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Abstract

We consider a two-dimensional optimal dividend problem in the context of two insurance
companies with compound Poisson surplus processes, who collaborate by paying each other’s
deficit when possible. We study the stochastic control problem of maximizing the weighted
sum of expected discounted dividend payments (among all admissible dividend strategies) un-
til ruin of both companies, by extending results of univariate optimal control theory. In the
case that the dividends paid by the two companies are equally weighted, the value function
of this problem compares favorably with the one of merging the two companies completely.
We identify the optimal value function as the smallest viscosity supersolution of the respec-
tive Hamilton-Jacobi-Bellman equation and provide an iterative approach to approximate it
numerically. Curve strategies are identified as the natural analogue of barrier strategies in
this two-dimensional context. A numerical example is given for which such a curve strategy
is indeed optimal among all admissible dividend strategies, and for which this collaboration
mechanism also outperforms the suitably weighted optimal dividend strategies of the two
stand-alone companies.

1. Introduction

Ever since de Finetti [14] proposed in 1957 to measure the value of an insurance portfolio by
the expected discounted sum of dividends paid during the lifetime of the portfolio, it has been
of particular interest to determine the optimal dividend payment strategy which maximizes
this quantity. More than that, this field of research over the years turned out to be a challeng-
ing and fascinating area, combining tools from analysis, probability and stochastic control. In
1969, Gerber [15] showed that if the free surplus of an insurance portfolio is modelled by a
compound Poisson risk model, it is optimal to pay dividends according to a so-called band
strategy, which collapses to a barrier strategy for exponentially distributed claim amounts.
Whereas Gerber found this result by taking a limit of an associated discrete problem, this
optimal dividend problem was studied with techniques of modern stochastic control theory in
Azcue and Muler [7], see e.g. Schmidli [22] for a detailed overview. Since then the optimal
dividend problem was studied for many different model setups, objective functions and side
constraints (we refer to Albrecher and Thonhauser [2] and Avanzi [4] for surveys on the sub-
ject). A barrier strategy with barrier b pays out dividends whenever the surplus level of the
portfolio is above b, so that the surplus level stays at b, and pays no dividends below that
barrier b. The most general criteria currently available for barrier strategies to be optimal can
be found in Loeffen and Renaud [20]. The optimality of barrier strategies when including the
time value of ruin was studied in [24], and when including capital injections by shareholders
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in Kulenko and Schmidli [18].

All these control problems have been formulated and studied in the one-dimensional frame-
work. However, in recent years there has been an increased interest in risk theory in considering
the dynamics of several connected insurance portfolios simultaneously, see e.g. Asmussen and
Albrecher [3, Ch.XIII.9] for an overview. Ruin probability expressions for a two-dimensional
risk process are studied in Avram et al. [5, 6] for simultaneous claim arrivals and proportional
claim sizes and recently in Badila et al. [11] and Ivanovs and Boxma [17] in a more general
framework. In Azcue and Muler [8], the problem of optimally transferring capital between
two portfolios in the presence of transaction costs was considered, see also Badescu et al.
[10]. Czarna and Palmowski [13] study the dividend problem and impulse control for two
insurance companies who share claim payments and premiums in some specified proportion
for a particular dividend strategy. It turns out that these multi-dimensional problems, albeit
practically highly relevant, quickly become very intricate and explicit solutions can typically
not be obtained without very strong assumptions.

In this paper, we would like to extend the optimal dividend problem from univariate risk
theory to a two-dimensional setup of two collaborating companies. The collaboration consists
of paying the deficit (’bailing out’) of the partner company if its surplus is negative and if this
financial help can be afforded with the current own surplus level. We study the problem of
maximizing the weighted sum of expected discounted dividend payments until ruin of both
companies. A natural question in this context is whether such a collaboration procedure can
be advantageous over merging the two companies completely; we will show that this is the case
when the dividends paid by the two companies are equally weighted. For criteria of a merger
being an advantage over keeping two stand-alone companies under pre-defined barrier strate-
gies and marginal diffusion processes, see e.g. Gerber and Shiu [16], for the performance of
another pre-defined risk and profit sharing arrangement, see e.g. Albrecher and Lautscham [1].
Our goal here is, however, to address the general problem of identifying the optimal dividend
strategy (among all admissible dividend strategies) for each company under this collabora-
tion framework. This leads to a fully two-dimensional stochastic control problem, and to the
question what the natural analogues of the optimal univariate barrier strategies are in two
dimensions. The particular structure of the collaboration implemented in this paper will turn
out not to be essential, so the techniques may be applicable to other risk-sharing mechanisms
as well. Yet, the concrete specification allows to carry through the necessary analysis of the
stochastic control problem explicitly by way of example.

The rest of the paper is organized as follows. In Section 2 we introduce the model and the
stochastic control problem in detail and derive some simple properties of the corresponding
value function V . In Section 3 we prove that V is a viscosity solution of the corresponding
Hamilton-Jacobi-Bellman equation for independent surplus processes, and in Section 4 we
show that V is in fact its smallest viscosity supersolution. Section 5 provides an iterative
approach to approximate the value function V , together with the analogous verification steps
at each iteration step. Section 6 discusses the stationary dividend strategies that appear in
our model, and in Section 7 we establish curve strategies as the appropriate analogues of the
univariate barrier strategies. Section 8 shows how to constructively search for optimal curve
strategies and in Section 9 an explicit numerical example for the symmetric (and equally
weighted) case with exponentially distributed claim sizes is worked out for which such a curve
strategy is indeed optimal among all admissible bivariate dividend strategies. It is then also
illustrated that for this case the proposed type of collaboration is preferable to adding the best-
possible stand-alone profits. Finally, in Section 10 we show that there are examples where the
stand-alone case is preferable to collaboration and we address the case of positive proportional
transaction cost.
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2. Model

We consider two insurance companies, Company One and Company Two, which have an
agreement to collaborate. Let us call Xt the free surplus of Company One and Yt the one of
Company Two. We assume that the free surplus of each of the companies follows a Cramér-
Lundberg process, i.e. a compound Poisson process with drift given by

(2.1)

{
Xt = x+ p1t−

∑N1
t

i=1U
1
i

Yt = y + p2t−
∑N2

t
i=1U

2
i ,

where x and y are the respective initial surplus levels; p1 and p2 are the respective premium
rates; Uk

i is the size of the i-th claim of Company k, which are i.i.d. random variables with
continuous distribution F k for k = 1, 2; N1

t and N2
t are Poisson processes with intensity λ1 and

λ2, respectively. We assume here that the processes N1
t , N

2
t and the random variables U1

i , U
2
i

are all independent of each other.
There is a rule of collaboration signed by the two companies: if the current surplus of

Company One becomes negative, Company Two should cover the exact deficit of Company
One as long as it does not ruin itself, and vice versa. Ruin of a company hence occurs when
its surplus becomes negative and the other company cannot cover this deficit.

A simulated surplus trajectory under this collaboration rule is shown in Figure 1.1. In this
trajectory the surplus of Company Two becomes negative after its first claim, so Company
One covers the deficit. Afterwards, a claim of Company One arrives and since Company Two
cannot cover this deficit, Company One gets ruined.

Two helps One

One helps Two

Ruin Comp.One

Ruin Comp.Two

Hx,yL

-2 -1 1 2

-2

-1

1

2

Fig. 1.1: Surplus process under the collaboration rules.

Both companies use part of their surplus to pay dividends to their shareholders. The
dividend payment strategy L =

(
L1

t ,L
2
t

)
is the total amount of dividends paid by the two

companies up to time t. Let us call τki the arrival time of the i-th claim of company k, with

k = 1, 2. We define the associated controlled process
(
XL

t , Y
L
t

)
with initial surplus levels

(x, y) as

(2.2)

{
XL

t = Xt − L1
t + C2,1

t − C1,2
t

Y L
t = Yt − L2

t + C1,2
t − C2,1

t ,
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where

C2,1
t =

N1
t∑

i=1

I{
XL

τ1
i

<0,Y L
τ1
i

+XL
τ1
i

≥0

} ∣∣∣XL
τ1
i

∣∣∣
corresponds to the cumulative amount transferred from Company Two to Company One up
to time t in order to cover the deficit of Company One and

C1,2
t =

N2
t∑

i=1

I{
Y L
τ2
i

<0,Y L
τ2
i

+XL
τ2
i

≥0

} ∣∣∣Y L
τ2
i

∣∣∣
corresponds to the cumulative amount transferred from Company One to Company Two up
to time t in order to cover the deficit of Company Two.

Let us call τ the time at which only one company remains (because it cannot cover the
deficit of the other), more precisely,

(2.3) τ = inf
{
t ≥ 0 : XL

t + Y L
t < 0

}
.

Note that since the claim arrival processes of the companies are independent, the probability
of simultaneous ruin is zero.

The process
(
XL

t , Y
L
t

)
is defined for t ≤ τ . We say that the dividend payment strategy

L =
(
L1

t ,L
2
t

)
t≤τ

is admissible if it is non-decreasing, càglàd (left continuous with right limits),

predictable with respect to the filtration generated by the bivariate process (Xt, Yt), and
satisfies {

L1
t ≤ Xt + C2,1

t − C1,2
t ,

L2
t ≤ Yt + C1,2

t − C2,1
t .

This last condition means that the companies are not allowed to pay more dividends than their
current surplus. Let us call R2

+ the first quadrant. We denote by Πx,y the set of admissible
dividend strategies with initial surplus levels (x, y) ∈ R2

+. Our objective is to maximize the
weighted average of the expected discounted dividends paid by the two companies until ruin of
both companies. Note that after time τ , the surviving company can continue to pay dividends
up to its own ruin. Let us define V 0

k (k = 1, 2) as the optimal value function of the one-
dimensional problem of maximizing the expected discounted dividends until ruin of Company
k alone. So, for any initial surplus levels (x, y) ∈ R2

+, we can write down the optimal value
function as

(2.4) V (x, y) = sup
L∈Πx,y

VL(x, y),

where

(2.5) VL(x, y) = Ex,y

(
a1

(
τ∫
0

e−δsdL1
s + e−δτV 0

1 (X
L
τ )

)
+ a2

(
τ∫
0

e−δsdL2
s + e−δτV 0

2 (Y
L
τ )

))
.

Here, δ > 0 is a constant discount factor, and a1 ∈ [0, 1] and a2 = 1−a1 are the weights of the
dividends paid by Company One and Company Two respectively. The functions V 0

k (k = 1, 2)
are zero in (−∞, 0) so depending on which company goes to ruin at τ , either V 0

1 (Xτ ) = 0 or
V 0
2 (Yτ ) = 0. The optimal dividend strategy corresponding to (2.4) may be regarded as the

best dividend payment strategy from the point of view of a shareholder who owns a proportion
ma1 of the total shares of Company One and a proportion ma2 of the total shares of Company
Two for some 0 < m ≤ min {1/a1, 1/a2}. An important particular case is a1 = a2 = 1/2, in
which the dividends paid by the two companies are equally weighted (for an earlier example
of weighting separate terms in the objective function in the univariate dividend context, see
Radner and Shepp [21]).

4



Remark 2.1. In case the two companies are owned by the same shareholders, another pos-
sibility of collaboration between the two companies is merging, in which case the companies
put together all their surplus, pay the claims of both companies and pay dividends up to time
τ at which the joined surplus becomes negative (see e.g. Gerber and Shiu [16])). Given the
initial surplus levels (x, y), we can interpret any admissible dividend payment strategy (Lt)t≥0

for the merger as an admissible collaborating one as follows

L1
t =

t∫
0

XL
s

XL
s +Y L

s

dLs, L
2
t =

t∫
0

Y L
s

XL
s +Y L

s

dLs.

Since Lt is constant for t ≥ τ = τ , the surviving company does not pay any dividends here.
So VL defined in (2.5) for a1 = a2 = 1/2, satisfies

2VL(x, y) > 2Ex,y

(
1

2

τ∫
0

e−δsdL1
s +

1

2

τ∫
0

e−δsdL2
s

)
= Ex+y(

τ∫
0

e−δsdLs).

The last expected value is the value function of the merger dividend strategy (Lt)t≥0 . We
conclude that the optimal collaborating strategy for equally weighted dividend payments is
better than the optimal merger strategy.

