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Abstract (English) 
Manual preprocessing and analyzing of functional magnetic resonance imaging (fMRI) datasets can 

be a cumbersome endeavor. Using readily available processing pipelines can help with this, but such an 

approach bears many risks. 

 

This thesis first describes the nature of event related fMRI datasets, what it measures and how such 

data can be preprocessed and analyzed. After listing the main standard neuroimaging toolboxes used to 

process event-related fMRI datasets, this thesis describes the multiple issues connected with the current 

processing approaches and the general challenges the field tries to tackle to innovation in technology and 

methodology. 

 

The four issues identified in this thesis are: (1) inaccessibility and stickiness of neuroimaging 

toolboxes, (2) missing general standards for neuroimaging analyses, (3) a reproducibility and transparency 

crisis and (4) insufficient data quality control and results reporting. The three challenges identified in this 

thesis are: Due to innovation (1) in the spatial dimension, (2) in the temporal dimension and (3) in signal 

processing. 

 

The first study (Study A) tackles most of these issues and challenges by introducing a new 

neuroimaging toolbox, called fMRIflows. This toolbox is a consortium of fully automatic processing 

pipeline capable of performing state-of-the-art data preprocessing, as well as first- and second level 

univariate and multivariate analysis. Validation of the toolbox is done by analyzing three different fMRI 

datasets with different temporal resolution (i.e. 2000ms, 1000ms and 600ms) and comparing the output 

created with fMRIflows to the output created with state-of-the-art neuroimaging software packages 

fMRIPrep, FSL and SPM. The validation shows that no strong difference between the output of the four 

toolboxes can be observed. Furthermore, the study shows that an adequate temporal filtering of an fMRI 

dataset with a sub-second temporal resolution can lead to improved temporal signal-to-noise-ratio (TSNR) 

after preprocessing and an increased statistical sensitivity in the 1st and 2nd level analysis. 

 

The second study (Study B) tackles many of the beforementioned issues, but focuses on the 4th (i.e. 

results reporting) in particular, by introducing a new neuroimaging toolbox, called AtlasReader. This 

toolbox can be used to generate coordinate tables, region labels and informative figures from statistical 

MRI images. Study B successfully introduces a neuroimaging toolbox that allows to create beautiful and 

informative results reports, independent on the operating system of the user. Furthermore, AtlasReader 

allows the extraction of association tables from multiple atlases which usually are not accessible to a single 

operating system. 
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The third study (Study C), uses these the toolboxes developed in Study A and Study B and show 

their application in a cognitive neuroscience study in the domain of multisensory integration. Study 

investigated the brain mechanisms involved during the encoding and subsequent retrieval of semantically 

congruent multisensory objects. In this study we found that the low-level visual cortex reliably can decode 

whether an incoming visual stimulus previously had been perceived in a semantically congruent or 

incongruent context, even if the visual stimuli was only perceived once before. The results from this study 

further support the notion that the low-level visual cortex has multisensory architecture and that the 

creation of memories profits from a multisensory semantic congruent stimuli exposure. 

 

As a next step, the thesis assesses the first two studies with respect to the previously mentioned 

issues and challenges and the third with regards of novelty and new insights gained from this cognitive 

study. Followed by a critical assessment with regards to the studies limitations. After that, the future 

directions of fMRI processing analysis routines and of fMRI-based investigation of multisensory 

integration is discussed. The thesis is finished with a prospect section of what might come and the general 

conclusion. 

 

Together, the studies comprised in this thesis highlight and address the issues and challenges 

currently present in the neuroimaging domain and provide a path forward. Furthermore, the findings and 

outcomes of all three studies contribute to a better understanding of how to correctly preprocess and 

analyze fMRI datasets, as well as how the mechanism behind multisensory integration takes place. 
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Résumé (French) 
Le pré-traitement et l'analyse manuels des ensembles de données d'imagerie par résonance 

magnétique fonctionnelle (IRMf) peuvent s'avérer fastidieux. L'utilisation de pipelines de traitement 

facilement accessibles peut aider, mais une telle approche comporte de nombreux risques. 

 

Cette thèse décrit tout d’abord la nature des ensembles de données évoquées d’IRMf, ce qu’elles 

mesurent et comment ces données peuvent être pré-traitées et analysées. Après avoir énuméré les 

principales boîtes à outils de neuro-imagerie utilisées pour traiter les ensembles de données évoquées 

d'IRMf, cette thèse soulève les multiples problèmes liés aux approches actuelles de traitement et les défis 

généraux que le domaine tente de relever pour innover en matière de technologie et de méthodologie. 

 

Les quatre problèmes identifiés dans cette thèse sont : (1) l'inaccessibilité et l’adhésivité des boîtes 

à outils de neuro-imagerie, (2) l'absence de normes générales pour les analyses de neuro-imagerie, (3) une 

crise de reproductibilité et de transparence et (4) l'insuffisance du contrôle de la qualité des données et de 

la communication des résultats. Les trois défis identifiés dans cette thèse sont : l'innovation (1) dans la 

dimension spatiale, (2) dans la dimension temporelle et (3) dans le traitement du signal. 

 

La première étude (étude A) aborde la plupart de ces questions et défis en introduisant une nouvelle 

boîte à outils de neuro-imagerie, appelée fMRIflows. Cette boîte à outils est un consortium de pipelines de 

traitement entièrement automatiques, capables d'effectuer un pré-traitement des données de pointe, ainsi 

qu'une analyse univariée et multivariée de premier et de second niveau. La validation de la boîte à outils 

est effectuée en analysant trois ensembles de données d'IRMf différents avec une résolution temporelle 

différente (2000 ms, 1000 ms et 600 ms) puis en comparant les résultats créés avec fMRIflows aux résultats 

créés avec les progiciels de neuro-imagerie de pointe fMRIPrep, FSL et SPM. La validation montre 

qu'aucune différence importante n'est observée entre les résultats des quatre boîtes à outils. En outre, l'étude 

montre qu'un filtrage temporel adéquat d'un ensemble de données d'IRMf avec une résolution temporelle 

inférieure à une seconde peut conduire à une amélioration du rapport signal/ bruit temporel (TSNR) après 

le pré-traitement et à une sensibilité statistique accrue dans l'analyse de premier et de deuxième niveau. 

 

La deuxième étude (étude B) aborde un grand nombre des questions susmentionnées, en se 

concentrant particulièrement sur la quatrième (c'est-à-dire la communication des résultats), en introduisant 

une nouvelle boîte à outils de neuro-imagerie, appelée AtlasReader. Cette boîte à outils peut être utilisée 

pour générer des tableaux de coordonnées, des étiquettes de régions et des figures informatives à partir 

d'images IRM statistiques. L'étude B introduit avec succès une boîte à outils de neuro-imagerie qui permet 

de créer des rapports de résultats beaux et informatifs, indépendamment du système d'exploitation de 

l'utilisateur. De plus, AtlasReader permet l'extraction de tables d'association à partir de plusieurs atlas qui 

ne sont généralement pas accessibles à un seul système d'exploitation. 
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La troisième étude (étude C), utilise ces boîtes à outils développées dans les études A et B et montre 

leur application dans une étude de neurosciences cognitives dans le domaine de l'intégration multi-

sensorielle. L'étude a examiné les mécanismes cérébraux impliqués dans l'encodage et la récupération 

ultérieure d'objets multi-sensoriels sémantiquement congruents. Dans cette étude, nous avons découvert 

que le cortex visuel de bas niveau peut décoder de manière fiable si un stimulus visuel entrant a été perçu 

précédemment dans un contexte sémantiquement congruent ou incongru, même si le stimulus visuel n'a 

été perçu qu'une seule fois auparavant. Les résultats de cette étude soutiennent l'idée que le cortex visuel 

de bas niveau possède une architecture multi-sensorielle et que la création de souvenirs bénéficie d'une 

exposition multi-sensorielle à des stimuli sémantiquement congruents. 

 

Enfin, la thèse évalue les deux premières études au niveau des problèmes et des défis mentionnés 

précédemment et la troisième pour la nouveauté et les nouvelles connaissances acquises par cette étude 

cognitive. Cette évaluation est suivie d'une évaluation critique des limites de l'étude. Ensuite, les directions 

futures des routines d'analyse du traitement IRMf et de l'investigation de l'intégration multi- sensorielle 

basée sur l'IRMf sont discutées. La thèse se termine par des perspectives attendues et par une conclusion 

générale. 

 

Ensemble, les études comprises dans cette thèse soulignent et abordent les questions et les défis 

actuellement présents dans le domaine de la neuro-imagerie et fournissent une voie à suivre. De plus, les 

résultats et les conclusions de ces trois études contribuent à une meilleure compréhension de la manière de 

pré-traiter et d'analyser correctement les ensembles de données IRMf, ainsi que de la manière dont le 

mécanisme d'intégration multi-sensorielle se produit. 
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1 General Introduction 

1.1 General approach to event-related fMRI data analysis 

1.1.1 What is event-related fMRI and what does it measure? 
Functional magnetic resonance imaging (fMRI) is a non-invasive technique for measuring and 

mapping brain activity using powerful machines, called MRI scanners. Magnetic resonance imaging (MRI) 

has become a standard tool for neuroscientists to measure diverse properties of the brain, due to its high 

spatial resolution and good contrast between different tissue types. Depending on the scan sequence used 

during recording (also known as imaging), an MRI machine is capable of creating a 3-dimensional image 

of the brain that is sensitive to a particular tissue type. It does so by looking at the proportion of hydrogen 

nuclei at a given location and measuring their unique energy release profile after being hit with a specific 

radio frequency pulse. Usually, when the imaging focus is put on the white matter tissue in the brain, we 

call it a T1-weighted image, and when the focus is put on the gray matter tissue, we call it a T2-weighted 

image. Because of their particular properties, T1-weighted images are often used to investigate the anatomy 

of the brain, while T2-weighted images are mostly used to investigate the functional activity of the brain. 

 

Properties of MRI images 

Each individual MRI image, also called volume, contains a full picture of the brain. Such a 3-

dimensional picture provides an intensity value for each spatial location, also called a voxel. Each voxel 

has a spatial resolution. If the spatial resolution is identical in the three spatial directions x, y and z, then 

we talk of an isotropic voxel, otherwise we talk from an anisotropic voxel. Until recently, MRI volumes 

were usually recorded in a slice-wise manner. Meaning, to record the whole brain volume, a quick 

succession of 2-dimensional image slices oriented in x and y directions were recorded for each specific z 

position. The dimension of a slice in x and y directions is specified in a parameter called the field of view 

(FOV) and the particular extent of the slice in z direction is specified as the slice thickness. Each recording 

of a 2-dimensional slice takes time, which means that the total number of slices that needs to be recorded 

directly stands in relation to the total amount of time that is needed to record a full brain volume. This 

duration to image a single volume is called the repetition time (TR). 

 

What does fMRI measure? 

By recording multiple T2-weighted images in a row, we can create a signal time-series for each 

individual voxel in the volume. This time-series information can then be used to infer the localized 

functional activity in the brain. However, it is important to stress that this measurement is indirect and 

relative. It is indirect, because what we are essentially measuring is the ratio between oxygenated blood 

(containing oxyhemoglobin, which is diamagnetic) and deoxygenated blood (containing deoxygenated 

hemoglobin, which is paramagnetic) at a particular location, not the activity of the underlying neurons 

themselves. It is relative, because we are not measuring the actual amount of oxygen in the blood, only the 
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changes in the ratio between oxygenated and deoxygenated blood. This measured signal is also called the 

blood-oxygen-level dependent (BOLD) signal (Ogawa, Lee, Kay, & Tank, 1990). 

 

Event-related fMRI 

When we measure the BOLD signal without any particular external stimulation, we call this a resting 

state fMRI recording. When we however stimulate the brain with external or internal cues, we call this an 

event-related fMRI recording. In both cases, whenever a brain region increases its activity, the neurons 

consume more oxygen than usual, which decreases the BOLD signal at this particular location. To comply 

with the higher energy demand at this location, our body rushes more oxygenated blood to this location, 

which increases the BOLD signal and continues to do so as long as the oxygen requirement is present. 

Once the brain region reduces its activity back to a normal level the BOLD signal decreases as well, often 

followed by a post-activation undershoot until it goes back to a normal baseline level (Havlicek, Ivanov, 

Poser, & Uludag, 2017; Miezin, Maccotta, Ollinger, Petersen, & Buckner, 2000). This particular evolution 

of the BOLD signal during activation is also called the hemodynamic response function (HRF) and can 

especially be observed during event related fMRI, after a brain region is excited by a specific stimulus (see 

Figure 1). Depending on the intensity and duration of a stimulus, the HRF will be more pronounced in 

amplitude or duration. Usually, the peak of the HRF is reached around 4-6 seconds post-stimulus onset 

and returns to a baseline level after 12-16 seconds, given that there is no prolongated stimulation occurring. 

However, the HRF shape is profoundly nonlinear with respect to the stimuli duration (K. J. Friston et al., 

1998; Glover, 1999; Logothetis & Wandell, 2004). The general shape of the HRF is similar across primary 

sensory areas, but seems to be variable across higher cortical regions and varies considerably across people 

(Aguirre, Zarahn, & D’esposito, 1998; Handwerker, Ollinger, & D’Esposito, 2004; Martuzzi et al., 2006, 

2007; Miezin et al., 2000; Neumann, Lohmann, Zysset, & von Cramon, 2003). That is why an appropriate 

preprocessing of the data is crucial. 
 

 
Figure 1: Depiction of hemodynamic response function of the fMRI BOLD response to a period of 
stimulation. After an initial dip oxygen rich blood is rushed in which creates the characteristic peak of the 
HRF. With continuous stimulation the HRF will stay at on a certain plateau until the end of stimulation. 
Without continuous activation, the HRF will directly fall back down after it reached its peak and go back 
to a baseline level, after going through a post stimulus undershoot. This figure was adapted from Hoge & 
Pike (2001). 
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1.1.2 Preprocessing and analysis of fMRI data 
To gain any useful insight from fMRI data, appropriate data processing needs to be applied. The 

steps involved in this regard are commonly separated into a preprocessing and an analysis stage. Data 

preprocessing is important to make sure that the data are (1) corrected for unwanted effects caused by the 

measuring technique, (2) corrected for confounding factors due to the biological structure and processes 

in the brain and (3) to assure that the assumptions required for the analysis are met. Data analysis is then 

used to separate signal from noise and extract meaningful insight from the data by means of statistical 

inference. Appropriate analysis techniques are crucial to counter the usually very small percentage of 

signal change observed in the BOLD signal during event-related fMRI. 

 

Data preprocessing 

The precise steps involved in an fMRI preprocessing pipeline depend on many different factors, 

including: (1) scan sequence and acquisition parameters used to record the data, (2) study design, 

hypothesis and model used for the analysis, (3) neuroimaging toolbox and computer operating system used 

to conduct the analysis, and (4) experience and background of the person performing the data analysis. 

Because of all of these factors, the exact preprocessing pipeline of an fMRI study may vary, but in general, 

all of them include a sequence of the following steps (sequence order might vary): (1) slice-time correction, 

(2) motion correction, (3) co-registration, (4) spatial normalization, and (5) spatial smoothing. Slice-time 

correction is performed to compensate for the unique time delays between the slices within a volume due 

to the slice-by-slice wise recording by temporally interpolating slices with adjacent time points. After this 

correction, the information captured by the image within a volume is considered to represent the same time 

point. Motion correction is performed to correct for participants movement within the scanner during data 

recording. This correction is necessary to fulfill the assumption that each individual voxel in the image 

represents the signal time course of only one single location. Unwanted motion between the recording of 

volumes will violate this assumption and induce noise and uncertainty. Motion correction is usually done 

by estimating six motion parameters (three rotation and three translation parameters) and correcting for 

them during preprocessing using a rigid body transformation and accounting for their confounding 

influence during analysis. Co-registration is performed to make sure that each functional image is aligned 

to the underlying structural image. In other words, to make sure that each voxel of each functional image 

represents the same location as a corresponding voxel in the anatomical image. This step is required to 

make sure that all images (functional and anatomical) within a subject are aligned and correspond to same 

reference space, in this context also called the subject space. Spatial normalization is performed to account 

for subject specific brain characteristics, such as size and shape by transforming the subject specific brain 

from a unique subject space to a common reference space. This step makes sure that any given voxel in 

the transformed subject image maps for all individual subjects to the same spatial location in the common 

reference space. The transformation into this common reference space is usually an affine transformation 

to a particular template brain, usually one that is close to the MNI152 or the Talairach brain. Spatial 



Michael P. Notter University of Lausanne July 2021 

Innovation and standardization of processing pipelines for functional MRI data analysis -4- 

smoothing is performed to increase the signal-to-noise ratio (SNR) in an image by applying a spatial 

convolution to the image. The smoothing has the effect of filtering out the higher spatial frequencies and 

therefore makes the lower spatial frequencies more apparent. The beneficial effect of smoothing depends 

on the appropriate amount size of the smoothing kernel, defined by the full width at half maximum 

(FWHM) parameter. 

 

Data analysis 

Once the data are appropriately preprocessed, they are ready for analysis. In event-related fMRI 

studies, the data analysis is commonly separated into a 1st and 2nd-level stage also known as the within- 

and between-subject or the subject and group analysis. During the 1st-level analysis, the preprocessed data 

from one specific subject are analyzed either according to a univariate or a multivariate approach. A 

univariate analysis investigates the involvement of a particular brain region by looking at the average 

activation level during an experimental condition. In contrast to this, a multivariate analysis investigates 

the representational content present in a particular brain region by investigating the specific activation 

pattern present in this region during an experimental condition (Mur, Bandettini, & Kriegeskorte, 2009). 

A univariate approach is usually conducted by using a general linear model (GLM). This is done by 

creating a model that contains (1) expected neural activation caused by a particular stimulus type during 

recording, represented by individual stimulus regressors convoluted according to the HRF and (2) 

confound factors, represented by nuances regressors or regressors of no-interest in the shape of the known 

source of noise to account for its unwanted influence. By estimating such a model and computing stimulus-

specific contrasts, statistical parametric maps (SPM) can be generated that then can be used for statistical 

inference. In contrast to the univariate approach, where each voxel is analyzed individually, a multivariate 

approach can analyze multiple voxels at once. By doing so, such a multivariate approach allows the 

investigation of distributed information patterns. One way to perform multivariate analysis is by using 

machine learning techniques. Such techniques allow the creation of classifiers capable of distinguishing 

fine-grained category specific activation pattern at specific brain regions. The outcome of such a 

multivariate pattern analysis (MVPA) is an accuracy map, indicating the classification accuracy for each 

location in the brain. From here on out, whenever we mention multivariate approaches, we refer to the 

MVPA approach using machine learning. In the 2nd-level analysis the subject-specific SPMs or accuracy 

maps are used to perform statistical inference on the group. Looking at the group instead of one single 

subject only boosts the overall power and sensitivity of the statistical analysis and allows the generalization 

of the results to a bigger population by detaching them from the particularity of a specific individual. 

