This study does not confirm our hypothesis that bariatric surgery may alert fructose metabolism 

and then impact its other metabolic pathways. Despite the major digestive changes induced by 

the performed surgery, no modulation of total fructose absorption was observed. This suggests 

that, after RYGB, all fructose molecules are presented in the same amount for different 

metabolic pathways than those in non-operated patients. Moreover, results of 13C palmitate and 

apoB48 in both groups indicated similar intestinal lipogenesis from fructose. In contrast, an 

alteration of postprandial triglyceride concentration was observed in RYGB patients. This 

observation opens new questions: By which mechanisms can lipid clearance be modified, if 

we exclude fat malabsorption after bariatric surgery (185)? In the second study, the same high-

energy intake with different macronutrient compositions differently impacts the effects 

induced by a high sucrose (high fructose) intake. This suggests that not only total energy 

overfeeding but also the macronutrient composition in diet may differently impact the risk of 

metabolic diseases. Overfeeding with sucrose and high-protein, but with low-fat intake, 

reduced significantly both IHCL and IMCL concentrations. Moreover, sucrose overfeeding 

combined with high-fat, but low-protein intake may increase the adverse effects of fructose. In 

contrast, postprandial TG concentration increased similarly after both conditions. Which 

mechanisms are involved in these protective effects of high-protein intake, remains, however, 

to be determined. 
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Appendix  

Table 1. Characteristics of clinical studies evaluating fructose consumption versus other sugars on glucose, lipid and ectopic fat response.  

Study Methods Test meal Participants Duration Glucose homeostasis Lipid profile Ectopic lipids 

Acute 

1. Chong et al., 
2007, (63). 

Single-blind, 
randomized, 
crossover 

0.75g/kg bw  
Fructose or glucose 
and 0.5g/kg bw palm oil 
13C fructose or 13C 
glucose 

14 healthy men, 
women 

6h Lower insulin after fructose. TG significantly higher after fructose. 
DNL higher after fructose. 

N/A 

2. Evans et al., 2017, 
(78). 
 

62 studies Isoenergetic exchange of 
glucose or sucrose by 
fructose (15-100g) 

Type 1 and 2 
diabetes 
mellitus 
 
 

48 min to 
24h 

Replacement of either glucose 
or sucrose by fructose 
resulted in significantly 
lowered peak postprandial 
blood glucose.  
Similar results were obtained 
for insulin. 

No blood TG concentrations raising. N/A 

3. Jameel et al., 
2014, (103). 
 

Randomized, 
single blinded, 
controlled 
cross-over 
trial 

3 different isocaloric 
sugary drinks: 
50g fructose  
50g glucose  
50g sucrose 

14 healthy adult 
men and women  
 

120 min The change in fasting glucose 
and insulin responses was 
modest with fructose. 

Fructose as a sole source of energy 
modulates plasma lipids: significance 
increase in HDL-cholesterol with a 
concurrent increase in LDL-
cholesterol.  
AUC for plasma TG levels however 
remained unchanged.  

N/A 

4. Jeppensen et al., 
1995, (186). 
 

Randomized Dairy cream (40g fat) 
with fructose 40g  
Dairy cream (40g fat) 

11 healthy men 
and women 
 

12h N/A Fructose increased TG rich 
lipoprotein (TG, chylomicron). 

N/A 

5. Le et al., 2011, 
(128). 
 

Prospective, 
randomized, 
single-
blinded, 
crossover trial 

HFCS 68.0 g (39.2 g 
fructose) 13% higher dose  
Sucrose 69.4 g (34.6g 
fructose, beverages 

40 men and 
women  
 

6h No treatment differences 
insulin and lactate. 

No treatment differences of TG. N/A 
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1. 6. 2. Moore et al., 
2001, (87). 
 

