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Abstract

Explaining how polymorphism is maintained in the face of selection remains a puzzle since selection tends to erode genetic

variation. Provided an infinitely large unsubdivided population and no frequency-dependance of selective values, heterozygote

advantage is the text book explanation for the maintenance of polymorphism when selection acts at a diallelic locus. Here, we

investigate whether this remains true when selection acts at multiple diallelic loci. We use five different definitions of heterozygote

advantage that largely cover this concept for multiple loci. Using extensive numerical simulations, we found no clear associations

between the presence of any of the five definitions of heterozygote advantage and the maintenance of polymorphism at all loci. The

strength of the association decreases as the number of loci increases or as recombination decreases. We conclude that heterozygote

advantage cannot be a general mechanism for the maintenance of genetic polymorphism at multiple loci. These findings suggest that

a correlation between the number of heterozygote loci and fitness is not warranted on theoretical ground.

r 2005 Elsevier Inc. All rights reserved.
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1. Introduction

A puzzling problem in population genetics revolves
around the question of the maintenance of genetic
polymorphism. Empirical evidences show that natural
selection in the wild is widespread for many traits
(Endler, 1986; Kingsolver et al., 2001). And in many
experiments, sustained response to artificial selection
attests the presence of genetic polymorphism (Hill and
Caballero, 1992). Since selection tends to erode genetic
polymorphism, there is clearly a paradox between
widespread selection and large amounts of genetic
polymorphism. Mutation and balancing selection are
two major factors invoked for the resolution of this
paradox (Barton and Keightley, 2002). It is well
established that mutation plays a role in generating
genetic polymorphism under selection (e.g. Zhang and
e front matter r 2005 Elsevier Inc. All rights reserved.
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Hill, 2002). Here, we focus on one factor that maintains
(rather than create) genetic polymorphism: the advan-
tage of heterozygote in an infinitely large, unsubdivided,
population.
Theoretical studies diverge as to whether heterozygote

advantage is the main reason for the maintenance of
genetic polymorphism. Some showed that heterozygote
advantage can maintain polymorphism. When selection
acts at one diallelic locus, heterozygote advantage is
necessary and sufficient to maintain genetic polymorph-
ism (e.g. Hedrick, 1999). Ginzburg (1979) showed that,
when selection acts at one multiallelic locus, the
arithmetic mean fitness of heterozygotes (weighted or
not by allelic frequencies) must be higher than the
(weighted respectively unweighted) arithmetic mean
fitness of homozygotes in order to maintain genetic
polymorphism. Similarly, when stabilizing selection acts
at multiple loci with purely additive effects, Zhivotovsky
and Feldman (1992) showed that genetic polymorphism
can be maintained if heterozygote genotypes have a
higher stability of development than homozygote
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genotypes (i.e. a form of heterozygote advantage). And
when selection acts at two diallelic loci, Turelli and
Ginzburg (1983) and Gimelfarb (2000) showed, using
numerical simulations, that the probability of maintain-
ing polymorphism is high when there is ‘‘heterozygote
advantage’’. While these studies confirmed that hetero-
zygote advantage can maintain polymorphism, others
did not. Lewontin et al. (1978) showed numerically that
the advantage of the heterozygote cannot maintain a
large amount of polymorphism when selection acts at
one multiallelic locus (but see Spencer and Marks,
1992). Other relevant studies for these associations
between heterozygote advantage and polymorphism
are Hastings (1981, 1982). Using numerical examples
for selection acting at two diallelic loci, he showed that
genotypic polymorphism can be maintained even when
the two loci show an heterozygote disadvantage. And
when selection acts at multiple loci, Gimelfarb (1998)
came to equivocal results depending on how hetero-
zygote advantage is measured (see below). However, this
study was incomplete according to heterozygote advan-
tage for traits coded by multiple loci (did not include all
potential definitions for heterozygote advantage for
traits coded by multiple loci). Therefore, it remains
unclear whether heterozygote advantage is a general
mechanism for the maintenance of polymorphism.
Our purpose here is to test whether heterozygote

advantage is a general mechanism for maintaining
polymorphism when selection acts at two, three, or four
diallelic loci. To this end, we quantified the association
between allelic polymorphism and heterozygote advantage
for randomly generated fitness matrices. We use five
different definitions of heterozygote advantage for traits
coded by multiple loci. These definitions and their
extensions to multiple loci are based on notions proposed
by Lewontin et al. (1978), Turelli and Ginzburg (1983),
and Karlin (1990). These notions and their extensions are
fully described below in the method section. To find
whether all alleles at all loci are maintained under
selection, we use the classical model of genetic selection
for multilocus systems (see Bürger, 2000). We predict that
matrices maintaining full allelic polymorphism should
show some form of heterozygote advantage, while
heterozygote advantage should be absent in those matrices
not maintaining allelic polymorphism. In general these
predictions are not fulfilled. We therefore conclude that
heterozygote advantage is not a general mechanism for the
maintenance of allelic polymorphism at multiple loci.
2. Method

2.1. Population

Our model consists of a diploid monoecious popula-
tion of infinite size, where mating occurs at random.
Generations are discrete and non-overlapping. Muta-
tion is absent.

