Optimal Dividend Strategies for Two Collaborating
Insurance Companies

Hansjorg Albrecher? Pablo Azcue’and Nora Mulerf

Abstract

We consider a two-dimensional optimal dividend problem in the context of two insurance
companies with compound Poisson surplus processes, who collaborate by paying each other’s
deficit when possible. We study the stochastic control problem of maximizing the weighted
sum of expected discounted dividend payments (among all admissible dividend strategies) un-
til ruin of both companies, by extending results of univariate optimal control theory. In the
case that the dividends paid by the two companies are equally weighted, the value function
of this problem compares favorably with the one of merging the two companies completely.
We identify the optimal value function as the smallest viscosity supersolution of the respec-
tive Hamilton-Jacobi-Bellman equation and provide an iterative approach to approximate it
numerically. Curve strategies are identified as the natural analogue of barrier strategies in
this two-dimensional context. A numerical example is given for which such a curve strategy
is indeed optimal among all admissible dividend strategies, and for which this collaboration
mechanism also outperforms the suitably weighted optimal dividend strategies of the two
stand-alone companies.

1. Introduction

Ever since de Finetti [14] proposed in 1957 to measure the value of an insurance portfolio by
the expected discounted sum of dividends paid during the lifetime of the portfolio, it has been
of particular interest to determine the optimal dividend payment strategy which maximizes
this quantity. More than that, this field of research over the years turned out to be a challeng-
ing and fascinating area, combining tools from analysis, probability and stochastic control. In
1969, Gerber [15] showed that if the free surplus of an insurance portfolio is modelled by a
compound Poisson risk model, it is optimal to pay dividends according to a so-called band
strategy, which collapses to a barrier strategy for exponentially distributed claim amounts.
Whereas Gerber found this result by taking a limit of an associated discrete problem, this
optimal dividend problem was studied with techniques of modern stochastic control theory in
Azcue and Muler [7], see e.g. Schmidli [22] for a detailed overview. Since then the optimal
dividend problem was studied for many different model setups, objective functions and side
constraints (we refer to Albrecher and Thonhauser [2] and Avanzi [4] for surveys on the sub-
ject). A barrier strategy with barrier b pays out dividends whenever the surplus level of the
portfolio is above b, so that the surplus level stays at b, and pays no dividends below that
barrier b. The most general criteria currently available for barrier strategies to be optimal can
be found in Loeffen and Renaud [20]. The optimality of barrier strategies when including the
time value of ruin was studied in [24], and when including capital injections by shareholders
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in Kulenko and Schmidli [18].

All these control problems have been formulated and studied in the one-dimensional frame-
work. However, in recent years there has been an increased interest in risk theory in considering
the dynamics of several connected insurance portfolios simultaneously, see e.g. Asmussen and
Albrecher [3, Ch.XIIL.9] for an overview. Ruin probability expressions for a two-dimensional
risk process are studied in Avram et al. [5, 6] for simultaneous claim arrivals and proportional
claim sizes and recently in Badila et al. [11] and Ivanovs and Boxma [17] in a more general
framework. In Azcue and Muler [8], the problem of optimally transferring capital between
two portfolios in the presence of transaction costs was considered, see also Badescu et al.
[10]. Czarna and Palmowski [13] study the dividend problem and impulse control for two
insurance companies who share claim payments and premiums in some specified proportion
for a particular dividend strategy. It turns out that these multi-dimensional problems, albeit
practically highly relevant, quickly become very intricate and explicit solutions can typically
not be obtained without very strong assumptions.

In this paper, we would like to extend the optimal dividend problem from univariate risk
theory to a two-dimensional setup of two collaborating companies. The collaboration consists
of paying the deficit ("bailing out’) of the partner company if its surplus is negative and if this
financial help can be afforded with the current own surplus level. We study the problem of
maximizing the weighted sum of expected discounted dividend payments until ruin of both
companies. A natural question in this context is whether such a collaboration procedure can
be advantageous over merging the two companies completely; we will show that this is the case
when the dividends paid by the two companies are equally weighted. For criteria of a merger
being an advantage over keeping two stand-alone companies under pre-defined barrier strate-
gies and marginal diffusion processes, see e.g. Gerber and Shiu [16], for the performance of
another pre-defined risk and profit sharing arrangement, see e.g. Albrecher and Lautscham [1].
Our goal here is, however, to address the general problem of identifying the optimal dividend
strategy (among all admissible dividend strategies) for each company under this collabora-
tion framework. This leads to a fully two-dimensional stochastic control problem, and to the
question what the natural analogues of the optimal univariate barrier strategies are in two
dimensions. The particular structure of the collaboration implemented in this paper will turn
out not to be essential, so the techniques may be applicable to other risk-sharing mechanisms
as well. Yet, the concrete specification allows to carry through the necessary analysis of the
stochastic control problem explicitly by way of example.

The rest of the paper is organized as follows. In Section 2 we introduce the model and the
stochastic control problem in detail and derive some simple properties of the corresponding
value function V. In Section 3 we prove that V is a viscosity solution of the corresponding
Hamilton-Jacobi-Bellman equation for independent surplus processes, and in Section 4 we
show that V' is in fact its smallest viscosity supersolution. Section 5 provides an iterative
approach to approximate the value function V', together with the analogous verification steps
at each iteration step. Section 6 discusses the stationary dividend strategies that appear in
our model, and in Section 7 we establish curve strategies as the appropriate analogues of the
univariate barrier strategies. Section 8 shows how to constructively search for optimal curve
strategies and in Section 9 an explicit numerical example for the symmetric (and equally
weighted) case with exponentially distributed claim sizes is worked out for which such a curve
strategy is indeed optimal among all admissible bivariate dividend strategies. It is then also
illustrated that for this case the proposed type of collaboration is preferable to adding the best-
possible stand-alone profits. Finally, in Section 10 we show that there are examples where the
stand-alone case is preferable to collaboration and we address the case of positive proportional
transaction cost.



2. Model

We consider two insurance companies, Company One and Company Two, which have an
agreement to collaborate. Let us call X; the free surplus of Company One and Y; the one of
Company Two. We assume that the free surplus of each of the companies follows a Cramér-
Lundberg process, i.e. a compound Poisson process with drift given by
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where x and y are the respective initial surplus levels; p; and p2 are the respective premium
rates; UF is the size of the i-th claim of Company k, which are i.i.d. random variables with
continuous distribution F* for k = 1,2; N} and N? are Poisson processes with intensity A\; and
\a, respectively. We assume here that the processes N}, NZ and the random variables U}, U?
are all independent of each other.

There is a rule of collaboration signed by the two companies: if the current surplus of
Company One becomes negative, Company Two should cover the exact deficit of Company
One as long as it does not ruin itself, and vice versa. Ruin of a company hence occurs when
its surplus becomes negative and the other company cannot cover this deficit.

A simulated surplus trajectory under this collaboration rule is shown in Figure 1.1. In this
trajectory the surplus of Company Two becomes negative after its first claim, so Company
One covers the deficit. Afterwards, a claim of Company One arrives and since Company Two
cannot cover this deficit, Company One gets ruined.
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Fig. 1.1: Surplus process under the collaboration rules.

Both companies use part of their surplus to pay dividends to their shareholders. The
dividend payment strategy L = (L#Lf) is the total amount of dividends paid by the two
companies up to time ¢. Let us call 7F the arrival time of the i-th claim of company k, with

k = 1,2. We define the associated controlled process (th , th) with initial surplus levels
(z,y) as
Xt=x,—-Ll+c*—c}?
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where
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corresponds to the cumulative amount transferred from Company Two to Company One up
to time ¢ in order to cover the deficit of Company One and
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corresponds to the cumulative amount transferred from Company One to Company Two up
to time ¢ in order to cover the deficit of Company Two.

Let us call 7 the time at which only one company remains (because it cannot cover the
deficit of the other), more precisely,

(2.3) 7=inf{t>0: X/ +v{ <0}

Note that since the claim arrival processes of the companies are independent, the probability
of simultaneous ruin is zero.

The process (XL, Y:E ) is defined for ¢ < 7. We say that the dividend payment strategy
T _ (7l 72
L= (1),
predictable with respect to the filtration generated by the bivariate process (X, Y:), and
satisfies

is admissible if it is non-decreasing, caglad (left continuous with right limits),

Li < Xi+CP' -2,
{ L <Y, +C? =Pt
This last condition means that the companies are not allowed to pay more dividends than their
current surplus. Let us call Ri_ the first quadrant. We denote by Il , the set of admissible
dividend strategies with initial surplus levels (z,y) € RZ. Our objective is to maximize the
weighted average of the expected discounted dividends paid by the two companies until ruin of
both companies. Note that after time 7, the surviving company can continue to pay dividends
up to its own ruin. Let us define V2 (k = 1,2) as the optimal value function of the one-
dimensional problem of maximizing the expected discounted dividends until ruin of Company
k alone. So, for any initial surplus levels (z,y) € R?,_, we can write down the optimal value
function as

(2.4) V(z,y) = sup Vi(z,y),

Z€H:L-,y

where

(2.5) Vi(z,y) = By, (m ( [e %*dL} + e*é?vlo(XE)> + a2 ( [e % dL? + e*“?V;’(YE))) .
0 0

Here, § > 0 is a constant discount factor, and a1 € [0,1] and a2 = 1 — a4 are the weights of the
dividends paid by Company One and Company Two respectively. The functions V2 (k = 1,2)
are zero in (—oo,0) so depending on which company goes to ruin at 7, either V{(X5) = 0 or
V3 (Yx) = 0. The optimal dividend strategy corresponding to (2.4) may be regarded as the
best dividend payment strategy from the point of view of a shareholder who owns a proportion
may of the total shares of Company One and a proportion masz of the total shares of Company
Two for some 0 < m < min{1/a;,1/a2}. An important particular case is a1 = a2 = 1/2, in
which the dividends paid by the two companies are equally weighted (for an earlier example
of weighting separate terms in the objective function in the univariate dividend context, see
Radner and Shepp [21]).



