
A LÉVY INSURANCE RISK PROCESS WITH TAXHANSJÖRG ALBRECHER∗, JEAN-FRANÇOIS RENAUD, AND XIAOWEN ZHOU†Abstrat. Using �utuation theory, we solve the two-sided exit prob-lem and identify the ruin probability for a general spetrally negativeLévy risk proess with tax payments of loss arry forward type. Westudy arbitrary moments of the disounted total amount of tax pay-ments and determine the surplus level to start taxation whih maxi-mizes the expeted disounted aggregate inome for the tax authorityin this model. The results onsiderably generalize those for the Cramér-Lundberg risk model with tax.1. IntrodutionThe lassial risk model desribes the surplus proess of an insurane om-pany by a stohasti proess U = (U(t))t≥0 with
U(t) = u+ ct− S(t),where S(t) is a ompound Poisson proess with jump intensity θ and jumpdistribution F (representing the aggregate laim payments up to time t),

u > 0 denotes the initial surplus and c > 0 is a onstant premium intensity.Usually it is assumed that the net pro�t ondition
c > θµholds, where µ denotes the expeted value of the single laim size distribution

F . This ondition ensures that ruin will not our almost surely. As a Lévyproess, U has a harateristi exponent given by
Ψ(λ) = − ln E

[

eiλ(U(1)−u)
]

= −iλc−
∫ 0

−∞
(eiλz − 1) θF (dz)for λ ∈ R.One way to generalize the lassial risk proess is to onsider an arbitraryspetrally negative Lévy proess, i.e. a proess X = (X(t))t≥0 with inde-pendent and stationary inrements and with harateristi exponent givenDate: Marh 5, 2008.2000 Mathematis Subjet Classi�ation. 60G51, 91B30.Key words and phrases. Lévy proess, �utuation theory, exursion theory, sale fun-tions, insurane risk theory, ruin probability, tax payments.
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2 ALBRECHER, RENAUD, AND ZHOUby
Ψ(λ) = −iλc+

1

2
σ2λ2 −

∫ 0

−∞
(eiλz − 1 − izI{z>−1})Π(dz),for λ ∈ R, σ ≥ 0 and where Π is a measure on (−∞, 0) suh that

∫ 0

−∞
(1 ∧ z2)Π(dz) <∞.Here, c > 0 again represents the onstant premium density. The net pro�tondition for this Lévy insurane risk proess now reads

E[X(1) − u] > 0,whih is equivalent to limt→∞X(t) = ∞ almost surely.An interpretation of suh Lévy risk proesses for the surplus modelling oflarge insurane ompanies is for instane given in Klüppelberg and Kypri-anou [12℄ and Kyprianou and Palmowski [15℄. This model has reently at-trated a lot of researh interest, see e.g. also Furrer [8℄, Yang and Zhang[18℄, Huzak et al. [11℄, Klüppelberg et al. [13℄, Chiu and Yin [6℄ and Garridoand Morales [9℄.In a reent paper, Albreher and Hipp [1℄ investigated how tax payments(aording to a loss arry forward system) a�et the behaviour of a Cramér-Lundberg surplus proess. In their model, taxes are paid at a �xed propor-tional rate γ whenever the ompany is in a pro�table situation, de�ned asbeing at a running maximum of the surplus proess. It turned out that inthis model there is a strikingly simple relationship between ruin probabili-ties with and without tax and one an also get an expliit formula for theexpeted disounted sum of tax payments over the lifetime of the risk proess.In this paper we will embed this tax model into a general Lévy framework.Utilizing exursion theory and exploiting the struture of the model, we willsolve the two-sided exit problem for the Lévy risk proess with tax and on-sequently reover the simple relation between ruin probabilities with andwithout tax in this more general lass of models. Furthermore, expressionsfor arbitrary moments of disounted tax payments until ruin will be derived.It turns out that lose onnetions of the distribution of tax payments to thedistribution of dividend payments aording to a horizontal barrier strategy,that were observed in the Cramér-Lundberg model, arry over to the Lévysetup.The paper is organized as follows. In Setion 2, we will review some pre-liminaries on spetrally negative Lévy proesses that will be needed lateron. Setion 3 introdues the tax model under onsideration and then de-rives a new �utuation identity, the ruin probability as well as moments ofdisounted tax payments until ruin. Finally, in Setion 4 the problem of an