 

1.1.3 Standard neuroimaging toolboxes used to process fMRI data 
There exist multiple neuroimaging toolboxes that provide complete processing pipelines to perform 

preprocessing and analysis of fMRI data, but the most frequently used ones are FSL (Jenkinson, 
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Beckmann, Behrens, Woolrich, & Smith, 2012), SPM12 (Friston et al., 2006), AFNI (Cox & Hyde, 1997), 

FreeSurfer (Fischl, 2012) and BrainVoyager (Brain Innovation). While FSL, AFNI and FreeSurfer are 

freely available toolboxes, BrainVoyager and SPM12 both depend on a monetary license. SPM falls into 

this category, due to its dependency on MATLAB. BrainVoyager and SPM12 are both available for 

Windows, macOS and Linux operating systems, whilst FSL, AFNI and FreeSurfer are only available for 

macOS and Linux operating systems. While all of these toolboxes provide processing pipelines to 

preprocess and analyze fMRI data, all of them use a slightly different sequence and implementation of the 

different steps described in the previous section. Additionally, not all of these neuroimaging toolboxes 

provide all the processing steps required to conduct a state-of-the-art fMRI analysis. For example, not all 

toolboxes allow natively the possibility to perform a multivariate analysis. 

 

1.2 Issues with the current standards in fMRI data analysis 

1.2.1 Inaccessibility and stickiness of neuroimaging toolboxes 
Not all neuroimaging toolboxes are available for everyone to use due to the particular license 

requirement or the specific operating system needed to run them. Additionally, some of them come with 

an easy to use graphical user interface (GUI), while others require a bit more advanced computer skills. 

This circumstance, coupled with the software specific expertise researcher gain throughout their career is 

a likely major reason for why researchers most often stick with their initially learned neuroimaging 

toolbox, and not because it is necessarily the most suited toolbox for them. This is obviously an issue. By 

sticking to a particular toolbox, researchers are often only able to profit from the newest developments in 

the field, when their neuroimaging toolbox is updated to a newer version. Additionally, by sticking to a 

unique toolbox, researchers become prone to bugs in the code of these toolboxes (Eklund, Nichols, & 

Knutsson, 2016), potentially overestimate their results by missing results variability between multiple 

toolboxes (Pauli et al., 2016) or become prone to flawed standards in the field (Vul, Harris, Winkielman, 

& Pashler, 2009). 

To counter the previously mentioned issues, the Nipype toolbox (K. Gorgolewski et al., 2011) was 

created, of which the thesis author is also part of the core developer team. Nipype serves as an interface to 

most neuroimaging toolboxes (e.g. SPM12, FSL, FreeSurfer, AFNI) and allows the creation of flexible 

and complex processing pipelines across all of these neuroimaging toolboxes. Thanks to new technologies 

such as Docker (https://www.docker.com) and Singularity (https://www.sylabs.io), Nipype provides 

access to most of the commonly used neuroimaging toolboxes on any operating system (e.g. Windows, 

macOS, Linux). Nipype itself is written in the easy to learn programming language Python 

(https://www.python.org) and comes with many useful tutorials. While this is already a good attempt to 

counter the inaccessibility of some toolboxes and helps researchers to profit from uncharted toolboxes, it 

does not solve other issues prevalent in the field. 
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1.2.2 Missing general standards for neuroimaging analyses 
Until recently, most of the neuroimaging toolboxes mentioned in the previous section used their 

own and unique data format to store MRI images. Because of this, exchange of data between toolboxes or 

researchers with different toolbox proficiencies was difficult. To solve this issue the Neuroimaging 

Informatics Technology Initiative (NIfTI) was created and introduced a new common standard data type 

for MRI images, called the NIfTI standard (https://nifti.nimh.nih.gov/). While the NIfTI standard was an 

important step in the right direction, missing standards for datasets and processing pipelines in general 

were still missing. 

Still now, each researcher used their own particular structure to store the dataset and output of an 

MRI study. Such a setup makes sharing of datasets difficult and the processing and analysis of fMRI data 

prone to human errors caused by unwanted overwriting of files, chaotic folder structures or unclear file 

naming conventions. Additionally, unique dataset structures make it difficult to share processing and 

analysis scripts between researchers. To counter this issue, the so-called Brain Imaging Data Structure 

(BIDS) (Gorgolewski et al., 2016) was introduced. Using an agreed upon structure to store MRI datasets 

and a clear naming convention to save raw and processed files is the second important step to a common 

general standard in neuroimaging analysis. 

The third and last important step to a complete general standard in neuroimaging analysis is the 

introduction of clear pipeline standards. Being able to directly compare different processing and analysis 

pipelines between each other will help to better understand the unique properties of each pipeline and 

therefore improve the quality and trustworthiness of the pipeline. 

 

1.2.3 Amidst a reproducibility and transparency crisis 
One of the key parts of the scientific method is the topic of reproducibility. Scientific results which 

cannot be replicated are unsound and their claim to new insights would fall short. It would be impossible 

to say if the results’ occurrence is due to chance or due to the actual scientific work. Many scientific fields 

are currently struggling through something called a reproducibility crisis as many results fall short of being 

reproduced (Baker, 2016). The reason for the lack of reproducibility is rarely due to malicious intent, but 

most often due to missing standards or transparency (Gorgolewski & Poldrack, 2016). In-house closed 

source software make it almost impossible to understand how the results were achieved. But even in open 

source software packages, bugs and faulty processes can appear (Eklund et al., 2016). Missing standards 

as described in the previous section mean that results are described in a subjective manner and are reported 

with a varying number of toolboxes. Missing transparency of code, data and method make it almost 

impossible to replicate studies and further hinder the advancement of the field. The best way to tackle all 

of these deficits is by being completely open (Halchenko & Hanke, 2015). 

To counter the issue of subjective description of data analysis and results reporting, the Organization 

for Human Brain Mapping (OHBM) has created the Committee on Best Practices in Data Analysis and 
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Sharing (COBIDAS), which has created a clear set of guidelines how studies and results should be reported 

(Nichols et al., 2017). To counter the lack of transparency, researchers are encouraged to share their code 

via online services such as GitHub (https://github.com) and to provide more detailed information about the 

computational environment and exact software used during processing of the data. Additionally to that, 

researchers are encouraged by many journals to publicly share their data through services such as 

OpenNeuro.org (Gorgolewski, Esteban, Schaefer, Wandell, & Poldrack, 2017) and to share their results, 

such as the statistical maps of their MRI analysis via online platforms, such as NeuroVault.org (K. J. 

Gorgolewski et al., 2015). 

 

1.2.4 Insufficient data quality control and result reporting 
The quality of data and its processing throughout the study are crucial factors for any scientific 

study. Unfortunately, quality control is often done subjectively and therefore is prone to human biases. 

Additionally, looking at the raw data is unfortunately too often neglected or insufficiently done. Connected 

to the previous points, this is mostly due to a lack of standards and toolboxes available. To counter this, 

the MRI Quality Control toolbox (MRIQC) was created (Esteban et al., 2017). MRIQC is a fully automated 

quality control toolbox, providing many important statistics and figures about MRI raw data, i.e. before it 

was preprocessed. MRIQC is a great example of tackling the other aforementioned issues. It uses the BIDS 

data format to conform to current standards, its code is open-source and therefore fully transparent, it runs 

on any system and can quickly adapt to newest advancement in the field thanks to the fact that its 

processing pipelines are implemented with Nipype. MRIQC is a great example of showing how supportive 

statistics and figures can help assessing the quality of a dataset. Building on these insights, the authors of 

MRIQC created a robust preprocessing pipeline for fMRI data, called fMRIPrep (Esteban, Markiewicz, et 

al., 2019), and added informative figures to the different fMRI data preprocessing steps. Together, both of 

these toolboxes showed that a state-of-the-art neuroimaging toolbox needs to provide informative figures, 

which force their users to investigate and acknowledge the quality of their dataset and processing pipelines. 

What is still missing is an informative toolbox for the communication of results. This is problematic, 

as very often, the result reporting in fMRI studies is insufficient to fully communicate the location and 

extent of significant brain regions. Most commonly, results are only reported through the location of their 

primary peak and the size of the cluster. Such reporting neglects the actual shape and extent of a cluster 

and misses the opportunity to report secondary peaks. Additionally, depending on the researchers’ 

background and computational environment used, the reference atlas to identify the region of a peak, the 

information about secondary peaks and the toolbox to gather all this information may vary and might again 

be subjectively tinted. Therefore, better standards and automated and transparent reporting toolboxes are 

necessary. An alternative solution to this issue is to share the results directly as statistical maps via 

platforms like NeuroVault.org (K. J. Gorgolewski et al., 2015). While such an approach is a great solution 
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to explore the results yourself and provides a great opportunity to meta-analysis, it does not solve the 

problem of sufficient reporting within a paper. 

 

1.3 Challenges due to innovation in technology and methodology 
Additional to the previous mentioned issues, new innovations in measuring techniques and analysis 

methods constantly cause new challenges to existing neuroimaging toolboxes and their processing 

pipelines and force researchers who use them to be more flexible and adaptive in their approaches to 

analyze fMRI data. The following section highlights important innovations in the way we record or process 

fMRI data and separate them by the spatial, temporal and signal dimension. 

 

1.3.1 Innovation in the spatial dimension 
Thanks to gradual improvement in measuring techniques, fMRI data can now be recorded with a 

high enough spatial resolution to detect localized distinct activation patterns in images. However, as 

mentioned above, univariate fMRI analyses are only sensitive to overall activation differences between 

experimental conditions. Therefore, even if two conditions are very distinct in their fine-grained activation 

pattern, as long as their spatial-average leads to the same activation, standard univariate analyses will not 

be able to distinguish them. In contrast to this, multivariate analysis, or more specifically MVPA, are 

capable of investigating how a specific object is represented in a region and if this representation is 

fundamentally different from another object representation, even if their average activation is identical 

(Mur et al., 2009). 

Even though the advantage and fruitfulness of multivariate approaches is clear (Haxby, 2012), most 

neuroimaging toolboxes lack analysis pipelines capable of conducting such analyses. Currently, the main 

toolboxes to perform state-of-the-art MVPA on neuroimaging data are PyMVPA (Hanke et al., 2009), 

CoSMoMVPA (Oosterhof, Connolly, & Haxby, 2016) and scikit-learn (Abraham et al., 2014). All of them 

are written in Python or MATLAB and need some degree of programming skill to use, which is why they 

are not equally accessible to all researchers in the field. Additionally, multivariate analyses profit from 

slightly adapted data preprocessing pipelines. Some of them, such as moving the normalization to template 

step after the MVPA analysis or applying a weaker spatial smoothing to preserve the underlying pattern as 

much as possible, can easily be implemented in current processing pipelines. However, others, such as 

spatial band-pass filtering to improve signal decoding accuracy (Sengupta, Pollmann, & Hanke, 2018) can 

only be implemented with custom code and are not yet possible in standard preprocessing pipelines. 
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1.3.2 Innovation in the temporal dimension 
The temporal resolution in which fMRI images can be recorded is an important, but also restrictive 

factor in neuroimaging analysis. Currently, fMRI studies are usually recorded with a TR above one second. 

This is not a big problem when we are looking at signal changes that happen over multiple seconds. In 

these cases, the comparably slow HRF curve serves us well enough to model the underlying brain 

activation. However, using things like event onset jitter to better map the full extent of the HRF can only 

bring us so far. The less sampling points we have to model a curve, the fewer revealing characteristics we 

can observe about our model. In the case of the HRF, a slow TR might only reveal the overall amplitude 

of the HRF but will not provide information to better understand the exact shape or onset delay of the 

curve. For this, we would need to have a much higher TR that allows us to sufficiently sample the HRF. 

Additionally, having a low temporal resolution will prevent us from observing any fast-changing signal 

changes, may they be localized general fluctuations or pattern variations. 

Fortunately, new advancements in MRI measuring techniques allow the recording of fMRI images 

with a much higher temporal resolution than previously thought possible. The trick to this was the 

introduction of new scan sequences which use acceleration technics such as GRAPPA (Griswold et al., 

2002), simultaneous multi-slice/multiband acquisitions (Feinberg et al., 2010; Feinberg & Setsompop, 

2013; Moeller et al., 2010) or even one shot 3D volume recordings such as 3D-EPI-CAIPI (Narsude, 

Gallichan, van der Zwaag, Gruetter, & Marques, 2016). Depending on the sequences used and on the brain 

volume that needs to be covered, a TR reduction of 2 to 8-fold is possible while keeping comparable data 

quality as previous methods. 

However, the introduction of sub-second temporal resolution creates new challenges for the 

processing of functional images. By recording brain activity with a high enough temporal resolution, we 

will inevitably also be able to sample the respiration (0.2-0.6Hz) and cardiac (1-1.7Hz) signal (Viessmann, 

Möller, & Jezzard, 2018). Typically, things like low-pass filtering are not performed during preprocessing 

as it is assumed that high frequency signals like cardiac or respiratory cycles would be severely aliased by 

such filters. However, given their oscillation frequency and considering the Nyquist–Shannon sampling 

theorem, a sufficient sampling of the average respiration and cardiac signal will become possible if the TR 

is below 1250ms and 400ms, respectively. Thanks to the aforementioned acceleration techniques, a 

complete sampling of the respiratory signal becomes possible (see Figure 2). One consequence is that 

appropriate new filtering techniques need to be introduced during the preprocessing pipeline. While high-

pass filtering is a standard procedure in most processing pipelines, an appropriate temporal low-pass or 

band-pass filter is often not possible. And with these toolboxes where flexible temporal filtering is possible, 

none so far is capable of providing an appropriate preprocessing pipeline that keeps different preprocessing 

filters orthogonal to each other, to prevent the reintroduction of previously removed noise (Lindquist, 

Geuter, Wager, & Caffo, 2019). 
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Figure 2: Depiction of average brain signal and two motion parameters with its corresponding power 
spectrum from a dataset recorded with a TR of 600ms. The three panels show from top to bottom, the 
average signal in the total brain volume (TV), the estimated rotation along the x-axis (Rotation01) and the 
estimated translation along the z-axis (Translation03). The panels on the left show the before mentioned 
data over time, represented in fMRI volume, and the panels on the right show the corresponding power 
spectrum, with the frequency depicted on the x-axis. The sampling window to record the respiration signal 
(0.2-0.6Hz) is highlighted in red. 

 

1.3.3 Innovation in signal processing 
Deducing brain activation by looking at changes in the BOLD signal is by no means straightforward. 

Due to the measuring technique itself and because of the properties of the biophysical process we want to 

observe, proper data preprocessing is crucial. Being an aggregation of multiple biological, physical and 

thermal factors, the BOLD signal is prone to many confounding factors. Amongst others, these include: 

(1) scanner field inhomogeneity during recording (Vovk, Pernus, & Likar, 2007), (2) respiratory and 

cardiovascular fluctuations (Viessmann et al., 2018), (3) in-scanner motion during recording (K. J. Friston, 

Williams, Howard, Frackowiak, & Turner, 1996; Hajnal et al., 1994), (4) improper data processing 

(Lindquist et al., 2019), and (5) signal fluctuations that is not due to neural activity (Liu, 2016; Thomas, 

Harshman, & Menon, 2002; Triantafyllou et al., 2005). 

Fortunately, many new methods were developed to improve the data analysis with respect to these 

factors. While some of them require the recording of additional data, such as the distortion field map for 

inhomogeneity correction (Hutton et al., 2002) or the external measurement of respiratory and cardiac 

signals (Glover, Li, & Ress, 2000; Kasper et al., 2017), others work directly on the data at hand and do not 

require additional data recordings. For the purpose of universal applicable methods, I will focus here only 

on the latter category of methods. For each of the aforementioned confounding factors, a multitude of 

techniques exist to tackle them. The following is therefore only a brief listing of solutions: Scanner field 

inhomogeneity during recording can be corrected with the N4ITK algorithms (Tustison et al., 2010), 
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available in the toolbox ANTs (Avants et al., 2011). Respiratory and cardiovascular fluctuations can be 

can be handled through appropriate temporal filtering (Viessmann et al., 2018) or component analysis, 

such as independent component analysis (ICA) or dictionary learning (Mensch, Varoquaux, & Thirion, 

2016). Potential toolboxes to do this are Nilearn (Abraham et al., 2014) or the Multivariate Exploratory 

Linear Optimized Decomposition into Independent Components (MELODIC) toolbox (Beckmann & 

Smith, 2004), as implemented in the neuroimaging toolbox FSL. The correction for in-scanner motion is 

implemented as such in almost any fMRI processing pipeline. However, as mentioned in the previous 

section, current techniques were developed for fMRI images with temporal resolution above 1000ms and 

might therefore not be adapted to properly handle things such respiratory and cardiac fluctuations, sampled 

by scan sequences with higher temporal resolution. Improper data processing can reintroduce previously 

removed noise back into the data. This can be avoided by applying orthogonal filtering during 

preprocessing (Lindquist et al., 2019). However, so far, none of the standard neuroimaging preprocessing 

pipelines is capable to do this correctly. To remove signal fluctuations which are not due to neural activity, 

i.e. noise, approaches such as CompCor (Behzadi, Restom, Liau, & Liu, 2007) or ICA could be used. 

While CompCor uses a principal component analysis (PCA) to identify noise components in predefined 

regions of no interest, ICA performs a blind source separation with the goal to separate noisy components 

from relevant signal components. In either case, these components can then either directly be removed 

from the processed signal or be included as nuisance regressors in the GLM during data analysis. 
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1.4 Aim of the thesis 
The thesis at hand aimed at addressing the previously mentioned issues with current standards in 

fMRI data analysis and the new challenges due to innovation in technology and methodology by 

introducing two new neuroimaging software packages. An additional cognitive fMRI study was conducted 

to validate these toolboxes under normal conditions. Therefore, the three studies reported in this thesis, 

which address these points, can be separated as follows: 

 

The first study built on previous advancements in the field of fMRI processing pipelines and 

introduces a new neuroimaging toolbox called fMRIflows, capable of performing a complete fMRI 

analysis, from data preprocessing to subject and group-level analysis and result reporting. This toolbox is 

able to do this fully automatically for univariate and multivariate analysis. As such, fMRIflows addresses 

all of the issues and challenges mentioned before, except for the topic of results reporting. This study is 

further referred to as Study A and led to the submission of “fMRIflows: a consortium of fully automatic 

univariate and multivariate fMRI processing pipelines” in NeuroImage. Please refer to chapter 2 for a 

summary and to Annex 1 for the submitted article. 

 

The second study introduces a new neuroimaging toolbox called AtlasReader. This toolbox 

addresses the remaining issue with result reporting by providing an improved and automated way to create 

publication ready outputs (figures and tables) for fMRI studies. This study is further referred to as Study B 

and led to the publication of “AtlasReader: A Python package to generate coordinate tables, region labels, 

and informative figures from statistical MRI images” in the Journal of Open Source Software (Notter et 

al., 2019). Please refer to chapter 3 for a summary and to Annex 2 for the published article. 