2.2. Fitness matrices

We consider traits coded by two, three, and four diallelic
loci. A matrix of fitness defines fitness values of all possible
genotypes (i; j) in the population. It is a square and
symmetric matrix where rows and columns represent the
different gametes. Each cell of the matrix, wi;j , gives
the fitness value of the genotype (i, j). We consider
that there are no imprinting effects (i.e. wi;j ¼ wj;i) and no
cis-trans effects (e.g. wðAB=abÞ ¼ wðAb=aBÞ).
We generated 4000 fitness matrices for each of the

three traits (respectively coded by two, three, and four
loci). The value of each wi;j (within the constraints given
above) is a random integer number between 1 and 100
obtained from a uniform distribution. We use a uniform
distribution since the a priori distribution of fitness
values in the wild is unknown.

2.3. Heterozygote advantage

When fitness is coded by one locus with two alleles,
there is heterozygote advantage if the fitness of the
heterozygote is higher than the fitnesses of both homo-
zygotes. This notion of heterozygote advantage needs to
be extended when traits are genetically complex. A trait
coded by multiple loci having multiple alleles has more
than one heterozygote state at a given locus and can have
a mixture of heterozygote and homozygote loci. This
complicates the definition of heterozygote advantage.
In this section we extend the definitions of the

heterozygote advantage for traits coded by (i) one
diallelic locus (e.g. Hedrick, 1999) and (ii) one multi-
allelic locus (Lewontin et al., 1978; Turelli and Ginz-
burg, 1983; Karlin, 1990) to traits coded by multiple
diallelic loci. This results in five extended definitions of
heterozygote advantage that are reported under points
(a)–(e) below and summarized in Table 1. Importantly,
these definitions are based on raw fitness values (i.e.
fitness values not weighted by allelic frequencies, see
Section 4), since our goal is to determine which fitness
matrices allow the maintenance of polymorphism
independently of the population state.
When fitness is coded by more than one locus, the locus

‘ has an average heterozygote advantage if the average
fitness for the heterozygote at this locus, w̄ð‘1; ‘2Þ, is higher
than average fitnesses of homozygotes at this same locus ‘,
w̄ð‘1; ‘1Þ and w̄ð‘2; ‘2Þ. The average fitness value w̄ð‘i; ‘jÞ is
calculated over all genotypes having alleles i and j at the
locus ‘. And when all loci are considered:
(a)
 A matrix of fitness coded by ‘ loci has an average

heterozygote advantage (abbreviated aha) if average
heterozygote advantage is verified for all loci (Table 1).
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Table 1

Definitions of heterozygote advantage and their abbreviation (abr.) for fitness coded by ‘ diallelic loci with their references (ref.)

Definitions of Heterozygote advantage Abr. Definitions Ref.

(a) Average heterozygote advantage aha w̄ðz1; z1Þ; w̄ðz2; z2Þow̄ðz1; z2Þ 8 z 2 f1; . . . ; ‘g;
w̄ðzi ; zjÞ is an average over all genotypes having alleles i and j at the locus z.

(b) Ordered matrix of fitness omf w̄‘4w̄‘�14 � � �4w̄0; 1,2

w̄k is an average over all genotypes that have k heterozygous loci, k 2 f0; 1; . . . ; ‘g.
(c) Local heterozygote advantage lha wði; jÞ4½wði; iÞ þ wðj; jÞ�=2 8 ðiajÞ 2 f1; . . . ; gg; 1

wði; jÞ is the fitness value of the genotype (i; j) and g is the number of gametes.