A LÉVY INSURANCE RISK PROCESS WITH TAX 3optimal hoie of a threshold surplus level for starting taxation to maximizethe expeted tax inome will be addressed.2. Preliminaries on spetrally negative Lévy proessesLet X = (X(t))t≥0 be a spetrally negative Lévy proess or, in other words,a Lévy proess with no positive jumps (to avoid trivialities, we exlude thease where X is a negative subordinator or a deterministi drift). The lawof X suh that X(0) = u ≥ 0 will be denoted by Pu and the orrespondingexpetation by Eu (for a general introdution to Lévy proesses we refer toBertoin [3℄ or Kyprianou [14℄).As the Lévy proess X has no positive jumps, its Laplae transform is givenby
E

[

eλ(X(t)−u)
]

= etψ(λ)for λ ≥ 0 and t ≥ 0, where ψ(λ) = −Ψ(iλ). In this ase, the Laplaeexponent ψ is stritly onvex and limλ→∞ ψ(λ) = ∞. Thus, there exists afuntion Φ: [0,∞) → [0,∞) suh that
ψ(Φ(λ)) = λ, λ ≥ 0.We now de�ne the so-alled sale funtions {W (q); q ≥ 0} of the proess Xas in Bertoin [4℄. For eah q, W (q) : [0,∞) → [0,∞) is the unique, stritlyinreasing and ontinuous funtion with Laplae transform

∫ ∞

0
e−λzW (q)(z) dz =

1

ψ(λ) − q
,for λ > Φ(q). When q = 0, we write W instead of W (0).2.1. Two-sided exit problem. Sale funtions arise naturally when on-sidering two-sided exit problems for spetrally negative Lévy proesses. In-deed, let a be a positive real number and de�ne τ+

a = inf{t > 0: X(t) > a}and τ−0 = inf{t > 0: X(t) < 0} with the onvention inf ∅ = ∞. When theproess X starts within the interval (i.e. X(0) = u ∈ (0, a)), the randomtime τ+
a ∧ τ−0 is the �rst exit time of X from this interval. Sine X has nopositive jumps, it will hit the point a when exiting above, but it might jumpbelow zero when exiting below. Its Laplae transform on the event wherethe proess X leaves the interval at the upper boundary is given by(1) Eu

[

e−qτ
+
a I{τ+

a <τ
−
0 }

]

=
W (q)(u)

W (q)(a)
, q ≥ 0.Consequently, when q = 0,(2) Pu

{

τ+
a < τ−0

}

=
W (u)

W (a)
.If X has a positive mean, we have that(3) Pu

{

inf
t≥0

X(t) ≥ 0

}

= ψ′(0+)W (u).



4 ALBRECHER, RENAUD, AND ZHOUThis result is of ourse related to the ruin and survival probabilities in in-surane risk theory.2.2. Smoothness of the sale funtions. At several plaes in this paper,di�erentiability of the sale funtions will be required. If the sample paths of
X are of unbounded variation, then the sale funtionsW (q) are ontinuouslydi�erentiable. When the sample paths of X are of bounded variation, thenthe sale funtions are ontinuously di�erentiable if and only if Π has noatoms, or in other words if {x < 0 | Π({x}) > 0} = ∅. Note that if X hasa Gaussian omponent, then its sample paths are of unbounded variationand, moreover, its sale funtions are even twie ontinuously di�erentiable.Further, if the Lévy measure Π has a density, then the sale funtions arealways di�erentiable (see Doney [7℄ or Chan and Kyprianou [5℄ for moredetails). 3. The modelLet X be the underlying Lévy risk proess with di�erentiable sale fun-tions. Let SX = (SX(t))t≥0 denote the running maximum ofX, i.e. SX(t) =
max0≤s≤tX(s). This proess is ontinuous and, of ourse, inreasing. Clearly,
SX(0) = u as X(0) = u. For 0 ≤ γ ≤ 1, de�ne a proess Uγ = (Uγ(t))t≥0 by

Uγ(t) = X(t) − γ(SX(t) −X(0)).One an think of Uγ as the surplus proess of an insurane ompany thatpays out taxes at a �xed rate γ whenever it is in a pro�table situation (or, inother words, whenever the surplus is at a running maximum). When γ = 1,this amounts to the situation where the ompany pays out as dividends anyapital above its initial value.3.1. A �utuation identity. The following theorem generalizes both The-orem VII.8 in Bertoin [3℄ and Equation (1).Theorem 3.1. For any 0 < u < a and q ≥ 0, let τ+
a,γ = inf{t > 0: Uγ(t) >

a} and τ−0,γ = inf{t > 0: Uγ(t) < 0}. If γ < 1, then(4) Eu

[

e−qτ
+
a,γ I{τ+

a,γ<τ
−
0,γ}

]

