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ABSTRACT Pseudomonas aeruginosa is a major pathogen in burn wound infections.
We present one of the first reports of small-colony variant (SCV) emergence of P. aerugi-
nosa, taken from a patient under aminoglycosides for a persistent burn wound infection.
We confirm the causative role of a single ispA mutation in SCV emergence and increased
aminoglycoside resistance. IspA is involved in the synthesis of ubiquinone, providing a
possible link between electron transport and SCV formation in P. aeruginosa.
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P seudomonas aeruginosa is an opportunistic pathogen capable of establishing infec-
tions that are difficult to eradicate with antibiotics, and it remains the most frequent

Gram-negative microorganism isolated from burn wounds (1). The refractory nature of P.
aeruginosa during infection is often associated with the evolution toward host-adapted
phenotypes, including biofilm production, high persister variants, conversion to mucoidy,
altered expression of virulence factors, and the formation of small-colony variants (SCVs)
(2–5). SCVs are characterized by their small colony size on agar plates, slow growth rate,
and atypical metabolism (6). SCVs have been frequently associated with persistent and an-
tibiotic-resistant infections caused by P. aeruginosa and other opportunistic pathogens,
including Staphylococcus aureus (7), making them an important target for the development
of future therapies.

While the mechanisms of SCV formation in P. aeruginosa appear diverse, often involving
the secondary messenger cyclic di-GMP (8, 9) or global changes in gene expression (10,
11), SCV formation in S. aureus is comparatively conserved, with archetypal strains auxotro-
phic for hemin, menadione, and/or thymidine (12, 13). Heme and menadione are involved
in the production of cytochrome and menaquinone, respectively, linking S. aureus SCVs to
dysfunctional electron transport (14). A link between electron transport and SCV formation
for P. aeruginosa, however, is yet to be described.

In the current study, we performed comparative genomics for a P. aeruginosa SCV and
its “normal” colony counterpart (NCV). P. aeruginosa clinical isolates MP02 and MP10 were
collected from the same sample taken from a hospitalized patient with severe burn
wounds (see Table S1 in the supplemental material) (15). Need for informed consent and
authorization for analyzing the previously collected bacterial isolates was waived by the
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local ethical committee. MP02 was an NCV, whereas MP10 was an SCV that produced
smaller colonies on solid agar (Fig. 1A). Compared with MP02, MP10 also had a modest
growth defect when grown in Luria-Bertani (LB) medium (Fig. S1). MP10 was serially propa-
gated five times in liquid media, and colony sizes remained small when plated on agar,
suggesting the phenotype was nontransient.

Prior to isolation of MP02 and MP10, the patient had been treated with a range of antibi-
otics, including tobramycin, which was applied after the emergence of extensive antibiotic
resistance. MP02 was defined in the clinic as intermediate susceptible to tobramycin, as its
minimum inhibitory concentration (MIC) was at the susceptibility breakpoint using European
Committee on Antimicrobial Susceptibility Testing (EUCAST) guidelines (2 mg/mL) (16).
Conversely, MP10 was classified as resistant, with an Etest (bioMérieux, Switzerland) MIC of
4 mg/mL. We acquired the isolates and performed additional antibiotic susceptibility testing
using broth microdilution according to Clinical and Laboratory Standards Institute guidelines
and confirmed that MP10 had a modest but reproducible 2-fold increase in MIC for amino-
glycosides tobramycin, gentamicin, and amikacin (17) (Table 1).

Complete, circular genome sequences of MP02 and MP10 were resolved using PacBio
reads that were assembled using Flye (18) and then polished using Illumina sequencing
reads (19). Each genome was annotated using the Prokaryotic Genome Annotation
Pipeline (PGAP) (20) and deposited at DDBJ/ENA/GenBank (accession numbers CP063394
and CP063393, respectively). MP10 had a genome of 6,634,606 bp, average GC content of
66%, and 6,136 coding DNA sequences (CDS) (Fig. 2A). Comparative genome analysis at
single nucleotide resolution identified only one mutation between MP10 and MP02; MP10
possessed a 12-bp deletion in the ispA gene, which codes for farnesyl pyrophosphate syn-
thase (FPPS) (Fig. 2B). FPPS catalyzes the reaction required to generate geranyl and farnesyl
pyrophosphate (GPP and FPP), both of which are substrates involved in the biosynthesis of
the electron carrier ubiquinone (Fig. 2C). The mutation resulted in an in-frame deletion of
four amino acids (from positions 267 to 270).