 

The third study investigates if the low-level visual cortex is capable of decoding multisensory 

semantics and memories through the usage of MVPA. As such, this study also validates the two newly 

introduced neuroimaging toolboxes from Study A and Study B. This study is further referred to as Study 

C and led to the submission of “Decoding of multisensory semantics and memories in low-level visual 

cortex” in NeuroImage. Please refer to chapter 4 for a summary and to Annex 4 for the submitted article. 
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2 Study A – fMRIflows: a consortium of fully automatic univariate and 
multivariate fMRI processing pipelines 

 

Authors: Michael P. Notter1*, Peer Herholz2,3*, Sandra Da Costa4, Omer F. Gulban5,6, Ayse I. Isik7 

and Micah M. Murray1, 8-10 

1. The Laboratory for Investigative Neurophysiology (The LINE), Department of Radiology, University Hospital Center and 

University of Lausanne, Switzerland 

2. International Laboratory for Brain, Music and Sound Research, Université de Montréal & McGill University, Montréal, 

Canada 

3. McConnell Brain Imaging Centre, Montréal Neurological Institute, McGill University, Montréal, Canada 

4. Animal Imaging and Technology Section, Center for Biomedical Imaging (CIBM), Ecole Polytechnique Fédérale de 

Lausanne (EPFL), Lausanne, Switzerland 

5. Department of Cognitive Neuroscience, Maastricht University, The Netherlands 

6. Brain Innovation B.V., Maastricht, The Netherlands 

7. Department of Neuroscience, Max Planck Institute for Empirical Aesthetics, Frankfurt am Main, Germany 

8. Sensory, Perceptual and Cognitive Neuroscience Section, Center for Biomedical Imaging (CIBM), Lausanne, Switzerland 

9. Department of Ophthalmology, Fondation Asile des aveugles and University of Lausanne, Lausanne, Switzerland  

10. Department of Hearing and Speech Sciences, Vanderbilt University, Nashville, TN, USA 

(* shared first co-authorship) 

 

Submitted to NeuroImage, 2021 Mar 23. To be found in Annex 1. 

 

Contribution: The candidate created the project, wrote and developed the toolbox, performed the data 

acquisition, conducted the validation analyses, prepared the manuscript for submission in a peer-reviewed 

journal and handled the reviewing process. 

 

This study examined the strength and weaknesses of current neuroimaging processing pipelines and 

identified important new technologies and standards in the field. Combining all of these insights, this study 

introduced a new neuroimaging toolbox called fMRIflows. fMRIflows, is a fully automatic processing 

pipeline capable of performing state-of-the-art data preprocessing, as well as first- and second level 

univariate and multivariate analysis. fMRIflows is built upon the advancements of fMRIPrep and MRIQC, 

enforces the newly introduced BIDS standards for datasets and allows for flexible temporal and spatial 

filtering, while considering orthogonality between filters. All of these are important new properties and 

features. The study explains all different processing steps included in the pipeline in much detail and 

highlights the advantages of a community developed and open-source toolbox. The validation of this 

software package was done on three distinct fMRI datasets, each with different characteristics. Most 

notably is the difference in the temporal resolution, as the three datasets have a sampling rate of 2000ms, 

1000ms and 600ms. Especially the last dataset was crucial to showcase one of fMRIflows most pronounced 

feature, the appropriate handling of fMRI datasets recorded with high temporal resolution, i.e. datasets 
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with a sampling rate below 1000ms. Because of the lack of publicly available fMRI dataset with such high 

sampling rates, the author of this thesis recorded a complete with a temporal resolution of 600ms, including 

a total of 17 subjects. To allow the direct comparison of fMRIflows to other processing pipelines, the 

beforementioned three datasets were all preprocessed with comparable neuroimaging software packages 

FSL, SPM and fMRIPrep. To highlight the relevance of temporal filtering, the datasets were preprocessed 

with fMRIflows, once with and once without a low-pass filter at 0.2Hz. The results show that no clear 

differences can be observed between the preprocessing of fMRIflows and the other toolboxes fMRIPrep, 

FSL and SPM on all three datasets. However, fMRIflows’ flexible temporal filtering approach led to 

improved temporal signal-to-noise-ratio (TSNR) after preprocessing and increased statistical sensitivity, 

in particular for datasets at or below a sampling rate of 1000ms. 
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3 Study B – AtlasReader: A Python package to generate coordinate tables, 
region labels, and informative figures from statistical MRI images 

 

Authors: Michael P. Notter1, Dan Gale2, Peer Herholz3-5, Ross Markello5, Marie-Laure Notter-Bielser6, 

and Kirstie Whitaker7 
1. The Laboratory for Investigative Neurophysiology (The LINE), Department of Radiology, University Hospital Center and 

University of Lausanne, Switzerland 

2. Centre for Neuroscience Studies, Queen’s University, Kingston, Canada 

3. Laboratory for Multimodal Neuroimaging, Philipps-University Marburg, Hesse, Germany 

4. International Laboratory for Brain, Music and Sound Research, Université de Montréal & McGill University, Montréal, 

Canada 

5. McConnell Brain Imaging Centre, Montréal Neurological Institute, McGill University, Montréal, Canada 

6. Centre Leenaards de la Mémoire, Centre Hospitalier Universitaire Vaudois, Lausanne, Switzerland 

7. Alan Turing Institute, London, UK; Department of Psychiatry, University of Cambridge, Cambridge, UK  

 

Published in Journal of Open Source Software, 2019 Feb 24. To be found in Annex 2. 

 

Contribution: The candidate created the project, wrote and developed the toolbox, conducted the validation 

analyses, prepared the manuscript for submission in a peer-reviewed journal and handled the reviewing 

process. 

 

This study details the need of a toolbox that can create publication-ready output for fMRI studies in 

a flexible way. It provides a solution in the form of a neuroimaging toolbox called AtlasReader. Many 

comparable software packages are often restricted, either to the atlas they use to lookup locations or the 

operating system or software framework they use. To counter this thematic, AtlasReader was written in 

Python but is also available as a command line tool, is freely available, community developed and allows 

the usage of nine different lookup atlases. To avoid tedious manual interventions, the toolbox tries to 

perform as much as possible in an automatic way. It is able to do so by taking advantages of many other 

neuroimaging toolboxes, notably Nilearn. For each provided MRI image, AtlasReader will provide an 

overview figure containing all relevant datapoints in the volume, a more detailed informative figure for 

each individual data cluster, an overview table with information about location and atlas affiliation of each 

peak, as well as an overview table with information about the location and atlas affiliation of each cluster 

and its extent. In particular the last point is something that so far no other neuroimaging toolbox provides. 

 

 



Michael P. Notter University of Lausanne July 2021 

Innovation and standardization of processing pipelines for functional MRI data analysis -16- 

4 Study C – Decoding of multisensory semantics and memories in low-level 
visual cortex 

 

Authors: Michael P. Notter1, Sandra Da Costa2, Anna Gaglianese1, and Micah M. Murray1, 3-5 
1. The Laboratory for Investigative Neurophysiology (The LINE), Department of Radiology, University Hospital Center and 

University of Lausanne, Switzerland 

2. Center for Biomedical Imaging (CIBM), Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland 

3. Sensory, Perceptual and Cognitive Neuroscience Section, Center for Biomedical Imaging (CIBM), Lausanne, Switzerland 

4. Department of Ophthalmology, Fondation Asile des aveugles and University of Lausanne, Lausanne, Switzerland  

5. Department of Hearing and Speech Sciences, Vanderbilt University, Nashville, TN, USA  

 

Submitted to NeuroImage, revision in preparation. To be found in Annex 3. 

 

Contribution: The candidate performed the data analysis, and prepared the manuscript for a submission in 

a peer-reviewed journal. 

 

This study investigated the brain mechanisms involved during the encoding and subsequent 

retrieval of semantically congruent multisensory objects. Twelve healthy participants partook in the study 

and were presented with multiple visual stimuli. Each visual stimulus was presented twice, first during an 

encoding phase and the second time during a so-called decoding phase. The first presentation of a visual 

stimuli was sometimes paired with a congruent or incongruent auditory stimulus. During the second 

presentation of the visual stimuli, participants were asked if they saw the object before. During this 

continuous recognition task fMRI images with a temporal resolution of 2000ms were recorded. The data 

was preprocessed with fMRIflows and a univariate and multivariate analysis was conducted to gain new 

insights. The univariate analysis was used to identify regions involved in the information processing of 

semantic context dependent multisensory memory traces. In contrast to that, the multivariate analysis was 

used to locate where in the brain the representational content of these traces is encoded and where they are 

later on again retrieved. The results show that the low-level visual cortex reliably can decode whether an 

incoming visual stimulus previously had been perceived in a semantically congruent or incongruent 

context, even if the visual stimuli was only perceived once before. The results from this study further 

support the notion that the low-level visual cortex has multisensory architecture and that the creation of 

memories profits from a multisensory semantic congruent stimuli exposure. 
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5 General Discussion and Conclusion 
 

The thesis at hand introduces new techniques and standards to process fMRI data in the form of the 

two toolboxes fMRIflows and AtlasReader. Both software packages were created to tackle many presiding 

issues and challenges with current neuroimaging practices (see Study A and Study B). To showcase the 

relevance of such innovations, the thesis also includes a cognitive neuroscience study in the domain of 

multisensory integration (see Study C). 

 

Before assessing the outcome and limitations of the two toolboxes reported in Study A and B, and 

the functional neuroimaging Study C, let me briefly summarize again the current issues and challenges in 

the neuroimaging domain, which we identified in the Introductions: 

 

Issue 1: Neuroimaging toolboxes are inaccessible and package routines are difficult to interchange. The 

solution should provide flexibility and accessibility. 

Issue 2: While standards for neuroimaging data (i.e. NIfTI) and datasets (i.e. BIDS) exist, standards for 

neuroimaging analysis are still missing. The solution should introduce validated, tested and 

community developed analysis pipeline standards. 

Issue 3: Closed-off research work and analysis practices created a reproducibility and transparency crisis. 

The solution is sharing of computational environments, data, code and procedures. 

Issue 4: Insufficient quality control and result reporting. The solution should provide detailed quality 

control for processing pipelines and allow for detailed and publication ready results report. 

Challenge 1: Innovation in the spatial dimension of fMRI data recording allows for more detailed 

acquisition of signal patterns. The solution should allow flexible preprocessing of such data and 

provide suitable analysis methods. 

Challenge 2: Innovation in the temporal dimension of fMRI data recording allows for faster acquisition 

schemes which lead to new signal confounds. The solution should be adapted to this new kind of 

data and allow flexible data preprocessing. 

Challenge 3: Innovation in signal processing of fMRI data allows for better preprocessing and confound 

estimations. The solution should be capable of using these new techniques and extract these new 

confounds. 
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5.1 Assessment of Study A 
The neuroimaging toolbox fMRIflows, which was developed in Study A, introduces a fully 

automatic processing pipeline capable of performing state-of-the-art data preprocessing, as well as first- 

and second level univariate and multivariate analysis. To validate the software package Study A processed 

and analyzed three distinct fMRI datasets. The most notable difference between the three datasets was the 

temporal resolution (TR) with which they were recorded, which was 2000ms, 1000ms and 600ms. The 

dataset with a TR of 600ms was specifically recorded for Study A and was crucial to showcase one of 

fMRIflows most pronounced features, the appropriate handling of fMRI datasets recorded with sub-second 

temporal resolution. To compare fMRIflows performance to other state-of-the art neuroimaging processing 

pipelines the three datasets were as well preprocessed with the comparable neuroimaging pipelines from 

FSL, SPM and fMRIPrep. The outcome of this validation showed that fMRIflows performs comparably 

or better than these other software packages. However, when an additional temporal filtering, using a low-

pass filter at 0.2Hz, was applied - something that is currently only available with fMRIflows - temporal 

signal-to-noise-ratio (TSNR) after preprocessing was significantly improved and the statistical sensitivity 

was significantly increased, in particular for datasets at or below a sampling rate of 1000ms. The additional 

temporal filtering did not impact the dataset with a TR of 2000ms. 

 

With respect to the initially mentioned issues in the neuroimaging domain, fMRIflows addresses all 

four of them: The toolbox is developed as a Python based open-source software package, publicly available 

via GitHub, and the relevant environment to execute the toolbox is freely available via DockerHub. 

Additionally, the source code of fMRIflows is provided in accessible and easy to adapt Jupyter Notebooks. 

Furthermore, thanks to the Docker environment in which fMRIflows is distributed, software routines 

usually only available in UNIX or MATLAB environments can now be profited from, even if a user does 

not have access to these tools. All of these points address the first and third issue mentioned during the 

introduction and make the toolbox flexible and accessible. Due to the fact that fMRIflows requires the input 

data to be in NIfTI format and the dataset according to the BIDS standard, the toolbox reinforces these 

standards and therefore addresses issue 2. Additionally, with each new code snippet added to the fMRIflows 

routine, multiple tests are undertaken to guarantee the correct functioning of the toolbox. Issue 4 is 

addressed through the many intermediate visual outputs fMRIflows generates, which help with the quality 

control of the preprocessing and analysis pipeline. 

 

With respect to the initially mentioned challenges in the neuroimaging domain, fMRIflows addresses 

all three of them. Addressing challenge 1, the toolbox allows spatial low-, high- and band-pass filtering of 

the fMRI dataset. To our knowledge, no other available neuroimaging processing pipeline allows such 

customized spatial filtering of the data. The flexible spatial filtering is especially important for multivariate 

analysis, where such a spatial band-pass filtering approach potentially can improve the signal decoding 

accuracy (Sengupta et al., 2018). Similarly, fMRIflows also addresses challenge 2 with flexible temporal 
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low-, high- and band-pass filtering. However, to prevent the reintroduction of artifacts into the data 

(Lindquist et al., 2019), this filtering step is performed orthogonally to other preprocessing steps. The 

flexible temporal filtering is especially important for fMRI datasets with sub-second temporal resolution, 

where the sampling of confounds like respiration or cardiac signal can become an issue (Viessmann et al., 

2018). To address challenge 3, fMRIflows estimates multiple state-of-the-art confounds and makes them 

available in accessible TSV files. Furthermore, the toolbox can readily integrate this information during 

the univariate and multivariate analysis of the data. 

 

The most important innovation introduced by fMRIflows is its capability of adequate temporal 

filtering of fMRI datasets with a sub-second temporal resolution. To better illustrate the importance of this 

feature, we will look at the estimated confound signal (see Figure 3) and the first-level statistical map (see 

Figure 4) of an individual subject, once where the data was preprocessed with and once without a low-pass 

filter at 0.2 Hz. 

 

 
Figure 3: Depiction of average brain signal and two motion parameters with its corresponding power 
spectrum from a dataset recorded with a TR of 600ms, once with and once without the application 
of a low-pass filter at 0.2Hz. This figure shows the same information as was provided in Figure 2. 
However, this time the original depicted signal, i.e. the one preprocessed with a low-pass filter is depicted 
in light gray, while the signal and power spectrum of the data preprocessed with a low-pass filter at 0.2 Hz 
is depicted in color. 

 

When looking at the average signal in the total brain volume (TV) and the estimated motion 

parameters of a dataset with a TR of 600ms, that was not preprocessed with a temporal low-pass filter (as 

depicted in gray in Figure 3), a clear high frequency oscillation and a potential confound can be observed. 

This signal oscillation is assumed to be due to the breathing of the participant during data acquisition, as 

it fits perfectly in the frequency band between 0.2-0.6 (Viessmann et al., 2018). Using the unfiltered brain 
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signal to estimate brain activation might already be problematic in itself. However, using the shown motion 

parameters to correct for the in-scanner motion during preprocessing has a high chance to do more harm 

than not, given that the absolute volume-to-volume motion in certain cases is almost as high as the general 

motion drift over 100 volumes, which corresponds to one minute. Therefore, an appropriate temporal low-

pass filtering is crucial to correctly preprocess such data. This point is further supported by the visualization 

shown in Figure 4. 

 

 
Figure 4: Visualization of a single subject’s statistical map showing the activation difference between 
audio-visual and auditory only activation, for five different preprocessing pipelines. The ‘glass-brain’ 
visualizations show the statistical maps (z-scores) for the same individual as shown in Figure 3, for five 
different preprocessing approaches: A) fMRIflows with a temporal low-pass filter at 0.2Hz; B) fMRIflows 
without a temporal low-pass filter; C) fMRIPrep, D) FSL and E) SPM. Each image was identically 
thresholded at the same arbitrary z-value of 5. Furthermore, only clusters of a size bigger than 1350 mm3 
were kept, which corresponds to a cluster size of at least 50 voxels. 

 

Figure 4 shows the statistical maps of a single subject’s brain activation difference when perceiving 

an audio-visual versus an auditory only stimulus. The data used for this visualization is from the third 

dataset in Study A, was recorded with a TR of 600ms, and depicts the same participant as shown in Figure 

3. Each of the five panels show a different preprocessing approach and was thresholded at the same height 

value, and cluster extent. The outcomes of the preprocessing with fMRIflows (without a low-pass filter), 

fMRIPrep, FSL and SPM, as shown in panel B to E, all look comparable and led to similar maximum z-

values between 8.9 and 9.6. This supports the assessment that fMRIflows’ preprocessing is comparable to 

other neuroimaging pipelines in the field. However, the clear advantage of using fMRIflows to preprocess 

a dataset recorded with a sub-second temporal resolution becomes visible when looking at panel A. This 
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panel shows the outcome when the preprocessing was done with fMRIflows using a temporal low-pass 

filter at 0.2 Hz and shows much bigger activation clusters and z-score values, even already at the individual 

level. This supports the assessment that an adequate preprocessing can lead to an improvement of temporal 

signal-to-noise ratio and an overall increased statistical sensitivity. 

5.2 Assessment of Study B 
The neuroimaging toolbox AtlasReader, which was developed in Study B, introduces an easy-to-use 

and new way to quickly generate informative and publication-ready outputs. For each provided MRI 

image, the toolbox will create (1) an overview figure in the shape of a glass-brain plot, highlighting at once 

all relevant clusters in the volume, (2) more detailed informative figures showing the exact peak of each 

individual cluster and its respective extent in the sagittal, transversal, and coronal planes, and (3) an 

overview table with information about the location and atlas affiliation of each cluster peak and its extent. 

 

With respect to the initially mentioned issues in the neuroimaging domain, AtlasReader addresses 

all four of them. Addressing issue 1, the toolbox can be considered flexible and accessible for multiple 

reasons. First, AtlasReader exploits up to nine different atlases for the lookup of location properties. This 

consortium of different atlases can rarely be encountered on the same operating system at once, because 

these atlases depend on different neuroimaging toolboxes such as SPM, FSL or FreeSurfer. Some of these 

toolboxes are tied either to pricey MATLAB licenses or UNIX capable operating systems. Second, the 

toolbox and its source code are freely available via GitHub and can be run on any major operating system. 

It provides a straightforward command line interface or can be integrated more smoothly into any 

processing script using the easy to learn programming language Python. As an example, embedding this 

toolbox in a Nipype framework will streamline and optimize the creation of informative output figures and 

tables. Addressing issue 2, AtlasReader supports the standardization initiative in the neuroimaging domain 

with a well-tested and community developed open-source toolbox. Its numerous available execution 

parameters allow enough space for customizability in outcome presentation, while its code base keeps the 

main capability restricted to its standards in results reporting. These factors are simultaneously also the 

ways how the toolbox addresses issue 3. But most importantly, AtlasReader is tackling issue 4 by providing 

detailed and publication ready results tables and figures. Additionally, these tables and figures can of 

course also be used as quality control mechanisms of the processing pipelines, ensuring that created output 

are leading to expected outputs. 