Single-blind 
randomized 

7.5g fructose to 75g 
glucose 
 
75g glucose 
(OGTT drinks) 

5 obese with 
type 2 diabetes 

3h The addition of small 
(catalytic) amounts of 
fructose to a glucose load 
improves glucose tolerance, 
without enhancing the insulin 
response. 

Plasma NEFA, blood glycerol, and 
plasma TG concentrations did not 
differ. 

N/A 

7. Parks et al., 2008, 
(187). 

Randomized, 
blinded 

85g sugars: 
85g glucose 
43g glucose + 43g 
fructose (50:50) 
 
21g glucose + 64g 
fructose (25:75) 

6 healthy men 
and women 

24h Postprandial glucose and 
insulin not differ between 
50:50 and 25:75. 

TG serum significantly higher after 
50:50 and 25:75 vs 100 
 
DNL grater after 50:50 
 

N/A 

8. Stanhope et al., 
2008, (104). 
 

Randomized 25% energy from: 
Fructose, glucose, 
sucrose, HFCS 
Beverages  

34 men and 
women 

24h HFCS-sweetened beverages 
induced a small increase in 
the 24-h insulin.  
Sucrose and HFCS on 
glucose, leptin, and ghrelin 
were not different.  

Sucrose and HFCS resulted in 
postprandial TG responses 
comparable to those induced by 
fructose. 

N/A 

9. Surowska et al., 
(188). 

Randomized Protein and lipid meal 
(PL) 
Protein, lipid, fructose, 
glucose + 13C-fructose 
(PLFG) 

8 RYGB 
8 Matched 
control 

6h Non-differ in glucose and 
fructose.   

In RYGB, postprandial TG responses 
are markedly blunted after both PL 
and PLFG. 

N/A 

10. Teff et al., 2004, 
(102). 
 

Randomized, 
controlled  

30% free glucose  
30% free fructose in the 
form of a beverage  

12 normal-
weight women 

24-h Fructose lower circulating 
insulin and leptin 
concentrations.  

Fructose higher ghrelin and TG 
levels.  

N/A 

11. Teff et al., 2009, 
(96). 
 

Randomized Mixed nutrient meals with  
30% fructose 
30% glucose 
beverages 

17 obese men 
and women 

24h 
 

Fructose result in decreased 
insulin secretion, a reduced 
diurnal leptin profile. 

Fructose increased postprandial TG in 
obese subjects with insulin resistance. 

N/A 

12. Theytaz et al., 
2014, (135). 

Randomized, 
crossover 
study 

ProLip 
ProLip +fructose 0.5g/kg 
(bw) 
ProLip +fructose+glucose 
0.5g/kg + 0.5g/kg bw 
+13C fructose 

8 healthy men 
and women 

6h Gluconeogenesis, lactic acid 
production and both intestinal 
and hepatic DNL contributed 
to the disposal of fructose 
carbons. 
 

Co-ingestion of glucose decreased 
fructose oxidation and 
gluconeogenesis and tended to 
increase 13Cpalmitate concentration in 
gut-derived chylomicrons, but not in 
hepatic-borne VLDL-TG. 

N/A 
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Isocaloric diet 

13. Bantle et al., 
2000, (189). 
 

Randomized, 
balances 
crossover 
design  

14% fructose +3%glucose 
14%glucose +3% fructose 
Solid food 

24 healthy, men, 
women 
 

6 weeks 
 

Postprandial plasma glucose 
and serum insulin responses 
were lower after fructose 
intake. 

Fasting and postprandial plasma TG 
concentrations were significantly 
higher in men.  

N/A 

14. Black et al., 2006, 
(77). 
 

 Eucaloric, WM diet:  
10% sucrose (low) 
25% sucrose (high) 
From solid food and 
beverages 

14 healthy men,  
nondiabetic 

7 day High-sucrose intake as part of 
a balanced had no detrimental 
effect on insulin sensitivity. 
Fasting plasma glucose, 
serum insulin did not change. 

Total and LDL cholesterol were 
higher after 25% sucrose. 
 