=

(

W (q)(u)

W (q)(a)

)1/(1−γ)

.Proof. We �rst onsider the ase that X drifts to positive in�nity and wewant to prove (4) for q = 0.It is well-known that SX is a loal time at 0 for the Markov proess SX−X.Then, let ǫ be the exursion proess of SX − X away from 0 and let ǭ bethe exursion height proess. If X drifts to in�nity, then ǫ is a Poisson pointproess and ǭ is also a Poisson point proess with harateristi measure νgiven by ν(x,∞) = W ′(x)/W (x). By the de�nition of an exursion, theevent {τ+
a,γ < τ−0,γ} is the same as

{ǭs < u+ (1 − γ)s,∀ 0 ≤ s ≤ (a− u)/(1 − γ)}.



A LÉVY INSURANCE RISK PROCESS WITH TAX 5Indeed, if an exursion starts from level u+ s (for the proess X), meaningthat the proess Uγ is at level u+ (1 − γ)s, to avoid falling below zero thisexursion must not exeed the latter quantity; this must be true until Uγreahes level a whih is equivalent to X reahing level a/(1 − γ). Then, bythe de�nition of a Poisson point proess, we have that
Pu{τ+

a,γ < τ−0,γ} = P{N = 0}

= exp

{

−
∫ a−u

1−γ

0

W ′(u+ (1 − γ)s)

W (u+ (1 − γ)s)
ds

}

= exp

{

− 1

1 − γ

∫ a−u

0

W ′(u+ s)

W (u+ s)
ds

}

=

(

W (u)

W (a)

)1/(1−γ)

.where N is a Poisson distributed random variable with parameter
∫ a−u

1−γ

0
ν
(

u+ (1 − γ)s,∞)
)

dsthat ounts the number of Poisson points (s, ǭs) in
{(x, y) ∈ R

2 | 0 ≤ x ≤ (a− u)/(1 − γ), u+ (1 − γ)x ≤ y}.Without assuming that X drifts to positive in�nity, for q > 0 we de�ne an-other probability measure P
Φ(q)
u on (Ft)t≥0 with Radon-Nikodym derivative

dP
Φ(q)
u

dP
= eΦ(q)(X(t)−u)−qton Ft, where (Ft)t≥0 denotes the �ltration generated by X. Under P

Φ(q)
u , Xis still a spetrally negative Lévy proess, but now with WΦ(q) as its 0-salefuntions, whih are given by eΦ(q)xWΦ(q)(x) = W (q)(x); in addition, underthis measure X drifts to positive in�nity; see Chapter 8 of Kyprianou [14℄for details.Observe that X(τ+

a,γ) = SX(τ+
a,γ) for τ+

a,γ <∞. Sine
a = Uγ(τ

+
a,γ) = X(τ+

a,γ) − γ(SX(τ+
a,γ) − u)for τ+

a,γ <∞, we have
X(τ+

a,γ)I{τ+
a,γ<∞} =

a− γu

1 − γ
I{τ+

a,γ<∞}.Sine
dP

Φ(q)
u

dP
= eΦ(q)(X(τ+

a,γ )−u)−qτ+
a,γ



6 ALBRECHER, RENAUD, AND ZHOUon Fτ+
a,γ
, we then further get that

Eu

[

e−qτ
+
a,γ I{τ+

a,γ<τ
−
0,γ}

]

= P
Φ(q)
u

{

τ+
a,γ < τ−0,γ

}

exp

{

−Φ(q)

(

a− γu

1 − γ
− u

)}

=

(

WΦ(q)(u)

WΦ(q)(a)

)1/(1−γ)

exp

{

−Φ(q)(a− u)

1 − γ

}

=

(

e−Φ(q)uW (q)(u)

e−Φ(q)aW (q)(a)

)1/(1−γ)

exp

{

−Φ(q)(a− u)

1 − γ

}

.Therefore, the desired result follows readily.Letting q → 0+ we an obtain (4) for q = 0. �3.2. The survival probability. Let
φγ(u) = Pu

{

inf
t≥0

Uγ(t) ≥ 0

}denote the survival probability in the risk model with tax rate γ and initialsurplus u. Hene, φ0(u) is the survival probability in the risk model withouttax. For the ompound Poisson risk model, Albreher and Hipp [1℄ estab-lished a simple relation between the survival probability of a risk model withand without tax. We will now utilize Theorem 3.1 to generalize this resultto spetrally negative Lévy risk proesses.Corollary 3.1. If γ < 1, then
φγ(u) = (φ0(u))