Both optimal value functions V 0
1 and V 0

2 corresponding to the stand-alone companies have
an ultimately linear growth with slope one and they are Lipschitz, see for instance Azcue and
Muler [7]. Let us state some basic results about regularity and growth at infinity of the optimal
value function V defined in (2.4). From now on, let us call λ := λ1 + λ2 and p := a1p1 + a2p2.

Lemma 2.2. The optimal value function is well defined and satisfies

a1x+ a2y +
p

δ + λ
≤ V (x, y) ≤ a1x+ a2y +

p

δ

for all (x, y) ∈ R2
+.

Proof.
The proof of the second inequality is similar to the one of Proposition 1.2 of Azcue and

Muler [9]: For any initial surplus levels (x, y) ∈ R2
+, x+ p1t and y+ p2t are upper bounds for

the surplus levels of Company One and Company Two at time t, respectively (even after the
ruin time τ of one of the companies), so the cumulative dividends paid by Company One and
Company Two up to time t are less than or equal to x + p1t and y + p2t, respectively. So,
since e−δs is a positive and decreasing function,

V (x, y) ≤ a1

(∞∫
0

e−δsd((x+ p1s) I{s>0})

)
+ a2

(∞∫
0

e−δsd((y + p2s)I{s>0})

)
= a1x+ a2y +

p

δ
.

In order to obtain the first inequality, consider the admissible strategy L0 =
(
L1

t ,L
2
t

)
in

which each company pays the initial surplus immediately, and then pays the incoming premium
up to time τ that coincides with the first claim arrival time τ1 = τ11 ∧ τ21 ; we have,

V (x, y) ≥ VL0
(x, y)

≥ a1x+ a2y + E0,0

(
τ1∫
0

e−δspds

)
= a1x+ a2y +

p
δ+λ

. □

Lemma 2.3. The optimal value function V is increasing in both x and y, locally Lipschitz
and satisfies for any (x, y) ∈ R2

+,

a1h ≤ V (x+ h, y)− V (x, y) ≤ (e(δ+λ)h/p1 − 1)V (x, y)

and
a2h ≤ V (x, y + h)− V (x, y) ≤ (e(δ+λ)h/p2 − 1)V (x, y)

for any h > 0.
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Proof.
Let us prove the inequalities at the top, the ones at the bottom are similar. Given any

ε > 0, take an admissible strategy L ∈ Πx,y such that VL(x, y) ≥ V (x, y) − ε. We define the

strategy L
1 ∈ Πx+h,y for h > 0 as follows: Pay immediately an amount h of the surplus of

Company One as dividends and then follow the strategy L. We have that

V
L

1 (x+ h, y) = VL(x, y) + a1h

and so

(2.6) V (x+ h, y) ≥ VL(x, y) + a1h > V (x, y) + a1h− ε.

Consider also an admissible strategy L
2 ∈ Πx+h,y such that V

L
2(x+h, y) ≥ V (x+h, y)−ε and

define the admissible strategy L
3 ∈ Πx,y which, starting with surplus (x, y) pays no dividends

until

τ̃ = inf
{
t ≥ 0 : XL

3

t ≥ x+ h, Y L
3

t ≥ y
}
,

at time τ̃ pays either XL
3

t − (x + h) from the surplus of Company One or Y L
3

t − y from the
surplus of Company Two, depending on which of these differences is positive, and then follows

strategy L
2 ∈ Πx+h,y. In the event of no claims, τ̃ = t0 := h/p1; since the probability of no

claims until t0 is e−λt0 , we get

(2.7) V (x, y) ≥ V
L

3(x, y) ≥ V
L

2(x+ h, y)e−(δ+λ)t0 ≥ (V (x+ h, y)− ε)e−(δ+λ)t0 .

From (2.6) and (2.7), we get the inequalities at the top. □

3. Hamilton-Jacobi-Bellman equation

In order to obtain the Hamilton-Jacobi-Bellman (HJB) equation associated to the optimization
problem (2.4), we need to state the so called Dynamic Programming Principle (DPP). The
proof that this holds is similar to the one given in Lemma 1.2 of Azcue and Muler [9] and uses
that V is increasing and continuous in R2

+.

Lemma 3.1. For any initial surplus (x, y) in R2
+ and any stopping time τ , we can write

V (x, y)

= sup
L∈Πx,y

(Ex,y(a1
τ∧τ∫
0

e−δsdL1
s + a2

τ∧τ∫
0

e−δsdL2
s + e−δ(τ∧τ)I{τ∧τ<τ}V (XL

τ∧τ , Y
L
τ∧τ )

+e−δ(τ∧τ)I{τ∧τ=τ}(a1V
0
1 (X

L
τ ) + a2V

0
2 (Y

L
τ )))).

The HJB equation of this optimization problem is

(3.1) max {L(V )(x, y), a1 − Vx(x, y), a2 − Vy(x, y)} = 0,

where

(3.2) L(V )(x, y) = Vx(x, y)p1 + Vy(x, y)p2 − (δ + λ)V (x, y) + I(V )(x, y) + U(x, y),

(3.3)
I(V )(x, y) = λ1

∫ x

0
V (x− α, y)dF 1(α) + λ1

∫ x+y

x
V (0, x+ y − α)dF 1(α)

+λ2

∫ y

0
V (x, y − α)dF 2(α) + λ2

∫ x+y

y
V (x+ y − α, 0)dF 2(α),
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and

(3.4) U(x, y) = λ1a2V
0
2 (y)(1− F 1(x+ y)) + λ2a1V

0
1 (x)(1− F 2(x+ y)).

Since the optimal value function V is locally Lipschitz but possibly not differentiable at
certain points, we cannot say that V is a solution of the HJB equation, and so we prove instead
that V is a viscosity solution of the corresponding HJB equation. Let us define this notion
(see Crandall and Lions [12] and Soner [23] for further details).

Definition 3.2. A locally Lipschitz function u : R2
+ → R is a viscosity supersolution of (3.1)

at (x, y) ∈ R2
+ if any continuously differentiable function φ : R2

+ → R with φ(x, y) = u(x, y)
such that u− φ reaches the minimum at (x, y) satisfies

max {L(φ)(x, y), a1 − φx(x, y), a2 − φy(x, y)} ≤ 0.

A function u : R2
+ → R is a viscosity subsolution of (3.1) at (x, y) ∈ R2

+ if any continuously
differentiable function ψ : R2

+ → R with ψ(x, y) = u(x, y) such that u − ψ reaches the
maximum at (x, y) satisfies

max {L(ψ)(x, y), a1 − ψx(x, y), a2 − ψy(x, y)} ≥ 0.

A function u : R2
+ → R which is both a supersolution and subsolution at (x, y) ∈ R2

+ is called
a viscosity solution of (3.1) at (x, y) ∈ R2

+.

Proposition 3.3. V is a viscosity supersolution of the HJB equation (3.1) at any (x, y) with
x > 0 and y > 0.

Proof. Given initial surplus levels x > 0, y > 0 and any l1 ≥ 0, l2 ≥ 0, let us consider the
admissible strategy L where Company One and Two pay dividends with constant rates l1 and
l2 respectively and τ is defined as in (2.3). Let φ be a test function for the supersolution of
(3.1) at (x, y) with x > 0 and y > 0. As before, denote τ11 and τ21 as the arrival time of the
first claim of Company One and Two respectively, and τ1 = τ11 ∧ τ21 . We have for t < τ1,{

XL
t = x+ (p1 − l1) t,

Y L
t = y + (p2 − l2) t.

Note that N1
t +N2

t is a Poisson process with intensity λ, because the arrival times of the two
companies are independent. We have from Lemma 3.1 that

φ(x, y) = V (x, y)

≥ Ex,y(a1
∫ τ1∧t

0
e−δ s l1ds+ a2

∫ τ1∧t

0
e−δ s l2ds)

+Ex,y

(
e−δ (τ1∧t)I{τ1∧t<τ}V (XL

τ1∧t, Y
L
τ1∧t))

)
+Ex,y

(
e−δτI{τ1∧t=τ}(a1V

0
1 (X

L
τ ) + a2V

0
2 (Y

L
τ ))

)
≥ Ex,y(a1

∫ τ1∧t

0
e−δ s l 1ds+ a2

∫ τ1∧t

0
e−δ s l 2ds)

+Ex,y

(
e−δ (τ1∧t)φ(XL

τ1∧t, Y
L
τ1∧t)I{τ1∧t<τ}

)
+Ex,y

(
e−δτI{τ1∧t=τ}(a1V

0
1 (X

L
τ ) + a2V

0
2 (Y

L
τ ))

)
.

We can write

Ex,y

(
e−δ (τ∧t)φ(XL

τ1∧t, Y
L
τ1∧t)I{τ1∧t<τ}

)
= Ex,y(I{t<τ1 }e

−δtφ(XL
τ1∧t, Y

L
τ1∧t))

+Ex,y(I{τ1=τ1∧t<τand τ1=τ1
1 }e

−δτ1
1φ(XL

τ1
1
, Y L

τ1
1
))

+Ex,y(I{τ1=τ1∧t<τand τ1=τ2
1 }e

−δτ2
1φ(XL

τ2
1
, Y L

τ2
1
)).

So we obtain
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0 ≥ limt→0+ Ex,y

(
a1

∫ τ1∧t
0 e−δ s l 1ds+a2

∫ τ1∧t
0 e−δ s l 2ds

t

)
+ limt→0+

e−(λ+δ)tφ(x+(p1−l1)t,y+(p2−l2)t)−φ(x,y)
t

+ limt→0+ Ex,y

(
I{τ1=τ1∧t<τand τ1=τ1

1 }e
−δτ1

1 φ(XL
τ1
1
,Y L

τ1
1
)

t

)

+ limt→0+ Ex,y

(
I{τ1=τ1∧t<τand τ1=τ2

1 }e
−δτ2

1 φ(XL
τ2
1
,Y L

τ2
1
)

t

)
+ limt→0+ Ex,y

(
e−δτ I{τ1∧t=τ}(a1V

0
1 (XL

τ )+a2V
0
2 (Y L

τ ))

t

)
= a1l1 + a2l2 − (δ + λ)φ(x, y)

+ (p1 − l1)φx(x, y) + (p2 − l2)φy(x, y) + I(φ)(x, y)
+U(x, y).

Therefore,

0 ≥ L(φ)(x, y) + l1 (a1 − φx(x, y)) + l2 (a2 − φy(x, y)) .

Taking l1 = l2 = 0, l1 → ∞ with l2 = 0, and l2 → ∞ with l1 = 0, we obtain

max {L(φ)(x, y), a1 − φx(x, y), a2 − φy(x, y)} ≤ 0.□

Proposition 3.4. V is a viscosity subsolution of the HJB equation (3.1).

Proof. Arguing by contradiction, we assume that V is not a subsolution of (3.1) at (x0, y0)
with x0 > 0 and y0 > 0. With a similar proof to the one of Proposition 3.1 of Azcue and
Muler [9], but extending the definitions to two variables, we first show that there exist ε > 0,
h ∈ (0,min{x0/2, y0/2}) and a continuously differentiable function ψ : R2

+ → R such that ψ
is a test function for the subsolution of Equation (3.1) at (x0, y0) and satisfies

(3.5) ψx(x, y) ≥ a1, ψy(x, y) ≥ a2

for (x, y) ∈ [0, x0 + h]× [0, y0 + h],

(3.6) L (ψ) (x, y) ≤ −2εδ

for (x, y) ∈ [x0 − h, x0 + h]× [y0 − h, y0 + h], and

(3.7) V (x, y) ≤ ψ(x, y)− 2ε

for (x, y) ∈ R2
+ \ (x0 − h/2, x0 + h/2)× (y0 − h/2, y0 + h/2).