(d) Invariable heterozygote fitness ihf wði; jÞowði;mÞ þ wðj; nÞ, wði; jÞ as defined under (c) above. 1

(e) Simple overdominance so all gametes are maintained at equilibrium when recombination is absent. 3

Ref.: (1) Lewontin et al., 1978, (2) Turelli and Ginzburg, 1983, (3) Karlin, 1990.
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When fitness is coded by one locus with n alleles,
intuitively, there should be heterozygote advantage if the

fitnesses of all heterozygotes are higher than the fitnesses
of all homozygotes. However Mandel (1959) showed
that this is neither a sufficient, nor a necessary condition
for maintaining all alleles at equilibrium. He derived the
necessary and sufficient conditions for the maintenance
of multiallelic polymorphism. From these conditions
Lewontin et al. (1978) derived two relations between the
fitnesses of heterozygotes and homozygotes and one
relation between heterozygotes that are all necessary for
maintaining allelic polymorphism. These definitions can
be extended to traits coded by multiple loci. They are
treated here as three different definitions even if all are
necessary for maintaining polymorphism at a single
multiallelic locus. We define a matrix of fitness coded by
‘ loci as having heterozygote advantage if:
(b)
 the average fitnesses w̄k
0s, defined as the average

fitness of all genotypes having k heterozygous loci (k ¼

f0; 1; . . . ; ‘gÞ, are ordered according to the number of
heterozygous loci (abbreviated omf for ordered matrix

of fitness, Table 1), this is the definition of heterozygote
advantage used by Gimelfarb (1998);
(c)
 there is an overall local heterozygote advantage

(abbreviated lha), if each genotype made of two
different gametes (i; j) has a higher fitness than the
average fitness of the two corresponding homozy-
gous genotypes (i; i) and (j; j) (Table 1);
(d)
 each heterozygote (i; j) has a lower fitness than the sum
of fitness of any two others heterozygous genotypes
(i;m) and (j; n), this definition is called invariable

heterozygote fitness and is abbreviated ihf (Table 1).
Definitions given under (b)–(d) form three necessary
conditions for maintaining all alleles when selection acts at
one multiallelic locus (Lewontin et al., 1978). Since these
three definitions are all necessary, they may be seen as a
unit that predicts if polymorphism is maintained under
selection. However, below we treat them independently to
disentangle the effect of each of these definitions.
The last definition of heterozygote advantage is
derived from Karlin (1990):
(e)
 a matrix of fitness is simply overdominant (abbre-
viated so) if it maintains all gametes at equilibrium
when recombination is absent (Table 1).
Among these five definitions of heterozygote advan-

tage, average heterozygote advantage and ordered matrix

of fitness are the two definitions closest to the definition
when fitness is coded by one diallelic locus. Definition of
simple overdominance uses the tautology between hetero-
zygote advantage and the maintained polymorphism
at one locus (see Karlin, 1990 for details). This last
definition has never been used empirically.
For each matrix of fitness, we recorded the occurrence

of each of the five definitions of heterozygote advantage
(defined under points (a)–(e) above). Note that these five
definitions are not independent. A matrix of fitness
showing lha can also show so and aha for example. These
definitions should be regarded, therefore, as different
ways of characterizing a ‘‘general’’ heterozygote advan-
tage. The next step consists in finding if these same fitness
matrices maintain polymorphism under selection.
2.4. The model

We use the classical model of genetic selection for traits
coded by multiple loci (first developed by Lewontin and
Kojima, 1960 for two diallelic loci) as a mean to find if
genetic polymorphism is maintained by a given matrix of
fitness. Bürger (2000) gives a full and general description
of this model that we briefly summarize here. Selection is
constant through generations and acts on viability
differences. Let xiðtÞ be the frequency of gamete i at
generation t (

P
ixiðtÞ ¼ 1), and wi;j be the fitness of the

genotype constituted by gametes i and j. The frequency of
gamete i in generation t þ 1 is given by

xiðt þ 1Þ ¼
1

w̄ðtÞ

X

j;k

wj;k xjðtÞxkðtÞRðj; k ! iÞ, (1)
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where w̄ðtÞ is the average fitness of the population at
generation t given by

w̄ðtÞ ¼
X

i;j

wi;jxiðtÞxjðtÞ (2)

and Rðj; k ! iÞ is the probability that genotype ðj; kÞ
produces gamete i. This probability is a function of the
recombination rate (r). The recombination rate between
two adjacent loci is independent of the loci considered
(i.e., all loci are equidistant) and of the occurrence of
recombination at other loci. It remains constant through
generations. We use numerical simulations to seek the
equilibrium properties of this system.