1/1−γ .Proof. From Theorem 3.1, we have that
φγ(u) =

(

ψ′(0+)W (u)
)1/1−γ

,sine lima→∞W (a) = (ψ′(0+))−1. The result follows from Equation (3). �Note that φγ(u) > 0 if and only if φ0(u) = ψ′(0+) > 0, whih is the aseunder the net pro�t ondition E[X(1) − u] > 0.3.3. The disounted tax payments. Let τγ := τ−0,γ be the time of ruin ofthe risk proess with tax and let further
Tγ,δ = γ

∫ τγ

0
e−δt dD(t),denote the present value of all tax payments until the time of ruin τγ , where

D(t) = SX(t) −X(0) and δ ≥ 0 an be interpreted as the fore of interest.Reall from Zhou [19℄ that(5) V1(u, u) =
W (δ)(u)

(W (δ))′(u)
,where V1(u, u) is the expetation of the present value of all dividends paiduntil ruin when a horizontal barrier is at level u. Utilizing a methodology



A LÉVY INSURANCE RISK PROCESS WITH TAX 7from Zhou [19℄ for horizontal barrier models, we will now ompute vγ,δ(u) =
Eu [Tγ,δ]. Note that v1,δ(u) = V1(u, u) (so that the ase γ = 1 is settled).Theorem 3.2. If γ < 1 and δ > 0, then the expeted disounted sum of taxpayments until ruin is given by(6) vγ,δ(u) =

γ

1 − γ

∫ ∞

u

(

W (δ)(u)

W (δ)(s)

)1/(1−γ)

ds.Proof. If X(0) = u, then
SX(τ+

u+1/n,γ) − u =
1/n

1 − γ
.Clearly, we have(7) vγ,δ(u) = Eu

[

Tγ,δ; τ
+
u+1/n,γ < τγ

]

+ Eu

[

Tγ,δ; τ
+
u+1/n,γ > τγ

]

,For the seond expression on the right-hand side we have, using integrationby parts,
Eu

[

Tγ,δ; τ
+
u+1/n,γ > τγ

]

≤ Eu

[

∫ τ+
u+1/n,γ

0
e−δt γd(SX(t) − u); τ+

u+1/n,γ > τγ

]

= Eu

[

e
−δτ+

u+1/n,γ
γ(1/n)

1 − γ
; τ+
u+1/n,γ > τγ

]

+ Eu

[

γδ

∫ τ+
u+1/n,γ

0
e−δt(SX(t) − u) dt; τ+

u+1/n,γ > τγ

]

≤ 2γ/n

1 − γ

[

1 −
(

W (u)

W (u+ 1/n)

)1/(1−γ)
]

= o(1/n).For the �rst expression on the right-hand side of (7), we an write
Eu

[

Tγ,δ; τ
+
u+1/n,γ < τγ

]

= Eu

[

∫ τ+
u+1/n,γ

0
e−δt γd(SX(t) − u); τ+

u+1/n,γ < τγ

](8)
+ Eu

[

∫ τγ

τ+
u+1/n,γ

e−δt γd(SX(t) − u); τ+
u+1/n,γ < τγ

]

.(9)



8 ALBRECHER, RENAUD, AND ZHOUConsider the two summands on the right-hand side separately:For (8), we apply the integration by parts formula to obtain
Eu

[

∫ τ+
u+1/n,γ

0
e−δt γd(SX (t) − u); τ+

u+1/n,γ < τγ

]

= Eu

[

e
−δτ+

u+1/n,γ
γ/n

1 − γ
; τ+
u+1/n,γ < τγ

]

+ Eu

[

γδ

∫ τ+
u+1/n,γ

0
e−δt(SX(t) − u) dt; τ+

u+1/n,γ < τγ

]

,where the seond expression on the right-hand side an be bounded by
Eu

[

γδ

∫ τ+
u+1/n,γ

0
e−δt(SX(t) − u) dt; τ+

u+1/n,γ < τγ

]

≤ γ/n

1 − γ





(

W (u)

W (u+ 1/n)

)
1

1−γ

−
(

W (δ)(u)

W (δ)(u+ 1/n)

)
1

1−γ



 = o(1/n).For (9), using the strong Markov property and the spatial homogeneity ofthe Lévy proess X, we get
Eu

[

∫ τγ

τ+
u+1/n,γ

e−δt γd(SX(t) − u); τ+
u+1/n,γ < τγ

]