Since ψ is continuously differentiable, we can find a positive constant C such that

(3.8) L(ψ)(x, y) ≤ C

for all (x, y) ∈ [0, x0 + 2h]× [0, y0 + 2h].
Consider

0 < θ <

{
h

2max {p1, p2}
,

λ

4δ (δ + λ)
,

ελ

2C (δ + λ)

}
,

and let us take any admissible strategy L ∈ Πx0,y0 . Consider the corresponding controlled
risk process (Xt, Yt) starting at (x0, y0), and define the stopping times

τ b = inf{t > 0 : (Xt, Yt) ∈ ∂ ([x0 − h, x0 + h]× [y0 − h, y0 + h])},

τ = inf{t > 0 : (Xt, Yt) ∈ R2
+ − [x0 − h, x0 + h]× [y0 − h, y0 + h]}
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and τ∗ = τ b ∧ (τ + θ) ∧ τ . Note that τ∗ is finite for h small enough and that it is necessary
to introduce θ because before a lump sum dividend payment, (Xτ , Yτ ) can be in [x0 − h, x0 +
h]× [y0 − h, y0 + h] and (Xτ+ , Yτ+) ∈ R2

+ − [x0 − h, x0 + h]× [y0 − h, y0 + h].
Let us show that

(3.9) V (Xτ∗ , Yτ∗) ≤ ψ(Xτ∗ , Yτ∗)− 2ε

if τ∗ = τ b ∧ (τ + θ) < τ . There are two possibilities:
(1) If τ∗ = τ b, (Xτ∗ , Yτ∗) ∈ ∂ ([x0 − h, x0 + h]× [y0 − h, y0 + h]) and so, from (3.7), we

obtain V (Xτ∗ , Yτ∗) ≤ ψ(Xτ∗ , Yτ∗)− 2ε,
(2) If τ∗ = τ+θ, the distance from (Xτ∗ , Yτ∗) to (x0, y0) is at least h/2 ≤ h−max {p1, p2} θ,

so from (3.7), we get (3.9).
Note that (Xs− , Ys−) ∈ [0, x0 +h+ p1θ]× [0, y0 +h+ p2θ)] ⊂ [0, x0 +2h]× [0, y0 +2h)] for

s ≤ τ∗, so we have that
L(ψ)(Xs− , Ys−) ≤ C for s ≤ τ∗.

Since L1
t and L2

t are non-decreasing and left continuous, they can be written as

(3.10) L1
t =

∫ t

0

dL1,c
s +

∑
X

s+
̸=Xs

s<t

(L1
s+ − L1

s), L
2
t =

∫ t

0

dL2,c
s +

∑
Y
s+

̸=Ys

s<t

(L2
s+ − L2

s)

where L1,c
s and L2,c

s are continuous and non-decreasing processes. Since the function ψ is
continuously differentiable in R2

+, using the expression (3.10) and the change of variables
formula for finite variation processes, we can write

ψ(Xτ∗ , Yτ∗)e−δτ∗
− ψ(x0, y0)

=
∫ τ∗

0
(p1ψx(Xs− , Ys−) + p2ψy(Xs− , Ys−)) e−δsds

+
∑

X
s− ̸=Xs

s≤τ∗

(ψ(Xs, Ys)− ψ(Xs− , Ys−)) e−δs +
∑

Y
s− ̸=Ys

s≤τ∗

(ψ(Xs, Ys)− ψ(Xs− , Ys−)) e−δs

−
∫ τ∗

0
ψx(Xs− , Ys−)e−δsdL1,c

s +
∑

X
s+

̸=Xs

s<τ∗

(ψ(Xs+ , Ys+)− ψ(Xs, Ys)) e
−δs

−
∫ τ∗

0
ψy(Xs− , Ys−)e−δsdL2,c

s +
∑

Y
s+

̸=Ys

s<τ∗

(ψ(Xs+ , Ys+)− ψ(Xs, Ys)) e
−δs

−δ
∫ τ∗

0
ψ(Xs− , Ys−)e−δsds.

Note that (Xs, Ys) ∈ R2
+ for s ≤ τ∗ except in the case that τ∗ = τ , where Xτ∗ + Yτ∗ < 0.

Here we are extending the definition of ψ as

ψ(x, y) = a1V
0
1 (x)I{x≥0} + a2V

0
2 (y)I{y≥0}

for x+ y < 0. We have that Xs+ ̸= Xs only at the jumps of L1
s, and in this case Xs+ −Xs =

−
(
L1

s+ − L1
s

)
. Since L is admissible we have that Xs+ = Xs −

(
L1

s+ − L1
s

)
≥ 0. We can write

(3.11)

−
∫ τ∗

0
ψx(Xs− , Ys−)e−δsdL1,c

s +
∑

X
s+

̸=Xs

s<τ∗

(ψ(Xs+ , Ys+)− ψ(Xs, Ys)) e
−δs

= −
∫ τ∗

0
ψx(Xs− , Ys−)e−δsdL1,c

s +
∑

X
s+

̸=Xs

s<τ∗

(∫ L1
s+

−L1
s

0 ψx(Xs − α, Ys)dα

)
e−δs

≤ −
∫ τ∗

0
a1e

−δsdL1,c
s − a1

∑
L1

s+
̸=L1

s

s<τ∗

(∫ L1
s+

−L1
s

0 dα

)
e−δs

= −a1
∫ τ∗

0
e−δsdL1

s.
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Similarly,

(3.12)

−
∫ τ∗

0
ψx(Xs− , Ys−)e−δsdL2,c

s +
∑

X
s+

̸=Xs

s<τ∗

(ψ(Xs+ , Ys+)− ψ(Xs, Ys)) e
−δs

= −
∫ τ∗

0
ψx(Xs− , Ys−)e−δsdL2,c

s −
∑

L2
s+

̸=L2
s

s<τ∗

(∫ L2
s+

−L2
s

0 ψx(Xs, Ys − α)dα

)
e−δs

≤ −a2
∫ τ∗

0
e−δsdL2

s.

On the other hand, Xs ̸= Xs− only at the arrival of a claim for Company One, so

(3.13)

M1
t =

∑
X

s− ̸=Xs

s≤t

(ψ(Xs, Ys)− ψ(Xs− , Ys−)) e−δs

−λ1

∫ t

0
e−δs

∫ X
s−

0 (ψ(Xs− − α, Ys−)− ψ(Xs− , Ys−)) dF 1(α)ds

−λ1

∫ t

0
e−δs

∫ X
s−+Y

s−
X

s−
(ψ(0, Xs− + Ys− − α)− ψ(Xs− , Ys−)) dF 1(α)ds

−λ1

∫ t

0
e−δs

∫∞
X

s−+Y
s−

(
a2V

0
2 (Ys−)− ψ(Xs− , Ys−)

)
dF 1(α)ds

is a martingale with zero expectation for t ≤ τ . Analogously,

(3.14)

M2
t =

∑
Y
s− ̸=Ys

s≤t

(ψ(Xs, Ys)− ψ(Xs− , Ys−)) e−δs

−λ2

∫ t

0
e−δs

∫ Y
s−

0 (ψ(Xs− , Ys− − α)− ψ(Xs− , Ys−)) dF 2(α)ds

−λ2

∫ t

0
e−δs

∫ X
s−+Y

s−
X

s−
(ψ(Xs− + Ys− − α, 0)− ψ(Xs− , Ys−)) dF 2(α)ds

−λ2

∫ t

0
e−δs

∫∞
X

s−+Y
s−

(
a1V

0
1 (Ys−)− ψ(Xs− , Ys−)

)
dF 2(α)ds

is also a martingale with zero expectation for t ≤ τ . So we get

(3.15)
ψ(Xτ∗ , Yτ∗)e−δτ∗

− ψ(x0, y0) ≤
∫ τ∗

0
L(ψ)(Xs− , Ys−)e−δs +M1

τ∗ +M2
τ∗

−a1
∫ τ∗

0
e−δsdL1

s − a2
∫ τ∗

0
e−δsdL2

s.

Using (3.6), (3.8) and the definition of θ we get
(3.16)∫ τ∗

0
L(ψ)(Xs− , Ys−)e−δsds ≤

∫ τb∧τ∧τ

0
L(ψ)(Xs− , Ys−)e−δsds+ Cθ

≤ −2εδ
∫ τb∧τ∧τ

0
e−δsds+ Cθ

≤ −2εδ
∫ τ∗

0
e−δsds+ I{τb∧τ∧τ<τ∗}2εδ

∫ τ∗

τb∧τ∧τ
e−δsds+ Cθ

≤ −2ε(1− e−δτ∗
) + ελ/ (δ + λ) .

From (3.7), Lemma 3.1, (3.9), (3.15) and (3.16), it follows that
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(3.17)
V (x0, y0)

= supL(Ex0,y0(a1
∫ τ∗

0
e−δsdL1

s + a2
∫ τ∗

0
e−δsdL2

s + e−δτ∗
V (Xτ∗ , Yτ∗)I{τ∗<τ}

+
(
a1V

0
1 (X

L
τ ) + a2V

0
2 (Y

L
τ )
)
e−δτ∗

I{τ∗=τ}))

≤ supL(Ex0,y0(a1
∫ τ∗

0
e−δsdL1

s + a2
∫ τ∗

0
e−δsdL2

s + e−δτ∗
(ψ(Xτ∗ , Yτ∗)− 2ε) I{τ∗<τ}

+
(
a1V

0
1 (X

L
τ ) + a2V

0
2 (Y

L
τ )
)
e−δτ∗

I{τ∗=τ}))

≤ supL Ex0,y0

(∫ τ∗

0
L (ψ) (Xs− , Ys−)e−δsds+M1

τ∗ +M2
τ∗ − 2εe−δτ∗

I{τ∗<τ} + ψ(x0, y0)
)

≤ ψ(x0, y0) + supLEx0,y0

(
−2ε(1− e−δτ∗

) + ελ/ (δ + λ)− 2εe−cτ∗
I{τ∗<τ}

)
= ψ(x0, y0)− 2ε+ supLEx0,y0

(
2εe−δτ∗

I{τ∗=τ}

)
+ ελ/ (δ + λ)

≤ ψ(x0, y0)− 2ε+ 2εE(e−δτ1) + ελ/ (δ + λ)
= ψ(x0, y0)− ελ/ (δ + λ)
< ψ(x0, y0)

and this contradicts the assumption that V (x0, y0) = ψ(x0, y0). □
From the above two propositions we get the following result.

Corollary 3.5. V is a viscosity solution of the HJB equation (3.1).

4. Smallest Viscosity Solution

Let us prove now that the optimal value function V is the smallest viscosity supersolution of
(3.1).

We say that the function u : R2
+ → R satisfies the growth condition A.1, if

u(x, y) ≤ K + a1x+ a2y for all (x, y) ∈ R2
+

for some positive K.
The following Lemma is technical and will be used to prove Proposition 4.2.

Lemma 4.1. Fix x0 > 0 and y0 > 0 and let u be a non-negative supersolution of (3.1)
satisfying the growth condition A.1. We can find a sequence of positive functions um : R2

+ → R
such that:

(a) um is continuously differentiable.
(b) um satisfies the growth condition A.1.
(c) um,x ≥ a1, um,y ≥ a2 and p1um,x + p2um,y ≤ (δ + λ)um in R2

+.
(d) um ↘ u uniformly on compact sets in R2

+ and ∇um converges to ∇u a.e. in R2
+.

(e) There exists a sequence cm with lim
m→∞

cm = 0 such that

sup(x,y)∈A0
L(um) (x, y) ≤ cm,where A0 = [0, x0]× [0, y0].

Proof. The proof follows by standard convolution arguments and is the extension to two
variables of Lemma 4.1 in Azcue an Muler [9]. □

Proposition 4.2. The optimal value function V is the smallest viscosity supersolution of
(3.1) satisfying growth condition A.1.

Proof. Let u be a non-negative supersolution of (3.1) satisfying the growth condition A.1
and let L ∈ Πx,y; define (Xt, Yt) as the corresponding controlled risk process starting at (x, y).
Consider the function um of Lemma 4.1 in R2

+ ; we extend this function as

um(x, y) = a1V
0
1 (x)I{x≥0} + a2V

0
2 (y)I{y≥0} for x+ y < 0.

As in the proof of Proposition 3.4, we get
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(4.1)

um(Xt∧τ , Yt∧τ )e
−δ(t∧τ) − um(x, y)

≤
∫ t∧τ

0
L(um)(Xs− , Ys−)e−δsds− a1

∫ t∧τ

0
e−δsdL1

s − a2
∫ t∧τ

0
e−δsdL2

s +M1
t∧τ +M2

t∧τ ,

where M1
t and M2

t are zero-expectation martingales. So we obtain that

um(Xt∧τ , Yt∧τ )e
−δ(t∧τ)I{τ>t} − um(x, y)

≤
∫ t∧τ

0
L(um)(Xs− , Ys−)e−δsds+M1

t∧τ +M2
t∧τ

−a1
(∫ t∧τ

0
e−δsdL1

s + e−δ(t∧τ)V 0
1 (Xt∧τ )I{τ≤t}

)
−a2

(∫ t∧τ

0
e−δsdL2

s + e−δ(t∧τ)V 0
2 (Yt∧τ )I{τ≤t}

)
.