2.5. Numerical simulations

This method of numerical simulation has been devel-
oped by Karlin and Carmelli (1975). It is commonly used
for the study of the model given by Eq. (1) (e.g. Lewontin
et al., 1978; Turelli and Ginzburg, 1983; Gimelfarb, 1998).
Parameters of the model given by Eq. (1) are (1) the matrix
of fitness and (2) the recombination rate (r). We use 4000
randomly generated matrices for traits coded by two,
three, and four loci (as defined above) and 4 different
recombination rates (0:00; 0:01; 0:05; and 0:50). We used
each of the four recombination rates for each of the 4000
matrices of fitness. When loci are linked (r ¼ 0:00), a trait
coded by ‘ loci is equivalent to a trait coded by one locus
having 2‘ alleles (e.g. Roughgarden, 1979). Recombination
rates of 0:01 and 0:05 were chosen because previous
studies (Karlin and Carmelli, 1975; Gimelfarb, 1998)
showed that it is around these values of r that changes in
equilibrium properties might occur. Finally the maximal
recombination rate (r ¼ 0:50) represents a system in which
the loci segregate independently.
We assume that initially all gametes are present

according to the product of the frequency of their
constituting alleles (i.e. gametic phase equilibrium).
These starting conditions constitute a regular grid
covering the space of gametic frequencies. Frequencies
of the alleles take the following values:

For two loci: ‘1 ¼ f0:01; 0:09; 0:19; 0:29; 0:39; 0:49; 0:59;
0:69; 0:79; 0:89; 0:99g;
For three loci:
‘1 ¼ f0:01; 0:09; 0:24; 0:39; 0:54; 0:69; 0:84; 0:99g;
For four loci: ‘1 ¼ f0:01; 0:35; 0:70; 0:99g;
And ‘2 ¼ 1� ‘1.

The number of starting conditions used is 121 for fitness
coded by two loci (112), 512 for the three loci (83) and 256
for the four loci (44). There is a lower number of starting
allelic frequencies for four loci compared to two loci (and
for three compared to two), in order to maintain a
reasonable number of starting gametic frequencies.
Changes of gametic frequencies (Eq. (1)) for each

matrix of fitness were followed until an equilibrium was
reached. Equilibrium was reached when differences in
frequency for all gametes between two consecutive
generations are less than 10�12, i.e. jxiðt þ 1Þ � xiðtÞjp
10�12 8 i. Simulations that did not reach equilibrium
after 100,000 generations were discarded from the
analysis. A matrix of fitness was discarded if no
equilibrium was attained for any of the starting
conditions. The total number of discarded matrices is
negligible (21 over 4000 matrices in the worst case). Two
equilibria are considered equal if the absolute differ-
ences between frequencies of all gametes are less than
10�3 (a higher stringency does not alter the results).
We checked that the implementation of the model was

correct by using fitness matrices with known solutions
for two loci (e.g. Roughgarden, 1979) and numerical
results for three and four loci. Another check was
the congruence of our results with those of Karlin
and Carmelli (1975), Lewontin et al. (1978), Turelli
and Ginzburg (1983), and Gimelfarb (1998), despite
our use of an evenly spaced larger number of starting
conditions.

2.6. Classes of polymorphism

Once equilibria for a given matrix of fitness were
reached, each matrix was classified according to the
maximal number of loci it maintains polymorphic. A
locus is considered polymorphic if the rarest allele has a
frequency higher than 0.01. For simplicity and clarity,
we define two classes of polymorphism:
(i)
 Fully polymorphic (abbreviated f): all of the ‘ loci are
maintained polymorphic at equilibrium,
(ii)
 Non-fully polymorphic (abbreviated f̄ ): at most ‘ � 1
(out of ‘) loci are maintained polymorphic at
equilibrium (this includes the case where none of
the loci remained polymorphic).
2.7. Analysis

The measure of interest is the strength of the
association between polymorphism maintained at equi-
librium and each of the five definitions of heterozygote
advantage. To quantify this association, we used
proportions of fitness matrices which maintain poly-
morphism and satisfy each of the five definitions of
heterozygote advantage.
For fully (f) and for non-fully (f̄ ) polymorphic fitness

matrices, we estimated the proportions of matrices
having each of the five definitions of heterozygote
advantage. This calculation is done for the four rates of
recombination and for matrices of fitness coded by two,
three, and four loci. For instance, the proportion of fully
polymorphic fitness matrices showing an average
heterozygote advantage, abbreviated Pahajf , is estimated
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as the number of matrices showing aha among the fully
polymorphic fitness matrices. A proportion Pxjy is zero
when no matrices of a given class (y) of polymorphism
have the considered definition (x) of heterozygote
advantage (for a given trait and recombination rate).
It takes value one when all matrices have the considered
definition (x) of heterozygote advantage. Note that a
condition x is necessary if Pxjf ¼ 1 and is sufficient if, in
addition to Pxjf ¼ 1, Pxjf̄ ¼ 0.
Having defined these proportions, two predictions can