= Eu

[

e
−δτ+

u+1/n,γ ; τ+
u+1/n,γ < τγ

]

vγ,δ(u+ 1/n).Consequently,
vγ,δ(u) =

(

W (δ)(u)

W (δ)(u+ 1/n)

)1/(1−γ)
(

γ/n

1 − γ
+ vγ,δ(u+ 1/n)

)

+ o(1/n).Standard algebrai manipulations to form the di�erential quotient for vγ,δthen yield for n→ ∞(10) (vγ,δ)
′(u) =

γ

1 − γ

(

(W (δ))′(u)

γW (δ)(u)
vγ,δ(u) − 1

)

.This is the analogue of Equation (14) in the Proof of Theorem 2 in Albreherand Hipp [1℄. Using the integrating fator tehnique for ordinary di�erentialequations, we get that its solution is given by
vγ,δ(u) =

(

C − γ

1 − γ
U2(u)

)

eU1(u)/(1−γ),for some onstant C, where
U1(u) =

∫ u

0

(W (δ))′(s)

W (δ)(s)
ds , U2(u) =

∫ u

0
e−U1(s)/(1−γ) ds.



A LÉVY INSURANCE RISK PROCESS WITH TAX 9We have that (W (δ))′(s)/W (δ)(s) ≥ 0 and
lim
s→∞

(W (δ))′(s)

W (δ)(s)
= Φ(δ).The latter result an be found in Avram et al. [2℄ or in Zhou [20℄. Hene,

U1 is unbounded beause Φ(δ) > 0 for δ > 0. Also, sine τγ → ∞ as u→ ∞(for any γ), we have that limu→∞ vγ,δ(u) <∞. Thus,
lim
u→∞

U2(u) =
1 − γ

γ
Cand then(11) vγ,δ(u) =

γ

1 − γ
e
(1−γ)−1

R u
0

(W (δ))′(s)

W (δ)(s)
ds
∫ ∞

u
e
−(1−γ)−1

R s
0

(W (δ))′(t)

W (δ)(t)
dt
ds,from whih the result (6) follows. �Remark 3.1. If X has a negative drift (i.e. Eu[X(1)] < 0), then (6) alsoholds for δ = 0.Remark 3.2. Using Equation (11), we an also write(12) vγ,δ(u) =

γ

1 − γ
e(1−γ)

−1
R u
0 (V1(s,s))−1 ds

∫ ∞

u
e−(1−γ)−1

R s
0 (V1(t,t))−1 dt ds,reovering Theorem 2 of Albreher and Hipp [1℄ in our more general Lévysetting.Remark 3.3. Using L'H�pital's rule, we reover the following interestingrelation:(13) lim

u→∞
vγ,δ(u) = γ lim

u→∞
V1(u, u).A diret probabilisti reasoning to obtain this identity goes as follows: inthe absene of ruin, the only di�erene for the alulation of vγ,δ(u) and

V1(u, u) is that, whenever tax (dividend) payments start and last until thenext deviation from the running maximum, in the tax ase only the proportion
γ of the inome is paid whereas in the horizontal barrier ase all the inomeis paid. The only further di�erene is then that the surplus level at the nextpayment stream is di�erent, but the latter does not matter if the distane tothe ruin boundary does not matter, whih in the limit u → ∞ is the ase.Hene we immediately arrive at (13).Remark 3.4. One an also understand formula (6) from an intuitive point ofview: Whenever the taxed proess Uγ is in a running maximum, its inreasesales with a fator γ/(1−γ) for the inrease of the assoiated tax payments.So the integral in (6) an be interpreted as summing up the (appropriatelydisounted) ontributions given that a new running maximum is reahed (f.Theorem 3.1).



10 ALBRECHER, RENAUD, AND ZHOU3.4. Higher moments. We will now investigate higher moments of Tγ,δ.Let v(k)
γ,δ(u) be the k-th moment of Tγ,δ when the initial surplus is equal to u.Reall from Renaud and Zhou [17℄, and also from Kyprianou and Palmowski[15℄, that(14) Vk(u, u) = k!

k
∏

i=1

W (iδ)(u)

(W (iδ))′(u)
,where Vk(u, u) is the k-th moment of the present value of all dividends paiduntil ruin when the horizontal barrier is at level u. Note that v(k)

1,δ (u) =

Vk(u, u). So we only need to address the ase γ < 1:Theorem 3.3. If γ < 1 and δ > 0, then the k-th moment of the presentvalue of tax payments until ruin is related to the (k − 1)-th moment by(15) v
(k)
γ,δ(u) =

kγ

1 − γ

∫ ∞

u
v
(k−1)
γ,δ (s)