Using that both L1
t and L2

t are non-decreasing processes, from the monotone convergence
theorem we get

(4.2)

lim
t→∞

(Ex,y(a1
(∫ t∧τ

0
e−δsdL1

s + e−δ(t∧τ)V 0
1 (Xt∧τ )I{τ≤t}

)
+a2

(∫ t∧τ

0
e−δsdL2

s + e−δ(t∧τ)V 0
2 (Yt∧τ )I{τ≤t}

)
))

= VL(x, y).

From Lemma 4.1(c), we have that p1um,x + p2um,y ≤ (δ + λ)um and that um is increasing.
So I(um)(x, y) ≤ λum(x, y) and then

−(δ + λ)um(x, y) ≤ L(um)(x, y) ≤ λum(x, y) + U(x, y).

But using Lemma 4.1(b) and the inequality Xs ≤ x+ p1s, Ys ≤ y + p2s we get

(4.3) um(Xs, Ys) ≤ K + a1Xs + a2Ys ≤ K + a1x+ a2y + ps.

So, using the bounded convergence theorem, we obtain

(4.4) lim
t→∞

Ex,y

(∫ t∧τ

0

L(um)(Xs− , Ys−)e−δsds

)
= Ex,y

(∫ τ

0

L(um)(Xs− , Ys−)e−δsds

)
.

From (4.1), (4.2) and (4.4), we get
(4.5)

lim
t→∞

Ex,y

(
um(Xt∧τ , Yt∧τ )e

−δ(t∧τ)I{τ<t}

)
−um(x, y) ≤ Ex,y

(∫ τ

0

L(um)(Xs− , Ys−)e−δsds

)
−VL(x, y).

Next, we show that

(4.6) lim
t→∞

Ex,y

(
um(Xt∧τ , Yt∧τ )e

−δ(t∧τ)I{τ>t}

)
= 0.

From (4.3), there exists a K such that

Ex,y

(
um(Xt∧τ , Yt∧τ )e

−δ(t∧τ)I{τ>t}

)
≤

(
K + a1x+ a2y + pt

)
e−δt.

Since the last expression goes to 0 as t goes to infinity, we have (4.6). Let us prove now that

(4.7) lim sup
m→∞

Ex,y

(∫ τ

0

L(um)(Xs− , Ys−)e−δsds

)
≤ 0.

Given any ε > 0, we can find T such that

(4.8)

∫ ∞

T

L(um)(Xs− , Ys−)e−δsds <
ε

2

12



for any m ≥ 1, as by virtue of (4.3), growth condition A.1, Lemma 4.1(b) and Lemma 4.1(c),
and the growth property of V 0

1 and V 0
2 , there exist positive constants k0, k1,k2 and p such that

L(um)(Xs− , Ys−) ≤ λum(Xs− , Ys−) + U(Xs− , Ys−)
≤ k0 + k1x+ k2y + ps.

Note that for s ≤ T , Xs− ≤ x0 := x+ p1T , Ys− ≤ y0 := y+ p2T . From Lemma 4.1(e) we
can find m0 large enough such that for any m ≥ m0∫ T

0

L(um)(Xs− , Ys−)e−δsds ≤ cm

∫ T

0

e−δsds ≤ cm
δ

≤ ε

2

and so we get (4.7). Then, from (4.5) and using (4.6) and (4.7), we obtain

(4.9) u(x, y) = lim
m→∞

um(x, y) ≥ VL(x, y).

Since V is a viscosity solution of (3.1), the result follows. □
From the previous proposition we can deduce the usual viscosity verification result.

Corollary 4.3. Consider a family of admissible strategies {Lx,y ∈ Πx,y : (x, y) ∈ R2
+}. If the

function VL
x,y (x, y) is a viscosity supersolution of (3.1) for all (x, y) ∈ R2

+, then VL
x,y (x, y) is

the optimal value function (2.4).

5. Iterative Approach

In this section, we approximate the optimal value function V defined in (2.4) by an increasing
sequence of value functions of strategies which pay dividends (and collaborate if it is necessary)
up to the n-th claim (regardless from which company) and then follow the take-the-money-
and-run strategy. This iterative approach will be used in Section 9 to find the optimal strategy
numerically.

Given initial surplus levels (x, y), the take-the-money-and-run admissible strategy L
0
pays

immediately the entire surplus x and y as dividends (that is X0+ = Y0+ = 0), and then pays
the incoming premium as dividends until the first claim, where the company facing that claim
gets ruined. Note that under this strategy the companies can not help each other.

Consider τn as the time of arrival of the n-th claim regardless from which company, that
is the n-th point of the Poisson process Nt = N1

t + N2
t . We define the set Πn

x,y of all the

admissible strategies in Πx,y which follow L
0
right after τn. Let us define

(5.1) V n (x, y) = sup
L∈Πn

x,y

VL(x, y)

for n ≥ 1, we also define V 0 = V
L

0 . We can write

(5.2)
V 0(x, y) = a1x+ a2y +

λ1
δ+λ

(
p
λ
+ a1V

0
2 (0)

)
+ λ2

δ+λ

(
p
λ
+ a2V

0
1 (0)

)
.

Note that, for n ≥ 1, the functions V n can be constructed iteratively as

(5.3) V n (x, y) = sup
L∈Πx,y

V n
L (x, y),

where

(5.4)
V n
L
(x, y) = Ex,y(a1

∫ τ1
0
e−δsdL1

s + a2
∫ τ1
0
e−δsdL2

s + e−δτ1V n−1(XL
τ1 , Y

L
τ1)I{τ1<τ}

+e−δτ
(
a1V

0
1 (X

L
τ ) + a2V

0
2 (Y

L
τ )
)
I{τ1=τ}).
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In this expression, we only consider the admissible strategy L ∈ Πx,y for t ≤ τ1. The
following DPP holds.

Lemma 5.1. For any initial surplus (x, y) in R2
+ and any stopping time τ , we can write

V n(x, y) = supL∈Πx,y
(Ex,y(a1

∫ τ1∧τ

0
e−δsdL1

s + a2
∫ τ1∧τ

0
e−δsdL2

s

+e−δτV n(XL
τ , Y

L
τ )I{τ<τ1∧τ} + e−δτ1V n−1(XL

τ1 , Y
L
τ1)I{τ1∧τ=τ1<τ}

+e−δτ
(
a1V

0
1 (X

L
τ ) + a2V

0
2 (Y

L
τ )
)
I{τ1∧τ=τ1=τ})).

Proposition 5.2. We have that V 1 ≤ V 2 ≤ ... ≤ V .

Proof. We prove the result by induction:

(a) V 0 ≤ V 1, because the strategy L
0 ∈ Π1

x,y.
(b) Assume that V n−2 ≤ V n−1 . By (5.3), we have

V n (x, y) ≥ supL∈Πx,y
Ex,y(a1

∫ τ1
0
e−δsdL1

s + a2
∫ τ1
0
e−δsdL2

s + e−δτ1V n−2 (XL
τ1 , Y

L
τ1)I{τ1<τ}

+e−δτ
(
a1V

0
1 (X

L
τ ) + a2V

0
2 (Y

L
τ )
)
I{τ1=τ})

= V n−1 (x, y) . □

The HJB equation for V n is given by

(5.5) max
{
Ln(V n)(x, y), a1 − V n

x (x, y), a2 − V n
y (x, y)

}
= 0,

where

(5.6)
Ln(V n)(x, y) = p1V

n
x (x, y) + p2V

n
y (x, y)− (δ + λ)V n(x, y) + I(V n−1)(x, y) + U(x, y).

The following basic results about regularity and growth at infinity of V n, n ≥ 1 are similar
to those of Lemmas 2.2 and 2.3.

Lemma 5.3. The optimal value function V n satisfies growth condition A.1, it is increasing
and locally Lipschitz in R2

+ with

a1h ≤ V n(x+ h, y)− V n(x, y) ≤ (e(δ+λ)h/p1 − 1)V n(x, y)

a2h ≤ V n(x, y + h)− V n(x, y) ≤ (e(δ+λ)h/p2 − 1)V n(x, y)

for any h > 0 and for any (x, y) in R2
+.

In the next two propositions, we see that V n is a viscosity solution of the corresponding
HJB equation.

Proposition 5.4. V n is a viscosity supersolution of the HJB equation (5.5) for x > 0 and
y > 0.

Proof. Similar to the one given in Proposition 3.3. □
Proposition 5.5. V n is a viscosity subsolution of the corresponding HJB equation (5.5).

Proof. The proof of this proposition is similar to the one of Proposition 3.4, but using as
martingales with zero expectation

(5.7)
M3

t =
∑

X
s− ̸=Xs

s≤t

(
V n−1(Xs, Ys)− ψ(Xs− , Ys−)

)
e−δs

−λ1

∫ t

0
e−δs

∫X
s−

0

(
V n−1(Xs− − α, Ys−)− ψ(Xs− , Ys−)

)
dF 1(α)ds

−λ1

∫ t

0
e−δs

∫X
s−+Y

s−
X

s−

(
V n−1(0, Xs− + Ys− − α)− ψ(Xs− , Ys−)

)
dF 1(α)ds

−λ1

∫ t

0
e−δs

∫∞
X

s−+Y
s−

(
a2V

0
2 (Ys−)− ψ(Xs− , Ys−)

)
dF 1(α)ds
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and

(5.8)
M4

t =
∑

Y
s− ̸=Ys

s≤t

(
V n−1(Xs, Ys)− ψ(Xs− , Ys−)

)
e−δs

−λ2

∫ t

0
e−δs

∫ Y
s−

0

(
V n−1(Xs− , Ys− − α)− ψ(Xs− , Ys−)

)
dF 2(α)ds

−λ2

∫ t

0
e−δs

∫X
s−+Y

s−
X

s−

(
V n−1(Xs− + Ys− − α, 0)− ψ(Xs− , Ys−)

)
dF 2(α)ds

−λ2

∫ t

0
e−δs

∫∞
X

s−+Y
s−

(
a1V

0
1 (Ys−)− ψ(Xs− , Ys−)

)
dF 2(α)ds.

instead of the martingales M1
t and M2

t defined in (3.13) and (3.14) respectively. □
In the next proposition we state that V n is the smallest viscosity solution of the corre-

sponding HJB equation.

Proposition 5.6. The optimal value function V n is the smallest viscosity supersolution of
(5.5) satisfying growth condition A.1.

Proof. The proof of this proposition is similar to the one of Proposition 4.2, but using as
martingales with zero expectation (5.7) and (5.8). □
Remark 5.7. From the above proposition we deduce the usual viscosity verification result
for the n−step: Consider a family of admissible strategies {Lx,y ∈ Πx,y : (x, y) ∈ R2

+}. If the
function V n

L
x,y (x, y) is a viscosity supersolution of (5.5) then V n

L
x,y = V n.

Finally, we have the convergence result to the optimal value function (2.4).

Proposition 5.8. V n ↗ V as n goes to infinity.

Proof. By Lemma 2.3 and Lemma 2.2, V is increasing and satisfies property A.1, so there
exists a T > 0 such that

(5.9) e−δtV (x+ p1t, y + p2t) <
ε

3

for t ≥ T . Let us define κ = V (x+ p1T, y + p2T ) > 0 and take n0 > 0 such that

(5.10) P (τn0 ≥ T ) ≥ 1− ε

3κ
.

There exists an admissible strategy L ∈ Πx,y such that

(5.11) V (x, y)− VL(x, y) ≤
ε

3
.