 

The most important innovation introduced by AtlasReader is its capability of providing atlas 

affiliation information with respect to the extent of a cluster, not just its peaks. To the knowledge of the 

author, no other freely available toolbox currently provides this information. To better illustrate the 

importance of this feature, a synthetic statistical brain map was generated, containing two elongated 

clusters (see Figure 5). 
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Figure 5: Overview figure of a synthetic statistical brain map generated by AtlasReader. The 
‘glassbrain’ visualization generated by AtlasReader, shows that the synthetic statistical brain map contains 
two activation clusters, both being unusual elongated. The positive activation, shown in red to yellow, 
covers a region from the right angular gyrus to calcarine. The negative activation, shown in blue to 
turquoise, covers a region from the left caudate to thalamus 

 

Table 1: Example output of AtlasReader’s peak table, generated by analyzing the synthetic statistical 
brain map shown in Figure 5. 

Cluster 
ID 

Peak Location 
[x, y, z] 

Peak Values 
[t-value] 

Cluster size 
[mm3] 

Atlas AAL Atlas Harvard Oxford 

1 54, -54, 20 9.80 12163 Temporal Mid R 65.0% Right Angular Gyrus 

1 9, -71, 0 6.65 12163 Lingual R 54.0% Right Lingual Gyrus 

1 45, -67, 7 4.74 12163 Temporal Mid R 50.0% Right Lateral Occipital 
Cortex inferior division 

2 -11, 12, 13 -7.62 2349 Caudate L 88.0% Left Caudate; 
11.0% Left Lateral Ventrical 

2 -9, -15, 13 -7.41 2349 Thalamus L 100.0% Left Thalamus 

 

Of those analysis tools which are able to provide atlas affiliation information based on statistical 

brain maps, many can only provide the information for the main peak in the cluster (as highlighted in green 

in Table 1). While others are able to provide this information for multiple peaks within a cluster (see other 

peaks in Table 1), none of them is able to provide this information for multiple atlases at once (see Table 

1). Furthermore, AtlasReader additionally provides the atlas affiliation for all voxels in a cluster, and is 

therefore able to more accurately report the extent of an activation cluster (see Table 2). This information 

can provide relevant insights about otherwise overlooked parts of the cluster. 

 

Table 2: Example output of AtlasReader’s cluster table, generated by analyzing the synthetic 
statistical brain map shown in Figure 5. 

Cluster 
ID 

Peak Values 
[t-value] 

Cluster size 
[mm3] 

Atlas AAL Atlas Harvard Oxford 

1 3.79 12163 21.00% Angular R 
20.06% Calcarine R 
17.73% Temporal Mid R 
15.65% Lingual R 

33.90% Right Angular Gyrus 
16.32% Right Lateral Occipital Cortex 

inferior division 
14.50% Right Lingual Gyrus 
11.23% Right Occipital Pole 
11.21% Right Intracalcarine Cortex 

2 -3.69 2349 49.26% Caudate L 
43.00% Thalamus L 

46.79% Left Thalamus 
42.06% Left Caudate 
11.15% Left Lateral Ventrical 
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5.3 Assessment of Study C 
The cognitive neuroscience study in Study C uses the two toolboxes fMRIflows and AtlasReader, 

developed in Study A and Study B, respectively, and showed how they can be applied to an actual 

neuroimaging study to gain valuable new insights. The study’s focus was in the domain of multisensory 

integration and addressed the question: What are the mechanisms that allow encoding and retrieval of 

multisensory information. Using the multivariate approach MVPA, this study investigated if the low-level 

visual cortex is capable of decoding multisensory semantics and memories of audio-visual stimuli. 

 

Participants in this study performed a continuous recognition task, during which they were presented 

with either visual stimuli or audiovisual stimuli that were either semantically congruent or incongruent. 

During the second presentation of a stimulus, participants were only presented with the visual information 

of the previously audio-visual, or visual-only stimuli. This allowed us to study the retrieval of information 

that was multisensory during encoding without the interference of presenting multisensory information 

during retrieval. 

 

The univariate analysis revealed that during the second presentation of a previously audio-visual 

congruent stimuli, the activation in the lateral occipital cortex (LOC) was higher compared to a previously 

visual only or audio-visual incongruent stimuli. For the multivariate analysis, an MVPA approach was able 

to analyze the activation pattern present during encoding of the multivariate stimuli and identify its re-

occurrence during the memory retrieval present during the reactivation during the second visual-only 

presentation of the stimuli. This multivariate analysis revealed several clusters where semantic congruence 

can be decoded during initial and repeated presentations, including a cluster in the occipital pole. These 

findings suggest the involvement of low-level visual regions in multisensory and more abstract processes, 

and further support a multisensory role for supposedly unisensory cortices and that the creation of 

memories profits from a multisensory semantic congruent stimulus exposure. 

 

With respect to the initially mentioned issues in the neuroimaging domain. Using fMRIflows 

developed in Study A, Study C showed that it is possible to acquire reliable and informative univariate and 

multivariate results using accessible, transparent and automatic processing pipelines, which follow a clear 

state-of-the-art standard. The usage of AtlasReader developed in Study B allows the creation of output 

figures, as well as more detailed information tables than otherwise possible. 

 

5.4 Limitations of Study A, B and C 
The studies comprised in this thesis have multiple strengths, but their potential to acquire new 

insights are also tempered by their limitations. In this section, we will critically assess the limitations of 

each study and provide potential solutions. 
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Study A introduced the new neuroimaging toolbox fMRIflows, capable of performing data 

preprocessing and analysis, with a univariate and multivariate approach. While this can be a strength of 

the toolbox, the vast extent of neuroimaging analysis routines that this toolbox tries to cover might make 

it prone to bugs in the code. For example, software dependency issue in the future will require frequent 

adaptation to new insights in the field. The solution to this limitation is a good test suite for the software, 

a transparent development via GitHub as well as a helpful forum where users can address problems and 

find solutions. The hope of the author is that such a forum is found in the shape of Neurostars.org. However, 

for this solution to work, enough users need to use the toolbox and participate in its development and 

support of other users, as the support of the toolbox’s main authors can only cover a certain amount of the 

workload. Another limitation of Study A is due to a general time constraint in software exploration. While 

the study introduces flexible temporal and spatial filtering routines for univariate and multivariate analyses, 

the paper only reports the effect of the flexible temporal filtering, but does not further explore the origin 

of the improved outcome. Additionally, the effect of the spatial filtering for the multivariate analysis, as 

well as the multivariate analysis in general was not explored in Study A. While these two topics did not 

have to be revisited in the study, a replication of previous results could have provided relevant insights. 

 

Study B introduced the new results reporting toolbox AtlasReader, capable of providing useful 

figures and reports, as well as new information in the form of cluster tables. Given that this toolbox focuses 

only on a very small part of the neuroimaging domain and that the code base is rather compact, it does not 

suffer from the same limitations as mentioned in the previous paragraph. Nonetheless, the toolbox could 

be further extended to be even more inclusive by allowing other fMRI data formats than NIfTI and data in 

other spaces than the MNI-space. For example, a transformation of atlas association from MNI to Talairach 

space could potentially broaden the user base. Furthermore, the toolbox could be improved by providing a 

web-based interface or API based accessibility to allow the usage of AtlasReader without the need of 

installing it first. Another limitation of Study B is its lack of exploration of the new ‘cluster table’ feature. 

While the main author has already seen in multiple studies of his own that the usage of cluster tables 

provides additional and often more important information about which brain regions are associated with a 

certain statistical map, the usefulness and potential of these cluster tables should be explored further. One 

potential path to better understand the implication of these cluster tables could be the analysis of statistical 

maps from other studies, freely available via Neurovault.org, and see in which ones reported significant 

results contain clusters with unusual cluster associations. For example, clusters with more than 50% 

association to ventricles, white matter or other brain regions usually not associated with brain activation. 

The source of such clusters with high ratio of non gray matter activation can at this point only be 

speculated. It could be due to unfavorable spatial smoothing, missing application of appropriate brain 

masks, incorrect image normalization which could lead to heterogenous outcomes in the mapping into 

template space, or many other problematic data properties or erroneous pre-processing or analysis steps 

which could bias the final outcome. Another potentially limiting factor to consider is the number of atlases 
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which can be used to extract location information. Providing information tables for multiple atlases might 

allow users to pick and choose the ones they prefer, leading to subjective biases and counteracting the 

intended standardization purpose of this toolbox, with the goal of providing objective results reporting. 

However, even though AtlasReader currently provides information from ten different atlases, some of them 

only provide information for cortical or subcortical regions. Similarly, some atlases were created by 

analyzing histological architectonic, while others are based on functional connectivity maps.  

 

Study C investigated the brain mechanisms involved during the encoding and subsequent retrieval 

of semantically congruent multisensory objects using univariate and multivariate approaches. The 

limitations of this study are due to the paradigm employed in its design and the characteristics of the dataset 

that was recorded. While the paradigm itself was not a limitation, increasing the complexity of the stimulus 

categories would have allowed further investigations then what was already previously done in comparable 

EEG and fMRI studies. Due to the fact that the dataset used in this study was acquired in 2006, the scan 

sequence to record the data, as well as the resulting data characteristics were sub-optimal for a multivariate 

approach. Additionally, the number of trial repetitions and participants was (with respect to today’s 

standards) rather low and further complicated the multivariate analysis. Future attempts should acquire the 

data with a more recent scan sequence, collect more stimuli samples per subject and more subjects overall, 

and should record the signal with a higher temporal resolution to allow for a time-resolved analysis of the 

BOLD signal. This last point is further explored in the section “5.6 Future direction of fMRI-based 

investigation of multisensory integrations”, given that the third dataset in Study A addresses many of these 

issues. 

 

5.5 Future direction in fMRI processing and analysis routines 
Every year new studies come out establishing new standards to conduct fMRI studies (Nichols et 

al., 2017), to store fMRI datasets (Gorgolewski et al., 2016), introducing new quality control tools (Esteban 

et al., 2017) and automated fMRI preprocessing pipelines (Esteban, Markiewicz, et al., 2019), highlighting 

the importance of correctly applying a spatial (Sengupta et al., 2018) or temporal filter (Lindquist et al., 

2019), or pointing to problematic analysis routines (Eklund et al., 2016) or variability in the way different 

research teams analyze the exact same fMRI dataset (Botvinik-Nezer et al., 2020). In short, the technology 

and methodology around neuroimaging processing and analysis is ever evolving. 

 

This is great news for those who are capable to adapt to these changes and who can adapt their 

processing and analysis pipelines to these new insights. Unfortunately, many of the standard neuroimaging 

toolboxes take a long time to adapt to these changes and to release a new version. For example, SPM8 and 

SPM12 were released in 2009 and 2014, respectively. FSL version 5.0 and 6.0 were released in 2012 and 

2019, respectively. FreeSurfer’s versions 5, 6 and 7 were released in 2010, 2017 and 2020, respectively. 
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Even though the latest releases of some of these toolboxes are only a few years old, many researchers still 

perform their analysis on previous versions and are consequently using outdated processing and analysis 

methods. However, as highlighted in the introduction of this thesis and in Study A, the introduction of 

Nipype, BIDS, MRIQC, fMRIPrep, Nilearn, OpenNeuro.org and Neurovault.org has created new 

opportunities, new standards and new benchmarks against neuroimaging toolboxes need to measure 

themselves. 

 

 
Figure 6: Number of yearly publications using a specific keyword as listed on PubMed. This 
histogram shows the yearly number of articles listed on PubMed which use the keyword “fMRI confound” 
(in blue), “fMRI accelerated imaging (in orange) or “fMRI multivariate pattern analysis” (in green) for the 
years 2001 to 2020. 

 

An assessment of the total numbers of articles listed on PubMed each year (see Figure 6) reveals 

that multiple topics are gaining importance. The topic “fMRI confounds” addresses issues of fMRI 

preprocessing and how this can be improved. The topic “fMRI accelerated imaging” highlights an 

increased usage of accelerated acquisition sequences, and consequently also an increase of datasets 

recorded with higher temporal resolution. The topic “fMRI multivariate pattern analysis” shows an 

increased interest in MVPA. In a similar fashion, analyzing the number of publicly available datasets 

published on OpenNeuro.org or investigating the number of fMRI images analyzed with MRIQC which 

had used a multiband acceleration factor or which had a temporal resolution below 1000ms is increasing 

yearly (see Figure 7). 

 

Together, Figures 6 and 7 show that the neuroimaging field is increasing the total number of freely 

available data, that more and more datasets are recorded with higher temporal resolutions, and that topics 

like confounds and multivariate approaches gain in traction every year. For these reasons, the field needs 

to make sure that the four issues and three challenges as addressed by this thesis are met and sufficiently 

addressed. 
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Figure 7: Number of yearly new publications on OpenNeuro.org and number of fMRI images 
analyzed with MRIQC which were recorded with an multiband acceleration routine or had a TR 
below 1000ms. The panel on the left shows in blue the number of yearly new available datasets on 
OpenNeuro.org. The data was acquired directly via the homepage using web scraping. The middle and 
right panel show the yearly total number of fMRI images which were analyzed with MRIQC, which used 
a multiband acceleration routine (in orange) or had a TR below 1000ms (in green). The data for the middle 
and right panel were acquired using MRIQC’s feely available Web API. 

 

5.6 Future direction of fMRI-based investigation of multisensory integrations 
Study C led to important new results on how univariate and multivariate analyses can lead to new 

insights for the domain of multisensory integration, in particular in the context of semantic congruency. 

Future directions of fMRI-based investigations should build on these insights and combine them with the 

knowledge from Study A. In particular, the research could be extended in two important directions: First, 

all multivariate and univariate stimuli should also have an equivalent of pure visual and/or auditory noise. 

Such a paradigm will allow the investigation of multisensory integration not just with respect to vison, but 

also audition. Additionally, it allows to investigate if it is important for multisensory integration if the 

stimuli show naturalistic stimuli, or if pure noise is also enough to elicit a comparable brain response. 

Second, increasing the temporal resolution with which an fMRI dataset is recorded, will allow to move 

away from the idea that univariate fMRI analysis can only analyze amplitude-based activation differences 

and start analyzing the data with a time-resolved analysis approach. Looking at peak onset or signal rising 

time is usually only reserved for electroencephalography (EEG) studies. In the context of multisensory 

integration, such an time-resolved approach using EEG data has already let to important new insights 

(Matusz et al., 2015). Other researchers have already shown, that peak latencies and slopes differences in 

BOLD signal activation due to unisensory and multisensory activation can be observed (Martuzzi et al., 

2007). However, in that case the hemodynamic response function (HRF) had to be estimated as an 

intermediate tool to estimate the time sensitive information. Since the publication of that study, the scan 

sequences to register brain activation in the scanner have improved, and led to the before mentioned sub-

second temporal resolution capability. Other researchers have shown, that increasing the temporal 

resolution high enough, allows us to sufficiently sample the HRF, and therefore circumventing the error 

prone estimation (Narsude et al., 2016). 
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To account for these potential two future directions of investigation, the third dataset in Study A, 

was recorded with a high enough temporal resolution (i.e. 600ms) and a complex enough multisensory 

integration paradigm. Preliminary results are already very promising (see Figure 8). They indicate that a 

time-resolved analysis of fMRI data is possible and that stimuli specific time curves can be observed. The 

preliminary results shown in Figure 8 reveal that in both primary areas (A1 and V1) the ‘noise’ conditions 

elicit always less brain activation as their ‘object’ counterpart, except for the non-corresponding stimuli 

modality (i.e. visual stimuli in A1 and auditory stimuli in V1). Additionally, multisensory congruent 

stimuli seem to elicit slightly more brain activation as their incongruent counterpart, but not necessarily as 

the corresponding unisensory stimuli. Furthermore, as shown in previous studies and in Study C, LOC 

seems to be particularly sensitive for stimuli with realistic multisensory stimuli (i.e. with ‘objects’) and 

less reactive to pure noise multisensory stimuli. 

 

While the preliminary results depicted in Figure 8 are promising, it is important to highlight the full 

potential of this dataset. Already in the current analysis, differences in HRF between stimuli and brain 

regions can be observed. Further research will need to focus on more restrictive and smaller regions of 

interest and investigate the time course with respect to the aforementioned differences in peak latencies 

and slopes differences. Additionally, more in-depth multivariate analysis can be performed to investigate 

the activation patterns between these seven conditions, not just with respect to their pattern in amplitude, 

but also through time and other HRF specific characteristics. 
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Figure 8: Depiction of time-resolved HRF signal registered in three distinct brain regions, from a 
multisensory integration exposure paradigm, with seven distinct stimuli types. Each panel shows the 
percentage of signal change (y-axis) over time in seconds (x-axis) for the seven distinct stimuli: AVc_o = 
Audio-visual congruent stimuli depicting an animal; AVi_o = Audio-visual incongruent stimuli depicting 
an animal; AVn_n = Audio-visual stimuli of pure noise; A_n = Auditory only stimuli of pure noise; A_o 
= Auditory only stimuli depicting an animal; V_n = Visual only stimuli of pure noise; V_o = Visual only 
stimuli depicting an animal. The region of interests used for this depiction were taken from Neurosynth.org 
and contain the top 0.1% of voxels associated with the regions (top) primary auditory cortex or A1, 
(middle) primary visual cortex or V1 and (bottom) lateral occipital complex (LOC). The volume covered 
by the three rois was respectively (A1) 322 voxels or 8694 mm3, (V1) 240 voxels or 6480 mm3 and (LOC) 
281 voxels or 7587 mm3 and included bilateral regions.  
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5.7 Prospect 
Due to the invention of many new neuroimaging toolboxes and an ever growing and supportive 

open-source community, the processing and analysis of fMRI data becomes more accessible, easier to do 

and leads to more robust results. The introduction of tools like Nipype, BIDS, fMRIPrep and 

OpenNeuro.org have helped the field to quickly evolve and will be responsible for many new innovations. 

For example, the main developers of Nipype, which initially was created to provide an interface to common 

neuroimaging pipelines, are currently working on a more advanced toolbox called Pydra (Jarecka et al., 

2020). Pydra provides the same functionality as Nipype, but can be considered a general-purpose dataflow 

engine, allowing the integration of more advanced machine learning routines, as well as the potential 

analysis of other neuroimaging modalities such as EEG. The introduction of BIDS (Gorgolewski et al., 

2016), initially only intended for MRI datasets, led to the development of BIDS standards for other 

modalities, such as EEG (Pernet et al., 2019), iEEG (intracranial EEG) (Holdgraf et al., 2019), MEG 

(magnetoencephalography) (Niso et al., 2018), PET (positron emission tomography), microelectrode 

recordings (MER), genetic information and eye tracking data, amongst others. Furthermore, more and 

more neuroimaging toolboxes package their functionality into Docker containers and provide their service 

in standalone and operating system independent BIDS Apps (see https://bids-apps.neuroimaging.io/apps/). 