be made. First, if heterozygote advantage maintains
genetic polymorphism, fully polymorphic matrices should
have proportions close to one, while non-fully poly-
morphic matrices should have proportions close to
zero (i.e Pxjf � 1 and Pxjf̄ � 0). For each trait and
recombination rate, data can be arranged in a two-by-
two contingency table (one entry is the presence/absence
of the definition of heterozygote advantage, the other
entry is the classes of polymorphism). The significance of
observed differences is tested using Fisher’s exact tests.
A second prediction is that if heterozygote advantage

is a general mechanism for the maintenance of genetic
polymorphism, the proportions of fully polymorphic
matrices showing one of the definitions of heterozygote
advantage should be the same for two, three, and four
loci (i.e. Pxjf ð‘ ¼ 2Þ � Pxjf ð‘ ¼ 3Þ � Pxjf ð‘ ¼ 4Þ).
2 Loci 3 Loci 4 Loci
0.0
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0.6

0.7

P
ro

p.

r = 0.00

r = 0.01

r = 0.05

r = 0.50

Fig. 1. Proportions of fully polymorphic matrices for the traits coded

by two, three, and four loci and the four rates of recombination.
3. Results

Out of the five different definitions of heterozygote
advantage (summarized in Table 1), local heterozygote

advantage and simple overdominance are never found for the
4000 random fitness matrices for traits coded by three and
four loci. Of the three remaining definitions, the proportions
of fully polymorphic fitness matrices showing average

heterozygote advantage (Pahajf ) and ordered matrix of fitness

(Pomf jf ) decrease as the number of loci increases, contrary to
our second prediction. The proportion of matrices that have
invariable heterozygote fitness increases with the number of
loci for fully (Pihf jf ) and non-fully polymorphic (Pihf jf̄ )
matrices. Again, this does not correspond to our second
prediction. These results are reported in more details in the
next sections, after a description of the proportions of fully
polymorphic matrices.

3.1. Classes of polymorphism

Fig. 1 gives the proportions of fully polymorphic
matrices, i.e. matrices that maintain all alleles for all
coding loci, for the four rates of recombination (the
proportion of non-fully polymorphic matrices is one
minus the proportion of fully polymorphic matrices).
For traits coded by two, three, and four loci, the

highest proportion of fully polymorphic fitness matrices
are found when loci are totally linked (r ¼ 0:00, Fig. 1).
These proportions decrease as the rate of recombination
increases for the three traits.
When loci are loosely linked (rX0:05), the proportion

of fully polymorphic fitness matrices diminishes as the
number of loci increases. On the contrary, when loci are
tightly linked (rp0:01), the proportion of fully poly-
morphic matrices increase as the number of loci
increases. There is clearly a strong interaction between
recombination rate and the number of loci on the
maintenance of polymorphism.

3.2. Average heterozygote advantage

Fig. 2A gives the proportions of fully (above the x-
axis) and non-fully (below the x-axis) polymorphic
matrices that have an average heterozygote advantage

(aha, as defined under a in Table 1). The highest Pahajf is
about 0.8 (‘ ¼ 2; r ¼ 0:50). Therefore, at least 20% of
the matrices that maintain polymorphism do not show
average heterozygote advantage. In addition, at least
1% of the non-fully polymorphic matrices have an
average heterozygote advantage (‘ ¼ 3; r ¼ 0:00). This
condition is therefore neither necessary, nor sufficient.
Differences between Pahajf̄ and Pahajf are strongly

affected by the number of loci (Fig. 2A). When traits are
coded by two and three loci, Pahajf are significantly
higher than Pahajf̄ (all po0:001). Unexpectedly, for
fitness matrices coded by four loci, the situation is
reversed: Pahajf̄ are significantly higher than Pahajf (all
po0:001, except for r ¼ 0:50; p ¼ 0:51).

Pahajf decreases as the number of loci increases and as
the rate of recombination decreases (Fig. 2A). The
lowest proportions of fully polymorphic aha matrices
are for traits coded by four loci.

3.2.1. Ordered fitness matrices

Results for ordered fitness matrices (Fig. 2B, omf as
defined under b in Table 1) are very similar to those
obtained for the average heterozygote advantage. The
highest Pomf jf equals 0.675 (‘ ¼ 2, r ¼ 0:50) and all other
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Fig. 2. Proportions among fully polymorphic matrices (above the x-axes, f) and among non-fully polymorphic matrices (below the x-axes, f̄ ) that (A)

have an average heterozygote advantage (aha), (B) are ordered (omf), (C) have a local heterozygote advantage (lha), (D) have an invariable

heterozygote fitness (ihf), and (E) are simply overdominant (so) for fitness coded by two, three, and four loci. The abbreviation on the y-axis should

be read as follow: Pahajf̄ , for example, is the proportion of fitness matrices having an average heterozygote advantage among the non-fully

polymorphic fitness matrices (see Section 2.7; Analysis for a complete description of the proportions reported on the y-axes).
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Pomf jf are lower than 50%. The lowest Pomf jf̄ equals 0.025
and increases as the number of loci increases.
Differences between fully and non-fully polymorphic

fitness matrices change as the number of loci increases
(Fig. 2B). Pomf jf are higher than Pomf jf̄ when ‘ ¼ 2 or 3.
This is reversed for matrices coded by four loci.
Observed differences between fully and non-fully poly-
morphic ordered fitness matrices are all highly signifi-
cant (all po0:001).