We define the strategy L
n0 ∈ Πn0

x,y as L
n0
t = Lt for t ≤ τn0 ∧ τ and L

n0
t = L

0
t−τn0

for t ≥ τn0

if τn0 < τ . From (5.9), (5.10) and Lemma 2.3, we have

VL(x, y)− VL
n0 (x, y)

≤ Ex,y

(
a1
(∫ τ

τ∧τn0
e−δsdL1

s + e−δτV 0
1 (X

L
τ )
)
+ a2

(∫ τ

τ∧τn0
e−δsdL2

s + e−δτV 0
2 (Y

L
τ )
))

≤ Ex,y(e
−δ(τ∧τn0)V (XL

τ∧τn0
, Y L

τ∧τn0
))

≤ Ex,y(I{τ∧τn0≥T}e
−δ(τ∧τn0)V (x+ p1 (τ ∧ τn0) , y + p2 (τ ∧ τn0))

+Ex,y(I{τn0<T}e
−δ(τ∧τn0)V (x+ p1 (τ ∧ τn0) , y + p2 (τ ∧ τn0))

≤ Ex,y(I{τ∧τn0≥T}e
−δ(τ∧τn0)V (x+ p1 (τ ∧ τn0) , y + p2 (τ ∧ τn0))) + κP (τn0 < T )

≤ 2ε
3
.

Then we obtain from (5.11)

V (x, y) ≤ VL(x, y) +
ε

3
≤ VL

n0 (x) + ε ≤ V n(x, y) + ε

for any n ≥ n0. □
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6. Stationary dividend strategies

As in the one-dimensional case (see for instance Azcue and Muler [9]) our aim is to find a
stationary dividend strategy whose value function is the optimal value function V . A dividend
strategy is stationary when the decision on the dividend payment depends on the current
surplus only, and not on the full history of the controlled process. More precisely, a stationary
dividend strategy is given by four positive and Borel-measurable functions li : R2

+ → R+

and ∆Li : R2
+ → R+, i = 1, 2. A stationary dividend strategy generates a family of admis-

sible strategies
{
L

x,y
= (L1, L2) ∈ Πx,y for any (x, y) ∈ R2

+

}
which are the solutions of the

following stochastic differential equations

Li
t =

∫ t

0
li
(
XL

s , Y
L
s

)
ds+

∑
s≤t

∆Li

(
XL

s , Y
L
s

)
with initial surplus levels XL

0 = x, Y L
0 = y. ∆Li(x, y) corresponds to lump sum dividend pay-

ments and li(x, y) corresponds to the continuous dividend payment rate of the i−th company
when the current surplus level is (x, y).

We are not proving in this paper the existence of an optimal strategy. However, if there exist
optimal admissible strategies for every (x, y) ∈ R2

+, then there exists an optimal stationary

strategy. Given the optimal admissible strategy (L̃1, L̃2) ∈ Πx,y, we define

∆Li (x, y) = L̃i
0+ and li(x, y) = dL̃i,c

0 for i = 1, 2.

It can be proved, using the Dynamic Programming Principle and a stair-step approximation on
the time variable, that these functions are Borel-measurable and that the stationary dividend
strategy generated by them are optimal for any (x, y) ∈ R2

+.
If the optimal value function V is differentiable (and this fact has to be checked for every

concrete case, see Section 8), the form in which the optimal value function solves the HJB
equation at any (x, y) ∈ R2

+ suggests how the dividends should be paid when the current
surplus is (x, y); here we are using the result given in Corollary 3.5. There are only seven
possibilities:

(i) If the current surplus is in the open set

C∗ =
{
(x, y) ∈ R2

+ : L(V )(x, y) = 0, Vx(x, y) > a1, Vy(x, y) > a2
}
,

no dividends are paid. The set C∗ is called the non-action set.

(ii) If the current surplus is in the open set

B∗
1 =

{
(x, y) ∈ R2

+ : L(V )(x, y) < 0, Vx(x, y) = a1, Vy(x, y) > a2
}
,

Company One pays a lump sum as dividends. This lump sum should be min{b > 0 :
(x− b, y) /∈ B∗

1}.
(iii) If the current surplus is in the open set

B∗
2 =

{
(x, y) ∈ R2

+ : L(V )(x, y) < 0, Vx(x, y) > a1, Vy(x, y) = a2
}
,

Company Two pays a lump sum as dividends. This lump sum should be min{b > 0 :
(x, y − b) /∈ B∗

2}.
(iv) If the current surplus is in the set

B∗
0 =

{
(x, y) ∈ R2

+ : L(V )(x, y) < 0, Vx(x, y) = a1, Vy(x, y) = a2
}
,

but not in the closure of B∗
1 ∪ B∗

2 , both companies pay a lump sum as dividends.

(v) If the current surplus is in the closed set

A∗
0 =

{
(x, y) ∈ R2

+ : L(V )(x, y) = 0, Vx(x, y) = a1, Vy(x, y) = a2
}
,

both companies pay their incoming premiums as dividends.
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(vi) If the current surplus is in the set

A∗
1 =

{
(x, y) ∈ R2

+ : L(V )(x, y) = 0, Vx(x, y) = a1, Vy(x, y) > a2
}
,

Company One pays dividends at some special rate so that the surplus remains in A∗
1∪A∗

0.

(vii) If the current surplus is in the set

A∗
2 =

{
(x, y) ∈ R2

+ : L(V )(x, y) = 0, Vx(x, y) > a1, Vy(x, y) = a2
}
,

Company Two pays dividends at some special rate so that the surplus remains in A∗
2∪A∗

0.

Note that if V is a continuously differentiable solution of (3.1), then A∗= A∗
0 ∪ A∗

1 ∪ A∗
2

is closed, B∗ = B∗
1 ∪ B∗

2 ∪ B∗
0 is open, and any segment which connects a point of B∗ with a

point of the open set C∗ should contain a point of A∗.

Remark 6.1. These strategies are the generalizations of the band strategies in the two-
dimensional case. The number of bands corresponds to the number of connected components
of the set A∗. As in the one-dimensional case, we do not expect the sets A∗, B∗ and C∗ to be
connected in general; see for instance Chapters 5 and 6 of [9].

Remark 6.2. Let us consider the simplest case of identical and independent Cramér-Lundberg
processes in (2.1); that is p1 = p2 = p; λ1 = λ2; and U1

i , U
2
i have the same distribu-

tion F . We also choose the dividends paid by both companies to be equally weighted, i.e.
a1 = a2 = 1/2. Under these assumptions, the optimal value function will be symmetric, that
is V (x, y) = V (y, x), and so the sets introduced above satisfy the following properties: the line
y = x is an axis of symmetry of the sets C∗, B∗

0 and A∗
0; the sets B∗

1 and A∗
1 are the reflection

with respect to the line y = x of the sets B∗
2 and A∗

2 respectively.

7. Curve strategies

We introduce a family of stationary dividend strategies, called curve strategies, in which divi-
dends are paid in the seven ways mentioned in the previous section, having a simple structure:
here the boundary between the action and non-action region is given by a curve. These strate-
gies can be seen as the natural analogues of the one-dimensional barrier strategies in this
two-dimensional case.

It is reasonable to think that if the optimal strategy is a curve strategy it should satisfy
the following properties: If (x0, y0) ∈ B∗

1 ∪ A∗
1 (that is only Company One pays dividends),

then (x, y0) should be in B∗
1 for all x > x0; analogously if (x0, y0) ∈ B∗

2 ∪ A∗
2 (that is only

Company Two pays dividends), then (x0, y) should be in B∗
2 for all y > y0. Finally, the set

C∗ should be bounded because, as in the one-dimensional case, the surplus of each company
under the optimal strategy should be bounded for t > 0.

Let us define the curve strategies satisfying the properties mentioned above. For these
strategies, R2

+ is partitioned into seven sets C, A0, A1, A2, B0, B1 and B2 where A = A0 ∪
A1 ∪ A2 is a curve which intersects both coordinate axes.

• A0 = {(x, y)} with (x, y) ∈ R2
+. If the current surplus is (x, y), both companies pay

their incoming premium as dividends. Let us call u the x-intercept and v the y-intercept
of the line with slope p2/p1 passing through (x, y); let us denote O(x,y)

1 and O(x,y)
2 the

regions in the first quadrant bounded above and below by this line, respectively.

• B0 = [x,∞) × [y,∞) − A0. If the current surplus is (x, y) ∈ B0, Company One and
Company Two pay x− x and y − y as dividends, respectively.

• The set A1 is a curve in O(x,y)
1 parametrized by

A1 =
{
(u+ p1

p2
ξ1(u), ξ1(u)) with u < u ≤Mξ1

}
,

where ξ1 : [u,Mξ1 ] → R is a continuously differentiable function with ξ1(u) = y,
ξ1(Mξ1) = 0 and negative derivative. If the current surplus (x, y) ∈ A1, Company
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Two does not pay dividends and Company One pays dividends at some special rate for
which the bivariate surplus remains in the curve A1. By basic calculus, it can be shown
that this rate is given by

l1(x, y) = − p2
ξ′1(x− (p1/p2) y)

.

• The set B1 is the set to the right of A1 in O(x,y)
1 , that is

B1 =
{
(x, y) ∈ R2

+ : y ≤ y and x > ξ−1
1 (y) + p1

p2
y
}
.

If the current surplus (x, y) ∈ B1, Company Two does not pay dividends and Company
One pays the lump sum

min{b > 0 : (x− b, y) ∈ A1} = x− (p1/p2)y − ξ−1
1 (y).

• The sets A2 and B2 in O(x,y)
2 are defined analogously to A1 and B1 with the roles of

Company One and Two interchanged; that is

A2 =
{
(ξ2(v), v +

p2
p1
ξ2(v)) with v < v ≤Mξ2

}
,

and
B2 =

{
(x, y) ∈ R2

+ : x ≤ x and y > ξ−1
2 (x) + p2

p1
x
}
,

where ξ2 : [v,Mξ2 ] → R is a continuously differentiable function with ξ2(v) = x,
ξ2(Mξ2) = 0 and negative derivative. If the current surplus (x, y) ∈ A2, Company
One does not pay dividends and Company Two pays dividends at some special rate for
which the bivariate surplus remains in the curve A2. Here this rate is

l2(x, y) = − p1
ξ′2(y − (p2/p1)x)

.

• If the current surplus (x, y) ∈ B2, Company One does not pay dividends and Company
Two pays the lump sum

min{b > 0 : (x, y − b) ∈ A2} = y − (p2/p1)x− ξ−1
2 (x).

• The no-action region C is the open set delimited by the curve A and the axes. If the
current surplus (x, y) ∈ C, no dividends are paid.

The set partition of the curve strategy corresponding to (x, y) = (1, 2) and the functions

ξ1(u) =
2(u−4)(u−6)

35
for u ∈ [−1, 4] and ξ2(v) =

(u−3)(u−6)
10

for v ∈ [1, 3]

are illustrated in Figure 7.1.
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Fig. 6.1: Example of Curve Strategy

For any w ∈ R, let us define the set

(7.1) Φw =
{
ξ : [w,Mξ] → R+, ξ(Mξ) = 0,Mξ ≥ 0, ξ′ < 0 and ξ′ continuous

}
.

Note that the curve strategies depend only on the point (x, y) ∈ R2
+ and the functions

ξ1 ∈ Φu and ξ2 ∈ Φv, used in the parametrization of the curve A. We associate to any

ξ = ((x, y) , ξ1, ξ2) and any (x, y) ∈ R2
+ the admissible strategy L

ξ
= (L1,ξ

t , L2,ξ
t ) ∈ Πx,y Let

us define the value function V ξ of this curve strategy as

(7.2) V ξ(x, y) = V
L

ξ (x, y).

We will look for ξ
∗
such that the associated value function V ξ

∗
is the optimal value function

defined in (2.4).

Remark 7.1. In the case that A is the segment x+ y = K for some K > 0 in R2
+, the sum

of the dividend rates paid by Company One and Two is p1 + p2 for any current surplus in this
line. The point A0 = (x,K − x) indicates how this dividend payment is splitted among the
two companies in A: At A0, Company One pays p1 and Company Two pays p2, to the right
of this point (A1) Company One pays the total rate p1 + p2 and to the left of this point (A2)
it is Company Two which pays p1 + p2.

8. Search for the Optimal Curve Strategy

The goal of this section is to see whether the optimal value function V is the value function
of a curve strategy as defined in the previous section. We do not have a theoretical result
on the existence and structure of the optimal stationary strategy, however we can use the
iterative approach introduced in Section 5 and Proposition 5.8 as a verification result. This
verification result is stated in Proposition 8.8; it will be used in the next Section to obtain the
optimal curve strategy and establish its optimality among all admissible dividend strategies
in a particular example.