We reasoned that the SCV phenotype and increased resistance to aminoglycosides
of MP10 were caused by the ispA mutation. We generated ispA mutants by bidirec-
tional allelic exchange using the method of Hmelo et al. (21) with PCR primers listed in
Table S3. The ispA mutant allele (ispAD267-270) was engineered into the NCV strain MP02
generating MP02ispAD267-270, and the full-length ispA allele (ispA::WT) was introduced
into MP10 to complement in cis the mutation, generating strain MP10ispA::WT.
Additionally, full-length ispA was deleted from MP02 (MP02DispA) (Table S1).

Strains with full-length ispA displayed normal colony size, whereas strains with mutated
ispA were SCVs (Fig. 1). Additionally, P. aeruginosa with mutated ispA had 2-fold-higher tobra-
mycin, gentamicin, and amikacin MICs than strains with full-length ispA (Table 1). To delineate

FIG 1 Colony sizes of clinical P. aeruginosa isolates and engineered ispA mutants. (A) Overnight
suspensions were 10-fold serially diluted. We plated 10-mL of dilutions 1025, 1026, and 1027 on LB agar.
Colonies were formed for 30 h at 37°C. MP02 is a normal colony variant (NCV), and MP10 is a small-
colony variant (SCV). (B) Colony size quantification (n = 6). NCVs are blue, and SCVs are red.
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the possible impact of this modest increase in MIC on treatment efficiency, we performed
in vitro antibiotic killing assays as described elsewhere (22). NCVs and SCVs were grown in LB
media at 37°C for 3 h and 4 h, respectively, to reach the same concentration of exponentially
growing cells (;2 � 107 CFU/mL) prior to the addition of antibiotics. At 10 mg/mL tobramy-
cin, which is close to the peak serum levels for burn patients treated with extended-interval
tobramycin (7.4 mg/mL; range, 3.1 to 19.6) (23), .99.9% of exponentially growing MP02 cells
were killed following 4 h of incubation (Fig. 3A). In contrast, MP10 grew similarly to the
untreated control over a 24-h period, confirming that the difference in antibiotic susceptibility
was due to enhanced resistance as opposed to enhanced tolerance (using definitions from
reference 24). MP02 showed evidence of regrowth after 24 h of incubation, and this was
accompanied by a 4-fold increase in MIC (4 to 16mg/mL) for the surviving colonies. At 20mg/
mL, the emergence of resistance for MP02 was suppressed at 24 h (Fig. 3B). We performed
tobramycin time-killing assays in a second medium, M9 minimal medium supplemented with
20 mM glucose, and produced similar results (Fig. S2). Time-kill data were also similar when
using a second antibiotic from the aminoglycoside class, gentamicin (Fig. 3C and D); however,
a higher concentration (100mg/mL) was required to suppress resistance emergence for MP02
(Fig. 3E). Focusing on the 4-h time point, compared with MP02, the survival of MP10 was

FIG 2 ispA genomic landscape. (A) Circular genome representation of MP10 (SCV) created using CGView (32). The inner ring illustrates the GC skew. The
outer two rings represent coding sequences (CDS), tRNAs, and rRNAs on the reverse and forward strands, respectively. A black box is included to highlight
the ispA gene. (B) Genomic localization of ispA. Nucleotide and protein alignments of PAO1 (GenPept accession number NP_250121), MP02, and MP10,
showing the 12-bp deletion in MP10 and the consequent deletion of amino acids from 267 to 270. Protein and nucleotide sequence alignments were
generated using Clustal Omega (33). (C) Schematic pathway displaying the involvement of IspA (also knowns as FPPS) in ubiquinone biosynthesis. Dotted
arrows indicate that multiple steps have been abbreviated. FPP, farnesyl pyrophosphate; FPPS, farnesyl pyrophosphate synthase; G3P, glycerol-3-phosphate;
GPP, geranyl pyrophosphate; MEP/DOXP, 2-C-methyl-D-erythritol 4-phosphate/1-deoxy-D-xylulose 5-phosphate; PP, pyrophosphate; TCA, tricarboxylic acid.