Pomf jf decreases with the number of loci (Fig. 2B). The
highest proportions on average are for fitness matrices
coded by two loci, while the lowest proportions are for
fitness matrices coded by four loci.
We also note that all ordered matrices of fitness coded

by four loci also show aha (independently of the
maintained polymorphism). The reverse is not true.

3.3. Local heterozygote advantage

The local heterozygote advantage (lha, as defined
under c in Table 1) is strongly influenced by the number
of loci since none of the 4000 fitness matrices coded by
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three and four loci show this definition of heterozygote
advantage (Fig. 2C). Local heterozygote advantage is
found only for fitness coded by two loci. In order to
have a better idea of the proportion of matrices coded
by three and four loci showing local heterozygote

advantage, we generate 100,000 matrices coded by three
loci and 100,000 matrices coded by four loci. Two
matrices coded by three loci and none coded by four loci
have a local heterozygote advantage among these 100,000
matrices. This definition of heterozygote advantage is
therefore extremely rare as soon as more than two loci
are involved.
For two loci, fully polymorphic matrices have a

statistically significant higher lha proportion than non-
fully polymorphic matrices (all po0:001). This differ-
ence decreases as the rate of recombination decreases.
But overall, Plhajf are low (lower than 0.3, Fig. 2C), and
Plhajf̄ never goes to zero (the lowest equals 0.037).

3.4. Invariable heterozygote fitness

The proportion of matrices that have invariable

heterozygote fitness (ihf, as defined under d in Table 1)
increases with the number of loci (Fig. 2D). This
increase is found for Pihf jf as well as for Pihf jf̄ . Nearly
all fitness matrices show invariable heterozygote fitness
when they are coded by four loci (be they fully or non-
fully polymorphic).
There is a statistically significant difference between

fully and non-fully polymorphic ihf proportions for
fitness matrices coded by two and three loci (all
po0:001). Fully polymorphic matrices have higher
ihf proportions than non-fully polymorphic matrices
(Fig. 2D). But for both traits, Pihf jf are smaller than 1
and Pihf jf̄ are higher than zero. Finally, there are no
significant differences between fully and non-fully
polymorphic ihf proportions for matrices coded by
four loci (p ¼ 0:73 for r ¼ 0:00, p ¼ 0:60 for r ¼ 0:01,
p ¼ 0:29 for r ¼ 0:05, and p ¼ 0:28 for r ¼ 0:50).

3.5. Simple overdominance

There is a strong effect of the number of loci on simple

overdominance (so, as defined under e in Table 1), as
none of the 4000 fitness matrices coded by three or four
loci are simply overdominant (Fig. 2E).
When fitness is coded by two loci, no non-fully

polymorphic matrices are simply overdominant (by
definition when loci are linked). This indicates that
simple overdominance is a sufficient condition for the
maintenance of polymorphism when fitnesses are coded
by two loci. Importantly, while sufficient, so is not
necessary since Psojf are very low (smaller than 0:07, Fig.
2E). All so matrices of fitness also show all other
definitions of heterozygote advantage (except for two
matrices not showing omf).
4. Discussion

This study investigates the role of heterozygote
advantage in the maintenance of allelic polymorphism
when selection acts on traits encoded by two, three or
four loci. Our first prediction was that the proportions
of matrices showing heterozygote advantage among the
fully polymorphic matrices should be close to one
(Pxjf � 1), and close to zero among non-fully poly-
morphic fitness matrices (Pxjf̄ � 0). None of the five
definitions of heterozygote advantage summarized in
Table 1 met this prediction (Fig. 2). In addition, the
association between heterozygote advantage and poly-
morphism class was strongly dependent on the number
of loci involved and on the recombination rate. There-
fore, these results do not meet our second prediction
(Pxjf ð‘ ¼ 2Þ � Pxjf ð‘ ¼ 3Þ � Pxjf ð‘ ¼ 4Þ). Last combin-
ing any or all of these five definitions of heterozygote
advantage led to the same conclusions.
The two definitions of heterozygote advantage that