HDL cholesterol and fasting TG were 
similar on the two diets. 

N/A 

15. Cozma et al., 
2012, (79). 
 

8 trials Exchange of fructose 
(4.5-21%) 23–137 g/day 
for other carbohydrate 

Diabetes 
patients 

>7 days 
 

Improves long-term glycemic 
control without affecting 
insulin.  

N/A N/A 

16. Egli et al., 2013, 
(139). 

 

Randomized 
crossover 
design 

Control 
30% energy (∼200 g/day) 
fructose 
30% + exercise WM diet 

8 healthy men 4 days Increased fasting glucose. Increased TRL-TG, apoB48 
(exercise prevents the dyslipidemia 
induced by high fructose). 

N/A 

17. Lowndes et al., 
2014, (190). 

Randomized, 
prospective, 
double 
blinded 

Eucaloric 
Sucrose: 10%, 20% 
HFCS: 10%, 20% 

65 overweigh, 
obese men and 
women 

10 weeks N/A No changes in total cholesterol, TG, 
LDL, ApoB. 
No diff between sucrose and HFCS. 

N/A 

18. Malerbi et al., 
1996, (81). 

Well-
controlled  

20% Fructose 
9% Sucrose 

16 type 2 
diabetes 

28 days No adversely affect glycemia, 
or insulin. 

No adversely affect lipemia. N/A 

19. Schwarz et al., 
2015, (108). 
 

Randomized 25% energy 
Fructose  
Complex CHO 
(1-13C) acetate 
(U-13C) glucose 

8 healthy men 9 days Significantly higher 
postprandial CHO oxidation. 
Blunted suppression of EGP 
by insulin. 
No significant effects of a 
high-fructose diet on fasting 
glucose, or insulin. 

Significantly higher postprandial 
levels of hepatic DNL, TG. 
 
No significant effects of a high-
fructose diet on fasting DNL, lipids. 

Modestly higher liver fat. 

20. Sievenpiper et al., 
2009, (110). 
 

16 trials Fructose exchange: 
5-21% energy (20 - 
109g/d) 
 

Type 1 and 2 
diabetes 

> 7 days  N/A Only a modest TG-raising effect in 
type 2 diabetes at doses >60 g/day 
with follow-up of >4 weeks or when 
the reference carbohydrate is starch 
modest total cholesterol–lowering 
effect.  

N/A 
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21. Sievenpiper et al., 
2014, (140) 

20 controlled 
trials 

Fructose replacing 
glucose 
7-55% (40-300g/d) 

344 participants, 
normal, 
overweigh, 
obese  

1-10 weeks Fructose exchange with 
glucose reduced glycated 
blood protein. 
Non-significant reduction in 
glucose and insulin.  
 

Fructose increased postprandial TG 
specially at high doses. 
Markers of NAFLD are not worse 
than with glucose. 

N/A 

22. Swarbrick et al., 
2008, (95). 
 

Controlled 25% fructose beverages 
Control – complex CHO 

7 overweight 
and obese 
women 

10 weeks  
 

Increased fasting glucose 
concentrations. 

Increased: 
postprandial TG concentrations, 
fasting plasma apoB. 

N/A 

23. Umpleby et al., 
2017, (109). 
 

Randomized, 
cross-over 
design  
 

Sugars 26% (high) 
Sugars 6% (low) 
 

11 men with 
NAFLD 
14 Control 

12 weeks 
 

N/A Men with NAFLD higher VLDL-TG 
(different fractions) after high and 
low sugar. 

High sugars diet increased 
liver fat to a relatively 
greater extent in 
subgroups of men with 
NAFLD, compared with 
controls. 

24. Wang et al., 2013, 
(137). 
 

14 trials Fructose 4.5-25% (22.5-
125g/day) energy 
 

Diabetes  
Overweight and 
obese 

> 7 days  
 

No effect in diabetics Fructose in isocaloric exchange for 
other carbohydrate does not raise 
postprandial TG. 
Postprandial TG raising effect of 
fructose in overweight/obese. 
 