(

W (kδ)(u)

W (kδ)(s)

)1/(1−γ)

ds.Proof. Proeeding as in the proof of Theorem 3.2 and the proof of Proposi-tion 1 in Renaud and Zhou [17℄, we have that
v
(k)
γ,δ(u) = kv

(k−1)
γ,δ (u+ 1/n)

γ(1/n)

1 − γ

(

W (kδ)(u)

W (kδ)(u+ 1/n)

)1/(1−γ)

+ v
(k)
γ,δ(u+ 1/n)

(

W (kδ)(u)

W (kδ)(u+ 1/n)

)1/(1−γ)

+ o(1/n).Further, we get that
(v

(k)
γ,δ)

′(u) =
γ

1 − γ

(

(W (kδ))′(u)

γW (kδ)(u)
v
(k)
γ,δ(u) − kv

(k−1)
γ,δ (u)

)

.Solving this ordinary di�erential equation leads to
v
(k)
γ,δ(u) =

kγ

1 − γ
e
(1−γ)−1

R u
0

(W (kδ))′(s)

W (kδ)(s)
ds
∫ ∞

u
v
(k−1)
γ,δ (s) e

−(1−γ)−1
R s
0

(W (kδ))′(t)

W (kδ)(t)
dt
ds.The statement follows from simple algebrai manipulations. �Remark 3.5. From (15), we get by L'H�pital's rule

lim
u→∞

v
(k)
γ,δ(u) = kγ lim

u→∞
v
(k−1)
γ,δ (u)

W (kδ)(u)

(W (kδ))′(u)
.With (14) we an hene generalize the asymptoti relation (13) to arbitrarymoments of tax and dividend payments, respetively:(16) lim

u→∞
v
(k)
γ,δ(u) = γk lim

u→∞
Vk(u, u).The alternative probabilisti argument from Remark 3.3 also arries over toexplain formula (16).



A LÉVY INSURANCE RISK PROCESS WITH TAX 113.5. Examples.3.5.1. Cramér-Lundberg proess with exponential laims. IfX is a ompoundPoisson proess with exponential jumps (with Poisson parameter λ and ex-ponential parameter α), then the sale funtions are given by
W (δ)(x) =

(α+ ρ)eρx(1 − η(x))

c(ρ− r)(see e.g. Kyprianou & Palmowski [15℄), where
η(x) =

α+ r

α+ ρ
e(r−ρ)x,and ρ and r are the positive and negative, respetively, solution of the equa-tion

cR2 + (cα − λ− δ)R − αδ = 0.Plugging this expression into formula (6), we eventually arrive at the expliitformula
vγ,δ(u) =

γ

ρ
(1 − η(u))1/(1−γ)

× 2F1

(

1

1 − γ
,

ρ

(ρ− r)(1 − γ)
,

ρ

(ρ− r)(1 − γ)
+ 1; η(u)

)

,whih was already derived in Albreher and Hipp [1℄. Here
2F1(a, b, c; z) =

Γ(c)

Γ(b)Γ(c− b)

∫ 1

0
tb−1(1 − t)c−b−1(1 − zt)−a dtwith c > b > 0 denotes the Gauss hypergeometri series.3.5.2. Brownian motion with drift. Let X(t) = mt + σB(t) be a Brownianmotion with drift (with m 6= 0 and σ > 0). As in this ase ψ(λ) = mλ +

(1/2)σ2λ2 and Φ(α) = −ω + θα, one an verify that
W (δ)(x) =

1

σ2θδ

(

e(−ω+θδ)x − e−(ω+θδ)x
)

,where θδ =
√
m2 + 2δσ2/σ2 and ω = m/σ2 (see also Avram et al. [2℄). Inpartiular, we have

W (x) =
1

m

(

1 − e−
2m
σ2 x
)

.Thus,
v1,δ(u) = V1(u, u) =

σ2

2m

(

e
2m
σ2 u − 1

)

,whih reovers Equation (2.20) in Gerber and Shiu [10℄.