Remark 2.1. In case the two companies are owned by the same shareholders, another pos-
sibility of collaboration between the two companies is merging, in which case the companies
put together all their surplus, pay the claims of both companies and pay dividends up to time
T at which the joined surplus becomes negative (see e.g. Gerber and Shiu [16])). Given the
initial surplus levels (x,y), we can interpret any admissible dividend payment strategy (Lt),~
for the merger as an admissible collaborating one as follows
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Since L; is constant for t > T = T, the surviving company does not pay any dividends here.
So Vi defined in (2.5) for a1 = as = 1/2, satisfies

1? —ds 1? —Js f s
2V(x,y) > 2B, (§fe 4Lt + e o dLg) = Eupy([e 2%dLy).

0 0 0
The last expected value is the value function of the merger dividend strategy (L:),~,. We
conclude that the optimal collaborating strategy for equally weighted dividend payments is
better than the optimal merger strategy.

Both optimal value functions Vi® and V3 corresponding to the stand-alone companies have
an ultimately linear growth with slope one and they are Lipschitz, see for instance Azcue and
Muler [7]. Let us state some basic results about regularity and growth at infinity of the optimal
value function V defined in (2.4). From now on, let us call A := A1 + A2 and p := a1p1 + az2p2.

Lemma 2.2. The optimal value function is well defined and satisfies

p p
< < o
a1 + azy + SN Viz,y) < aiz+ a2y + 5

for all (z,y) € RA.

Proof.

The proof of the second inequality is similar to the one of Proposition 1.2 of Azcue and
Muler [9]: For any initial surplus levels (z,y) € Ri, x + pit and y + pot are upper bounds for
the surplus levels of Company One and Company Two at time ¢, respectively (even after the
ruin time 7 of one of the companies), so the cumulative dividends paid by Company One and
Company Two up to time ¢ are less than or equal to x 4+ pit and y + pat, respectively. So,
since e%° is a positive and decreasing function,

Vi) <o (Jeaat mo) Tsa)) +a (T d+ p9ion) ) =aa+ o+ 2,
0 0

In order to obtain the first inequality, consider the admissible strategy Lo = (L%,L%) in
which each company pays the initial surplus immediately, and then pays the incoming premium
up to time 7 that coincides with the first claim arrival time 71 = 74 A 72; we have,

Viz,y) > Vg, (=,9)
T1

alxr + a2y =+ Eo,o <f€_6spd5>
0

a1 x + a2y + 67%\' O

Y

Lemma 2.3. The optimal value function V' is increasing in both x and y, locally Lipschitz
and satisfies for any (x,y) € R,

ath < V(x+h,y) — V(z,y) < (TP 1)V (z,y)

and
azsh < V(z,y+h) = V(z,y) < (P2 1)V (z,y)

for any h > 0.



Proof.
Let us prove the inequalities at the top, the ones at the bottom are similar. Given any
€ > 0, take an admissible strategy L € Il such that Vi(z,y) > V(z,y) — . We define the

strategy I'e Hatn,y for b > 0 as follows: Pay immediately an amount h of the surplus of
Company One as dividends and then follow the strategy L. We have that

Vi (x4 h,y) = Ve(z,y) +ath

and so

(2.6) V(z+h,y) > Ve(z,y) +arth > V(z,y) + arh —e.

Consider also an admissible strategy I’ e ;4 h,y such that Vo2 (z+h,y) > V(z+h,y)—<c and

define the admissible strategy ’ € Il;,, which, starting with surplus (z,y) pays no dividends
until

~ 3 ZZS f3
T:mf{tZO:Xt >z +h, Y, Zy},

at time 7 pays either XtL3 — (x 4+ h) from the surplus of Company One or YtLS — y from the
surplus of Company Two, depending on which of these differences is positive, and then follows
strategy T’ c Il;4h,y. In the event of no claims, ¥ = ¢o := h/p1; since the probability of no
claims until tg is efMO, we get

2.7)  V(z,y) > Ves(z,y) > Ve (z + hyy)e” TV > (V(z + hyy) —e)e TV,

From (2.6) and (2.7), we get the inequalities at the top. O

3. Hamilton-Jacobi-Bellman equation

In order to obtain the Hamilton-Jacobi-Bellman (HJB) equation associated to the optimization
problem (2.4), we need to state the so called Dynamic Programming Principle (DPP). The
proof that this holds is similar to the one given in Lemma 1.2 of Azcue and Muler [9] and uses
that V is increasing and continuous in R3.

Lemma 3.1. For any initial surplus (z,y) in Ri and any stopping time T, we can write

V(x,y)
TAT TAT . _ _
= sup (Eay(ar [ e dLi+as [ e %dL + e " ren V(XEe Yie)
Le, , 0 0

e ey (VR (XE) + a2 VP (VE)))).

The HJB equation of this optimization problem is

3.1) max {L(V)(z,y), a1 = Va(2,9), a2 = Vy (2, 9)} = 0,

where

(3.2) LV)(z,y) = Va(z,y)p1 + Vy(z,9)p2 — (6 + N) V(z,y) + Z(V)(,y) + U(z,y),

IWV)(z,y) = M fyV(z—ay)dFi(a)+X [TV, +y— a)dF (a)
e [§ Vi(e,y — a)dF? (@) + X2 [T V(2 +y — a,0)dF* (),



and
(3.4) U(z,y) = Ma2Va ()(1 — F(z +y)) + dear V' () (1 — F2(2 + y)).

Since the optimal value function V is locally Lipschitz but possibly not differentiable at
certain points, we cannot say that V' is a solution of the HJB equation, and so we prove instead
that V is a viscosity solution of the corresponding HJB equation. Let us define this notion
(see Crandall and Lions [12] and Soner [23] for further details).

Definition 3.2. A locally Lipschitz function w : R?,_ — R is a viscosity supersolution of (3.1)
at (z,y) € R3 if any continuously differentiable function ¢ : R3 — R with ¢(z,y) = u(z,y)
such that u — ¢ reaches the minimum at (z,y) satisfies

max {L(¢)(2,y), a1 — z(2,y), a2 — py(z,y)} < 0.

A function u : R — R is a viscosity subsolution of (3.1) at (x,y) € R if any continuously
differentiable function ¢ : R3 — R with ¥(x,y) = u(z,y) such that u — v reaches the
maximum at (z,y) satisfies

max {‘C'(w)(xfy)’al - 1/11(37711)7‘12 - %(177?!)} > 0.

A function v : R} — R which is both a supersolution and subsolution at (z,y) € R is called
a viscosity solution of (3.1) at (z,y) € R3.

Proposition 3.3. V is a viscosity supersolution of the HJB equation (3.1) at any (x,y) with
x>0 andy>0.

Proof. Given initial surplus levels x > 0, y > 0 and any 1 > 0, l2 > 0, let us consider the
admissible strategy L where Company One and Two pay dividends with constant rates I; and
I respectively and 7 is defined as in (2.3). Let ¢ be a test function for the supersolution of
(3.1) at (x,y) with z > 0 and y > 0. As before, denote 71 and 7{ as the arrival time of the
first claim of Company One and Two respectively, and 71 = 74 A 72. We have for ¢t < 11,

XE:.Z‘—F(]h—ll)t,
Y =y+ (p2—l2)t.

Note that N! + N2 is a Poisson process with intensity A, because the arrival times of the two
companies are independent. We have from Lemma 3.1 that

plz,y) = Vizy)
> Ey(a fOTIM e %% 11ds + as fOTIM e 0% lads)
+Ez,y 676(TlAt)I{Tl/\t<?}V(X7L?1/\taYE/\t)))
+Bay (7 Iimy mimry (VO (XE) + a2V (V) )
> Eoylar [T e lids +az [[ €707 1a2ds)

+Ez,y e_é(Tl/\t)w(Xfl/\tyYTI{/\t)I{Tl/\t<?})
+Ez,y e_é?l{rlAt:?} (alvlo(Xé) + a2V20 (Y?L))> .

We can write _ -
Eqey (6_6(7M)‘P(XTLlAt7YTLlAt)I{-rlAK?})
= E%y(l{t<71 }e_ét(p(X‘lﬁ/\tv Y‘rlll/\t))

_ 7—1 T T,
+Ezvy(‘[{7'1:7'1/\t<?and 7'1:7'11 }6 o SO(XfllvyfIIl))

_572 T T
+E€t7y(l{71:n/\t<?and 712712 }6 omi @(Xffvyflé))

So we obtain
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t

—sri L L
1{7—1:7—1 At<Fand T =7} 3¢ ! A‘0()(-:-11 ’lel ) )

+1lim, o+ By ( %

+ lil’nt~>0Jr

—5r2 L L
i E L =1 At<7and =2 }¢ ! AP(XT127Y7_12)
+hmy_ o0+ Lo,y ©

eI o (a1 VO (XL ) +aa VO (VL))
. {rint=73 21V T 2Va (7
+hmt—>0+ Ex,y 1 t

= aili +a2la — (0 + ) p(x,y)
+(p1 = 11) @a(,y) + (P2 — 12) py (2, y) + Z(p)(2,y)
+U(z,y).