The introduction of fMRIPrep, intended for the preprocessing of functional MRI data, has led to the 

development of its equivalent for structural MRI data (sMRIPrep, see https://github.com/nipreps/smriprep) 

and diffusion MRI data (dMRIPrep, see https://github.com/nipreps/dmriprep ). The introduction of 

OpenfMRI.org, initially only intended for the sharing of functional MRI images, has led to the creation of 

OpenNeuro.org and allows the publication of any kind of MRI datasets, as well as EEG, MEG and PET 

datasets. The explosion of so many different innovative toolboxes, standards and supportive infrastructures 

is in large part due to an ever growing and welcoming open-source community in the neuroimaging field. 

To ensure that the strong community persists and can evolve further into the future, some of the main 

contributors behind these innovations created the NeuroImaging PREProcessing toolS (NiPreps) 

framework (Esteban, Wright, et al., 2019). 
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5.8 Conclusion 
The field of neuroimaging is ever evolving. New measuring technics, data processing and analysis 

approaches are developed constantly. It therefore is crucial to integrate these new innovations to current 

standards and adapt them to new insights from publications pointing to confounds, issues and 

opportunities. Consequently, good standards and processing toolboxes are needed. This thesis introduces 

two such new toolboxes in the form of fMRIflows (Study A) and AtlasReader (Study B) and showed how 

they can be used to conduct a cognitive fMRI study, using amongst others a multivariate analysis approach 

(Study C). As described later in this thesis, these studies created insights which can help us to guide our 

future direction in how we process and analyze fMRI datasets and how we can further investigate the 

mechanisms behind multisensory integration using fMRI. These three studies contribute to the innovation 

observed in the neuroimaging domain, strengthen the open-source community, allow the investigation of 

new neuroscience questions and support the establishment of clearer standards for processing pipelines for 

fMRI data analysis. 
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Abstract 

How functional MRI (fMRI) data are analyzed depends on the researcher and the toolbox used. It is 

not uncommon that the processing pipeline is rewritten for each new dataset. Consequently, code 

transparency, quality control and objective analysis pipelines are important for improving reproducibility 

in neuroimaging studies. Toolboxes, such as Nipype and fMRIPrep, have documented the need for and 

interest in automated analysis pipelines. Here, we introduce fMRIflows: a consortium of fully automatic 

neuroimaging pipelines for fMRI analysis, which performs standard preprocessing, as well as 1st- and 2nd-

level univariate and multivariate analysis. In addition to the standardized processing pipelines, fMRIflows 

also provides flexible temporal and spatial filtering to account for datasets with increasingly high temporal 

resolution and to help appropriately prepare data for multivariate analysis and improve signal decoding 

accuracy. This paper first describes fMRIflows’ structure and functionality, then explains its infrastructure 

and access, and lastly validates the toolbox by comparing it to other neuroimaging processing pipelines 

such as fMRIPrep, FSL and SPM. This validation was performed on three datasets with varying temporal 

resolution to ensure flexibility and robustness, as well as to showcase the improved capability of 

fMRIflows. The outcome of the validation analysis shows that fMRIflows preprocessing pipeline performs 

comparably to the ones obtained from other toolboxes. Importantly, fMRIflows’ flexible temporal filtering 

approach leads to improved signal-to-noise-ratio after preprocessing and increased statistical sensitivity, 

particularly in datasets with high temporal resolution. fMRIflows is a fully automatic fMRI processing 

pipeline which uniquely offers univariate and multivariate single-subject and group analyses as well as 

preprocessing. It offers flexible spatial and temporal filtering and thereby leads to more pronounced results 

for datasets with temporal resolutions at or below 1000ms. 

 

Keywords: Python, neuroimaging, data processing, pipeline, reproducible research 

 



Michael P. Notter University of Lausanne July 2021 

Innovation and standardization of processing pipelines for functional MRI data analysis -IV- 

3 

1 Introduction 
Functional magnetic resonance imaging (fMRI) is a well-established neuroimaging method used to 

analyze activation patterns in order to understand brain function. A full fMRI analysis includes 

preprocessing of the data, followed by statistical analysis and inference on the results, usually separated 

into 1st-level analysis (the statistical analysis within subjects) and 2nd-level analysis (the group analysis 

between subjects). The goal of preprocessing is to identify and remove nuisance sources, measure 

confounds, apply temporal and spatial filters and to spatially realign and normalize images to make them 

spatially conform (Caballero-Gaudes & Reynolds, 2017). A good preprocessing pipeline should improve 

the signal-to-noise ratio (SNR) of the data, ensure validity of inference and interpretability of results 

(Ashburner, 2009), reduce false positive and false negative errors in the statistical analysis and therefore 

improve the statistical power. 

Even though the consequences of inappropriate preprocessing and statistical inference are well 

documented (Power, Plitt, Laumann, & Martin, 2017; Strother, 2006), most fMRI analysis pipelines are 

still established ad-hoc, subjectively customized by researchers to each new dataset (Carp, 2012). This 

usage can be explained by the circumstance that most researchers, by habit or lack of time, stick with the 

neuroimaging software at-hand or reuse and modify scripts and code snippets from colleagues and previous 

projects, and do not always adapt their processing pipelines to the newest standard in neuroimaging 

processing. Rehashing processing pipelines is associated with problems like persisting bugs in the code 

and delays in updating individual analysis steps to the most recent standards. This can lead to far reaching 

consequences. Of course, the constant updating of pipelines to newest standards and softwares also bears 

the risk of introducing new bugs and might lead to the pitfall of blindly trusting new untested procedures. 

One solution to tackle this issue will require code transparency, good quality control and a collective 

development of well-tested objective analysis pipelines (Gorgolewski et al., 2016). Recent years have 

brought some important reformations to the neuroimaging community that go in this direction. 

First, the introduction of Nipype (Gorgolewski et al., 2011) made it easier for researchers to switch 

between different neuroimaging toolboxes, such as AFNI (Cox & Hyde, 1997), ANTs (Avants et al., 2011), 

FreeSurfer (Fischl, 2012), FSL (Jenkinson, Beckmann, Behrens, Woolrich, & Smith, 2012), and SPM 

(Friston, Penny, Ashburner, Kiebel, & Nichols, 2006). Nipype together with other software packages such 

as Nibabel (Brett et al., 2018) and Nilearn (Abraham et al., 2014) opened up the whole Python ecosystem 

to the neuroimaging community. Code can be shared between researchers via online services such as 

GitHub (https://github.com), and the whole neuroimaging software ecosystem can be run on any machine 

or server through the use of container software such as Docker (https://www.docker.com) or Singularity 

(https://www.sylabs.io). Combined with a continuous integration service such as CircleCI 

(https://circleci.com) or TravisCI (https://travis-ci.org), this allows the creation of easy-to-read, 

transparent, shareable and continuously tested open-source neuroimaging processing pipelines. 
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Second, the next major advancement in the neuroimaging field was the introduction of a common 

dataset standard, such as the NIfTI standard (https://nifti.nimh.nih.gov/). This was important for the 

formatting of neuroimaging data. The neuroimaging community gathered together in a consortium to 

define a standard format for the storage of neuroimaging datasets, the so-called Brain Imaging Data 

Structure (BIDS) (Gorgolewski et al., 2016). A common data structure format facilitates the sharing of 

datasets and makes it possible to create universal neuroimaging toolboxes that work out-of-the-box on any 

BIDS conforming dataset. Additionally, through services like OpenNeuro (Gorgolewski, Esteban, 

Schaefer, Wandell, & Poldrack, 2017), a free online platform for sharing neuroimaging data, one can test 

the robustness and flexibility of a new neuroimaging toolbox on hundreds of different datasets. 

Software toolboxes like MRIQC (Esteban et al., 2017) and fMRIPrep (Esteban et al., 2019) have 

shown how fruitful this new neuroimaging ecosystem can be and have highlighted the importance and 

need of good quality control and high-quality preprocessing workflows with consistent results from diverse 

datasets. Thus, the present software package, called fMRIflows, will be based on this new ecosystem and 

toolboxes, and will expand it to fully automated pipelines for univariate and multivariate individual and 

group analyses. 

Moreover, fMRIflows provides flexible temporal and spatial filtering, to account for two recent 

findings in the field. First, flexible spatial filtering can become of importance when performing 

multivariate analysis, as it has been shown that the correct spatial band-pass filtering can improve signal 

decoding accuracy (Sengupta, Pollmann, & Hanke, 2018). Second, correct temporal filtering during 

preprocessing is important and can lead to improved signal-to-noise ratio (SNR), especially for fMRI 

datasets with a temporal resolution rate below one second (Viessmann, Möller, & Jezzard, 2018), but only 

if the filter is applied orthogonally to the other filters during preprocessing to ensure that previously 

removed noise is not again reintroduced into the data (Lindquist, Geuter, Wager, & Caffo, 2019). Due to 

technical improvements in imaging recording through acceleration techniques such as GRAPPA (Griswold 

et al., 2002) and simultaneous multi-slice/multiband acquisitions (Feinberg et al., 2010; Feinberg & 

Setsompop, 2013; Moeller et al., 2010), faster sampling rates became possible, to the point that respiratory 

and cardiac signals can be sufficiently sampled in the BOLD signal. This creates new challenges for the 

preprocessing of functional images, especially when the external recording of those physiological sources 

cannot be achieved. fMRIflows tackles this challenge in an innovative way by leveraging notebook format. 

fMRIflows presents a consortium of fully automatic neuroimaging pipelines for fMRI analysis, 

performing standardized preprocessing, as well as 1st- and 2nd-level analyses for univariate and 

multivariate analysis, with the additional creation of informative quality control figures. fMRIflows is 

predicated on the insights and code base of MRIQC (Esteban et al., 2017) and fMRIPrep (Esteban et al., 

2019), extending their functionality with regard to the following aspects: (a) flexible temporal and spatial 

filtering of fMRI data, i.e. low- or band-pass filtering allowing for the exclusion of high-frequency 

oscillations introduced through physiological noise (Viessmann et al., 2018); (b) accessible and modifiable 
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code base; (c) automatic computation of 1st-level contrasts for univariate and multivariate analysis; and (d) 

automatic computation of 2nd-level contrasts for univariate and multivariate analysis.  

In this paper, we (1) describe the different pipelines included in fMRIflows and illustrate the 

different processing steps involved, (2) explain the software structure and setup, and (3) validate 

fMRIflows’ performance by comparing it to other widely used neuroimaging toolboxes, such as fMRIPrep 

(Esteban et al., 2019), FSL (Jenkinson et al., 2012) and SPM (Friston et al., 2006). 

 

2 Materials and Methods 

2.1.1 fMRIflows’ processing pipelines 
The complete code base of fMRIflows is open access and stored conveniently in six different Jupyter 

notebooks on https://github.com/miykael/fmriflows. The first notebook does not contain any processing 

pipeline, but rather serves as a user input document that helps to create JSON files, which will contain the 

execution specific parameters for the five processing pipelines contained in fMRIflows: (1) anatomical 

preprocessing, (2) functional preprocessing, (3) 1st-level analysis, (4) 2nd-level univariate analysis and (5) 

2nd-level multivariate analysis. Each of these five pipelines stores its results in a sub hierarchical folder, 

specified as an output folder by the user. In the following section, we explain the content of those six 

Jupyter notebooks. 

 

Specification preparation 
Each fMRIflows processing pipeline needs specific input parameters to run. Those parameters range 

from subject ID and, number of functional runs per subject, to requested voxel resolution after image 

normalization, etc. Each notebook will read the relevant specification parameters from a predefined JSON 

file that starts with the prefix “fmriflows_spec”. There is one specification file for the anatomical and 

functional preprocessing, one for the 1st and 2nd level univariate analysis, and one for the 2nd-level 

multivariate analysis. For an example of these three JSON files, see Supplementary Note 1. The first 

notebook contained in fMRIflows, called 01_spec_preparation.ipynb, can be used to create those 

JSON files, based on the provided dataset and some standard default parameters. It does so by using 

Nibabel v2.3.0 (Brett et al., 2018), PyBIDS v0.8 (Yarkoni et al., 2019) and other standard Python libraries. 

It is up to the user to change any potential processing parameter should they be different from the used 

default values. 
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Anatomical preprocessing 
The anatomical preprocessing pipeline is contained within the notebook 

02_preproc_anat.ipynb and uses the JSON file fmriflows_spec_preproc.json for parameter 

specification such as voxel resolution. If a specific value is not set, fMRIflows normalizes to an isometric 

voxel resolution of 1 mm3 by default. However, the user can also choose an anisometric voxel resolution 

that varies in all three dimensions. Additionally, the user can decide to have a fast or precise normalization. 

The precise normalization can take up to eight times as long as the fast approach but guarantees a 

normalization of high precision. For an example of the JSON file content, see Supplementary Note 1. 

The anatomical preprocessing pipeline only depends on the subject specific T1-weighted (T1w) 

anatomical images as input files. The individual processing steps are visualized in Figure 1 and consist of: 

(1) image reorientation, (2) cropping of field of view (FOV), (3) correction of intensity non-uniformity 

(INU), (4) image segmentation, (5) brain extraction and (6) image normalization. For a more detailed 

description of the steps involved in this processing pipeline, see Supplementary Note 2. 

 

 
Figure 1: Depiction of fMRIflows’ anatomical preprocessing pipeline. Arrows indicate dependency 

between the different processing steps and data flow. Name of each node describes functionality, with the 

corresponding software dependency mentioned in brackets. 
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Functional preprocessing 
The functional preprocessing pipeline is contained within the notebook 03_preproc_func.ipynb 

and uses the JSON file fmriflows_spec_preproc.json for parameter specification. As specification 

parameters, users can indicate if slice-time correction should be applied or not, and if so which reference 

timepoint should be used. The user can also indicate to which isometric or anisometric voxel resolution 

functional images should be sampled to, and if the sampling is into subject or template space. For the 

template space, the ICBM 2009c nonlinear asymmetric brain template is used (Fonov et al., 2011). 

Furthermore, users can specify possible values for low-, high- or band-pass filters in the temporal or spatial 

domain. Additionally, to investigate nuisance regressors, users can specify the number of CompCor 

(Behzadi, Restom, Liau, & Liu, 2007) or independent component analysis (ICA) components they want to 

extract and which threshold values they want to use to detect outlier volumes. The implications of those 

parameters will be explained in more details in the following sections. For an example of the JSON file 

content, see Supplementary Note 1. 

The functional preprocessing pipeline depends as inputs on the output files from the anatomical 

preprocessing pipeline, as well as the subject-specific functional images and accompanying descriptive 

JSON file that contains information about the temporal resolution (TR) and slice order of the functional 

image recording. This JSON file is part of the BIDS standard and therefore should be available in the BIDS 

conform dataset. The individual processing steps are schematized in Figure 2 and consist of: (1) image 

reorientation, (2) non-steady-state detection, (3) creation of functional brain mask, (4) slice time correction, 

(5) estimation of motion parameters, (6) two-step estimation of coregistration parameters between 

functional and anatomical image, (7) finalization of motion parameters, (8) single-shot spatial interpolation 

applying motion correction, coregistration and if specified normalizing images to the template image, (9) 

construction and application of brain masks, (10) temporal filtering and (11) spatial filtering. It is important 

to mention that the functional preprocessing is done for each functional run separately to prevent inter-run 

contaminations. For a more detailed description of the steps involved in this processing pipeline, see 

Supplementary Note 3. 
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Figure 2: Depiction of fMRIflows’ functional preprocessing pipeline. Arrows indicate dependency 

between the different processing steps and data flow. Name of each node describes functionality, with the 

corresponding software dependency mentioned in brackets. Steps that can be grouped into specific sections 

are contained within a red box to facilitate understanding of the pipeline. Color of arrows indicated if 

connection stays within a section (red) or not (blue). Nodes depicted as gray boxes indicate that they can 

be run multiple times with iterating input values, i.e. performing a spatial smoothing with an FWHM value 

of 4 and 8mm. 
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1st-level analysis 
The first level analysis pipeline is contained within the notebook 04_analysis_1st-

level.ipynb and uses the JSON file fmriflows_spec_analysis.json for parameter specification. 

As specification parameters, users can indicate which nuisance regressors to include in the GLM, if outliers 

should be considered, and if the data is already in template space or if this normalization should be done 

after the estimation of the contrasts. Users can also specify other GLM model parameters, such as the high-

pass filter value and the type of basis function that should be used to model the haemodynamic response 

function (HRF). Additionally, the users will also specify a list of contrasts they want to be estimated, or if 

they want to create specific contrasts for each stimulus column in the design matrix, and/or for each session 

separately, which then later might also be used for multivariate analysis. For an example of the JSON file 

content, see Supplementary Note 1. 

The 1st-level analysis pipeline depends on a number of outputs from the previous anatomical and 

functional preprocessing pipelines, i.e. the TSV (tab separated value) file containing motion parameters 

and confound regressors, a text file indicating the number of non-steady-state volumes removed from the 

functional image, and a text file containing a list of indexes identifying outlier volumes. Additionally, the 

1st-level analysis pipeline also requires BIDS conform events files containing information on the applied 

experimental design, including types of conditions and their respective onsets and durations. The 

individual processing steps included in the 1st-level analysis consist of: (1) collecting preprocessed files 

and model relevant information, (2) model specification and estimation, (3) univariate contrast estimation, 

(4) optional preparation for multivariate analysis, (5) optional spatial normalization of contrasts (Figure 

3). All of the relevant steps, that is model creation, estimation and contrast computation are performed 

with SPM version 12. For a more detailed description of the steps involved in this processing pipeline, see 

Supplementary Note 4. 
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Figure 3: Depiction of fMRIflows’ 1st-level analysis pipeline. Arrows indicate dependency between the 

different processing steps and data flow. Name of each node describes functionality, with the 

corresponding software dependency mentioned in brackets. Sections that can be grouped into specific 

sections are contained within a red box to facilitate understanding of the pipeline. Color of arrows indicated 

if connection stays within a section (red) or not (blue). Nodes depicted in green are optional and can be 

run if spatial normalization was not yet performed during preprocessing.  
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2nd-level univariate analysis 
The second level univariate analysis pipeline is contained within the notebook 05_analysis_2nd-

level.ipynb and uses the JSON file fmriflows_spec_analysis.json for parameter specification. 

Users can specify the probability value used as a cutoff for the threshold of the GM probability tissue map 

in template space that is later used during the model estimation. Additionally, users can specify voxel- and 

cluster-threshold topological thresholding of the statistical contrast, as well as relevant AtlasReader (Notter 

et al., 2019) parameters for the creation of the output tables and figures. 

The 2nd-level univariate analysis pipeline depends only on the estimated contrasts from the 1st-level 

univariate analysis. No further contrast specification is required as fMRIflows currently only implements 

a simple one-sample T-test. The individual processing steps included in the 2nd-level univariate analysis 

consist of: (1) gathering of the 1st-level contrasts, (2) creation and estimation of 2nd-level model, (3) 

estimation of contrast estimation, (4) topological thresholding of contrasts, (5) results creation with 

AtlasReader. As for the 1st-level analysis, all of the relevant model creation, estimation and contrast 

computation are performed with SPM12. For a more detailed description of the steps involved in this 

processing pipeline, see Supplementary Note 5. 

 

2nd-level multivariate analysis 
The second level multivariate analysis pipeline is contained within the notebook 

06_analysis_multivariate.ipynb and uses the JSON file 

fmriflows_spec_multivariate.json for parameter specification. Users can define a list of 

classifiers to use for the multivariate analysis, the sphere radius and step size of the searchlight approach. 