12 ALBRECHER, RENAUD, AND ZHOUAlso, if γ < 1 and if δ > 0, then one obtains
vγ,δ(u) =

γ

1 − γ

[

e(θδ−ω)u(1 − e−2θδu)
]1/(1−γ)

×
∫ ∞

u

[

e(θδ−ω)s(1 − e−2θδs)
]−1/(1−γ)

ds.Sine θδ > ω when σ > 0 and δ > 0, the above expression an be rewrittenas
vγ,δ(u) =

γ

1 − γ

[

(1 − e−2θδu)1/(1−γ)

θδ − ω

]

× 2F1

(

(1 − γ)−1,
θδ − ω

2θδ
,
3θδ − ω

2θδ
; e−2θδu

)

.4. Optimality of the tax barrierAs tax payments stop at ruin, it is natural to ask whether the expeteddisounted tax payments over the lifetime of the proess an be optimizedwhen tax payments are only started after the surplus has reahed a ertainlevelM (see Albreher and Hipp [1℄ for a orresponding study in the Cramér-Lundberg framework). Due to the strong Markov property we learly have(17) vγ,δ,M(u) =
W (δ)(u)

W (δ)(M)
vγ,δ(M)for u < M and vγ,δ,M (u) = vγ,δ(u) for u ≥ M (as then tax payments startright away). Hene the goal is to maximize (17) with respet to M .Assumption 4.1. In what follows, we assume that eah sale funtion isthree times di�erentiable and that its �rst derivative is a stritly onvex fun-tion (so that (W (δ))′′(u) hanges its sign from negative to positive at mostone).Assumption 4.1 is for instane ful�lled if the Lévy measure has a ompletelymonotone density (see Loe�en [16℄ for the strit onvexity of (W (δ))′ andChan and Kyprianou [5℄ for in�nite di�erentiability). Among partiularexamples ful�lling Assumption 4.1 are the Gamma proess and the inverseGaussian proess (for more examples, see Loe�en [16℄).Di�erentiating Equation (17) with respet to M , one �nds that M0 is aritial point of M 7→ vγ,δ,M(u) if(18) vγ,δ(M0) = V1(M0,M0) or equivalently (vγ,δ)

′(M0) = 1,where (10) was used for the latter equivalene. To speify the nature of thisritial point, we use the seond derivative:(19) ∂2vγ,δ,M(u)

∂M2

∣

∣

∣

∣

M=M0

=
γ

1 − γ

W (δ)(u)

(W (δ)(M0))2
vγ,δ(M0)(W

(δ))′′(M0).



A LÉVY INSURANCE RISK PROCESS WITH TAX 13Clearly, sine limM→∞ vγ,δ,M(u) = 0 for any u, there is a point M⋆ ∈ [0,∞)where the funtion M 7→ vγ,δ,M(u) reahes its global maximum.Remark 4.1. Note that M 7→ vγ,δ,M (u) an not have a loal minimum in
[0,∞). Indeed, if there existed a loal minimum, then by virtue of limM→∞ vγ,δ,M(u) =
0, there would have to exist a loal maximum for a larger value M . But inview of (19) and the strit onvexity of (W (δ))′, this an not our.Similarly, we dedue that after a potential saddlepoint there an not be aloal maximum.Reall that

V ′
1(s, s) = 1 − W (δ)(s)(W (δ))′′(s)

((W (δ))′(s))2and from Remark 3.3 that(20) lim
u→∞

vγ,δ(u) < lim
u→∞

V1(u, u).Remark 4.2. From the above, it follows that M 7→ vγ,δ,M(u) also annot have a saddlepoint M0 in [0,∞). Indeed, otherwise from vγ,δ(M0) =

V1(M0,M0) and (W (δ))′′(M0) = 0, one an observe that
V ′′

1 (M0,M0) =
−W (δ)(M0)(W

(δ))′′′(M0)

((W (δ))′(M0))2and (vγ,δ)
′′(M0) = 0. Hene, the funtion s 7→ vγ,δ(s) − V1(s, s) reahes aloal minimum value of 0 at this point M0 (as (W (δ))′′′(M0) > 0), implyingthat vγ,δ is greater than V1 in a neighbourhood of M0, so that this saddlepointwould have to be followed by a maximum or another saddlepoint, whih itselfis exluded by the onvexity of (W (δ))′(u).As a onsequene, Equation (18) has at most one positive solution M0. If

V1(0, 0) ≤ vγ,δ(0), then due to (20) suh a solution M0 > 0 exists and is thepoint of global maximum, i.e. M⋆ = M0.If V1(0, 0) > vγ,δ(0), then M⋆ = 0 (i.e. tax payments start immediately),as a solution of (18), by (20), would have to be aompanied by a seondone, whih an not be the ase. Note that M⋆ is independent of the initialsurplus u.From the above disussion, we get the following �nal result whih extendsTheorem 3 in Albreher and Hipp [1℄.Theorem 4.1. Suppose that the sale funtions of X are three times dif-ferentiable and that their �rst derivatives are stritly onvex funtions. If
V1(0, 0) > vγ,δ(0), then the optimal height M⋆ is equal to 0. If V1(0, 0) ≤
vγ,δ(0), then the optimal height M⋆ is the unique positive solution of Equa-tion (18). The maximum value is thus given by(21) vγ,δ,M⋆(u) =

{

V1(u,M
⋆), if u < M⋆;

vγ,δ(u), if u ≥M⋆.