N/A 

Hypercaloric diet 

25. Bortolotti et al., 
2009, (172). 

Randomized High fat  
High fat + high protein 
crossover 

10 healthy men 4 days No diff plasma glucose and 
insulin 

TG, VLDL-TG no different Protein significantly 
blunted IHCL 

26. Bortolotti et al., 
2012 (191). 
 

Randomized High Fructose 3g/kg  
 
High Fructose 3g/kg 
+prot 1.5g/kg 

8 healthy men 6 days High protein meals increased 
post-prandial energy 
expenditure and enhanced 
fructose-induced 
gluconeogenesis. 

Protein enhanced the plasma TG 
response. 
Proteins did not increase lipid 
oxidation. 
 

N/A 

27. Couchepin et al., 
2008, (86).  
 

Randomized Supplementation: 
3.5g fructose /kg fat free 
mass 
Control diet with 10% 
mono-di saccharides 

8 healthy men 
and women 
 

6 days 
 

Insulin resistance in man but 
not in women. 

Significant increased TG but lower in 
women (higher in female vs mal at 
baseline). 
 

N/A 
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28. Faeh et al., 2005, 
(98). 
 

Randomized, 
controlled 

Supplementation with: 
7.2 g of fish oil 
 
fructose 3g/kg bw 
 
fish oil+fructose 

7 healthy men 6 days Increased endogenous glucose 
production. 
 
Increased insulin resistance, 
after 6 days of fructose 
overfeeding. 
 

Increased hypertriglyceridemia, and 
increased DNL with fructose 
overfeeding. 
 
Fish oil significantly decreased 
triglycerides after high-fructose diet 
and tend DNL. 

N/A 

29. Horst, et al., 2016, 
(142). 

29 articles Isocaloric exchange CHO 
by fructose 26-218g (4-
25%) 
 
Hypercaloric with +25% 
fructose 40-250g (7-33%) 

Normal weigh 
and obese 

7-665 days In both diets iso hyper 
promotes hepatic insulin 
resistance. 
Not promote muscle or 
peripheral insulin resistance. 
 
Fructose rise fasting HOMA-
IR in diabetes, but not in 
normal weigh, obese or 
overweigh. 

N/A N/A 

30. Johnston et al., 
2013, (117). 

Randomized, 
double blind 

Isocaloric: 
+25% fructose n=15 
+25% glucose n=17 
 
ad libitum: 
- hypercal +25% fructose 
- hypercal +25% glucose 
Beverages  

32 healthy 
overweight men 

2 weeks Isocaloric/hypercaloric: No 
diff after on gluc or insulin. 

Isocaloric on a high-fructose or a 
high-glucose diet did not develop any 
significant changes in serum levels of 
liver enzymes. 
Hypercaloric both high-fructose and 
high-glucose diets produced 
significant increases in these 
parameters without any significant 
difference between the 2 groups. 

Isocaloric on a high-
fructose or a high-glucose 
diet did not develop any 
significant changes in 
hepatic concentration of 
TGs. 
Hypercaloric diet yes. 
Energy-mediated, rather 
than a specific 
macronutrient-mediated, 
effect. 

31. Lê et al., 2009 
(91). 
 

Randomized, 
crossover 

+3.5g/kg body wt 
 
 

16 type 2 
diabetes 
8 control 

7 days No significant effect of group 
or significant interaction. 

Increased fasting VLDL-TG in 
healthy and more importantly in 
diabetes.  

Increased IHCL, IMCL in 
healthy diabetes has 
higher IHCL 
concentrations. 

32. Lecoultre et al., 
2013, (83). 
 

Randomized Fructose supplementation:  
F1.5g n=7 
F3.0g n=17 
F4.0g n=10 
G3.0g glucose n=11 
30% fat n=10 

55 healthy  
 

6-7 days Fructose overfeeding did not 
significantly alter plasma 
glucose. concentration at any 
of the doses tested.  
Insulin levels were unchanged 
in F1.5 and increased only 
after F3. 