Therefore,

0> L(p)(x,y) + 1 (a1 — pa(z,y)) + 2 (a2 — @y (2, y)) -
Taking 1 =12 =0, l1 — oo with I =0, and l2 — oo with /1 = 0, we obtain

max {E(@)(mz y)7 ay — @w(x7 y)a az — @y(% y)} S 0.0
Proposition 3.4. V is a viscosity subsolution of the HJB equation (3.1).

Proof. Arguing by contradiction, we assume that V' is not a subsolution of (3.1) at (zo, o)
with zop > 0 and yo > 0. With a similar proof to the one of Proposition 3.1 of Azcue and
Muler [9], but extending the definitions to two variables, we first show that there exist ¢ > 0,
h € (0,min{z0/2,y0/2}) and a continuously differentiable function ¢ : R} — R such that 1)
is a test function for the subsolution of Equation (3.1) at (zo,yo) and satisfies

(3.5) Yo, y) > a1,y (2, y) > a2
for (z,y) € [0,z0 + h] x [0,y0 + h],
(3.6) L) (z,y) < —2e0

for (z,y) € [xo — h,xo + h] X [yo — h,yo + h], and

for (z,y) € RY\ (xo — h/2,20 + h/2) x (yo — h/2,y0 + h/2).
Since v is continuously differentiable, we can find a positive constant C' such that

(3.8) L) (x,y) <C
for all (x,y) € [0,z0 + 2h] x [0, yo + 2h].
Consider
0<b< h A 2
2max {p1,p2} 46 (8+N)2C(5+N) [’

and let us take any admissible strategy L € Il ,,. Consider the corresponding controlled
risk process (X, Y;) starting at (xo,yo), and define the stopping times

P =inf{t>0: (X:,Y:) €8 ([wo— h,zo+ k] x [yo — h,yo + h])},
T=inf{t>0: (X:,Y;) € RY — [z0 — h,zo 4+ h] X [yo — h,yo + h]}



and 7* = 7° A (7 + 0) A 7. Note that 7* is finite for h small enough and that it is necessary
to introduce 0 because before a lump sum dividend payment, (X-,Y7) can be in [zo — h,x0 +
h] [yo—h yo—f—h} and( 7—+>YT+)6R+ [wo—h7xo+h]><[yo—h,yo+h}.

Let us show that

(3.9) V (X, Yo ) <P(Xrw, Yor) — 2¢

if 7% =7 A (T + 0) <T. There are two possibilities:

(1) If 7% = 7°, (X,+,Yy+) € O ([xo — h, o + h] X [yo — h,yo + h]) and so, from (3.7), we
obtain V (X« ,Y ) < P(Xrx ,YT*) -2

(2) If 7" = 740, the distance from (X,=,Y>+) to (zo,yo) is at least h/2 < h—max {p1,p2}0,
so from (3.7), we get (3.9).

Note that (X,-,Y,-) € [0,z0 + h+ p16] X [0,y0 + h + p26)] C [0, 20 + 2h] x [0, yo + 2h)] for
s < 7, so we have that

L) X,-,Y,~) < Cfors<7".

Since L} and L? are non-decreasing and left continuous, they can be written as

(3.10) Li = /dL“+ > (g — Ly), L = /dL2“+ > (L - L)

X +;£X9 3+ #Ys
s<t s<t

where L1 and L?° are continuous and non-decreasing processes. Since the function 1 is
continuously differentiable in Ri, using the expression (3.10) and the change of variables
formula for finite variation processes, we can write

¢(Xr 7Y ) —or _w(x()vyo)

= [T (me Xsf,st)+p2wy( Yo-)e *‘*Sds
+ Y (WX, Ye) — (X, ))e S ((Xa, Ye) = (X, Y- )) e
X #Xs Y,;&YS
s<7* SST*
T e (X Y )e AR+ Y (( Xk, Yar) — (X, Ye)) e
X 4+ 7Xs
s<‘r*
T (X o Y )e AL Y (W(X s, Vit ) — (X, Ye)) e
Y 4+ #Ys

s<T™

6 J7 (X, Y, e P ds.

Note that (X,,Y5) € Ri for s < 7" except in the case that 7° = 7, where X,» + Y-« < 0.
Here we are extending the definition of ¥ as

P(x,y) = VP (@) [ az0y + a2Va () I 1y=0y

for x +y < 0. We have that X 1 # X, only at the jumps of L}, and in this case X .+ — X, =
- (L; - Li) Since L is admissible we have that X + = X5 — (LiJr — Li) > 0. We can write

—Jy e(Xm Yo )e ALY Y (X, Ver) — (X, Vo)) €7
X4+ #Xs
s<T*

- _ L', —r! _és
= — [0 Ya(X,- Y- )e PdL + 3 (fo ot '%(Xs—a,Ys)da)e 2

X +#Xs
(3.11)
* s 71 Liy—L; -5
< _fo are”*°dLy® — ay 12 ) (fo da) e %8
LY, #L
st s
s<T*

= —a1 fOT eiéSdLi.



Similarly,

_foT ww(Xs_7Ys_)e_6SdLgyc+ Z (7/’(X3+7Ys+) _w(XS7)/;)) e—&s
X 4+ #Xs
s<T* N R
(312) = [T (X, Y, )e PdLE — Y (ffs*‘LS Vo (Xs, Yy — a)da) e %
L§+¢L§
s<T™

< —a2 fOT e % dL?.

On the other hand, X # X,- only at the arrival of a claim for Company One, so

M= Y ((Xe,Ye) = (X, Y-)) e
X - #Xs
s<t
(3.13) e o (X —a,Yeo) = (X, Y. ) dF (a)ds

Al e 0 e T (0, X - 4 Yo — a) — (X, Y,-)) dF (a)ds

—Ap [y e f;c;_ﬂzs_ (a2V3 (V=) — (X, -, Y,-)) dF' (a)ds

is a martingale with zero expectation for ¢ < 7. Analogously,

ME = Y (X, Ye) = (X, Y,-))e "
Y, #Ys
s<t
(3.14) e [LeTt [T (W(Xom, Yae — @) — (X, Yoo )) dF?(a)ds
_)\2 56765 ))(<s:+Y57 (w(Xs* + YS* - CM,O) - w(Xs*aYs*)) dF2(a)ds
_)\2 56765 f;O7+Y _ (alvlo(y's*) - w(Xs*aYS*)) dF2(Oé)dS

is also a martingale with zero expectation for ¢t < 7. So we get

(315 VX Ye)eT —vlaow) < Jo L@)(X, Yoo )e® + M + M2
—a fOT e %%dL! — as fOT e 9 dL?.

Using (3.6), (3.8) and the definition of 6 we get

(3.16)

JT L)X, Yoo e %ds

b —
0 J7 T L@)(X -, Y- e ds + CO

0
b Z
—2¢6 [ NAT =935 + C0
—2e6 [ e *%ds + I N e %%ds + C0

—2e(1—e ")+ er/(0+N).

ININIA TN

From (3.7), Lemma 3.1, (3.9), (3.15) and (3.16), it follows that
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(3.17)
V(o,yo) ) .
= supp(Eugyo(a1 [ e "L} +ax [] e *dL2 4 e 7 V(Xre, Yoo ) [(recmy
+ (VR (XE) + a2 VP () €77 L))
< supp(Eag yo (a1 fg* e %%dL! + as fof* e L2 + e (P(Xow, Yo ) — 26) Iprv cmy
+ (@ VPXE) + aV (V) €77 Iirery)

S SuprImyO (foT* ‘C (1/)) (Xs* ) YS* )676Sds + Mi* + ME* - 286767*[{7’* <7} + TP(«’EO’ yO))
< ¥(x0,90) + supg Eag,y, (*25(1 —e ) 4N (64N - 256_CT*I{T*<?})
= Y(zo0,y0) — 2 + supg Ezg,y0 (256_57—*[{7*:?}) +eA(6+N)
< (zo,yo) — 26 +2eE(e 0 +eX/ (54 N)
= P(zo,90) — XN/ (6 + A)
< ¥(0,%0)
and this contradicts the assumption that V (zo,yo) = ¥(z0,yo)- O

From the above two propositions we get the following result.

Corollary 3.5. V is a viscosity solution of the HJB equation (3.1).

4. Smallest Viscosity Solution

Let us prove now that the optimal value function V is the smallest viscosity supersolution of
(3.1).
We say that the function w : R?,_ — R satisfies the growth condition A.1, if

u(z,y) < K + a1z + azy for all (z,y) € R}

for some positive K.
The following Lemma is technical and will be used to prove Proposition 4.2.

Lemma 4.1. Fix o > 0 and yo > 0 and let uw be a non-negative supersolution of (3.1)
satisfying the growth condition A.1. We can find a sequence of positive functions U, : R} — R
such that:

(a) Um is continuously differentiable.

(b) U, satisfies the growth condition A.1.