14 ALBRECHER, RENAUD, AND ZHOUProof. If u < M⋆, then
vγ,δ,M⋆(u) =

W (δ)(u)

W (δ)(M⋆)
vγ,δ(M

⋆) =
V1(u,M

⋆)

V1(M⋆,M⋆)
vγ,δ(M

⋆) = V1(u,M
⋆).Otherwise, we start to pay taxes right away and vγ,δ,M⋆(u) = vγ,δ(u). �Referenes[1℄ H. Albreher and C. Hipp. Lundberg's risk proess with tax. Blätter der DGVFM,28(1):13�28, 2007.[2℄ F. Avram, Z. Palmowski, and M. R. Pistorius. On the optimal dividend problem fora spetrally negative Lévy proess. Ann. Appl. Probab., 17(1):156�180, 2007.[3℄ J. Bertoin. Lévy proesses. Cambridge University Press, 1996.[4℄ J. Bertoin. Exponential deay and ergodiity of ompletely asymmetri Lévy proessesin a �nite interval. Ann. Appl. Probab., 7(1):156�169, 1997.[5℄ T. Chan and A. E. Kyprianou. Smoothness of sale funtions for spetrally negativeLévy proesses. Submitted, 2006.[6℄ S. N. Chiu and C. Yin. Passage times for a spetrally negative Lévy proess withappliations to risk theory. Bernoulli, 11(3):511�522, 2005.[7℄ R. A. Doney. Some exursion alulations for spetrally one-sided Lévy proesses. InSéminaire de Probabilités XXXVIII, volume 1857 of Leture Notes in Math., pages5�15. Springer, 2005.[8℄ H. Furrer. Risk proesses perturbed by α-stable Lévy motion. Sand. Atuar. J.,(1):59�74, 1998.[9℄ J. Garrido and M. Morales. On the expeted disounted penalty funtion for Lévyrisk proesses. N. Am. Atuar. J., 10(4):196�218, 2006.[10℄ H. U. Gerber and E. S. W. Shiu. Optimal dividends: analysis with Brownian motion.N. Am. Atuar. J., 8(1):1�20, 2004.[11℄ M. Huzak, M. Perman, H. �iki¢, and Z. Vondra£ek. Ruin probabilities and deom-positions for general perturbed risk proesses. Ann. Appl. Probab., 14(3):1378�1397,2004.[12℄ C. Klüppelberg and A. E. Kyprianou. On extreme ruinous behaviour of Lévy insur-ane risk proesses. J. Appl. Probab., 43:594�598, 2006.[13℄ C. Klüppelberg, A. E. Kyprianou, and R. A. Maller. Ruin probabilities and overshootsfor general Lévy insurane risk proesses. Ann. Appl. Probab., 14(4):1766�1801, 2004.[14℄ A. E. Kyprianou. Introdutory letures on �utuations of Lévy proesses with appli-ations. Springer-Verlag, Berlin, 2006.[15℄ A. E. Kyprianou and Z. Palmowski. Distributional study of de Finetti's dividendproblem for a general Lévy insurane risk proess. J. Appl. Probab., 44(2):428�443,2007.[16℄ R. Loe�en. On optimality of the barrier strategy in de Finetti's dividend problem forspetrally negative Lévy proesses. To appear in Ann. Appl. Probab.[17℄ J.-F. Renaud and X. Zhou. Distribution of the present value of dividend payments ina Lévy risk model. J. Appl. Probab., 44(2):420�427, 2007.[18℄ H. Yang and L. Zhang. Spetrally negative Lévy proesses with appliations in risktheory. Adv. in Appl. Probab., 33(1):281�291, 2001.[19℄ X. Zhou. Disussion on: On optimal dividend strategies in the ompound Poissonmodel, by H. Gerber and E. Shiu [N. Am. Atuar. J. 10 (2006), no. 2, 76�93℄. N.Am. Atuar. J., 10(3):79�84, 2006.[20℄ X. Zhou. Exit problems for spetrally negative Lévy proesses re�eted at either thesupremum or the in�mum. J. Appl. Probab., 44(4):1012�1030, 2007.
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