N/A Incresaed IHCL with 
glucose and fructose (3.0, 
but not higher with 4.0) 
and fat. 
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33. McDevitt et al., 
2001, (107). 

Randomized +50%: Glucose,  
+50%: Sucrose 
Control 
 

8 women: 
8 lean 
5 obese 

4 days No significant increase of 
plasma glucose and insulin. 

De novo lipogenesis increases after 
overfeeding with glucose and sucrose 
to the same extent in lean and obese 
women but does not contribute 
greatly to total fat balance. 

N/A 

34. Nego Sock et al., 
2010, (93). 
 

Randomized  
 

+35% fructose 
+35% glucose 
 

7 healthy men 7 days No change was observed in 
fasting glycaemia, insulin.  
 

Both sugars increased plasma TG. 
 

IMCL increased 
significantly only after the 
glucose 
IHCL and VLDL-TG 
were not different 
between hypercaloric 
HFrD and HGlcD  

35. Silbernagel et al., 
2010, (85). 
 

Exploratory, 
prospective, 
randomized, 
single- 
blinded 

Supplementation: 
150g fructose 
150g glucose 
Beverages  

12 men, 8 
women healthy 
normal and 
overweight  
 

4 weeks Both decreased insulin 
sensitivity. 
High fructose and very high 
glucose in hyperenergetic 
diets do not have different 
effects on insulin resistance 
and hepatic lipid content. 
 

Very high fructose intake was 
associated with a marked increase in 
plasma TAG. 
 

In healthy subjects, 
fructose and glucose have 
no majorly different 
impact on hepatic lipid 
content.  
No changes in IHCL and 
IMCL. 

36. Sobrecases et al., 
2010, (92). 
 

Controlled +35% fructose 
+30% fat 
+35% fructose +30%fat 
 

30 healthy men 7 days Hepatic glucose production 
did not change, suggesting 
that intrahepatic lipid content 
is not directly related to 
hepatic insulin sensitivity.  
 

Fructose increased VLDL-TG 
High fat decreased VLDL-TG,  
Fat + fructose abolishes VLDL-TG 

Fat and fructose have 
additive effects on IHCL, 
but opposite effects on 
plasma TG. 

37. Surowska et al., 
2019, (116). 
 

Randomized, 
cross-over, 
controlled 

+50% sucrose +high prot, 
low fat 
+50% sucrose +low prot, 
high fat 
 

12 healthy men 
and women 

6 days 
 

Fasting: glucose and insulin 
no diff. 
Postprandial: glucose no diff, 
insulin higher with high 
protein. 
 

TG no different after both conditions.  Increased after both diet 
IHCL, IMCL – higher 
after protein, abolished 
after low protein. 

38. Theytaz et al., 
2012, (141). 
 

Randomized, 
crossover 

Fructose 3g/kg body wt 
Fructose 3g/kg + EAA 

9 healthy men 6 days Fasting insulinemia was 
greater with HFr than with the 
control diet. 
Neither glucose production 
nor gluconeogenesis differed 
between treatments. 

HFr increased VLDL-TG and VLDL-
13Cpalmitate. 
 
HfrAA did not change VLDL-
triglyceride concentrations or VLDL-
13C palmitate production. 
 

HFr increased the IHCL 
content. 
HfrAA significantly 
decreased IHCL. 
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Ad libitum 

39. Aeberli et al., 
2011, (84). 

 

Randomized, 
controlled, 
double blind, 
crossover trial 

Sugar-sweetened 
beverages: 
40g fructose medium 
80g fructose high 
40g glucose medium 
80g glucose high 
80g sucrose 

29 healthy 3 weeks Elevated fasting glucose 
concentrations after all 
interventions 
(no changes on kcal intake). 
 