are the closest to the definition of heterozygote
advantage for one diallelic locus (aha and omf) yield
results in the expected direction only for traits coded by
two and to a lesser extent three unlinked loci. Hetero-
zygote advantage, therefore, does not seem to be a
mechanism that maintains polymorphism for traits
coded by more than three loci. This might explain why
some studies found that heterozygote advantage main-
tains polymorphism and others did not. Studies showing
that heterozygote advantage may maintain polymorph-
ism had either traits coded by one or two loci (Ginzburg,
1979; Turelli and Ginzburg, 1983; Gimelfarb, 2000) or
they considered traits coded by loci with only pure
additive effects (Zhivotovsky and Feldman, 1992). On
the other hand, Hastings (1981, 1982) showed that, even
for traits coded by two loci, heterozygote disadvantage
could allow the maintenance of polymorphism. We
show that heterozygote advantage as defined here is
not a plausible explanation for the maintenance of
polymorphism under selection when more than two loci
are involved.

4.1. Limits of the model

The number of fully polymorphic fitness matrices is
low when loci are unlinked. Among the 4000 fitness
matrices, there are 268 fully polymorphic matrices for
two loci, 183 for three loci, and 41 for four loci. Among
these 41 fully polymorphic matrices not all matrices
fulfilled the definitions of heterozygote advantage. Since
Pxjf is based on a small number of matrices, this may
bias our conclusions for unlinked loci. For a trait coded
by one locus, Spencer and Marks (1992) showed that if
mutations are added to the model used here (Eq. (1)),
many alleles (up to 38) may be maintained. Such a
‘‘constructionist’’ approach might also increase the
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number of fully polymorphic matrices for traits coded
by more than one locus. But, Spencer and Marks (1992)
obtained fitness matrices that all showed heterozygote
advantage (w̄ij4w̄ii), i.e. they arrived at the same
conclusions as Lewontin et al. (1978) and Ginzburg
(1979) regarding the maintenance of allelic polymorph-
ism. Our method is identical to the one used by
Lewontin et al. (1978). Therefore, while this ‘‘construc-
tionist’’ approach might allow increasing the proportion
of fully polymorphic matrices, it is not obvious that it
will change our conclusions.

4.2. Allelic versus gametic polymorphism

We focused on allelic polymorphism because it is the
measure of polymorphism used in experimental studies.
When all alleles are maintained at equilibrium, not all
gametes are necessarily maintained for traits coded by
more than one locus (of course the reverse is true). For
instance, for four diallelic loci, maintaining two out of
the 16 possible gametes (ABCD and abcd) is sufficient to
maintain all alleles. Thus conditions for the maintenance
of allelic polymorphism at equilibrium are less stringent
than conditions for the maintenance of gametic poly-
morphism. This is illustrated by the results on ordered

matrix of fitness (omf, Table 1), local heterozygote

advantage (lha, Table 1), and invariable heterozygote

fitness (ihf, Table 1). When loci are completely linked
(r ¼ 0:00), a trait coded by multiple loci is equivalent to
a trait coded by one multiallelic locus (e.g. Rough-
garden, 1979). Lewontin et al. (1978) showed that omf,
lha, and ihf are necessary conditions for the maintenance
of all alleles when selection acts at one locus. Therefore,
for linked loci, proportions of fully polymorphic omf,
lha, and ihf matrices should be equal to one. We found
proportions lower than one (Fig. 2B–D). This difference
reflects the difference between conditions for the
maintenance of allelic and gametic polymorphism.
Indeed, Lewontin et al. (1978) derived these three
conditions (omf, lha, and ihf) for maintaining all gametes

(i.e. all alleles at a single locus) at equilibrium. We
focused on fitness matrices that maintain all alleles at
equilibrium. This explain why we found low fully
polymorphic proportions of omf, lha, and ihf even with
r ¼ 0:00. Note that, when all gametes were maintained
at equilibrium in our numerical iterations, the three
conditions (omf, lha, and ihf) were always met.

4.3. Unweighted versus weighted definitions

Heterozygote advantage could be defined using either
raw fitness values (unweighted) or raw fitness values
multiplied by gametic frequencies (weighted). Difference
between unweighted and weighted definitions of hetero-
zygote advantage is illustrated by the results we found
on the average heterozygote advantage (aha, Table 1)
compared to previous studies (Turelli and Ginzburg,
1983; Gimelfarb, 1998). The definition of average

heterozygote advantage we used differs from the induced

heterozygote advantage used by Turelli and Ginzburg
(1983) and Gimelfarb (1998). Like heterozygote advan-
tage at one diallelic locus (w11;w22ow12), average

heterozygote advantage is unweighted by gamete fre-
quency (as already mentioned in the method section). It
takes into account raw values of fitness only. The
induced heterozygote advantage uses fitness values that
are weighted by gametic frequencies once the population
has reached a polymorphic equilibrium (induced hetero-

zygote advantage at one diallelic locus would thus be
given by p2w11; q2w22o2pqw12). So induced heterozygote

advantage reflects conditions that are function of the
population state since fitness values are multiplied by
gametic frequencies present in the population. Average

heterozygote advantage does not depend on population
state. Additionally, induced heterozygote advantage is
defined only for polymorphic equilibria, average hetero-

zygote advantage is always defined.
For fully polymorphic matrices, Turelli and Ginzburg