(¢c) Um,z > a1, Um,y > a2 and P1Um,z + P2Um,y < (0 + A) Um In Ri.

(d) Tm \y @ uniformly on compact sets in R3 and Vi, converges to Vau a.e. in R3.

(e) There exists a sequence ¢, with w%linoo ¢m = 0 such that

SUP(4,yyeao £(@m) (T,y) < cm, where Ao = [0, z0] x [0, yo].

Proof. The proof follows by standard convolution arguments and is the extension to two
variables of Lemma 4.1 in Azcue an Muler [9]. a

Proposition 4.2. The optimal value function V is the smallest viscosity supersolution of
(3.1) satistying growth condition A.1.

Proof. Let U be a non-negative supersolution of (3.1) satisfying the growth condition A.1
and let L € I1, ,; define (X4, Y}:) as the corresponding controlled risk process starting at (z, y).
Consider the function u,, of Lemma 4.1 in Ra_ ; we extend this function as

Um(z,y) = alVlo(:c)I{mZO} + az%o(y)f{yzo} for x +y < 0.

As in the proof of Proposition 3.4, we get
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(4.1)
U (Xonr, Yinr)e PN — i, (2, y) B B
< JAT L(Wm)(X,-, Y- )e_asds —a JAT e_édei — a2 OMT e_adeg + MtlA? + Mt2/\?7
where M} and M7 are zero-expectation martingales. So we obtain that
U (Xinz, Yinz)e "N Ims gy — Ui (2,y)

< Ot/\?ﬁ(ﬂm)(Xs,st, )6765d3+ Minr + Mtz/\?

—ay ([T e LY 4 eO¢NT) Vlo(XtA?)I{?St})
—az (o7 e dLE 4+ e VI (Vine) [ty ) -

Using that both L} and L? are non-decreasing processes, from the monotone convergence
theorem we get

i (B (o (J377 €Lt + eIV X )
(42) +as (fot/\T 676de§ + ef(s(tA?)V'QO(Y;A?)I{?St})))
=Vi(z,y).

From Lemma 4.1(c), we have that p1Um, s + p2lm,y < (6 + A) Un and that ., is increasing.
S0 Z(tm ) (x,y) < Mim(z,y) and then

=0+ Nam(z,y) < L(@m)(@,y) < Xm(2,y) +Ul(z,y).
But using Lemma 4.1(b) and the inequality X <z + p1s, Ys < y + p2s we get
(4.3) Um(Xs,Ys) < K +a1Xs + a2Ys < K + arz + a2y + ps.

So, using the bounded convergence theorem, we obtain

t— o0

(4.4)  lim E,, (/Omc(am)(xs,,Ys,)e-“ds) =E,, (/O?E(am)(xs,7ys,)e—53ds> .

From (4.1), (4.2) and (4.4), we get
(4.5)

i ey (W (Ko Yinr)e ™ L)) =T (.9) < By ([ 6000 (X, Yo Je ™) =V
0

t—o0

Next, we show that
(4.6) lim B, (ﬂm(XW,nﬁ)e““’fm[{?ﬂ}) =0.
From (4.3), there exists a K such that
E,y (ﬂm (Xenm, Yt/\?)ef‘s(t/\ﬂl{?x}) < (K +aiz+ axy + pt) e %t

Since the last expression goes to 0 as t goes to infinity, we have (4.6). Let us prove now that

(4.7) lim sup B, ,, (/ L(ﬂm)(XS,,n,)e*“ds) <0.
0

m— o0

Given any € > 0, we can find T such that

(4.8) /TOO L(Tm) (X, Yo Je %ds < %

12



for any m > 1, as by virtue of (4.3), growth condition A.1, Lemma 4.1(b) and Lemma 4.1(c),
and the growth property of V¥ and V3, there exist positive constants ko, k1,k2 and B such that

‘C(ﬂm)(Xs_7Ys_) S )‘Em(Xs_7Ys_) + U(X.9_7Yt9_)
< ko + kiz + kay + Ps.

Note that for s < T, X,- <zo:=xz+piT,Y,~ <yo:=y+p2T. From Lemma 4.1(e) we
can find myo large enough such that for any m > my

and so we get (4.7). Then, from (4.5) and using (4.6) and (4.7), we obtain

(4.9) u(z,y) = lm Um(z,y) > Vi(z,y).
m—r o0
Since V is a viscosity solution of (3.1), the result follows. O

From the previous proposition we can deduce the usual viscosity verification result.

Corollary 4.3. Consider a family of admissible strategies {L""’ € 1., : (z,y) € R3}. If the
function V= (z,vy) is a viscosity supersolution of (3.1) for all (x,y) € R3, then Vi=.u(z,y) is
the optimal value function (2.4).

5. Iterative Approach

In this section, we approximate the optimal value function V defined in (2.4) by an increasing
sequence of value functions of strategies which pay dividends (and collaborate if it is necessary)
up to the n-th claim (regardless from which company) and then follow the take-the-money-
and-run strategy. This iterative approach will be used in Section 9 to find the optimal strategy
numerically.

Given initial surplus levels (z,y), the take-the-money-and-run admissible strategy fopays
immediately the entire surplus = and y as dividends (that is Xy+ = Y+ = 0), and then pays
the incoming premium as dividends until the first claim, where the company facing that claim
gets ruined. Note that under this strategy the companies can not help each other.

Consider 7, as the time of arrival of the n-th claim regardless from which company, that
is the n-th point of the Poisson process N; = N} + N2. We define the set IT; , of all the

admissible strategies in Il , which follow z° right after 7,,. Let us define

(5.1) V"™ (z,y) = sup V(z,y)

Leny ,

for n > 1, we also define V° = Vzo. We can write

Viz,y) = ax+ay+ 72k (2 +aiV2(0))

(5.2) +QF—2A (2 4 a2V/(0)) .

Note that, for n > 1, the functions V" can be constructed iteratively as

(5.3) V" (z,y) = sup VE(z,y),

Lel, 4,

where

an('x7 y) = Elvy (al oTl 676SdLi + az foTl Eﬁésdl’g + 6767—1 Vnil(XTfl ) YT&)I{H <?}

5.4 - _
(54) +e T (G1V10(X?L) + a2V2O(Y?L)) Iir =7)-
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In this expression, we only consider the admissible strategy L € Il,, for ¢ < 71. The
following DPP holds.

Lemma 5.1. For any initial surplus (x,y) in R3 and any stopping time T, we can write
V*(z,y) = supgeq, , (Bay(ar leAT e % dL! + as leAT e % dL?
*JTV"(XTL,Y Mircmnmy +€ VY XE YEV o prery omy
+e 07 (G1V1 (XE) + az V5 (V2 )) Iir pr=r=7}))-
Proposition 5.2. We have that Vi<vi<..<V.

Proof. We prove the result by induction:
(a) V® < V!, because the strategy I’ e .
(b) Assume that V™2 < V™! . By (5.3), we have

V™ (z,y) > supfeH Eoy(ay [T e %% dLE +az [T e™%dL? + e V2 (XL YE) (1, omy
e (aVOXE) + anVE (VD)) Iy —ry)
= V’Vl ! (CL‘,y) * D

The HJIB equation for V™ is given by

(5.5) max {E "Nz, y), a1 — Vi (z,v),a2 — V' (, y)} =0,
where
(5.6)
En(vn)(w’y) = plvxn(xay)+p2Vyn(xvy)_(6+A) Vn(x’y)+I(anl)(x7y)+U(x7y)

The following basic results about regularity and growth at infinity of V", n > 1 are similar
to those of Lemmas 2.2 and 2.3.

Lemma 5.3. The optimal value function V" satisfies growth condition A.1, it is increasing
and locally Lipschitz in R% with

arh <V (@ + hyy) = V" (@,y) < (T -1V (@, y)
azh < V™ (z,y +h) = V"(x,y) < (VP2 - 1)V (@, y)
for any h > 0 and for any (z,y) in R2.

In the next two propositions, we see that V" is a viscosity solution of the corresponding
HJB equation.

Proposition 5.4. V" is a viscosity supersolution of the HJB equation (5.5) for x > 0 and
y > 0.

Proof. Similar to the one given in Proposition 3.3. O
Proposition 5.5. V" is a viscosity subsolution of the corresponding HJB equation (5.5).

Proof. The proof of this proposition is similar to the one of Proposition 3.4, but using as
martingales with zero expectation

(5.7)
M= Y (VPMHXG YY) = (X- Y o)) et
X - #Xs
s<t

A fleT [T (VX — oY) — (X, Y.)) dF (a)ds
et T (V" 0, X - +Yim — @) = ¥(X,, V) dF (a)ds
Y y s fx v (a2VR(Y,-) — (X, Y,-)) dF*(a)ds
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and

(5.8)
M= 3 (VUG YL — (X V) e
v, 2v,
&sft

X fy e forT (VI Y = @) = (X, Y, ) dF(a)ds
7)\2 oteias ))((5:+Y57 (Vnil(Xsf + Ys* - Q, 0) - w(Xs* ) YVS* )) sz(Of)dS
X foe [T Ly (VP (Yio) = 9(X,-,Y,0)) dF? (@)ds.

instead of the martingales M} and M7 defined in (3.13) and (3.14) respectively. O

In the next proposition we state that V™ is the smallest viscosity solution of the corre-
sponding HJB equation.