To perform a 2nd-level analysis of searchlight results users can decide between a classical GLM approach 

testing against chance level and a more recommended permutation based method as described in Stelzer, 

Chen, & Turner (2013) with the option of determining the number of permutations. Additionally, users 

can specify voxel- and cluster-threshold topological thresholding of the statistical contrast, as well as 

relevant AtlasReader parameters for the creation of the output tables and figures. 

The 2nd-level multivariate analysis pipeline depends on the estimated contrasts from the 1st-level 

multivariate analysis, the associated CSV file containing a list of the corresponding contrast labels and a 

list of binary classification identifiers. In contrast to the other notebooks, this notebook uses Python 2.7 to 

accommodate the requirements of PyMVPA v2.6.5 (Hanke et al., 2009). The individual processing steps 

included in the 2nd-level multivariate analysis consist of: (1) data preparation for the analysis with 

PyMVPA, (2) searchlight classification, (3) computation of group analysis using a T-test, (4) computation 

of group analysis according to Stelzer et al. (2013), and (5) results creation with AtlasReader. For a more 

detailed description of the steps involved in this processing pipeline, see Supplementary Note 6. 
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2.1.2 Infrastructure and access to fMRIflows 
The source code of fMRIflows is available at GitHub (https://github.com/miykael/fmriflows) and is 

licensed under the BSD 3-Clause “New” or “Revised” License. The code is written in Python v3.7.2 

(https://www.python.org), stored in Jupyter Notebooks v4.4.0 (Kluyver et al., 2016) and distributed via 

Docker v18.09.2 (https://docker.com) containers that are publicly available via Docker Hub 

(https://hub.docker.com). The usage of Docker allows the user to run fMRIflows on any major operating 

system, with the following command: 

 
docker run -it -p 9999:8888 -v /home/user/ds001:/data miykael/fmriflows 

 

The first flag -it indicates that the docker container should be run in interactive mode, while the 

second flag -p 9999:8888 defines the port (here 9999) that we want to use to access the Jupyter 

Notebooks via the web-browser. The third flag, -v /home/user/ds001:/data tells fMRIflows the 

location of the BIDS conform dataset that should be mounted in the docker container, here located at 

/home/user/ds001. Once the docker container is launched, the interactive Jupyter Notebooks can be 

accessed through the web-browser. 

fMRIflows uses many different software packages for the individual processing steps. The 

neuroimaging software that are used are: Nipype v1.1.9 (Gorgolewski et al., 2011), FSL v5.0.9 (Smith et 

al., 2004), ANTs v2.2.0 (Avants et al., 2011), SPM12 v7219 (Penny, Friston, Ashburner, Kiebel, & 

Nichols, 2011), AFNI v18.0.5 (Cox & Hyde, 1997), Nilearn v0.5 (Abraham et al., 2014), Nibabel v2.3.0 

(Brett et al., 2018), PyMVPA v2.6.5 (Hanke et al., 2009), Convert3D v1.1 (https://sourceforge.net/p/c3d), 

AtlasReader v0.1 (Notter et al., 2019) and PyBIDS v0.8 (Yarkoni et al., 2019). In addition to some standard 

Python libraries, fMRIflows also uses Numpy (Oliphant, 2007), Scipy (Jones, Oliphant, Peterson, & 

others, 2001), Matplotlib (Hunter, 2007), Pandas (McKinney & others, 2010) and Seaborn 

(http://seaborn.pydata.org). 

With every new pull request pushed to the GitHub repository of fMRIflows, a test instance on 

CircleCI (https://circleci.com) is deployed to test the complete code base for execution errors. This 

framework allows the continuous integration of new code to fMRIflows, and guarantees the general 

functionality of the software package. Outputs are not controlled for their correctness. 

 

2.1.3 Validation of fMRIflows 
fMRIflows was validated in two phases. In Phase 1, we validated the proficiency of the toolbox by 

applying it on different kinds of fMRI datasets conforming to the BIDS standard (Gorgolewski et al., 2016) 

available via OpenNeuro.org (Gorgolewski et al., 2017). Insights during this phase allowed us to improve 

the code base and make fMRIflows robust to a diverse set of datasets. In Phase 2, we compared the 

performance of the toolbox to similar neuroimaging preprocessing pipelines such as fMRIPrep, FSL, and 
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SPM. To better understand where fMRIflows overlaps or diverges from comparable processing pipelines, 

we investigated the preprocessing, subject-level and group-level outcomes for all four toolboxes, run on 

three different datasets. 

 

Phase 1: Proficiency validation 
To investigate the capabilities and flaws of the initial implementation of the toolbox, fMRIflows 

was run on different datasets, either available publicly via OpenNeuro.org or available privately to the 

authors. Such an approach allowed the exploration of datasets with different temporal and spatial 

resolutions, SNRs, FOVs, numbers of slices, scanner characteristics, and other sequence parameters, such 

as acceleration factors and flip angles. 

 

Phase 2: Performance validation 
To validate the performance of fMRIflows, we used three different task-based fMRI datasets and 

compared its preprocessing to the three neuroimaging processing pipelines fMRIPrep, FSL and SPM. 

Comparison was done on preprocessing, subject-level and group-level outputs. Because of differences in 

how FSL and SPM perform subject- and group-level analyses and due to the lack of such routines in 

fMRIPrep, all subject- and group-level analyses for the performance validation were performed using 

identical Nistats (Abraham et al., 2014) routines. 

The three datasets (see Table 1) were all acquired on scanners with a magnetic field strength of 3 

Tesla and differ in many sequence parameters, most notably in the temporal resolution with which they 

were recorded. This is especially important as we aim to highlight that the right handling of temporal 

filtering is crucial for datasets with a temporal resolution below 1000ms. 

 

  



Michael P. Notter University of Lausanne July 2021 

Innovation and standardization of processing pipelines for functional MRI data analysis -XV- 

14 

Table 1: Overview of the datasets used to validate fMRIflows. 

Dataset TR2000 TR1000 TR600 

Temporal resolution 2000ms 1000ms 600ms 

Spatial resolution 3.5 x 3.5 x 3.3 2.0 x 2.0 x 2.4 3.0 x 3.0 x 3.0 

Number of slices 36 64 24 

Slice Order Descending Unknown Interleaved 

Coverage Whole brain Whole brain Slab 

Volumes per run 275 453 600 

Number of runs 4 4 6 

Acceleration Factor None 4 3 

Magnetic strength 3 Tesla 3 Tesla 3 Tesla 

Number of subjects 12 20 17 

Sequence type 2D-EPI Multi-Band SMS 

Task Audio-visual memory task Mixed gamble task Audio-visual observation task 

Data Availability OpenNeuro.org 

(ds001345, v 1.0.1) 

OpenNeuro.org 

(ds001734, v.1.0.4) 

OpenNeuro.org 

(will be made available after 

publication of experimental work) 

 

Dataset TR2000 has a comparably low temporal and spatial resolution. It serves as a standard 

dataset, recorded with a standard EPI scan sequence. The dataset and paradigm are described in more 

details in Notter et al. (under review). In short, participants performed a continuous recognition task and 

indicated for each image whether it is old or new. When the image was presented for the first time (new) 

it was either presented with no sound (unisensory visual context) or together with a sound (multisensory 

context). 

Dataset TR1000 has a rather high temporal and spatial resolution and serves as an advanced dataset, 

recorded with a scan sequence using a multiband acceleration technique. The dataset and paradigm are 

described in more detail in Botvinik-Nezer et al. (2019). In short, participants performed a mixed gambling 

task in which they were asked to either accept or reject a possible monetary gain or loss. 

Dataset TR600 has a very high temporal resolution with a moderate spatial resolution and serves 

as an extreme dataset, recorded with scan sequences using a simultaneous multi-slice (SMS) acceleration 

technique (Feinberg et al., 2010). This dataset was collected for another project. In short, participants were 

shown auditory, visual or audiovisual stimuli containing either an animal (as an image or sound), pure 

noise or both together. Participants performed a discrimination task in which they had to indicate if they 

perceived a stimuli with an animal in it or not, independent of the stimuli modality. The stimuli were either 

presented in a unisensory or multisensory context. 

 

All participants of the Datasets TR2000 and TR600 have been included in the performance 

validation, while only the first 20 out of the 120 total participants of the Dataset TR1000 was used in order 
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to reduce computation time and make this dataset comparable to the other two. Datasets TR2000 and 

TR1000 are already publicly available through the OpenNeuro platform. Dataset TR600 is in preparation 

to be published on OpenNeuro as well. Until then, this dataset is available upon request. 

The preprocessing pipelines with fMRIflows, fMRIPrep, FSL and SPM were based on the default 

parameters and only differed in the following points from their standard implementations: (1) Functional 

images were resampled to an isometric voxel resolution according to the dominant resolution dimension 

within a dataset; (2) Spatial smoothing of the functional images is applied after preprocessing of the 

images, using a Nilearn routine and a smoothing kernel with a Full Width at Half Maximum (FWHM) of 

6mm, in order to keep the approaches comparable, as fMRIPrep does not allow spatial smoothing of 

functional images; (3) Anatomical images in the FSL pipeline were first cropped to a standard FOV, 

followed by brain extraction using FSL’s BET before FSL’s FEAT was launched; (4) In the case of FSL, 

the normalization from structural to standard space was done using a non-linear warping approach with 12 

degrees of freedom and a spline interpolation model; (5) In the case of SPM, the template brain for the 

normalization was its standard tissue probability brain TPM, while for fMRIflows, fMRIPrep and FSL, the 

ICBM 2009c nonlinear asymmetric brain template was used. 

The statistical inference was not performed on any of the investigated toolboxes to prevent the 

introduction of a software specific bias. The 1st- and 2nd-level analysis was performed using Nistats, Nilearn 

and other Python toolboxes and only differed between the toolboxes in the following ways: (1) the 

estimated motion parameters added to the design matrix during the 1st-level analysis differed for each 

toolbox as they were based on the software-specific preprocessing routine; (2) the number of volumes per 

run used during the 1st-level analysis of fMRIflows might differ slightly from the other approaches, as the 

fMRIflows routine removes non-steady state volumes during the preprocessing; (3) SPM used its own 

tissue probability map to create a binary mask restricted to gray matter voxels during the group analysis, 

while the other three toolboxes used the ICBM 2009c gray matter probability map instead. 

To compare the unthresholded group statistic maps between the toolboxes, we created for each 

pairwise combination of preprocessing approach a Bland-Altman 2D histogram plot, as described by 

Bowring, Maumet, & Nichols (2018). These plots show the difference between the statistic value (y-axis), 

against the mean statistic value (x-axis) for all voxels within the intersection of the respective brain mask. 

In other words, it summarized in a 2D histogram plot, for each voxel how much higher the statistical value 

in toolbox B is (y-axis), in comparison to toolbox A’s statistical value (x-axis). 

The complete lists of parameters, the scripts to perform preprocessing, 1st- and 2nd-level analysis and 

the scripts to create individual figures can be found on fMRIflows GitHub page 

(https://github.com/miykael/fmriflows/tree/master/paper). Derivatives generated for the validation in 

phase 2 can be inspected and downloaded on NeuroVault (Gorgolewski et al., 2015) under the following 

links: (1) Standard deviation maps of temporal averages after preprocessing 

(https://identifiers.org/neurovault.collection:5645), (2) temporal SNR maps after preprocessing 

(https://identifiers.org/neurovault.collection:5713), (3) binarized 1st-level activation count maps 
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(https://identifiers.org/neurovault.collection:5647), (4) 2nd-level activation maps 

(https://identifiers.org/neurovault.collection:5646). 

 

2.2 Results 

2.2.1 Summary of outputs obtained by fMRIflows’ processing pipelines 
Output generated after executing the anatomical preprocessing pipeline 

After the execution of the anatomical preprocessing pipeline, the following files are generated for 

each subject: (1) image of the inhomogeneity-corrected full head image, (2) image of the extracted brain, 

(3) binary mask used for the brain extraction, (4) individual tissue probability maps for gray matter (GM), 

white matter (WM), cerebrospinal fluid (CSF), skull and head, (5) normalized anatomical image in 

template space (6) reverse-normalized template image in subject space, (7) plus the corresponding 

transformation matrices used for output 5 and 6. Each anatomical preprocessing output folder also contains 

(8) the ICBM 2009c brain template used for the normalization, sampled to the requested voxel resolution. 

In addition to these files, the following three informative figures are generated: (1) tissue 

segmentation, (2) brain extraction and (3) spatial normalization of the anatomical image. A shortened 

version of those three figures, as well as their explanation are shown in Figure 4. 

 

Figure 4: Summary of output figures generated by fMRIflows after executing the anatomical 
preprocessing pipeline. (Top) Coronal view of the image segmentation output, showing gray matter tissue 

in green, white matter tissue in beige, cerebrospinal fluid in blue. (Middle) Sagittal view of the brain 

extraction output, showing the extracted brain image in red, and the original anatomical image in gray. 

(Bottom) Axial view of the spatial normalization output, showing the normalized brain image highlighted 

in yellow, overlaid over the ICBM 2009c brain template in gray. Regions in red and blue show negative 

and positive deformation discrepancy between the normalized subject image and the template. 
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Output generated after executing the functional preprocessing pipeline 
After the execution of the functional preprocessing pipeline, the following files are generated 

separately for each subject, each functional run and each temporal filtering: (1) text file indicating which 

volumes were detected as outliers, (2) tabular separated (TSV) file containing all extracted confound 

regressors, (3) text file containing the six motion parameter regressors according to FSL’s output scheme, 

(4) binary masks for the brain, (5) masks for anatomical and functional component based noise correction, 

(6) functional mean image, and (7) completely preprocessed functional images, separated by spatial 

smoothing approaches. Each subject folder also contains (8) one text file per functional run indicating the 

number of non-steady-state volumes at the beginning of run. 

The following is a more detailed description of the multiple confounds fMRIflows estimates during 

functional preprocessing: 

Confounds based on motion parameters: In addition to the head motion parameters created during 

preprocessing, fMRIflows also computes (1) 24-parameter Volterra expansion of the motion parameters 

(Friston, Williams, Howard, Frackowiak, & Turner, 1996) using custom scripts and (2) Framewise 

Displacement (FD) component (Power, Barnes, Snyder, Schlaggar, & Petersen, 2012) using Nipype. 

Confounds based on global signal: Functional images before spatial smoothing were used to 

compute confound regressors, such as (1) DVARS, which represents the spatial standard deviation of the 

signal after temporal differencing, to identify motion-affected frames (Power et al., 2012), using Nipype 

and (2) four global signal curves representing the average signal in the total brain volume (TV), GM, WM 

and CSF, using Nilearn. 

Detection of outlier volumes: The user can specify which of the six signal curves for FD, DVARS 

and average signal in TV, GM, WM and CSF to use to identify outlier volumes (see Figure 5A). Those are 

volumes that have larger fluctuations in the signal values in a given volume, compared to the z-scored 

standard deviation throughout the time course. The exact threshold for each curve can be adapted by the 

user, but its default value is set to a z-value of 3.27, representing 99%, for the FD, DVARS and TV signal. 

The identification number of each outlier volume is stored in a text file that might be used in the 1st-level 

pipeline during the GLM model estimation to remove the effect of those volumes from the overall analysis, 

also known as censoring (Caballero-Gaudes & Reynolds, 2016). 

Confounds based on signal components: Using the temporal filtered functional images, two 

different kinds of approaches are performed to extract components that could be used for denoising or 

dimensionality reduction of the data. The first approach is called CompCor (Behzadi et al., 2007) and uses 

principal component analysis (PCA) to estimate the main sources of noise within specific confound 

regions. Regions are either defined by their temporal or anatomical characteristics. The temporal CompCor 

approach (tCompCor) considers the 2% most variable voxels within the confound brain mask as sources 

of confounds. The anatomical CompCor approach (aCompCor), considers voxels within twice eroded WM 

and CSF brain masks as sources of confounds. The user can specify how many aCompCor and tCompCor 

components should be computed, but the default value is set to five each. The second approach uses 
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independent component analysis (ICA) to perform source separation in the signal. Using Nilearn’s CanICA 

routine, fMRIflows computes by default the top ten independent components throughout the confound 

masks. The number of confounds to extract can be adjusted by the user. 

Storage of confound information: All of the confound curves computed after functional 

preprocessing are stored in a TSV file to allow for easy access. 

Diverse set of overview figures: To allow for visual inspection of the numerous outputs generated 

after the execution of the functional preprocessing pipeline, fMRIflows creates many informative overview 

figures. These overviews cover the motion parameters used for head motion correction, the anatomical and 

temporal CompCor components, FD, DVARS, average signal in TV, GM, WM and CSF, and the ICA 

components. fMRIflows also creates a brain overview figure showing the extent of the different masks 

applied during functional preprocessing, a spatial correlation map between the ICA components and the 

individual voxel signal, and a carpet plot according to Power (2017) and Esteban et al. (2019). To better 

visualize underlying structures in the carpet plot the time series traces are sorted by their correlation 

coefficients to the average signal within a given region, allowing for a positive or negative time lag of 2 

volumes. A shortened version of all these figures, as well as their explanations are shown in Figures 5-7. 
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Figure 5: Example of general output figures generated by fMRIflows after executing the functional 
preprocessing pipeline. The dataset used to generate these figures was recorded with a TR of 600ms and 

had a total of 600 volumes per run. Preprocessing included a low-pass filter at 0.2 Hz. Distribution plots 

on the right side of the figures in part A and B represent value frequency in y-direction. A) Depiction of 

the nuisance confounds FD, DVARS and TV. Detected outlier volumes are highlighted with vertical black 

bars. B) Estimation of translation head motion after application of low-pass filtering at 0.2 Hz in color, and 

before temporal filtering in light gray. C) Depiction of brain masks used to compute DVARS (red), and 

temporal (green) and anatomical (blue) CompCor confounds, overlaid on the mean functional image 

(grey). 

 

Output generated after executing the 1st-level analysis pipeline 
After the execution of the 1st-level analysis, the following files are generated for the univariate 

analysis: (1) contrasts and statistical map of the specified contrasts, (2) SPM.mat file containing the 

information relevant for the model, (3) visualization of the design matrix used in the 1st-level model 

depicting the regressor for the stimuli, motion and confounds, and (4) glass brain plot for each estimated 
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contrast thresholded at the top 2% of positive and negative values created with AtlasReader (Notter et al., 

2019) to provide a general overview of the quality of contrasts. The multivariate analysis part of this 

notebook creates: (1) one contrast image per condition and session which later can be used as samples for 

the multivariate analysis, and (2) a label file identifying the condition of each contrast. 

 

 
Figure 6: Example of ICA output figures generated by fMRIflows after executing the functional 
preprocessing pipeline. The dataset used to generate these figures was recorded with a TR of 600ms and 

had a total of 600 volumes per run. A) Correlation between the first three ICA components and the 

functional image over time (left) and the corresponding power density spectrum with frequency on the x-

axis (right). First component most likely depicts respiration at 0.6 Hz, while third component is most likely 

visual activation induced by the visual stimulation task during data acquisition. B) Correlation strength 

between a given ICA component and the location in the brain volume for the first three ICA components. 