 

No effect of any of the different diets 
on lipid profile. 
LDL size decreased during the HF 
and HS intervention. 
 

N/A 

40. Bravo et al., 2013, 
(122).  

Randomized, 
prospective, 
partially 
blinded, 
parallel 
investigation  

Sucrose 8%, 18%, 30% 
 
HFCS 8%, 18%, 30% 

Healthy men 
and women 
normal and 
overweight  

10 weeks N/A Not find any increase on blood lipid. No significant change 
IHCL, IMCL. 

41. Campos et al., 
2015, (118). 
 

Randomized Sugar-sweetened 
beverages, 
Artificially sweetened 

31 healthy 
overweight 

12 weeks No significant effect on 
insulin sensitivity. 

No changes on lepidic profile.  Artificially exchange 
decreased IHCL. 

42. Lê et al., 2006, 
(82). 
 

Randomized Moderate 
supplementation, 1.5g/kg 
bw 

Healthy 4 weeks Increase a modest but 
significant rise in fasting 
glycemia. 

Increased plasma TG concentration 
increase in fasting VLDL-TG. 

No increase IMCL, IHCL. 

43. Perez-Pozo et al., 
2010, (126). 
 

Randomized, 
controlled 
trial  

Fructose beverages (200g 
fructose/day) 

74 healthy, 
overweight men 

2 weeks An increase in serum insulin 
and HOMA index. 

Significant increase in fasting serum 
triglycerides, a decrease in high-
density lipoprotein cholesterol. 

N/A 

44. Stanhope et al., 
2009, (100). 

 

Double blind, 
parallel arm 

25% Fructose n=17 
25% glucose n=15 
beverages 
 
 

Overweight  
Obese  

10 weeks Fructose decreased glucose 
tolerance and insulin 
sensitivity (greater decreases 
in insulin sensitivity in 
women than in men). 

Fructose increased postprandial TG 
(more in men than women), fast and 
post ApoB, LDL in overweight, obese 
women (increased CVD). Fructose 
increased DNL, postprandial 
activation lower LPL (induced post 
hypertriglyceridemia). 

Fructose increased VAT 
(more in men than 
women) 
Glucose increased SAT. 
 

45. Stanhope et al., 
2011, (192). 

Randomized glucose n = 15 fructose n 
= 17 beverages 25% 

Health, 
Overweight and 
obese 

10 weeks Fructose beverages: 
Significantly lower pick of 
glucose and insulin.  

N/A N/A 

46. Stanhope et al., 
2011, (90). 

Parallel-arm 
 
 

25% energy: 
Fructose n =16 
glucose n =16 

36  
Healthy  
Overweight  

2 weeks Glucose and insulin responses 
mainly increased during 
glucose consumption, 

Fructose and HFCS (higher) 
increased fasting and post TG, LDL, 
non-HDL-C, ApoB. 

N/A 
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HFCS n =16 Lean  
 

decreased during fructose 
consumption, and unchanged 
during HFCS consumption, 
HOMA-IR was unchanged. 

Glucose increased fasting TG 
concentrations. 

47. Stanhope et al., 
2015, (193). 

Parallel-arm, 
nonrandomize
d, double 
blinded 

HFCS 
0% n=23 
10% n=18 
17,5% n=16 
25% n=28 

85 
Healthy  
Overweight  
Lean  
 

2 weeks N/A Increased as the dose Non-HDL 
cholesterol, LDL cholesterol, ApoB, 
postprandial TG. 

N/A 

48. Taskinen et al., 
2017, (147). 

Randomized 75g fructose 
 

71 abdominally 
obese men 
 

12 weeks 
 

No glucose and insulin after 
OGTT test. 

Fructose feeding aggravated the 
increases in both total TG and 
apoB48. 

Fructose consumption 
significantly increased 
liver fat content and 
hepatic DNL and 
decreased levels of beta 
hydroxybutyrate 
(indicating decreased 
hepatic beta oxidation). 
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