(1983) and Gimelfarb (1998) found high proportions
(40:99) of induced heterozygote advantage for traits
coded by two to five diallelic loci. We found low aha

proportions that decrease as the number of loci increases
or as the loci become partially or totally linked. This
difference between proportions (high induced hetero-

zygote advantage and low average heterozygote advan-

tage) clearly indicates that induced heterozygote

advantage is not a characteristic of the fitness matrices
per se, but a characteristic of the population state and
the matrix of fitness.
We argue that the unweighted definition is more

appropriate than the weighted one because it is closer to
the measures taken by experimentalists. Often fitness
values of different genotypes are assessed via competi-
tion between different genotypes (e.g. Ebert et al., 2002;
Sanjuan et al., 2004). The classical setup for such
experiments is to introduce two different genotypes in
equal frequencies, thus assuming no frequency depen-
dance. At a theoretical level, the effort of understanding
what maintains genetic polymorphism in a population
should de facto be centered around unweighted mea-
sures, unless we seek solution around an equilibrium.
Note also that the original definition of heterozygote
advantage for one locus with two alleles is unweighted.

4.4. Should individual fitness increase with

heterozygosity?

This question has been raised by Turelli and Ginzburg
(1983) within the framework of the neutralist selectionist
debate. If genetic polymorphism is neutral, it should
have no effect on the reproductive success of its carrier.
Turelli and Ginzburg (1983) found that around 75% of
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the fully polymorphic fitness matrices coded by two
unlinked loci were ordered (i.e. omf as defined in Table
1). We found a similar proportion of fully polymorphic
ordered fitness matrices coded by two unlinked loci
(Fig. 2B). However Pomf jf decreases drastically as the
recombination rate decreases or as the number of loci
increases, a finding corroborated by Karlin and Carmelli
(1975) and Gimelfarb (1998). Hereafter, we emphasize
the relevance of this finding for the ongoing debate on
heterozygosity—fitness correlation (see e.g. David,
1998).
If the matrix of fitness is ordered, the correlation

between the number of heterozygote loci of a genotype
and its fitness is strong and positive. If the matrix of
fitness is not ordered, the correlation must be weaker
than when the matrix is ordered, because the average
fitness of genotypes having fewer heterozygote loci is
higher than the average fitness of genotypes having more
heterozygote loci. Using this rationale, Turelli and
Ginzburg (1983) concluded that, when polymorphism
is maintained, one should find a strong positive
correlation between the number of heterozygous loci
and individual fitness (since 75% of the fully poly-
morphic matrices are ordered). This conclusion is often
used in studies investigating the relation between
heterozygosity and fitness. But our results indicate that,
for fully polymorphic matrices, the correlation between
the number of heterozygote loci and fitness becomes
weaker as the number of loci increases (since Pomf jf

decreases as the number of loci increases). We therefore
posit that a positive association between fitness and
the number of heterozygote loci is not warranted on
theoretical grounds.
5. Conclusion

We show that heterozygote advantage is not a major
mechanism for the maintenance of allelic polymorph-
ism, at least for the randomly generated fitness matrices
we use. We acknowledge that our conclusions might
come from our fitness values being generated at random
whereas real fitness values are likely not. However, since
the genetic architecture of fitness related traits is far
from being elucidated, our approach seems to be the
only appropriate for the time being. With these
restrictions in mind, our results imply that heterozygote
advantage is not a general mechanism for maintaining
polymorphism because proportions of fully poly-
morphic matrices having a heterozygote advantage
decrease as the number of loci increases or as the
recombination rate decreases. In quantitative genetic
models, heterozygote advantage translates into a non-
zero dominance deviation. Dominance deviation is
therefore neither necessary nor sufficient to maintain
polymorphism at multiple loci. The next step would be
to consider a new set of allelic interactions, those
between alleles at different loci. As exemplified by many
others (e.g. Hastings, 1982; Gimelfarb, 1989 or Wolf
et al., 2000), here too, epistasis seems to be the essence.
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