Proposition 5.6. The optimal value function V" is the smallest viscosity supersolution of
(5.5) satistying growth condition A.1.

Proof. The proof of this proposition is similar to the one of Proposition 4.2, but using as
martingales with zero expectation (5.7) and (5.8). O

Remark 5.7. From the above proposition we deduce the usual viscosity verification result
for the n—step: Consider a family of admissible strategies {L""" € T, : (z,y) € R%}. If the
function Ve (x,y) is a viscosity supersolution of (5.5) then Vie,y = V™.

Finally, we have the convergence result to the optimal value function (2.4).
Proposition 5.8. V™ 7V asn goes to infinity.

Proof. By Lemma 2.3 and Lemma 2.2, V is increasing and satisfies property A.1, so there
exists a T' > 0 such that

(5.9) e_étV(:c + pit,y + pat) < %
for ¢ > T. Let us define k = V(z + p1T,y + p2T) > 0 and take no > 0 such that
€
5.10 Plrp, >T)>1— —.
( ) (T 0 = ) > 3
There exists an admissible strategy L € 1., such that
€
(5.11) Viay) - Velwy) < 5.

We define the strategy L € 1119, as Ly " = Ly for t < 7,y AT and L;° = fg,mo for t > 7y,

if 7, < 7. From (5.9), (5.10) and Lemma 2.3, we have

Vi@, y) = Vno (2, y)

< E., (a1 (fjwo e~%dLY 4 e~ TV (XE)) T as (fjwo e~ dL2 + e—ﬁv;’(y;f)))

< Eay(e?MmovxE, YEL )

< BeylUfrnn,,srye V@ +pu (7 ATw) y+p2 (7 ATw,)
e,y TV (@t pr (FAT) 34 p2 (7 A Tag)

< 1251-,1:(I{;A%ZT}ef‘s(?”"O)V(w + 01 (TATng) ¥ + 02 (T ATng))) + 6P(Tng <T)

< 2

.
Then we obtain from (5.11)

Viz,y) SVi(z,y) + 5 < Vpno(2) +e < V' (w,y) + ¢

Wl m

for any n > no. O



6. Stationary dividend strategies

As in the one-dimensional case (see for instance Azcue and Muler [9]) our aim is to find a
stationary dividend strategy whose value function is the optimal value function V. A dividend
strategy is stationary when the decision on the dividend payment depends on the current
surplus only, and not on the full history of the controlled process. More precisely, a stationary
dividend strategy is given by four positive and Borel-measurable functions I; : R — Ry
and Ar, : R — Ry, i = 1,2. A stationary dividend strategy generates a family of admis-
sible strategies {fm’y = (L', L?) €, for any (x,y) € Rf_} which are the solutions of the
following stochastic differential equations

Ly = i1 (XEvE) ds+ £ AL (xF¥E)
<t

with initial surplus levels X& =z, Y& = 4. AL (z,y) corresponds to lump sum dividend pay-
ments and l;(x,y) corresponds to the continuous dividend payment rate of the i—th company
when the current surplus level is (z,y).

We are not proving in this paper the existence of an optimal strategy. However, if there exist
optimal admissible strategies for every (z,y) € RA, then there exists an optimal stationary
strategy. Given the optimal admissible strategy (Zl, Z2) € Il ,y, we define

Api(z,y) = L+ and li(z,y) = dL® for i = 1,2.

It can be proved, using the Dynamic Programming Principle and a stair-step approximation on
the time variable, that these functions are Borel-measurable and that the stationary dividend
strategy generated by them are optimal for any (z,y) € R3.

If the optimal value function V is differentiable (and this fact has to be checked for every
concrete case, see Section 8), the form in which the optimal value function solves the HJB
equation at any (z,y) € R2 suggests how the dividends should be paid when the current
surplus is (z,y); here we are using the result given in Corollary 3.5. There are only seven
possibilities:

(i) If the current surplus is in the open set
= {(amy) € Ri LV (z,y) =0, Va(z,y) > a1, Vy(z,y) > ag},
no dividends are paid. The set C* is called the non-action set.
(ii) If the current surplus is in the open set
By = {(z,y) € R2 : L(V)(z,y) <0, Va(z,y) = a1, Vy(z,y) > az},

Company One pays a lump sum as dividends. This lump sum should be min{b > 0 :
(z—b,y) & Bi}.
(iii) If the current surplus is in the open set

B; = {(:my) € Ri LV (z,y) <0, Va(z,y) > a1, Vy(z,y) = (]/2},

Company Two pays a lump sum as dividends. This lump sum should be min{b > 0 :
(z,y —b) & B3}

(iv) If the current surplus is in the set
By = {(z,y) € RE : L(V)(,y) < 0,Va(z,) = a1, Vy(z,y) = a2},

but not in the closure of B U B3, both companies pay a lump sum as dividends.

(v) If the current surplus is in the closed set
Ay = {(,9) € RL : L(V)(2,9) = 0, Va(w,9) = a1, Vy(2,y) = a2},

both companies pay their incoming premiums as dividends.
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(vi) If the current surplus is in the set
Al = {(z,y) € RL: L(V)(2,y) = 0, Va(z,y) = a1, Vy(x,y) > az},

Company One pays dividends at some special rate so that the surplus remains in A7 UAS.

(vii) If the current surplus is in the set
A3 = {(z,y) € RY : L(V)(2,y) = 0,Va(z,y) > a1, Vy(2,y) = az},
Company Two pays dividends at some special rate so that the surplus remains in A5UAS.

Note that if V' is a continuously differentiable solution of (3.1), then A*= Aj U A} U A5
is closed, B* = Bj U B5 U B; is open, and any segment which connects a point of B* with a
point of the open set C* should contain a point of A*.

Remark 6.1. These strategies are the generalizations of the band strategies in the two-
dimensional case. The number of bands corresponds to the number of connected components
of the set A*. As in the one-dimensional case, we do not expect the sets A*, B* and C* to be
connected in general; see for instance Chapters 5 and 6 of [9].

Remark 6.2. Let us consider the simplest case of identical and independent Cramér-Lundberg
processes in (2.1); that is p1 = p2 = p; M1 = Xo; and U}, U? have the same distribu-
tion F'. We also choose the dividends paid by both companies to be equally weighted, i.e.
a1 = a2 = 1/2. Under these assumptions, the optimal value function will be symmetric, that
is V(z,y) = V(y,z), and so the sets introduced above satisfy the following properties: the line
y = x is an axis of symmetry of the sets C*, B; and A§; the sets Bf and A] are the reflection
with respect to the line y = x of the sets B5 and A3 respectively.

7. Curve strategies

We introduce a family of stationary dividend strategies, called curve strategies, in which divi-
dends are paid in the seven ways mentioned in the previous section, having a simple structure:
here the boundary between the action and non-action region is given by a curve. These strate-
gies can be seen as the natural analogues of the one-dimensional barrier strategies in this
two-dimensional case.

It is reasonable to think that if the optimal strategy is a curve strategy it should satisfy
the following properties: If (zo,y0) € Bi U A7 (that is only Company One pays dividends),
then (z,y0) should be in Bf for all x > xo; analogously if (zo,y0) € B5 U.A5 (that is only
Company Two pays dividends), then (zo,y) should be in B3 for all y > yo. Finally, the set
C* should be bounded because, as in the one-dimensional case, the surplus of each company
under the optimal strategy should be bounded for ¢ > 0.

Let us define the curve strategies satisfying the properties mentioned above. For these
strategies, R2 is partitioned into seven sets C, Ao, A1, Az, Bo, B1 and Bz where A = Ag U
Ai U A is a curve which intersects both coordinate axes.

o Ao = {(z,7)} with (z,7) € R%. If the current surplus is (¥, %), both companies pay
their incoming premium as dividends. Let us call u the x-intercept and v the y-intercept
of the line with slope p2/p1 passing through (Z,7%); let us denote ng,y) and (’)éf@ the
regions in the first quadrant bounded above and below by this line, respectively.

e By = [T,00) X [y,00) — Ag. If the current surplus is (z,y) € Bo, Company One and
Company Two pay z — T and y — ¥ as dividends, respectively.

e The set A; is a curve in Of’m parametrized by
Ar = {(u+ Bé(w), 1 (w) with 7 < u < Me, |,

where & : [u,M¢,] — R is a continuously differentiable function with & (@) = 7,
&1(Mg,) = 0 and negative derivative. If the current surplus (z,y) € A1, Company
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Two does not pay dividends and Company One pays dividends at some special rate for
which the bivariate surplus remains in the curve A;. By basic calculus, it can be shown
that this rate is given by

D2

L@y = )y

e The set B is the set to the right of A; in Of@, that is
B1:{(:p7y)€Ri :ygﬂandm>§fl(y)+%y}.

If the current surplus (z,y) € Bi, Company Two does not pay dividends and Company
One pays the lump sum

min{b > 0: (x —b,y) € A1} =z — (p1/p2)y *ﬁfl(y)-

e The sets A and B> in Of@ are defined analogously to A1 and By with the roles of
Company One and Two interchanged; that is

Az = {(62(v),v+ B26a(v)) with 7 < v < My, },
and
By = {(may) 6Ri:x§iandy>§;1(;¢)+%m}7

where & : [0, Mg,] — R is a continuously differentiable function with &(v) = =,
£2(Me,) = 0 and negative derivative. If the current surplus (z,y) € A2, Company
One does not pay dividends and Company Two pays dividends at some special rate for
which the bivariate surplus remains in the curve As. Here this rate is

D1

la(z,y) = _m.

e If the current surplus (z,y) € B2, Company One does not pay dividends and Company
Two pays the lump sum

min{b > 0: (z,y —b) € A2} =y — (p2/p1) x — 551(37)~

e The no-action region C is the open set delimited by the curve A and the axes. If the
current surplus (z,y) € C, no dividends are paid.