We first define an auxiliary function. For any ξ = ((x, y), ξ1, ξ2), where (x, y) ∈ R2
+,

ξ1 ∈ Φu , ξ2 ∈ Φv and any continuous function W0 : R2
+ → [0,+∞), let
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(8.1)
W ξ (x, y) := Ex,y(

∫ τ1
0
e−δs

(
a1dL

1,ξ
s + a2dL

2,ξ
s

)
+ e−δτ1W0(X

L
ξ

τ1 , Y
L

ξ

τ1 )I{τ1<τ}

+e−δτ

(
a1V

0
1 (X

L
ξ

τ ) + a2V
0
2 (Y

L
ξ

τ )

)
I{τ1=τ}).

If W0 is the value function of a family of admissible strategies L =
(
Lx,y ∈ Πx,y

)
(x,y)∈R2

+
,

and C, A0, A1, A2, B0, B1 and B2 are the sets associated to ξ (as defined in the previous

section), thenW ξ would be the value function of the strategy which pays dividends according

to the curve strategy L
ξ
up to the first claim and according to L afterwards. We call this kind

of strategy a one-step curve strategy.
Define

(8.2) H(x, y) := I(W0)(x, y) + U(x, y).

In the next proposition, we find an explicit formula for the function W ξ in terms of W0

and ξ1 for (x, y) ∈ O(x,y)
1 ; the formula for the value function for (x, y) ∈ O(x,y)

2 follows in an
analogous way and depends only on ξ2.

In order to obtain this formula, we use the fact that W ξ satisfies the integro-differential

equation L(W ξ ) = 0 in C ∪ A and that W ξ
x = a1 in A1 ∪ A0 ∪ B1 ∪ B.

Proposition 8.1. Given ξ = ((x, y), ξ1, ξ2) and a continuous function W0, we have that

W ξ(x, y) = e
−(δ+λ)

ξ1(x− p1
p2

y)−y

p2 k(x− p1
p2
y)I{

(y−u)
p1
p2

≤x≤ξ−1
1 (y)+

p1
p2

y,y≤y
}

+(
∫ ξ1(x− p1

p2
y)−y

p2
0 e−(δ+λ)wH(x+ p1w, y + p2w)dw)I{(y−u)

p1
p2

≤x≤ξ−1
1 (y)+

p1
p2

y,y≤y
}

+
(
a1(x− ξ−1

1 (y)− p1
p2
y) + k(ξ−1

1 (y))
)
I{

x≥ξ−1
1 (y)+

p1
p2

y,y≤y
}

+
(
a1(x− x) + a2(y − y) + k(x− p1

p2
y)
)
I{x≥x,y≥y},

for (x, y) ∈ O(x,y)
1 , where u = x− p1

p2
y, the function H is defined in (8.2) and

k(u) = e
(δ+λ)

ξ1(u)−ξ1(u)
p2

(
p

δ+λ
+ 1

δ+λ
H(u+ p1

p2
ξ1(u), ξ1(u))

)
+e

(δ+λ)
ξ1(u)
p2 a1

∫ u

u
e
−(δ+λ)

ξ1(w)
p2 dw

+ e
(δ+λ)

ξ1(u)
p2

p2

∫ ξ1(u)

ξ1(u)
H(ξ−1

1 (t) + p1
p2
t, t)e

−(δ+λ) t
p2 dt.

Proof. Let us consider first an initial surplus (x, y) ∈ C ∩ O(x,y)
1 . By definition (8.1) we

have that the controlled surplus process for t < τ1 ∧ h and h > 0 small enough is given by

(Xt, Yt) = (x+ p1t, y + p2t).

So we have that

W ξ(x, y) = Ex,y(e
−δtW ξ(Xt∧τ1 , Yt∧τ1)I{t∧τ1=t} + e−δτ1W0(Xτ1 , Yτ1)I{t∧τ1=τ1<τ}

+e−δτ
(
a1V

0
1 (Xτ ) + a2V

0
2 (Yτ )

)
I{t∧τ1=τ1=τ}).

We can write
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Ex,y

(
e−δ (τ1∧t)I{τ1∧t=t<τ1}W

ξ(XL
τ1∧t, Y

L
τ1∧t) + e−δ (τ1∧t)I{τ1∧t=τ1<τ}W0(X

L
τ1∧t, Y

L
τ1∧t))

)
= Ex,y

(
e−δ (τ1∧t)I{τ1∧t=t<τ1}W

ξ(XL
τ1∧t, Y

L
τ1∧t)

)
+Ex,y(I{τ1=τ1∧t<τand τ1=τ1

1} e
−δτ1

1W0(X
L
τ1
1
, Y L

τ1
1
))

+Ex,y(I{τ1=τ1∧t<τand τ1=τ2
1 }e

−δτ2
1W0(X

L
τ2
1
, Y L

τ2
1
)),

and so

lim
t→0+

e−(λ+δ)tW ξ(x+ p1t, y + p2t)−W ξ(x, y)

t
= −H(x, y).

Then g(t) =W ξ(x+p1t, y+p2t) is continuous and differentiable as long as (x+p1t, y+p2t) ∈
C with

(8.3) g′(0) = (λ+ δ)W ξ(x, y)−H(x, y).

Let us prove now that the functionW ξ is continuous in A1 and has a continuous derivative
in the direction of this curve. In case (x, y) ∈ A1, we have that for t < τ1 ∧ h and h > 0 small
enough, the controlled surplus process is

(Xt, Yt) =
(
x+ p1t+

∫ t

0

p2
ξ′1(Xs − (p1/p2)Ys)

ds, y + p2t
)
∈ A1.

By (8.1), we have that

W ξ(x, y) = Ex,y

(
a1

∫ τ1∧t

0

−p2
ξ′1(Xs − (p1/p2)Ys)

e−δsds+ e−δtW ξ(Xt∧τ1 , Yt∧τ1)I{t∧τ1=t}

)
+ Ex,y

(
e−δτ1W0(Xτ1 , Yτ1)I{t∧τ1=τ1<τ} + e−δτ (a1V 0

1 (Xτ ) + a2V
0
2 (Yτ )

)
I{t∧τ1=τ1=τ}

)
.

Then, with an argument similar to the case of C, we obtain for any (x, y) ∈ A1,

lim
t→0

e−(λ+δ)tW ξ
(
x+ p1t+

∫ t

0
p2

ξ′1(Xs−(p1/p2)Ys)
ds, y + p2t

)
−W ξ(x, y)

t

= −H(x, y) +
a1p2

ξ′1(x− (p1/p2) y)
.

So
g1(t) :=W ξ(x+ p1t+

∫ t

0

p2
ξ′1(Xs − (p1/p2)Ys)

ds, y + p2t)

is continuous and differentiable at t = 0 and satisfies

(8.4) g′1(0) = (λ+ δ)W ξ(x, y)−H(x, y) +
a1p2

ξ′1(x− (p1/p2) y)
.

Since (x+ p1t+
∫ t

0
p2/ξ

′
1(Xs − (p1/p2)Ys)ds, y + p2t) ∈ A1 for t small enough, we have that

(x+ p1t+
∫ t

0

p2
ξ′1(Xs − (p1/p2)Ys)

ds, y + p2t) = (u0(t) +
p1
p2
ξ1(u0(t)), ξ1(u0(t)))

for u0(t) := x− (p1/p2) y +
∫ t

0
p2/ξ

′
1(Xs − (p1/p2)Ys)ds; therefore

W ξ(u0(t) +
p1
p2
ξ1(u0(t)), ξ1(u0(t))) = g1(t).
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Since u′
0(t) = p2/ξ

′
1(Xt−(p1/p2)Yt) is continuous and negative, u−1

0 exists and is continuously
differentiable, so

k(u) :=W ξ(u+
p1
p2
ξ1(u), ξ1(u)) = g1 ◦ u−1

0 (u)

is continuously differentiable.
Defining

W (u, s) :=W ξ(u+
p1
p2
ξ1(u)− p1s, ξ1(u)− p2s),

we obtain for (u+ (p1/p2) ξ1(u)− p1s, ξ1(u)− p2s) ∈ C that

L̂(W )(u, s)

:= −Ws(u, s)− (δ + λ)W (u, s) +H(u+
p1
p2
ξ1(u)− p1s, ξ1(u)− p2s) = 0

The equation L̂(W )(u, s) = 0 is a linear ODE in the variable s, so

W (u, s)e(δ+λ)s − k(u) =
∫ s

0
e(δ+λ)tH(u+

p1
p2
ξ1(u)− p1t, ξ1(u)− p2t)dt;

therefore

W ξ(u+
p1
p2
ξ1(u)− p1s, ξ1(u)− p2s)(8.5)

= e−(δ+λ)s(k(u) +
∫ s

0
e(δ+λ)tH(u+

p1
p2
ξ1(u)− p1t, ξ1(u)− p2t)dt),

for u ≤ u ≤ Mξ1 and 0 ≤ s ≤ min {ξ1(u)/p2, u/p1 + ξ1(u)/p2}. So W ξ is continuously

differentiable in the intersection of the set C ∪ A1 with O(x,y)
1 . We also have, from (8.3) and

(8.4), that for any (x, y) ∈ A1,

lim
t→0−

Wξ(x+p1t,y+p2t)−Wξ(x,y)
t

= lim
t→0+

Wξ(x+p1t+
p2t

ξ′1(x− p1
p2

y)
,y+p2t)−Wξ(x,y)

t
− a1

p2
ξ′1(x−

p1
p2

y)
.

Then from

p1W
ξ.

x−(x, y) + p2W
ξ.

y−(x, y)

=

(
p1 +

p2
ξ′1(x−

p1
p2

y)

)
W ξ.

x−(x, y) + p2W
ξ.

y−(x, y)− a1
p2

ξ′1(x−
p1
p2

y)
,

we conclude that W ξ

x−(x, y) = a1.
By (8.5), and since (u+ (p1/p2) ξ1(u), ξ1(u)) ∈ A1,

W ξ
x (u+ p1

p2
ξ1(u), ξ1(u)) = k′(u) +

(
H(u+ p1

p2
ξ1(u)), ξ1(u))− (δ + λ)k(u)

)
ξ′1(u)
p2

= a1,

and then

(8.6)

k(u) = k(u)e
(δ+λ)

ξ1(u)−ξ1(u)
p2 +

∫ u

u

(
a1 −H(w + p1

p2
ξ1(w)), ξ1(w))

ξ′1(w)

p2

)
e
(δ+λ)

ξ1(u)−ξ1(w)
p2 dw.
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At the point (u+(p1/p2) ξ1(u), ξ1(u)) ∈ A0 the dividend strategy consists of collecting all the
incoming premium as dividends up to the time τ1, so

k(u) =
p

δ + λ
+

1

δ + λ
H(u+ p1

p2
ξ1(u), ξ1(u)).

Then we have, from (8.6),

k(u) = e
(δ+λ)

ξ1(u)−ξ1(u)
p2

(
p

δ+λ
+ 1

δ+λ
H(u+ p1

p2
ξ1(u), ξ1(u))

)
+
∫ u

u

(
a1 −H(w + p1

p2
ξ1(w)), ξ1(w))

ξ′1(w)

p2

)
e
(δ+λ)

ξ1(u)−ξ1(w)
p2 dw.

We conclude for (8.5) that for any (x, y) in the intersection of the set C with O(x,y)
1 ,

W ξ(x, y) = e
−(δ+λ)

ξ1(x− p1
p2

y)−y

p2 k(x− p1
p2
y)

+
∫ ξ1(x− p1

p2
y)−y

p2
0 e−(δ+λ)wH(x+ p1w, y + p2w)dw,

which yields the result. □

Remark 8.2. The formula ofW ξ in O(x,y)
2 can be obtained using the formula given in Propo-

sition 8.1 by interchanging the role of Company One and Company Two using that W ξ
y = a2

in A2 ∪ A0 ∪ B2 ∪ B0. More precisely, if (x, y) ∈ O(x,y)
2 ,

W ξ(x, y) = e
−(δ+λ)

ξ2(y− p2
p1

x)−x

p1 k̃(y − p2
p1
x)I{

x≤x,y≤ξ−1
2 (x)+

p2
p1

x
}

+(
∫ ξ2(y− p2

p1
x)−x

p1
0 e−(δ+λ)wH(x+ p1w, y + p2w)dw)I{x≤x,y≤ξ−1

2 (x)+
p2
p1

x
}

+
(
a2(y − ξ−1

2 (x)− p2
p1
x) + k̃(ξ−1

2 (x))
)
I{

x≤x,y≥ξ−1
2 (x)+

p2
p1

x
}

+
(
a1(x− x) + a2(y − y) + k̃(y − p2

p1
x)
)
I{x≥x,y≥y},

where

k̃(v) = e
(δ+λ)

ξ2(v)−ξ2(v)
p1

(
p

δ+λ
+ 1

δ+λ
H(ξ2(v), v +

p2
p1
ξ2(v))

)
+e

(δ+λ)
ξ2(v)
p1 a2

∫ v

v
e
−(δ+λ)

ξ2(w)
p1 dw

+ e
(δ+λ)

ξ2(v)
p1

p1

∫ ξ2(v)

ξ2(v)
H(t, ξ−1

2 (t) + p2
p1
t)e

−(δ+λ) t
p1 dt.