TABLE 1 Aminoglycoside MICs as determined per CLSI guidelines using the microdilution method in Mueller-Hinton brotha

Strain Characteristic

MIC (mg/mL) of:

Tobramycin Gentamicin Amikacin
MP02 Clinical normal colony variant 4 32 32
MP10 Clinical small-colony variant 8 64 64
MP02DispA In-frame deletion ispAmutant 8 64 64
MP02ispAD267-270 MP02 engineered with the 12-base-pair deletion found in MP10 8 64 64
MP10ispA::WT MP10 complemented in ciswith wild-type ispA 4 32 32
aValues were determined following 18 hours of incubation at 37°C. Experiments were performed three times in duplicates to confirm and ensure reproducibility. WT, wild-
type; CLSI, Clinical and Laboratory Standards Institute.
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significantly higher following treatment with tobramycin 10 mg/mL and 20 mg/mL (;2,000-
fold, P, 0.0001, and;60-fold, P = 0.0002, respectively; two-way analysis of variance [ANOVA]
with multiple comparisons using the method of Dunnett; Fig. 3F). No difference in survival
was determined at 50 mg/mL. Similarly, compared with MP02, survival of MP10 was signifi-
cantly higher at 20 mg/mL, 50 mg/mL, and 100 mg/mL of gentamicin (;30-fold, P , 0.0001,
;50-fold, P, 0.0001; and;7-fold, P, 0.05, respectively; Fig. 3G). Likewise, at the 24-h time
point, MP10 showed statistically higher survival than MP02 following treatment with tobramy-
cin and gentamicin (P , 0.01 and P , 0.0001, respectively, two-way ANOVA with Dunnett’s
test; two-way ANOVA; Fig. S3).

Concentration-dependent killing and time-dependent killing phenotypes of engi-
neered mutants were determined by the ispA allele. Strains with full-length ispA
revealed phenotypes similar to MP02, and those with mutated ispA (either deletion or
the clinical variant, ispAD267-270) were similar to MP10, confirming the causative role for
ispA mutation in reduced aminoglycoside susceptibility (Fig. 3).

IspA is conserved across diverse bacteria. Disruption of ispA reduced growth yield in
Escherichia coli (25), reduced spreading for Shigella flexneri (26), and produced an SCV-
like phenotype in laboratory-generated mutants of S. aureus (27). Further, aminoglyco-
side exposure in vitro produced ispA mutants of E. coli and P. aeruginosa PA14 that had

FIG 3 Mutation to ispA results in decreased aminoglycoside killing. Bacteria were grown to mid-exponential phase (;2 � 107 CFU/
mL) in LB at 37°C and then treated with different concentrations of tobramycin or gentamicin. Time-dependent (A to E) and
concentration-dependent (F and G) curves are shown. Normal colony variants are blue; small-colony variants are red. The limit of
detection was 102 CFU/mL.
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enhanced gentamicin resistance (28, 29) suggesting ispA may be a broad evolutionary
target for SCV formation and/or reduced susceptibility to aminoglycosides.

IspA is a key enzyme in the synthesis of the electron carrier ubiquinone; E. coli ispA
mutants that evolved in vitro had limited ubiquinone pools (30), and strains engi-
neered to overexpress ispA produced more ubiquinone (31). Dysfunctional electron
transport is a frequently described mechanism of SCV formation for S. aureus; the cur-
rent report provides the first evidence linking SCV formation to electron transport for
P. aeruginosa. Future studies are warranted to determine the effect of ispA mutation
upon bioenergetics and to determine whether this is a convergent mechanism across
diverse bacterial pathogens.

Data availability. Genomes of MP02 and MP10 were deposited into DDBJ/ENA/
GenBank (accession numbers CP063394 and CP063393, respectively).
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