The set partition of the curve strategy corresponding to (Z,7) = (1,2) and the functions
&i(u) = w for u € [-1,4] and &(v) = w for v € [1, 3]

are illustrated in Figure 7.1.
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Fig. 6.1: Example of Curve Strategy

For any w € R, let us define the set
(7.1) O = {&: [w,Me] = Ry, §(Me) =0,M¢ >0, ¢ <0 and ¢ continuous} .

Note that the curve strategies depend only on the point (Z,%) € R and the functions
& € % and & € DY, used in the parametrization of the curve A. We associate to any

& = ((=,7),£&1, &) and any (z,y) € R3 the admissible strategy I = (L}’E,Lf’g) € I,y Let
us define the value function V¢ of this curve strategy as

(7.2) VE(e.y) = Viele.v).

We will look for E* such that the associated value function V¢ is the optimal value function
defined in (2.4).

Remark 7.1. In the case that A is the segment x +y = K for some K > 0 in R2, the sum
of the dividend rates paid by Company One and Two is p1 + p2 for any current surplus in this
line. The point Ay = (Z, K — ¥) indicates how this dividend payment is splitted among the
two companies in A: At Ao, Company One pays p1 and Company Two pays p2, to the right
of this point (A1) Company One pays the total rate p1 + p2 and to the left of this point (Asz)
it is Company Two which pays p1 + pa.

8. Search for the Optimal Curve Strategy

The goal of this section is to see whether the optimal value function V' is the value function
of a curve strategy as defined in the previous section. We do not have a theoretical result
on the existence and structure of the optimal stationary strategy, however we can use the
iterative approach introduced in Section 5 and Proposition 5.8 as a verification result. This
verification result is stated in Proposition 8.8; it will be used in the next Section to obtain the
optimal curve strategy and establish its optimality among all admissible dividend strategies
in a particular example.

We first define an auxiliary function. For any & = ((Z,%),&1,&2), where (Z,7) € R3,
& € ®” | & € ®¥ and any continuous function Wy : R2 — [0, +00), let
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WE (@,9) = Bay([7" e (a1dLAS + a2dL2€) 4 e M Wo (X Vi M (7, <)

0 T1
(8.1) _ € €
+e=07 (alvlo(xé )+ a2 VR (YE )) It —7y).

If Wy is the value function of a family of admissible strategies L= (Zz,y € Hz,y)( DER2
o +

and C, Ao, Ai, 142, Bo, Bi and Bs are the sets associated to £ (as defined in the previous
section), then W* would be the value function of the strategy which pays dividends according
to the curve strategy It up to the first claim and according to L afterwards. We call this kind

of strategy a one-step curve strategy.
Define

(8.2) H(z,y) :=Z(Wo)(z,y) + U(z,y).

In the next proposition, we find an explicit formula for the function WE in terms of Wy
and & for (z,y) € OY); the formula for the value function for (z,y) € OF7 follows in an
analogous way and depends only on &». -

In order to obtain this formula, we use the fact that W satisfies the integro-differential
equation ﬁ(Wg )=0in CU.A and that W& =a1in AL U AU B, UB.

Proposition 8.1. Given ¢ = ((%,7), &1, £2) and a continuous function Wy, we have that
g1 (a—Bly)—y

Wi@,y)= e VT gy

&1(@**251) Y

o 7 e OTNYH (2 + prw, y + paw)dw) T

_p1
r P2y {(y u)p1<z<§ (y)+ y,y<y}

{(y )y Se<Ey Hy)+ 5L T y<y}
+ (al (CE - 51_1(?/) - %y) + k(gl_l(y))) I{m>5;1(y)+%y7y<@}

> Lyy<
+ (al(z —T)+ax(y—79) + k(T - 5—;?)) Iiw>7,y>7)

for (z,y) € Of"ﬁ), where u = — the function H is defined in (8.2) and
sy -—&a @ _ _ _
k) = VR G%+ﬁﬁ@+%ﬁ%&wﬂ

£ (w) _ &1 (w)

T P L e
El(u)

(5+X)
&1(w) —(6+2) &
o Jel H(E Ht) + Bty t)e v2 dt.

Proof. Let us consider first an initial surplus (x,y) € C N (9?@, By definition (8.1) we
have that the controlled surplus process for ¢ < 71 A h and h > 0 small enough is given by

(X, Y1) = (z + p1t,y + pat).
So we have that

W(z,y) = Eq (*“Wf(Xm,mﬁ)l{m 0+ e T Wo(Xry, Yo ) tnr —ry <7}
+eoT (VP (X7) 4+ a2V3 (Y#)) Ijtnry =ry=7})-

We can write
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Eay (e—é (11 /\t)I{Tl/\t:t<Tl}W§ (X7P1/\t7 YTII’M) +e? (TlAt>I{Tl At=T1 <?}W0(X£1/\ta YTLI/\t)))
= Ez4 (676(Tl/\t)l{q—l/\t:t<7'1}Wf(XflAtaYTlll/\t))
—&7t L L
+Ez,y (I{TI:TlAt<?and 7'1:7'11} € 21 WO(Xlll ’ Yﬁ))
+Ez,y (1{71:7'1/\t<?and 7'1:7'12 }6_67—1 WO(X%’ YTLlé))’

and so

lim e CHONWE (@ 4 pit,y + pat) — W, y)
t—0+ t

Then g(t) = WE(ZE + p1t,y+pat) is continuous and differentiable as long as (z + p1t,y+pat) €
C with

(8.3) g(0) = A+ W (z,y) - H(z,y).

Let us prove now that the function WE is continuous in A; and has a continuous derivative
in the direction of this curve. In case (z,y) € A1, we have that for t < 71 Ah and h > 0 small
enough, the controlled surplus process is

P2
s — (p1/p2) Ys

(X v) = (= ot fay )ds,y+p2t) € Ai.
1

By (8.1), we have that

— T1 At —
we - E, “b2 05 ds 4 e WE(Xonrss Yine ) (inns —
(x7y) Y ((11/(; §i(Xs—(p1/p2)Ys)e s+te ( tATLy LEA 1) {tnT1=t}

+ Em,y (6767—1 WO(XTl ) YT1)I{t/\71:7'1 <7} + 676? (alvlo (X?) + a2‘/20(Y?)) I{tAT1:7'1:?}) .

Then, with an argument similar to the case of C, we obtain for any (z,y) € A1,

_ 3 t £
e~ A+O)tyyrE (m + pit + fo 4&’1()(3—(221/;72)?5) ds,y + pgt) —Wé(z,y)

lim
t—0 t
aip2
= H(z,y) + 522
(@) &1 (x = (p1/p2)y)
So _ »
t) = Wz +pit+ [ 2 ds,y + pat
)= WA nt o g o Gy vy 0 P
is continuous and differentiable at ¢ = 0 and satisfies
Y3 aip2

‘ oy o) — Hx P c—
(8.4) 91(0) = A+ )W*(z,y) — H( ,y)+£1(x—(p1/pz)y)

Since (x + p1t + fotpg/ﬂ (Xs — (p1/p2) Ys)ds,y + paot) € A; for ¢t small enough, we have that

(z+pit+ [, X, = ?;1/192) Ys)d& y + pat) = (uo(t) + %fl (uo(t)), &1 (uo(t)))

for uo(t) == — (p1/p2) y + fgm/{i(Xs — (p1/p2) Ys)ds; therefore

W (uo(t) + %61(%6))»61 (uo(t))) = g1(t)-
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Since u(t) = p2 /€1 (Xt — (p1/p2) Yz) is continuous and negative, ug * exists and is continuously
differentiable, so

k(u) == WE(u + 5—; L(u), €1(u)) = g1 o ug *(u)

is continuously differentiable.
Defining

W (u, s) = W (u + g—;&(u) — p1s, &1 (u) — pos),

we obtain for (u + (p1/p2) &1 (u) — p1s,&i(u) — p2s) € C that

L(W)(u, s)
= —Wi(u,8) = (54 X)W (u, 5) + H(u+ %@(u) — p15,€1(u) — p2s) = 0
2
The equation £(W)(u, s) = 0 is a linear ODE in the variable s, so

W(u, s)e®™* — k(u) = [N H (u+ % 1(u) = put, €1 (u) — pat)dt;
2

therefore

(8.5) W (u + %; 1(u) = p1s, &1 (u) — pas)

=e OV (k(u) + [TV H (u+ %&(u) — pit, €1 (u) — pat)dt),

foru < u < Mg, and 0 < s < min{& (u)/p2,u/p1 + &1 (u)/p2}. So W¢ is continuously

differentiable in the intersection of the set C U A1 with (’)fc’y). We also have, from (8.3) and
(8.4), that for any (z,y) € A,

. € _wE
lim W (Z+P117y+tp2t) WS (z,y)
t—=0—

W§<z+p1t+£,(r’%2‘ﬂy),y+pzt)fW5<z,y>

. 1 (8

= lim ”2t — a1 .
t—0+ € (e=579)