 

Output generated after executing the 2nd-level analysis pipeline 
After the execution of the 2nd-level univariate analysis, the following files are generated, 

individually for each contrast and spatial and temporal filter that was applied: (1) contrasts and statistical 

map of one-sample t-test contrast, (2) SPM.mat file containing the information relevant for the model, (3) 

thresholded statistical maps with corresponding AtlasReader outputs (i.e. glass brain plot to provide a 
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result overview, cross section plot showing each significant cluster individually, informative tables 

concerning the peak and cluster extent of each cluster). 

After the execution of the 2nd-level multivariate analysis, the following files are generated, for each 

specified comparison individually: (1) subject-specific permutation files needed for correction according 

to Stelzer et al. (2013), (2) group-average prediction accuracy maps as well as corresponding feature-wise 

maps representing chance level acquired via bootstrapping approach (Stelzer et al., 2013), (3) group-

average prediction accuracy maps after correction for multiple comparisons and (4) thresholded statistical 

result maps with corresponding AtlasReader outputs (i.e. glass brain plot to provide a result overview, 

cross section plot showing each significant cluster individually, informative tables concerning the peak 

and cluster extent of each cluster). 

 

 
Figure 7: Example of a carpet plot figures generated by fMRIflows after executing the functional 
preprocessing pipeline. The dataset used to generate these figures was recorded with a TR of 600ms and 

had a total of 600 volumes per run. This panel shows the signal after preprocessing for every other voxel 

(y-axis), over time in volumes (x-axis). The panel shows voxels in the gray matter (top part), white matter 

(between blue and red line) and CSF (bottom section). The data was standardized to the average signal, 

and ordered within a given region according to the correlation coefficient between a voxel and to the 

average signal of this region. 

 

2.2.2 Results of phase 1: Proficiency validation 
Due to differences in scanner hardware, scan protocols, research requirements and expertise of the 

person who records the images, fMRI datasets can come in many different shapes and forms. We ran 

fMRIflows on several datasets to make sure that it is capable of dealing with differences inherent to each 

of them. In this section, we summarize the main issues we encountered during this process and describe 

how we tackled each of them.  
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Image orientation 
fMRIflows reorients all anatomical and functional images at the beginning of the preprocessing 

pipeline to the neurological convention RAS (right, anterior, superior) to prevent failures of coregistration 

between anatomical and functional images due to orientation mismatches within subjects. 

 
Image extent 

Some datasets have unusually large image coverage along the inferior-superior axis, which means 

that their anatomical images also often contain part of the participant’s neck. This can lead to unwanted 

outcomes in certain neuroimaging routines, as they were not tested for such additional tissue coverage. 

This is most pronounced in the case of FSL’s BET routine, which has difficulty finding the center and 

extent of the brain, or SPM’s segmentation routine that depends on the distribution of the voxel intensities 

within the whole volume. To prevent these and other unforeseen behaviors, fMRIflows uses FSL’s 

robustfov routine to restrict all anatomical images to the same spatial extent. 

 

Image inhomogeneity 
Depending on the scan sequence protocol or the scanner hardware itself, some datasets can contain 

strong image intensity inhomogeneities, caused by an inhomogeneous bias field during data acquisition. 

This can have a negative effect on many different neuroimaging routines, most pronounced in brain 

extraction and image segmentation. To tackle this issue, fMRIflows uses ANTs’ N4BiasFieldCorrection 

routine, which allows the analysis of datasets with even low image quality and strong image 

inhomogeneity. In the anatomical preprocessing pipeline, inhomogeneity correction is applied to improve 

the final output image. In the functional preprocessing pipeline, inhomogeneity correction is only applied 

to improve the estimation and extraction of different tissue types, but does not directly change the values 

in the final output image. 

 

Brain extraction 
Different brain extraction routines were explored to ensure: 1) that the extraction is sufficiently 

robust to handle different kinds of datasets, 2) that it is neither too conservative nor liberal with the removal 

of non-brain tissues, and 3) that it has an overall reasonably fast computation time. The best and most 

consistent results were achieved using SPM’s image segmentation routine, followed by a specific 

thresholding and merging of the GM, WM and CSF probability maps. FSL’s BET routine was not robust 

enough to lead to stable results on all tested datasets. While ANTs’ Atropos routine led to comparably 

good results, we went with SPM because of the much faster computation time. 

 

Image interpolation 
For the single-shot spatial interpolation during normalization, we used ANTs and explored 

NearestNeighbor, BSpline and LanczosWindowedSinc (Lanczos, 1964) interpolation. NearestNeighbor 
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interpolation led to unnatural looking voxel-to-voxel value transitions. BSpline led in general to good 

results, but had issues especially with datasets that did not have full brain coverage and introduced some 

rippling low value fluctuations at the borders of non-zero voxels. LanczosWindowedSinc interpolation led 

to the best outcome by minimizing the smoothing effects and preventing the introduction of additional 

confounds reaffirming the observations from fMRIPrep (Esteban et al., 2019). 

 

2.2.3 Results of phase 2: Performance validation 
The performance validation of fMRIflows was conducted on three different task-based fMRI 

datasets, as described in Table 1. The preprocessing of fMRIflows was compared to other neuroimaging 

processing pipelines such as fMRIPrep, FSL and SPM. We tested fMRIflows’ preprocessing pipeline with 

and without a temporal low-pass filter of 0.2 Hz to better understand performance differences between 

toolboxes and to stress the importance of adequate temporal filtering when processing fMRI datasets with 

high temporal resolution. 

 

Estimated spatial smoothness after functional preprocessing 
Each preprocessing step that resamples a functional image, such as slice time correction, motion 

correction, spatial or temporal interpolation has the potential to increase the spatial smoothness in the data. 

The less smoothness is introduced during preprocessing, the closer the data are to their initial version. We 

used AFNI’s 3dFWHMx to estimate the average spatial smoothness (FWHM) of each functional image 

after preprocessing to compare the amount of data manipulation that was applied to the raw data (see 

Figure 8). As this FWHM value depends on the voxel resolution of a given dataset, we normalized it by 

the volume of the voxel to achieve a common FWHM value per 1mm3. 

Overall, the estimated spatial smoothness after preprocessing with fMRIflows (without low-pass 

filter) is comparable to the one with fMRIPrep, while SPM’s is in general significantly lower and FSL’s is 

slightly higher. The differences with respect to SPM are probably due to the fewer numbers of resampling 

steps involved in SPM’s preprocessing pipeline. The differences with respect to FSL are probably due to 

the interpolation method used during image resampling. While the FSL preprocessing pipeline uses the 

spline interpolation, fMRIflows and fMRIPrep use the LanczosWindowedSinc interpolation, which is 

known to minimize the smoothing during interpolation. The application of a temporal low-pass filter at 0.2 

Hz during fMRIflows’ preprocessing leads to a significantly higher spatial smoothness for the TR600 

dataset when compared with the other approaches. This effect might also be present for the TR1000 dataset. 

However, there the difference between the fMRIflows preprocessing with and without low-pass filtering 

is not significant. This increased spatial smoothness for the approach that uses a low-pass filter makes 

sense, as the goal of the temporal low-pass filter itself is to smooth the time series values. This temporal 

smoothing forcibly also increases the spatial smoothness at each individual time point. 
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Figure 8: Investigation of estimated spatial smoothness after functional preprocessing of three 
different datasets, processed with varying approaches. The five different preprocessing approaches 

fMRIflows with (blue) and without (orange) a low-pass filter at 0.2 Hz, fMRIPrep (green), FSL (red) and 

SPM (violet) are plotted separately for the dataset TR2000 (left), TR1000 (middle) and TR600 (right). The 

violin plots indicate the overall distribution of the normalized smoothness estimates of each functional 

image (depicted in individual dots: TR2000=48 dots, TR1000=80 dots, TR600=102 dots). The red 

horizontal line represents the median value, while the horizontal black lines indicate the 25 and 75 

percentiles of the value distribution respectively. Significant differences between groups are indicated with 

*: p<0.05 and ***: p<0.001. 

 

Performance check of spatial normalization 
We computed the standard deviation map for each population, based on the temporal average map 

of each preprocessed functional image, to compare the performance of spatial normalization of the 

different preprocessing methods on the three different datasets (see Figure 9). 

The averaged standard deviation maps after fMRIflows’ and fMRIPrep’s preprocessing are very 

similar, which is not surprising as fMRIflows uses the same ANTs normalization routine with very similar 

parameters. The main difference lies in the fact that fMRIflows applies a brain extraction on the functional 
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images as well, which is not performed with fMRIPrep. Closer inspection reveals that the variability 

around the brain outline is slightly increased and more spread after normalization with fMRIflows or FSL, 

than with fMRIPrep. This effect was already observed in the original fMRIPrep paper, but seemed less 

pronounced in the current study. SPM performed comparably well, but a direct comparison was not 

possible as the spatial normalization with SPM is performed using SPM’s own tissue probability map 

template, while the other three methods used the normalization to the ICBM’s 2009c brain template. No 

clear performance differences have been observed between the three datasets. 

 

 
Figure 9: Depiction of standard deviation maps of the temporal averages of three different datasets, 
after multiple functional preprocessing approaches. Preprocessing was done with fMRIflows (with a 

temporal low-pass filter at 0.2 Hz; without low-pass filter looks identical), fMRIPrep, FSL and SPM (from 

top to bottom) separated for the TR2000 (left), TR1000 (middle) and TR600 (right) dataset. Color value 

represents the standard deviation value over all subjects. Color scale is the same within a dataset and was 
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set manually to highlight the border effects in gray matter regions. Regions with high inter-subject 

variability are shown in yellow, while regions with low inter-subject variability are shown in blue. Outline 

of the brain and subcortical white matter regions is delineated in red and is based on the ICBM 2009c brain 

template, except for the analysis with SPM where it is based on SPM’s tissue probability map template. 

 

Temporal signal-to-noise ratio (tSNR) after preprocessing 

We computed the voxel-wise temporal SNR according to Smith et al. (2013) to assess the amount 

of informative signal contained in the data after preprocessing. This measurement serves as a rough 

estimate to compare different preprocessing methods, but did not allow a direct comparison between 

datasets, as the tSNR value is a relative measurement that depends highly on the paradigm presented, the 

initial spatial and temporal resolution of the functional images, as well as the MRI scan sequence specific 

parameters such as acceleration factors (Smith et al., 2013). Using Nipype’s TSNR routine, we first 

removed 2nd-degree polynomial drifts in each functional image, and estimated tSNR maps by computing 

each voxel’s temporal mean, dividing it by its temporal standard deviation, and multiplying it by the square 

root of the number of time points recorded in a given run. By averaging the tSNR maps over the population, 

we get a general tSNR map per preprocessing method for each dataset (see Figure 10). 
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Figure 10: Depiction of temporal signal-to-noise ratio maps of three different datasets, after multiple 
functional preprocessing approaches. Preprocessing was done with fMRIflows (with and without a 

temporal low-pass filter at 0.2 Hz), fMRIPrep, FSL and SPM (from top to bottom) separated for the 

TR2000 (left), TR1000 (middle) and TR600 (right) dataset. Color value represents the tSNR value as 

computed with the Nipype routine TSNR. Color scale was set manually and differs between datasets, but 

is held constant between different preprocessing methods. 

 

In general, preprocessing with fMRIflows without temporal low-pass filter led to similar average 

tSNR maps as preprocessing with fMRIPrep. Overall, preprocessing with FSL led to slightly increased 

average tSNR values, while preprocessing with SPM led to slightly decreased average tSNR maps. The 

additional application of a low-pass filter at 0.2 Hz in all three datasets led to increased tSNR values after 

preprocessing with fMRIflows. This effect was more pronounced for higher temporal resolution (as in 
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Dataset TR1000 and TR600). The color scales in Figure 10 were set manually so that the fMRIflows 

(without low-pass filter) approach shows comparable intensities for the three datasets. 

 

Performance check after 1st-level analysis 
To investigate the effect of the different preprocessing methods on the 1st-level analysis, we carried 

out within-subject statistical analysis using Nistats. The activation maps were estimated using a general 

linear model (GLM). The GLM included a constant term, the stimuli regressors convolved with a double-

gamma canonical hemodynamic response function, six motion parameters (three translation and three 

rotation), and a high pass filter at 100Hz, represented by a set of cosine functions, and no temporal 

derivatives. The input data were smoothed using a kernel with a FWHM of 6mm, using a Nilearn routine. 

The analysis pipelines between the preprocessing methods and datasets were kept as identical as possible, 

and differed only in the number of time points contained in the dataset and the estimated motion 

parameters. The statistical map for each participant was binarized at z = 3.09, which corresponds to a one-

sided test value of p < 0.001. The population average of these maps is shown in Figure 11. 

The results show that the thresholded activation count maps between the fMRIflows approach 

without a low-pass filter, fMRIPrep, FSL and SPM do not differ too much between each other, for all three 

datasets. In contrast to the other preprocessing methods, however, the preprocessing with fMRIflows with 

a low-pass filter at 0.2 Hz drastically increased the size and fraction value of the thresholded activation 

count maps, for the datasets TR1000 and TR600. Thus, appropriate temporal filtering increased the 

statistics for datasets with higher temporal resolution remarkably. For a more detailed comparison between 

all the toolboxes, see Supplementary Note 7. 
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Figure 11: Depiction of binarized 1st-level activation count maps, thresholded at p<0.001, after 
multiple functional preprocessing approaches. Preprocessing was done with fMRIflows (with and 

without a temporal low-pass filter at 0.2 Hz), fMRIPrep, FSL and SPM (from top to bottom) separated for 

the TR2000 (left), TR1000 (middle) and TR600 (right) dataset. Activation count maps were normalized to 

the ICBM 2009c brain template. Color code represents the fraction of participants that show significant 

activation above a p-value threshold at 0.001 and corrected for false positive rate (FPR). 

 

Performance check after 2nd-level analysis 
To investigate the effect of the different preprocessing methods on the 2nd-level analysis, we carried 

out between-subject statistical analysis using Nistats and computed one-sample t-test for each 

preprocessing method and dataset. The unthresholded group-level T-statistic maps of each analysis was 
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then compared to each other on a voxel-by-voxel level using Bland-Altman 2D histograms (Bowring et 

al., 2018), see Figure 12. 

 

 
Figure 12: Bland-Altman 2D histograms of three different datasets, comparing unthresholded 
group-level T-statistic maps between multiple processing approaches. Datasets TR2000 (top), TR1000 

(middle) and TR600 (bottom) were used for the comparison. Density plots show the relationship between 

average T-statistic value (horizontal) and difference of T-statistic values (vertical) at corresponding voxels 

for different pairwise combinations of toolboxes. The difference of T-statistics was always computed in 

contrast to a preprocessing with fMRIflows using a low-pass filter at 0.2 Hz, while the average T-statistics 

in horizontal direction investigated the preprocessing with (from left to right) fMRIflows without a low-

pass filter, fMRIPrep, FSL and SPM. Distribution plots next to x- and y- axis depict occurrence of a given 

value in this domain. Color code within the figure indicates the number of voxels at this given overlap, 

from a few (blue) to many (yellow). Yellow horizontal line at zero indicates no value differences between 

corresponding voxels. Red dashed line depicts horizontal density average. 

 

The results shown in Figure 12 indicate no pronounced differences between the preprocessing with 

fMRIflows with a low-pass filter at 0.2 Hz and the other four approaches for the analysis of the TR2000 

dataset. An increased variability in the y-direction indicated a decrease in voxel-to-voxel correspondence, 

which might be explained by different spatial normalization implementations. The fact that the average 

horizontal density value (red dashed line) is close to the zero line (in yellow) indicated that the different 

preprocessing methods led to comparable group-level results with the TR2000 dataset. The Bland-Altmann 

plots for the TR1000 and TR600 datasets showed a clear increase of t-statistic when the preprocessing was 
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done with fMRIflows with a low-pass filter at 0.2 Hz, compared to any other method. This effect was 

stronger for higher t-values. For a more detailed comparison between all the toolboxes, see Supplementary 

Note 8. 
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2.3 Discussion 

fMRIflows is a fully automatic fMRI analysis pipeline, which can perform state-of-the-art 

preprocessing, 1st-level and 2nd-level univariate analyses, and multivariate analysis. The goal of such an 

autonomous approach is to improve objectiveness of the analysis, maximize transparency, facilitate ease 

of use, and provide newest analysis approaches to every researcher, including users outside the field of 

neuroimaging. While the predefined analysis pipelines help to reduce the number of error-prone manual 

interventions to a minimum, it also has the advantage of decreasing the number of analytical degrees of 

freedom available to a user to its minimum (Carp, 2012). This constraint in flexibility is important as it 

helps to control the variability in data processing and analysis (Botvinik-Nezer et al., 2020). fMRIPrep 

showed a clear need for such analysis-agnostic approaches and was therefore chosen to provide much of 

the groundwork for fMRIflows. 

In comparison with other neuroimaging software like fMRIPrep, FSL and SPM, fMRIflows 

achieved comparable or improved results in (1) SNR after preprocessing, (2) within-subject t-statistics, 

and (3) between-subject t-statistics. These results were more obvious in the context of datasets that had a 

temporal resolution equal to or below 1000ms, and if a low-pass filter at 0.2 Hz was applied. The latter 

might also influence the overall outcome of the other software packages, but so far fMRIflows is the only 

such neuroimaging software that performs orthogonal filtering between the motion correction and temporal 

filtering, as proposed by Lindquist et al. (2019). 

Being an open-source project, shared via GitHub, facilitates the transparency in the development of 

fMRIflows. Users will be able to inspect the complete history of the changes and have access to all 

discussion connected to the software. Code adaptations and additional support to new usage will be 

proposed by the user community, which will make the adaptation to newest standards easy and 

straightforward. In addition to the version-controlled system used on GitHub, a continuous integration 

scheme with CircleCi will ensure continuous functionality. 

fMRIflows also improved the overall computation time needed to perform preprocessing and 1st and 

2nd-level analysis. Indeed, Nipype provides a parallel execution feature of processing pipelines, which is 

not yet possible with FSL or SPM. fMRIPrep uses the same boost of parallelism, but is overall much slower 

if the default execution of FreeSurfer’s recon-all routine is performed. However, fMRIflows does not yet 

support parallel computation via a job scheduler on a computation cluster, which is currently possible with 

fMRIPrep. 

The inclusion of many informative visual reports allows a direct quality control and verification of 

the performed processing steps, as fMRIflows’ outputs provide a general quality assessment even though 

it is not as detailed and rigorous as MRIQC (Esteban et al., 2017). In contrast to other software packages, 

fMRIflows uses an adapted visualization of the carpet plot proposed by Power (2017) to highlight 

underlying temporal structure and voxel-to-voxel correlations within different brain tissue regions and/or 

throughout the brain. Such approaches help to observe general signal trends and sudden abrupt signal 



Michael P. Notter University of Lausanne July 2021 

Innovation and standardization of processing pipelines for functional MRI data analysis -XXXIV- 

33 

changes throughout the brain, but the exact implications of these modified carpet plots need to be further 

investigated. 