From the formulas obtained in Proposition 8.1 and Remark 8.2 we obtain the following
regularity result.

Proposition 8.3. If the function H defined in (8.2) is continuously differentiable, then W ξ

is continuously differentiable in R2
+.

Proof. Since ξ1 and ξ2 are continuously differentiable, it is clear that W ξ is continuously
differentiable except possibly at the points of either the boundary of B0 or the segment

S =
{
(x, p2

p1
(x− x) + y) ∈ R2

+ with x ≤ x
}
.

After some easy calculations and using that W ξ satisfies

p− (δ + λ)W ξ(x, y) +H(x, y) = 0,

it can be seen that W ξ is continuously differentiable in S with
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W ξ
x (x,

p2
p1
(x− x) + y) =

∫ x−x
p1

0 e−(δ+λ)wHx(x+ p1w,
p2
p1
(x− x) + y + p2w)dw + e

−(δ+λ) x−x
p1 a1

and

W ξ
y (x,

p2
p1
(x− u)) =

∫ x−x
p1

0 e−(δ+λ)wHy(x+ p1w,
p2
p1
(x− x) + y + p2w)dw + e

−(δ+λ) x−x
p1 a2.

Finally, the differentiability at the boundary of B0 follows from the differentiability of W ξ at
(x, y) of S. □

Let us define the set of functions

M = {w : R2
+ → [0,+∞) continuous with w(x, y)− a1x− a2y bounded}.

Proposition 8.4. The value function V ξ of the curve strategy corresponding to ξ = ((x, y), ξ1, ξ2)
as defined in (7.2), satisfies the formulas given in Proposition 8.1 and Remark 8.2 replacing

both W0 and W ξ by V ξ. Moreover, V ξ is the unique function in M which satisfies this
property.

Proof. M is a complete metric space with the distance d(w1, w2) = supR2
+
|w1 − w2| .

The operator T : M → M defined as

T (w)(x, y) := Ex,y(
∫ τ1
0
e−δs

(
a1dL

1,ξ
s + a2dL

2,ξ
s

)
+ e−δτ1w(XL

ξ

τ1 , Y
L

ξ

τ1 )I{τ1<τ}

+e−δτ

(
a1V

0
1 (X

L
ξ

τ ) + a2V
0
2 (Y

L
ξ

τ )

)
I{τ1=τ})

is a contraction with contraction factor λ/(δ+ λ) < 1. Then, there exists a unique fixed point

and by definition (7.2) , T (V ξ) = V ξ. Taking in Proposition 8.1 and in Remark 8.2 the func-

tion W0 as V ξ we obtain from (8.1) that V ξ =W ξ and so we get the result. □

This last proposition gives a constructive way to obtain V ξ. Starting with w0(x, y) =

a1x+ a2y ∈ M, we define iteratively wn+1 = T (wn). Hence, V ξ = limn→∞ wn. Note that at
each step wn+1 can be obtained from the formulas given in Proposition 8.1 and Remark 8.2
replacing W0 by wn.

Consider now the function V n,ξ defined in (8.1) taking W0 as the optimal value function

V n−1 corresponding to step n−1 in (5.1). We try to find ξ
∗
n, which maximizes V n,ξ among all

the possible ξ = ((x, y), ξ1, ξ2). If the function V
n,ξ

∗
n is a viscosity supersolution of (5.5), then

by Remark 5.7, we would have that V n,ξ
∗
n = V n. In the case that one-step curve strategies

corresponding to ξ
∗
n exist for all n ≥ 1, by Proposition 5.8, V n,ξ

∗
n ↗ V .

Let us call, as in (8.2),

(8.7) Hn−1(x, y) := I(V n−1)(x, y) + U(x, y) .

In order to find the optimal one-step curve strategy corresponding to ξ
∗
n = ((x∗n, y

∗
n), ξ

∗
1,n, ξ

∗
2,n),

we look first for the optimal vertex (x∗n, y
∗
n). By the formula given in Proposition 8.1,

V n,ξ(x, y) =
p

δ + λ
+
Hn−1(x, y)

δ + λ
and

V n,ξ(x, y)

= V n,ξ(x, y) + a1(x− x) + a2(y − y).
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for x and y large enough. So

(x∗n, y
∗
n) = arg max

(x,y)∈R2
+

Hn−1(x, y)

δ + λ
− a1x− a2y.

If this maximum is attained at a critical point (assuming that Hn−1 is differentiable), we have
that (x∗n, y

∗
n) is a solution of

(8.8)

{
∂xHn−1(x, y) = a1 (δ + λ)
∂yHn−1(x, y) = a2 (δ + λ) .

Let us call u∗
n = x∗n − (p1/p2) y

∗
n and v∗n = y∗n − (p2/p1)x

∗
n. Next, we use Calculus of

Variations in order to find two curves ξ∗1,n and ξ∗2,n which maximize V n,ξ (x, y), among all

ξ = ((x∗n, y
∗
n), ξ1, ξ2) for ξ1 ∈ Φu∗

n , ξ2 ∈ Φv∗
n and (x, y) large enough. The two curves can be

obtained separately and independently.

Proposition 8.5. Assume thatHn−1 is differentiable and that there exists ξ
∗
n = ((x∗n, y

∗
n), ξ

∗
1,n, ξ

∗
2,n)

where ξ∗1,n ∈ Φu∗
n and ξ∗2,n ∈ Φv∗

n such that V n = V n,ξ
∗
n . Then ξ∗1,n satisfies

∂xHn−1(u+ p1
p2
ξ∗1,n(u), ξ

∗
1,n(u)) = a1(δ + λ)

for u∗
n ≤ u ≤Mξ∗1,n

, and ξ∗2,n satisfies

∂yHn−1(ξ
∗
2,n(v), v +

p2
p1
ξ∗2,n(v)) = a2(δ + λ)

for vn ≤ v ≤Mξ∗2,n
.

Proof. We will prove this result for ξ∗1,n, the proof for ξ∗2,n is analogous.

Given any ξ1 ∈ Φu∗
n , we have that

V n,ξ(x, 0) = V n,ξ(Mξ1 , 0) + a1(x−Mξ1),

for ξ = ((x∗n, y
∗
n), ξ1, ξ2) and x ≥Mξ1 . Then, if there exists ξ∗1,n ∈ Φu∗

n such that V n = V n,ξ
∗
n ,

V n,ξ
∗
n(Mξ∗1,n

, 0)− a1Mξ∗1,n
= max

ξ1∈Φu∗
n

(
V n,ξ(Mξ1 , 0)− a1Mξ1

)
.

Consider non-negative test functions ς with ς(u∗
n) = 0 and ς(Mξ∗1,n

) = 0. We have that

ξ∗1,n + ες ∈ Φu∗
n for ε small enough. Let us write,

ξε(u) = ξ∗1,n(u) + ες(u).

We have that Mξε =Mξ∗1,n
and then

V n,ξ
∗
n(Mξ∗1,n

, 0)− a1Mξ∗1,n
= max

ς

(
V n,ξε(Mξ∗1,n

, 0)− a1Mξ∗1,n

)
,

where ξε = ((x∗n, y
∗
n), ξε, ξ2). Denote

ϑ(ε) := V n,ξε(Mξ∗1,n
, 0)− a1Mξ∗1,n

.

We have that ξε(Mξ∗1,n
) = ξ∗1,n(Mξ∗1,n

) = 0 and ξε(u
∗
n) = ξ∗1,n(u

∗
n) so we can write by Proposi-

tion 8.1,

ϑ(ε) = e
−

(δ+λ)ξ∗1,n(u∗
n)

p2

(
p

δ + λ
+

1

δ + λ
Hn−1(u

∗
n + p1

p2
ξ∗1,n(u

∗
n), ξ

∗
1,n(u

∗
n))

)
− a1u

∗
n

+

∫ Mξ∗1,n

u∗
n

a1

(
e
− (δ+λ)ξε(w)

p2 − 1

)
dw +

1

p2

∫ ξ∗1,n(u∗
n)

0

Hn−1(ξ
−1
ε (t) + p1

p2
t, t)e

− (δ+λ)t
p2 dt.
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Clearly,

0 =
∂ϑ

∂ε
(0)

=
1

p2

∫ Mξ∗1,n

u∗
n

(
∂xHn−1(w + p1

p2
ξ∗1,n(w), ξ

∗
1,n(w))− a1(δ + λ)

)
e
−(δ+λ)

ξ∗1,n(w)

p2 ς(w)dw.

So we obtain (
∂xHn−1(u+ p1

p2
ξ∗1,n(u), ξ

∗
1,n(u))− a1(δ + λ)

)
e
−(δ+λ)

ξ∗1,n(u)

p2 = 0

for all u∗
n ≤ u ≤Mξ∗1,n

. □
This last proposition gives us a constructive way to find the candidate for V n in the case

that it comes from a one-step curve strategy. We find numerically, if it exists, the solution
z1(u) of the equation

(8.9) ∂xHn−1(u+ p1
p2
z1(u), z1(u)) = a1(δ + λ)

for u∗
n ≤ u ≤ min {u : z1(u) = 0} and the solution z2(v) of the equation

(8.10) ∂yHn−1(z2(v), v +
p2
p1
z2(v)) = a2(δ + λ)

for v∗n ≤ v ≤ min {v : z2(v) = 0} . If z1(u) is in Φu∗
n and z2(v) is in Φvn , we define

ξ∗1,n(u) = z1(u) and ξ∗2,n(v) = z2(v) and we obtain the value function V n,ξ
∗
n by the for-

mula given in Proposition 8.1; this is our candidate for V n. Afterwards, we check whether

V n,ξ
∗
n is a viscosity supersolution of (5.5); if this is the case, then V n = V n,ξ

∗
n .

Remark 8.6. Consider claim size distributions F i, i = 1, 2 such that V 0
i , and hence also U ,

are differentiable functions (see for instance [19] for sufficient conditions for this property).
Assume that there exists ξ

∗
n = ((x∗n, y

∗
n), ξ

∗
1,n, ξ

∗
2,n) where ξ

∗
1,n ∈ Φu∗

n and ξ∗2,n ∈ Φv∗
nsuch that

V n = V n,ξ
∗
n for all n ≥ 1, thenHn and V n are differentiable for all n ≥ 1. To see this, note that

V 0given in (5.2) is differentiable, that the differentiability of V n implies the differentiability
of Hn and that, by Proposition 8.3, the differentiability of Hn implies the differentiability
of V n+1. We conclude that the differentiability condition on Hn−1 in Proposition 8.5 is
automatically fulfilled.

In the next Proposition we state some conditions under which the optimal strategy of (2.4)
is a curve strategy. This result, together with Propositions 8.1 and 8.5 gives a way to find
the optimal curve (if it exists). Let us first define a criterion of convergence for a sequence(
ξn
)
n≥1

that will be used in the next proposition.

Definition 8.7. We say that ξn = ((xn, yn), ξ1,n, ξ2,n) converges to ξ = ((x, y), ξ1, ξ2) if

lim
n→∞

(xn, yn) = (x, y), lim
n→∞

Mξi,n →Mξi for i = 1, 2,

lim
n→∞

max
[un,Mξ1,n

]∩[u,Mξ1
]
|ξ1,n(u)− ξ1(u)| = 0, lim

n→∞
max

[vn,Mξ2,n
]∩[v,Mξ2

]
|ξ2,n(v)− ξ2(v)| = 0,

lim
n→∞

max
[0,ξ1,n(un)]∩[0,ξ1(u)]

∣∣ξ−1
1,n(w)− ξ−1

1 (w)
∣∣ = 0 and lim

n→∞
max

[0,ξ2,n(vn)]∩[0,ξ2(v)]

∣∣ξ−1
2,n(w)− ξ−1

2 (w)
∣∣ = 0.