Then from

WE (2,9) +p2 WS (2,9)

_ p2 3 £. _ P2
- (pl + 5/1(32_%7!)) Wx— (m,y) +p2Wy— (m,y) ai §i(w—%y)7

we conclude that WE, (z,y) = aa1.
By (8.5), and since (u + (p1/p2) &1(u), &1(u)) € A,

WE(u -+ B (u), & ()

K )+ (Hu+ B (w), €(w) — 6+ Vk(u) ) S22

b2
= ai,

and then

(8.6)
€1(u)—¢1 (@)
k() = k@)™ /

u

w.

u

(al — H(w+ 6 (w)), & (w))

/ €1(w) =& (w)
gl(w)> e(‘“‘*)%d
D2
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At the point (u+ (p1/p2) &1(w), &1 (1)) € Ao the dividend strategy consists of collecting all the
incoming premium as dividends up to the time 71, so

P 1 — | pLg [ —
Then we have, from (8.6),

S w=@®@
k(u) = TN P2 (p

e (s P—lgl(ﬂ),&(ﬂ)))
(54_)\)51(”)*51(“’)

+ i (a1 = B+ 2 (w)), & (w) 92 ) VR g,
We conclude for (8.5) that for any (z,y) in the intersection of the set C with OF@,

_ (6+)\)§1( 7fy) Y
Wo(z,y) = e o k(z - Bly)
51(30—%?/)—1/

o 7 e UMVYH@ 4 prw,y + pow)dw,
which yields the result. O

Remark 8.2. The formula of W¢ in Of’@ can be obtained using the formula given in Propo-
sition 8.1 by interchanging the role of Company One and Company Two using that W; = a2
in A2 U Ag U Bz U By. More precisely, if (z,y) € Of@,

Ga(y—P2a)—w

3 I G _p2
w (I’y) = ¢ o k(y {x<:): y<&y (ét)+ }
52(1/—%1)—30
+(fo P e OV H (4 prw,y +pgw)dw)l{zq,ngl(zH_LQI}
- - pP1
—1 Tife—1
(@l — &7 @) ~ 20 HRE @) Ly oy 220)
+ (a1(2 = 7) + a2y = 7) + BT — 27)) Lazzzm),
where €a(v)—€9 (D)
~ SA M o -
o) = oY (35 + 75 H(&0), 7+ 26(0))
£2(v) € (W)
FINC SR T [e @+
RCIR )g2<

I 90 H (g (1) + 22 Y,

From the formulas obtained in Proposmon 8.1 and Remark 8.2 we obtain the following
regularity result.

Proposition 8.3. If the function H defined in (8.2) is continuously differentiable, then we
is continuously differentiable in RA.

Proof. Since &1 and &2 are continuously differentiable, it is clear that WE is continuously
differentiable except possibly at the points of either the boundary of By or the segment

S = { (x—7 +y)€R+W1thx<x}

After some easy calculations and using that W satisfies
-6+ W (xy)—l—H(wy)—O

it can be seen that W¢ is continuously differentiable in S with
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Wi 2@ -7 +9) = o™ e TV Hae 4 pro, 2 (@ —7) + 7+ pruddu + e O T g,
and
Wy (. 22 (x — ) f ety y(@ + prw, 2 (z —7) + 7 + pow)dw + ¢ VT 4.

Finally, the differentiability at the boundary of By follows from the differentiability of W¢ at
(z,7) of S. O
Let us define the set of functions

M = {w:R3 — [0,+00) continuous with w(z,y) — a1z — azy bounded}.

Proposition 8.4. The value function V¢ of the curve strategy corresponding to & = ((Z,7), £1, &2)
as defined in (7.2), satisfies the formulas given in Proposition 8.1 and Remark 8.2 replacing
both Wy and W by V&. Moreover, V¢ is the unique function in M which satisfies this
property.

Proof. M is a complete metric space with the distance d(w1,ws2) = SUPR2 |w1 — w2l .
The operator 7 : M — M defined as

z £ € ¢
T(w)(z,y) = Eey(f]* e % (awlLi’5 + azde,’g) +e (XL YE Mir <7}

— € +E€
4 (@VOE) + V0 ) 1)

is a contraction with contraction factor A/(d + A) < 1. Then, there exists a unique fixed point
and by definition (7.2) , T(Vg) Ve, Taking in Proposition 8.1 and in Remark 8.2 the func-
tion Wy as V¢ we obtain from (8.1) that VE = W€ and so we get the result. O

This last proposition gives a constructive way to obtain V. Starting with wo(z,y) =
a1z + a2y € M, we define iteratively wn+1 = T (wn). Hence, VE = lim,, 00 wy. Note that at
each step wn4+1 can be obtained from the formulas given in Proposition 8.1 and Remark 8.2
replacing Wy by wy,. B

Consider now the function V™ defined in (8.1) taking Wo as the optimal value function
V™! corresponding to step n —1 in (5.1). We try to find 5 which maximizes V™€ among all
the possible € = ((Z,7), &1, &2). If the function V™%» is a viscosity supersolution of (5.5), then
by Remark 5.7, we would have that V& = V™. In the case ‘that one-step curve strategies
corresponding to §n exist for all n > 1, by Proposition 5.8, ymEn SV

Let us call, as in (8.2),

(8.7) Hyoa(z,y) =Z(V" ) (2,y) + U(z,y) .

In order to find the optimal one-step curve strategy corresponding to £, = (T3, 77), & &n)
we look first for the optimal vertex (Z;,, 7y, ). By the formula given in Proposition 8.1,

niff p H”VL* fag
NGRS 5:L(A )

and
E( 1)
V(@) + ar(z — T) + ax(y — 7).
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for x and y large enough. So

E— HTL— 777
(T, ¥,) = arg max ﬂ

(f’g)eRi 5 T B\ —a1r — azy.

If this maximum is attained at a critical point (assuming that H,_ is differentiable), we have
that (Z;,,7,) is a solution of

(8 8) 31Hn—1(§,§) = a1 (6 + A)
' Oy Ho1(7,7) = az (5 + ).
Let us call w, = @ — (p1/p2)7,, and U, = ¥, — (p2/p1)Ty. Next, we use Calculus of

Variations in order to find two curves &7, and &3, which maximize Yyt (z,y), among all
&= (@5, 7),&1,&) for & € ®"n, & € ®"» and (z,y) large enough. The two curves can be
obtained separately and independently.

Proposition 8.5. Assume that H,_; is differentiable and that there exists €, = ((Z5,77), Ens&on)
where &7, € ®"n and & € ®" such that V™ = V"™&n . Then &1, satisfies

Ou Hr—1(u + BLET 1 (u), €1 0 (1)) = a1 (6 + A)
for uy, <u < Mg: , and &3 ,, satisfies
OyHn-1(£3n(v), v + 2285 ,(v)) = a2(d + )

for v, <v < My .

Proof. We will prove this result for &7 ,,, the proof for & ,, is analogous.
Given any & € qﬁ:y we have that

Vn,ﬁ(w, 0) = Vn’g(M& ) 0) + a1 (:C - M&l )7

for € = ((Z5,75), &1, &) and @ > M, . Then, if there exists £}, € ®n such that V" = V"‘E;,

ann (Mg; 71,0) — a1M£T w = ma§* (Vn’E(Mgl,O) — alMgl) .
’ ’ £1€DYn
Consider non-negative test functions ¢ with ¢(@;,) = 0 and ¢(Mg; ) = 0. We have that
&ntese @ for ¢ small enough. Let us write,
€e(u) = &1 0 (u) + £s(u).
We have that Me, = My =~ and then

VI (Mg ,0) = arMe; | = max (V5 (My; ,0) —arMe; ),
where &, = (%5, 71,), &, €2). Denote

B(e) = V"’EE(MGM 0) — a1 Me; .

We have that {(Megr ) = &1 n(Mgz ) = 0 and & (4y,) = &1, (4y,) so we can write by Proposi-
tion 8.1, ' ’

*7<6+>\)£in(ﬁ:) P 1 * * * * * *
19(6) =€ P2 (m + mH’ﬂfl(ﬁn + %él,n(ﬂn)agl,n(ﬂn))) —ail,
Mex _ (54N )€e (w) 1 [ = _ (4
+ a | e P2 —1)dw+ p— Hy_1(627(t) + %t’ t)e P2 dt.
u 2 Jo
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Clearly,

o0
0= 5-(0)
1 Mex n . « _ M
= — [ (O Huea (w0 B (0), € () = aa(5 X)) TV T ((w)dw.