Proposition 8.8. Assume that there exists a ξ
∗
n such that V n = V n,ξ

∗
n for all n ≥ 1. If ξ

∗
n

converges to some ξ
∗
in the sense of Definition 8.7, then the optimal value function V is the

value function of the curve strategy V ξ
∗
as defined in (7.2).
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Proof. From Proposition 5.8, we have that limn→∞ V n,ξ
∗
n = V . So replacing W0 by

V n,ξ
∗
n and ξ by ξ

∗
n in the formulas given in Proposition 8.1 and Remark 8.2 and letting n go

to infinity, we obtain that V satisfies the formulas given in Proposition 8.1 and Remark 8.2
replacing W0 by V and ξ by ξ

∗
. Therefore, by Proposition 8.4 and Lemma 2.2, the functions

V and V ξ
∗
coincide. □

9. Numerical Example

We present a numerical example in the symmetric and equally weighted case with an expo-
nential claim size distribution. By Remark 6.2, we restrict the search of the optimal curve
strategy to ξ = ((x, x) , ξ, ξ), ξ ∈ Φ0 . Using the formulas given in Propositions 8.1 and equa-
tions (8.8), (8.9) and (8.10), we obtain ξ

∗
n = ((x∗n, x

∗
n) , ξ

∗
n, ξ

∗
n). We check that ξ∗n ∈ Φ0 and

that the associated value function V n,ξ
∗
n is a viscosity solution of (5.5). By Remark 8.6, V n,ξ

∗
n

is differentiable because ξ∗n ∈ Φ0, so in order to check numerically that V n,ξ
∗
n is a viscosity

solution of (5.5) it is enough to check that V
n,ξ

∗
n

x ≥ a1 and V
n,ξ

∗
n

y ≥ a2 in the set C and that

L(V n,ξ
∗
n) ≤ 0 in the set B0 ∪ B1, where these sets are the ones defined in Section 7 for ξ

∗
n.

We also obtain numerically the convergence of ξ
∗
n to ξ according to Definition 8.7. Then,

using Proposition 8.8, one can conclude that the optimal strategy is a curve strategy with
curve ξ∗.

The numerical procedure was done with the Mathematica software and the calculation is
quite time-consuming. The concrete chosen parameters are: exponential claim size distribution
with parameter 3, Poisson intensity λ1 = λ2 = 20/9, premium rate p1 = p2 = 1, and a discount
factor δ = 0.1. In this numerical procedure we used step-size ∆x = ∆y = 0.002 and iterated 60
times. The resulting optimal curve strategy is given in Figure 9.1, and V (x, y)− (x+y)/2 (the
improvement of the optimal dividend strategy over paying out the initial capital immediately)
is depicted as the upper curve in Figure 9.2 (the sets A∗

1 and A∗
2 are not straight lines, even

if they appear to be so at first glance).
We also compare for this numerical example the optimal value function V (x, y) with the

(comparably weighted) sum of the stand-alone value functions without collaboration:

VS(x, y) =
V 0(x) + V 0(y)

2

and with VM (x + y)/2, where VM is the optimal value function for the merger of the two
companies. Figure 9.2 depicts the graphics of all three value functions V (x, y), VS(x, y) and
VM (x+ y)/2, each of them reduced by (x+ y)/2. The optimal merger strategy is barrier with
barrier b = 2.77. By Remark 2.1, VM (x + y)/2 < V (x, y) for all (x, y) ∈ R2

+. One sees that
whereas for the comparison between the stand-alone case and the merger the initial surplus
levels matter (with the merger case being the lowest of the three value functions in (0, 0)),
the collaboration case outperforms not only the merger case but also the stand-alone one for
all combinations of initial surplus levels (i.e. if one measures the overall dividend payments
that can be achieved with either behavior, for this numerical example collaboration is always
preferable). Hence we have here an instance where collaboration is beneficial not only for
safety aspects, but also with respect to collective profitability.
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Figure 9.1: Optimal Curve Strategy

Figure 9.2: V (x, y)− x+y
2

vs. VS(x, y)− x+y
2

vs. VM (x+y)
2

− x+y
2

10. Concluding Remarks

We finish with some further remarks on collaboration and on transaction costs.

Collaboration vs. stand-alone

In most cases, we expect the optimal value function V corresponding to the collaboration
agreement to be greater than the comparably weighted sum of the stand-alone value function
without collaboration. However, one can find examples in which this does not hold. For
instance, if Company One is so unprofitable that, under the collaboration agreement, the best
strategy for Company One is to pay all the current surplus as dividends.
Note that the ”extreme” curve strategies where Company One pays all the current surplus as
dividends are given by the sets A0 = {(0, y)}, A1 = {(0, y) : 0 ≤ y < y}, B0 = {(x, y) : y ≤ y
and x ≥ 0}, B1 = {(x, y) : 0 ≤ y < y and x ≥ 0} and C = A2 = B2 = ∅, these strategies
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depend only on the barrier level y ≥ 0. The value function of these strategies can be written
as

V y(x, y) =W (y) + a1x,

where W (y) is a viscosity solution of the one-dimensional integro-differential equation

{
a1p1 +W ′(y)p2 − (δ + λ)W (y) + λ1

∫ y

0
W (y − α)dF 1(α) + λ2

∫ y

0
W (y − α)dF 2(α) + U(0, y) = 0

W ′(y) = a2

in [0, y] and W (y) = a2(y − y) + W (y) for y ≥ y. In the case of exponential claim sizes,
this equation can be transformed easily into a non-homogeneous linear ordinary second-order
differential equation and the solution W has a closed form.

In the next example, we will find a barrier level y∗ > 0 such that V y∗
is a classical solution

of the HJB equation (3.1), so by Corollary 4.3, V y∗
is the optimal value function and the

extreme curve strategy with barrier level y∗ is the optimal strategy. Moreover, there are
initial surplus values for which the stand-alone value function is larger than V.

Consider the parameters δ = 0.1, λ1 = 200, λ2 = 1, p1 = 10, p2 = 1.3, a1 = a2 = 0.5 and
claim size distributions F 1(α) = F 2(α) = 1 − e−α. Then one obtains y∗ = 0.072. In Figure
10.1, we show the difference between the optimal collaboration value function V y∗

and the
optimal value function VS(x, y) =

(
V 0
1 (x) + V 0

2 (y)
)
/2 of the stand-alone case. Here the stand-

alone case outperforms the collaboration when the initial surplus level y of Company Two is
greater than 0.12. Note that V y∗

− VS is constant w.r.t. x because V 0
1 (x) = p1/(δ + λ1) + x.

0.0

0.5

1.0y

0.0

0.5

1.0x

-0.001

0.000

Figure 10.1: V y∗
− VS

Inclusion of proportional transaction costs

Let us assume that in case of a capital transfer, a unit of capital received by Company One
requires r1 > 1 from Company Two and that a unit of capital received by Company Two
requires r2 > 1 from Company One.

In this case, we obtain that the associated controlled process
(
XL

t , Y
L
t

)
and the cumulative

amounts transferred between the companies in (2.2) become{
XL

t = Xt − L1
t + C2,1

t − r2C
1,2
t

Y L
t = Yt − L2

t + C1,2
t − r1C

2,1
t ,

where C2,1
t corresponds to the cumulative amount received by Company One from Company

Two up to time t in order to cover the deficit of Company One and C1,2
t corresponds to the

cumulative amount received by Company Two from Company One up to time t in order to
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cover the deficit of Company Two. In this situation, the time τ at which only one company
remains (because it cannot cover the deficit of the other) is given by

τ = inf
{
t ≥ 0 : min{r1XL

t + Y L
t < 0, XL

t + r2Y
L
t } < 0

}
.

The HJB equation for the optimal value function (2.4) in this setting is (3.1) but now the
operator I and U defined in (3.2) and (3.4) become

I(V )(x, y) = λ1

∫ x

0
V (x− α, y)dF 1(α) + λ1

∫ x+ y
r1

x
V (0, y + r1(x− α))dF 1(α)

+λ2

∫ y

0
V (x, y − α)dF 2(α) + λ2

∫ x
r2

+y

y
V (x+ r2(y − α), 0)dF 2(α),

and

U(x, y) = λ1a2V
0
2 (y)(1− F 1(x+

y

r1
)) + λ2a1V

0
1 (x)(1− F 2(

x

r2
+ y)).

Using these operators, it is possible to extend all the results of the paper to the case of
positive proportional transaction cost.

Acknowledgement. The authors would like to thank an anonymous referee for useful
remarks to improve the presentation of the paper.

References

[1] H. Albrecher and V. Lautscham. Dividends and the time of ruin under barrier strategies
with a capital-exchange agreement. Anales Instituto de Actuarios Españoles, 21(3):1–30,
2015.

[2] H. Albrecher and S. Thonhauser. Optimality results for dividend problems in insurance.
Rev. R. Acad. Cienc. Exactas F́ıs. Nat. Ser. A Math. RACSAM, 103(2):295–320, 2009.

[3] S. Asmussen and H. Albrecher. Ruin probabilities. Advanced Series on Statistical Science
& Applied Probability, 14. World Scientific Publishing Co. Pte. Ltd., Hackensack, NJ,
second edition, 2010.

[4] B. Avanzi. Strategies for dividend distribution: a review. N. Am. Actuar. J., 13(2):217–
251, 2009.

[5] F. Avram, Z. Palmowski, and M. Pistorius. A two-dimensional ruin problem on the
positive quadrant. Insurance Math. Econom., 42(1):227–234, 2008.

[6] F. Avram, Z. Palmowski, and M. R. Pistorius. Exit problem of a two-dimensional risk
process from the quadrant: exact and asymptotic results. Ann. Appl. Probab., 18(6):2421–
2449, 2008.

[7] P. Azcue and N. Muler. Optimal reinsurance and dividend distribution policies in the
Cramér-Lundberg model. Math. Finance, 15(2):261–308, 2005.

[8] P. Azcue and N. Muler. Minimizing the ruin probability allowing investments in two
assets: a two-dimensional problem. Math. Methods Oper. Res., 77(2):177–206, 2013.

[9] P. Azcue and N. Muler. Stochastic Optimization in Insurance: a Dynamic Programming
Approach. Springer Briefs in Quantitative Finance. Springer, 2014.

[10] A. Badescu, L. Gong, and S. Lin. Optimal capital allocations for a bivariate risk process
under a risk sharing strategy. Preprint, University of Toronto, 2015.

[11] S. Badila, O. Boxma, and J. Resing. Two parallel insurance lines with simultaneous
arrivals and risks correlated with inter-arrival times. Insurance Math. Econom., 61:48–
61, 2015.

[12] M. G. Crandall and P.-L. Lions. Viscosity solutions of Hamilton-Jacobi equations. Trans.
Amer. Math. Soc., 277(1):1–42, 1983.

30



[13] I. Czarna and Z. Palmowski. De Finetti’s dividend problem and impulse control for a
two-dimensional insurance risk process. Stochastic Models, 27(1):220–250, 2011.

[14] B. De Finetti. Su un’impostazione alternativa della teoria collettiva del rischio. Transac-
tions of the XVth congress of actuaries, (II):433–443, 1957.

[15] H. U. Gerber. Entscheidungskriterien fuer den zusammengesetzten Poisson-Prozess.
Schweiz. Aktuarver. Mitt., (1):185–227, 1969.

[16] H. U. Gerber and E. S. W. Shiu. On the merger of two companies. N. Am. Actuar. J.,
10(3):60–67, 2006.

[17] J. Ivanovs and O. Boxma. A bivariate risk model with mutual deficit coverage. Insurance
Math. Econom., 64:126–134, 2015.

[18] N. Kulenko and H. Schmidli. Optimal dividend strategies in a Cramér-Lundberg model
with capital injections. Insurance Math. Econom., 43(2):270–278, 2008.

[19] R. L. Loeffen. On optimality of the barrier strategy in de Finetti’s dividend problem for
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