P2

So we obtain
. ) (52 L)
(00 Humr (u+ 267 (), €50 (w) — ax(6 4+ ) ) e =0

for all u;, <u < Me; . O

This last pr0p051t10n gives us a constructive way to find the candidate for V™ in the case
that it comes from a one-step curve strategy. We find numerically, if it exists, the solution
z1(u) of the equation

(8.9) Oz Hn—1(u+ Elz1(u), 21(u)) = a1(6 + A)
for u;, < u < min{u : z1(u) = 0} and the solution z2(v) of the equation

(8.10) OyHp—1(z2(v),v + %22(11)) =az2(d + )

for 7, < v < min{v:22(v) =0} . If z(u) is in ® and 2(v) is in ", we define

& n(u) = z1(u) and &, (v) = 22(v) and we obtain the value function V™ & by the for-
mula given in Proposition 8.1; this is our candidate for V™. Afterwards, we check whether

V™&n is a viscosity supersolution of (5.5); if this is the case, then V" = V™ &n

Remark 8.6. Consider claim size distributions F*, i = 1,2 such that V;°, and hence also U,
are differentiable functmns (see for instance [19] for sufficient condmons for this property)
Assume that there exists § = (=, U5), &1, & n) wWhere &7, € d%n and & € ®"» such that

V" = V™ foralln > 1, then H,, and V'™ are differentiable for alln > 1. To see this, note that
VOgiven in (5.2) is differentiable, that the differentiability of V™ implies the differentiability
of Hy, and that, by Proposition 8.3, the differentiability of H, implies the differentiability
of V"t We conclude that the differentiability condition on H,_; in Proposition 8.5 is
automatically fulfilled.

In the next Proposition we state some conditions under which the optimal strategy of (2.4)
is a curve strategy. This result, together with Propositions 8.1 and 8.5 gives a way to find
the optimal curve (if it exists). Let us first define a criterion of convergence for a sequence
(En)n>1 that will be used in the next proposition.

Definition 8.7. We say that & = ((Tn,7,,), 1.0, E2,n) converges to & = ((T, ), &1, &2) if

lim (%n,9,) = (T,7), lim Mg, ,, — Mg, fori=1,2,
n— oo

li n = 0 li n =
nl~>nolo [un,Mglrn 1N[m, ng ] |€1 (U) 51 (U)l 1*)II;O [vn,ME;n 1N[@, ]\/152 |§2 ) 52(U)|
lim ma. |£;71L(w) - f;l(wﬂ =0 and lim |§2 " f;l(w)| =0.

n—00 (0,1, n(Un)]ﬂ[O €1 ()] n—00[0,€5, n(vnﬂﬁ[o £2(9)]

Proposition 8.8. Assume that there exists a E; such that V" = V™&n for all n > 1. If E:L
converges to some 5* in the sense of Definition 8.7, then the optimal value function V is the
value function of the curve strategy V¢ as defined in (7.2).
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Proof.  From Proposition 5.8, we have that lim,— V™ = V. So replacing Wy by
V™En and £ by E; in the formulas given in Proposition 8.1 and Remark 8.2 and letting n go
to infinity, we obtain that V' s*atisﬁes the formulas given in Proposition 8.1 and Remark 8.2
replacing Wy by V' and & by £ . Therefore, by Proposition 8.4 and Lemma 2.2, the functions
V and V€ coincide. O

9. Numerical Example

We present a numerical example in the symmetric and equally weighted case with an expo-
nential claim size distribution. By Remark 6.2, we restrict the search of the optimal curve
strategy to & = ((T,%), &, €), € € ®° . Using the formulas given in Propositions 8.1 and equa-
tions (8.8), (8.9) and (8.10), we obtain &, = ((Z5, ), &5, €5). We check that £ € ®° and
that the associated value function V™n is a viscosity solution of (5.5). By Remark 8.6, yrtn
is differentiable because & € ®°, so in order t(z check numerica*lly that V™&n is a viscosity
solution of (5.5) it is enough to check that Vit > ay and Vyn’g" > as in the set C and that
L(V”’gi) < 0 in the set By U By, where these sets are the ones defined in Section 7 for £,,.

We also obtain numerically the convergence of EZ to & according to Definition 8.7. Then,
using Proposition 8.8, one can conclude that the optimal strategy is a curve strategy with
curve £*.

The numerical procedure was done with the Mathematica software and the calculation is
quite time-consuming. The concrete chosen parameters are: exponential claim size distribution
with parameter 3, Poisson intensity A1 = A2 = 20/9, premium rate p1 = p2 = 1, and a discount
factor § = 0.1. In this numerical procedure we used step-size Az = Ay = 0.002 and iterated 60
times. The resulting optimal curve strategy is given in Figure 9.1, and V (z,y) — (z+y)/2 (the
improvement of the optimal dividend strategy over paying out the initial capital immediately)
is depicted as the upper curve in Figure 9.2 (the sets A] and A3 are not straight lines, even
if they appear to be so at first glance).

We also compare for this numerical example the optimal value function V' (z,y) with the
(comparably weighted) sum of the stand-alone value functions without collaboration:

V(@) +V(y)

Vs(z,y) = 2

and with Vas(z + y)/2, where Vs is the optimal value function for the merger of the two
companies. Figure 9.2 depicts the graphics of all three value functions V(z,y), Vs(x,y) and
Vi (z +y)/2, each of them reduced by (z 4 y)/2. The optimal merger strategy is barrier with
barrier b = 2.77. By Remark 2.1, Vas(z +y)/2 < V(x,y) for all (z,y) € R2. One sees that
whereas for the comparison between the stand-alone case and the merger the initial surplus
levels matter (with the merger case being the lowest of the three value functions in (0, 0)),
the collaboration case outperforms not only the merger case but also the stand-alone one for
all combinations of initial surplus levels (i.e. if one measures the overall dividend payments
that can be achieved with either behavior, for this numerical example collaboration is always
preferable). Hence we have here an instance where collaboration is beneficial not only for
safety aspects, but also with respect to collective profitability.
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Figure 9.1: Optimal Curve Strategy

Figure 9.2: V(x,y) — ZT'H"’ vs. Vs(z,y) — % vS. w — %

10. Concluding Remarks

We finish with some further remarks on collaboration and on transaction costs.

Collaboration vs. stand-alone

In most cases, we expect the optimal value function V' corresponding to the collaboration
agreement to be greater than the comparably weighted sum of the stand-alone value function
without collaboration. However, one can find examples in which this does not hold. For
instance, if Company One is so unprofitable that, under the collaboration agreement, the best
strategy for Company One is to pay all the current surplus as dividends.

Note that the ”extreme” curve strategies where Company One pays all the current surplus as
dividends are given by the sets Ao = {(0,7)}, A1 = {(0,y) : 0 <y <y}, Bo ={(z,9) : vy <7y
and z > 0}, B1 = {(z,y) : 0 <y <gFand z > 0} and C = Ay = By = &, these strategies
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depend only on the barrier level ¥ > 0. The value function of these strategies can be written
as B
Vy(xv y) = W(y) + a1z,

where W (y) is a viscosity solution of the one-dimensional integro-differential equation

{ alp(l )+ W (y)p2 = (8 + X)W (y) + X1 [§ W(y — a)dF" (a) + X2 [§ W(y — a)dF*(a) + U(0,y) =0
W' (y) = as

in [0,y] and W(y) = a2(y —y) + W(y) for y > 7. In the case of exponential claim sizes,
this equation can be transformed easily into a non-homogeneous linear ordinary second-order
differential equation and the solution W has a closed form.

In the next example, we will find a barrier level 3* > 0 such that V¥ is a classical solution
of the HIJB equation (3.1), so by Corollary 4.3, V¥ is the optimal value function and the
extreme curve strategy with barrier level 3™ is the optimal strategy. Moreover, there are
initial surplus values for which the stand-alone value function is larger than V.

Consider the parameters 6 = 0.1, A\ = 200, A2 = 1, p1 = 10, p2 = 1.3, a1 = a2 = 0.5 and
claim size distributions F*(a) = F?(a) = 1 — e~®. Then one obtains §* = 0.072. In Figure
10.1, we show the difference between the optimal collaboration value function VY and the
optimal value function Vs (z,y) = (V’(z) + V& (y)) /2 of the stand-alone case. Here the stand-
alone case outperforms the collaboration when the initial surplus level y of Company Two is
greater than 0.12. Note that V¥ — Vg is constant w.r.t.  because V*(z) = p1/(6 + A1) + .

Figure 10.1: V¥ — Vg

Inclusion of proportional transaction costs

Let us assume that in case of a capital transfer, a unit of capital received by Company One
requires 71 > 1 from Company Two and that a unit of capital received by Company Two
requires 2 > 1 from Company One.

In this case, we obtain that the associated controlled process (th , Y;f) and the cumulative

amounts transferred between the companies in (2.2) become
XF =X, — L} + CP' — G2
Y=Y - Li + ¢ = O,

where C’t2 "'corresponds to the cumulative amount received by Company One from Company
Two up to time t in order to cover the deficit of Company One and Ctl 2corresponds to the
cumulative amount received by Company Two from Company One up to time ¢ in order to
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cover the deficit of Company Two. In this situation, the time 7 at which only one company
remains (because it cannot cover the deficit of the other) is given by

7 = inf {t >0:min{r XF + Y <0, XE + mYE) < 0} .

The HIB equation for the optimal value function (2.4) in this setting is (3.1) but now the
operator Z and U defined in (3.2) and (3.4) become

IV)(z,y) = M [y V(e—a,y)dF(a)+ X\ f;i% V(0,y +ri(z — ))dF(a)
HXe [J V(2 y — a)dF(a) + X2 [z V(@ +ra(y — ), 0)dF>(a),

and

Uz, y) = a2V (y)(1 — F'(z + f—l)) + Xoar V() (1 — F2(% + ).

Using these operators, it is possible to extend all the results of the paper to the case of
positive proportional transaction cost.

Acknowledgement. The authors would like to thank an anonymous referee for useful
remarks to improve the presentation of the paper.
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