Results of fMRIflows’ validation phase 1 suggests that the software is capable of analyzing different 

types of datasets, independently of the extent of head coverage, original image orientation, spatial or 

temporal resolution. By increasing the user base and testing fMRIflows on many more datasets, new 

adaptations might be required and hidden bugs could emerge. Users can observe any changes done to the 

software in the future directly on GitHub and are encouraged to state any questions or comments in 

connection with the software on the community driven neuroinformatics forum NeuroStars 

(https://neurostars.org). 

Further development of the software will involve (1) moving away from an SPM dependency for 

the 1st and 2nd-level modeling, (2) using the more flexible FitLins toolbox 

(https://github.com/poldracklab/fitlins), and (3) implementing an fMRIflows BIDS-App to further improve 

the toolbox’s accessibility. 
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2.4 Supplementary Material 

Supplementary Note 1: Content examples of parameter specification files 
 

Content example of file fmriflows_spec_preproc.json 
{ 
    "subject_list_anat": ["01", "02", "03", "04", "05"], 
    "session_list_anat": [], 
    "T1w_id": "T1w", 
    "res_norm": [1.0, 1.0, 1.0], 
    "norm_accuracy": "precise", 
    "subject_list_func": ["01", "02", "03", "04", "05"], 
    "session_list_func": [], 
    "task_list": ["multi"], 
    "run_list": [1, 2, 3], 
    "ref_timepoint": 500, 
    "res_func": 2.0, 
    "filters_spatial": [["LP", 6.0]], 
    "filters_temporal": [[null, 100.0 ], [5.0, 100.0]], 
    "n_compcor_confounds": 5, 
    "outlier_thresholds": [3.27, 3.27, 3.27, null, null, null], 
    "n_independent_components": 10, 
    "n_parallel_jobs": 7 
} 
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Content example of file fmriflows_spec_analysis.json 
{ 
    "tasks": { 
        "multi": { 
            "condition_names": ["cond_01", "cond_02", "cond_03", "cond_04"], 
            "contrasts": [ 
                ["cond_01", [1.0, 0.0, 0.0, 0.0], "T"], 
                ["cond_02", [0.0, 1.0, 0.0, 0.0], "T"], 
                ["cond_03", [0.0, 0.0, 1.0, 0.0], "T"], 
                ["cond_04", [0.0, 0.0, 0.0, 1.0], "T"], 
                ["cond_01 > cond_02", [1.0, -1.0, 0.0, 0.0], "T"] 
            ] 
        } 
    }, 
    "subject_list": ["01", "02", "03", "04", "05"], 
    "session_list": [], 
    "filters_spatial": [["LP", 6.0]], 
    "filters_temporal": [[null, 100.0], [5.0, 100.0]], 
    "nuisance_regressors": ["Rotation", "Translation", "FD", "DVARS", "TV"], 
    "use_outliers": true, 
    "model_serial_correlations": "AR(1)", 
    "model_bases": {"hrf": {"derivs": [0, 0]}}, 
    "estimation_method": {"Classical": 1}, 
    "normalize": true, 
    "norm_res": [1, 1, 1], 
    "con_per_run": true, 
    "norm_res_multi": [3.0, 3.0, 3.0], 
    "analysis_postfix": "", 
    "gm_mask_thr": 0.1, 
    "height_threshold": 0.001, 
    "use_fwe_correction": false, 
    "extent_threshold": 5, 
    "use_topo_fdr": true, 
    "extent_fdr_p_threshold": 0.05, 
    "atlasreader_names": "default", 
    "atlasreader_prob_thresh": 5, 
    "n_parallel_jobs": 7 
} 
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Content example of file fmriflows_spec_multivariate.json 
{ 
    "subject_list": [ "01", "02", "03", "04", "05"], 
    "session_list": [], 
    "filters_spatial": [["LP", 6.0]], 
    "filters_temporal": [[null, 100.0], [5.0, 100.0]], 
    "multivariate_postfix": "", 
    "clf_names": ["LinearNuSVMC"], 
    "sphere_radius": 3, 
    "sphere_steps": 3, 
    "n_chunks": 6, 
    "tasks": { 
        "hrf": [ 
            [["cond_01", "cond_02"],["cond_01", "cond_02"]], 
            [["cond_01", "cond_02"],["cond_03", "cond_04"]] 
        ] 
    }, 
    "n_perm": 100, 
    "n_bootstrap": 100000, 
    "block_size": 1000, 
    "threshold": 0.001, 
    "multicomp_correction": "fdr_bh", 
    "fwe_rate": 0.05, 
    "atlasreader_names": "default", 
    "atlasreader_prob_thresh": 5, 
    "n_parallel_jobs": 7 
} 
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Supplementary Note 2: Description of anatomical preprocessing pipeline steps 
Image reorientation: To make sure that all images throughout the processing have the same 

orientation, images are first reoriented with Nipype according to the neurological convention RAS (right, 

anterior, superior). 

Image cropping: To make sure that the focus in the anatomical image is on the brain, we use FSL’s 

robustfov function to remove irrelevant portions of the neck. This is particularly relevant for the later brain 

extraction step, and helps to ensure that the segmentation algorithm focuses on the brain and not on 

additional body sections. 

Image inhomogeneity correction: To correct for intensity non-uniformities caused by the 

inhomogeneity of the bias field during data acquisition, we use ANTs’ N4BiasFieldCorrection algorithm. 

This step improves the quality of the following image segmentation and is crucial for anatomical images 

of lower image quality, as they would otherwise fail during the image segmentation. 

Anatomy segmentation: The image segmentation uses SPM12’s standard image segmentation and 

provides probability maps for five tissue segments: gray matter (GM), white matter (WM), cerebrospinal 

fluid (CSF), skull and head. 

Brain extraction: The GM, WM and CSF probability maps are combined using Nilearn to create a 

binary mask which is used to extract the brain. We chose this approach over others as it proved to be more 

robust and provided the best balance between restriction and inclusion than other algorithms, especially in 

the context of low image quality. 

Spatial normalization: As a final step, the extracted brain image is spatially normalized to the 

ICBM 152 Nonlinear Asymmetrical template version 2009c (Fonov et al., 2011) with ANTs’ 

antsRegistration algorithm, using nonlinear image registration with a b-spline interpolation. 
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Supplementary Note 3: Description of functional preprocessing pipeline steps 
Image reorientation: As a first preprocessing step, functional images are reoriented to the 

neurological convention RAS, using Nipype, to make sure that they have the same orientation as the 

anatomically preprocessed images. 

Non-steady-state detection: Afterwards, the first few volumes of each functional run are 

investigated for non-steady-state volumes using Nipype. If non-steady-state volumes are detected, they are 

removed before the motion correction is applied. 

Creation of brain masks: To remove unwanted tissue from functional images a three-step approach 

was chosen. First, the mean image of the functional run is corrected for intensity inhomogeneity using 

ANTs’ N4BiasFieldCorrection algorithm. Second, FSL’s BET algorithm is applied to create a binary brain 

mask. Third, the binary brain mask is dilated by two iterations and holes are filled. This procedure has 

proven to be optimal in removing non-brain tissue in almost all cases that it was tested on, while ensuring 

that all brain tissue types are included within the mask. This brain mask is then applied to the functional 

images before the motion correction step, to make sure that the estimation of the motion parameter is in 

relation to the brain and not the whole head. The mask is additionally used to restrict the coregistration of 

the functional images to the anatomical images to the brain tissue and not to the whole head. However, this 

binary mask is not used to mask the functional images at any time. 

Slice-timing correction: If specified, slice time correction (Sladky et al., 2011) is performed on the 

reoriented functional images using SPM, according to the slice onset parameters specified in the BIDS 

information file and the reference time point mentioned in the fMRIflows JSON specification file. Slice-

time correction is applied after the estimation of the head motion as recommended by (Power, Plitt, Kundu, 

Bandettini, & Martin, 2017). 

Head motion estimation: Estimation of the motion parameters is performed using FSL’s 

MCFLIRT algorithm, on the reoriented functional images, after non-steady-states volumes are removed 

and the brain is masked with the binary mask computed during the previous step. If the user specified a 

low-pass filter, an additional step is included in the estimation of the motion parameters. This step takes 

the estimated motion parameters (three rotation and three translation) and applies a Butterworth (Stephen 

Butterworth, 1930) low-pass filter to each of the six components individually. This step is crucial to 

guarantee that the motion correction and the temporal filter are orthogonal to each other. Otherwise, 

previously filtered confounds might be reintroduced with a later step (Lindquist et al., 2019). We are using 

custom-written Python code to perform this step, using routines from Nilearn, output files from FSL’s 

MCFLIRT routine and FSL’s avscale routine. To our knowledge, our implementation is the first openly 

available routine that transforms the affine motion parameters for each volume (here applying a low-pass 

filter) before they are applied to the functional images. 

Intra-subject registration: The coregistration of the functional image to the anatomical image is 

based on FSL’s FEAT pipeline and fMRIPrep and uses a two-step co-registration. Both steps use FSL’s 

FLIRT algorithm. The first step uses the anatomical image to pre-align the mean image from the estimation 
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of the motion parameters, followed by the second coregistration step where the white matter probabilistic 

image computed with SPM’s segmentation routine is used together with the anatomical image in a 

boundary-based registration (BBR) approach. The first step uses six degrees of freedom (three rotations 

and three translations), while the second step uses nine degrees of freedom, adding three scaling degrees. 

The addition of these scaling degrees was copied from fMRIPrep’s approach (Esteban et al., 2019) and 

allows the image to be stretched in the direction of the recording. For example, functional images that are 

recorded in the A-P axis are often squeezed a bit in this direction. Keep in mind that this scaling/stretching 

is only used for an optimal image coregistration, so that the functional images overlay optimally with the 

white matter boundaries. 

Spatial interpolation: Once we have the slice-time corrected functional images, computed the 

correct motion parameters that we want to apply, have the coregistration matrix between the functional 

and anatomical images, and have the transformation matrix to normalize the anatomical image onto the 

ICBM 2009c template brain, we can go to the next step and apply all spatial interpolations in a single-shot. 

The spatial normalization is optional and can also be applied in the later 1st-level notebook. But we 

recommend doing all of those spatial transformations at once to keep the number of spatial interpolations 

as low as possible. First we use C3 to combine all the different transformation matrices and apply them to 

each volume individually with ANTs’ ApplyTransforms routine, using the LanczosWindowedSinc 

interpolation (Lanczos, 1964). We chose this interpolation over others, as it minimizes the smoothing effect 

of the interpolation and creates the least artifacts outside the brain volume. 

Creation and application of warped brain masks: Once the functional images are spatially 

transformed either into each subject’s structural space using a user-defined voxel resolution, or directly 

normalized into template space, also using a user-specified voxel resolution, two masks are created to 

remove irrelevant voxels outside of the brain, such as skull, eyes and head, as well as voxels that do not 

have values in most volumes. Those voxels are mostly seen in functional images that only cover part of 

the brain (slabs) and are introduced through motion at top or bottom slices of the slab. The first mask is 

later used to mask the functional image before the application of the temporal filters, while the second 

mask (confound brain mask) is applied before the extraction of confound signals. For this reason, the first 

mask should be sensitive enough to keep all voxels within the brain, while the second mask should be 

specific enough to only keep brain voxels, so that extracted confound curves are only based on nuisance 

sources within the brain, i.e. the region that we want to clean. The starting point of both masks is again the 

binary brain mask. For this we first compute the functional mean image using Nilearn, second correct for 

intensity non-uniformities using ANTs N4BiasFieldCorrection routine and third apply FSL’s BET routine 

to create a binary brain mask. This mask is then dilated by two iteration steps, holes are filled up and the 

mask is then applied to the spatially transformed functional image. The steps to create the first brain mask 

are as follows: the initial brain mask is first dilated by two voxels, holes are filled up and any voxels that 

have no signal in more than 1% of volumes are removed. The second brain mask is created as follows: the 
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initial brain mask is first dilated by one voxel, holes are filled, the binary image is again eroded by two 

iteration steps and afterwards, voxels with no signal in more than 5% of volumes are removed. 

Temporal filtering: The next preprocessing step applies temporal filters if they were specified. The 

user can decide if they want to apply low-pass, high-pass or band-pass filters, or none. The temporal 

filtering is performed with AFNI’s 3dBandpass routine. In this step we also apply the first mask from the 

previous step to remove voxels that are clearly non-brain tissues. After temporal filtering of the data, the 

image intensity is normalized in such a way that the white matter distribution peak throughout the 

functional image is at a value of 10’000. 

Spatial filtering: The final preprocessing step applies a spatial filter to the functional images, if the 

user specified this. Contrary to other toolboxes, our software allows the application of spatial low-pass, 

high-pass and band-pass filters. The last one can be especially useful for the preprocessing of data that is 

later used in a multivariate analysis. Sengupta, Pollmann, & Hanke (2018) have shown that the correct 

application of a band-pass filter can drastically improve the prediction accuracy in a multivariate approach. 

Independently of whether or not a spatial filter was applied, functional images are checked for absolute 

values above 30’000. If this is the case, images are rescaled to have a maximum absolute value at 30’000. 

After this, images are stored in integer16 data format to reduce their footprint on the database. 
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Supplementary Note 4: Description of 1st-level analysis pipeline steps 
Data collection: Preprocessed functional images and model relevant parameters are collected and 

prepared for the 1st-level analysis. 

Model Specification and estimation: Model relevant parameters are combined to create the design 

matrix needed for the general linear model (GLM) analysis. 

Univariate contrast estimation: 1st-level contrasts are computed for each subject individually, 

according to the input parameters specified in the fMRIflows JSON parameter file. 

Optional multivariate contrast estimation: To create multiple beta contrasts that then can be used 

for multivariate analysis, fMRIflows computes one beta contrast per condition per run. These beta contrasts 

are based on the same design matrix as the one for the univariate analysis. This step also creates a CSV-

file containing a list of condition identifiers which can be used in the multivariate analysis to label the 

contrast maps. 

Optional spatial normalization: The user can spatially normalize the estimated contrasts, if they 

have not been normalized during functional preprocessing. Contrasts need to be normalized, should the 

user want to use them in a 2nd-level analysis. 
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Supplementary Note 5: Description of 2nd-level univariate analysis pipeline steps 
Model Specification and estimation: See description in Supplementary Note 4. 

Univariate contrast estimation: See description in Supplementary Note 4. 
Topological thresholding: Once the 2nd-level contrast is estimated, fMRIflows uses Nipype’s 

Thresholding routine to apply first, a voxel-wise threshold, followed by a cluster-wise topological False 

Discovery Rate (FDR) correction. The user can decide which parameters to use and if topological 

thresholding should be applied or not. 
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Supplementary Note 6: Description of 2nd-level multivariate analysis pipeline steps 
Data preparation: To prepare the data for the multivariate pattern analysis (MVPA) with PyMVPA 

the β-maps from the first level analysis are normalized by voxel-wise z-scoring them. A binary mask is 

then created to only include voxels in the searchlight analysis that have a value in at least one of the β-

maps. This binary mask is then dilated by two voxels and eroded by one to make sure that the mask does 

not include single voxel holes. The z-scored and masked images are then saved together with a list of 

corresponding labels in a PyMVPA conform dataset. 

Searchlight classification: The searchlight classification is performed for each subject individually 

and is based on the beta contrasts created during the 1st-level analysis. The user can specify which binary 

classification identifiers to use for the training and testing of the classifier. This approach allows the user 

to look for patterns that distinguish two classes (i.e. when the two classes are the same in training and 

testing) or to look for patterns that are identifying class differences (i.e. when the two classes are different 

during training and testing). The second approach allows the investigation of recurrent patterns, even if the 

stimuli are not the same. For example, training on the differences between visual stimuli of cats and dogs 

and testing on auditory stimuli of cats and dogs would reveal regions with distinct brain patterns for cats 

and dogs, independent of the modality of the stimuli. Natively, fMRIflows supports the following 

classifiers: C- and Nu-SVM classifiers with a linear or radial basis function kernel, Sparse Multinomial 

Logistic Regression (SMLR) classifier, Gaussian Naive Bayes classifier and k-Nearest-Neighbor 

classifier. The addition of any other classifiers from PyMVPA or Scikit-Learn is straightforward and can 

be done very quickly, if needed. Searchlight specific parameters, such as radius of the sphere and step size 

can be specified by the user. For each sphere, an N-fold leave-one-out cross-validation is performed, where 

N is set by the user, but usually represents the number of runs per subject. The result is one accuracy value 

per sphere. To account for holes caused by a searchlight step size bigger than one, results between different 

searchlight spheres are aggregated so that each voxel in the brain mask represents the average accuracy of 

all searchlight spheres that contained this voxel in their classification. This approach has the additional 

beneficial effect of increasing the SNR by smoothing the results before the group analysis. 

Group analysis using T-test: The application of a simple T-test to test the classification accuracies 

against chance level is not recommended (Stelzer et al., 2013), and users should choose the appropriate 

group analysis as proposed by Stelzer et al. (2013). Nonetheless, fMRIflows contains this approach, as it 

can give some preliminary insights into the group results, using extremely reduced computation time. 

Group analysis using random permutations and cluster size control: The group analysis 

approach according to Stelzer et al. (2013) includes a permutation step where subject-specific 

classifications are rerun up to 100 times with randomized labels. In a later step, those randomized control 

accuracy maps are then combined up to 100’000 times into “false” group averages and help to estimate a 

voxel-wise null distribution and expected cluster size of the classification accuracy maps, given the dataset 

and specified classes. The subject specific searchlight accuracy maps are averaged over all subjects to 
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obtain a group classification accuracy map, which then is tested against the estimated null distribution. The 

user can additionally specify the strategy for the multiple comparison correction. 

Topological thresholding: This step is identical to the one used in the 2nd-level univariate analysis. 
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Supplementary Note 7: Complete 1st-level activation count maps results comparison 
between toolboxes, separated by dataset. 

 

Dataset TR2000: The comparison between the binarized 1st-level activation count maps computed 

on the TR2000 dataset shows no clear differences between the toolboxes. The images on the diagonal all 

seem comparable. The diagonal offset images only show significantly increased activation counts for maps 

generated with fMRIflows and fMRIPrep, over activation count maps generated with FSL. 

 

 
Supplementary Figure 1. Investigation of differences between binarized 1st-level activation count 
maps, thresholded at p<0.001, after multiple functional preprocessing approaches analyzing dataset 
TR2000. Preprocessing was done with fMRIflows (with and without a temporal low-pass filter at 0.2 Hz), 

fMRIPrep, FSL and SPM (from top to bottom). The diagonal images represent the original activation count 

map of the toolbox. The diagonal offset images represent the difference between the horizontal and vertical 

toolbox. Activation count maps were normalized to the ICBM 2009c brain template. Color code represents 

the fraction of participants that show significant activation above a p-value threshold at 0.001 and corrected 

for false positive rate (FPR). 
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Dataset TR1000: The comparison between the binarized 1st-level activation count maps computed 

on the TR1000 dataset shows clear differences between fMRIflows with a low-pass filter at 0.2 Hz and the 

other approaches. The images on the diagonal seem overall similar. However, fMRIflows with a low-pass 

filter at 0.2 Hz shows a clearly increased (and SPM shows a clearly decreased) activation count map. The 

significantly increased activation count map values between fMRIflows with a low-pass filter at 0.2 Hz 

and the other approaches, seem to be centered around locations with already increased overlap, indicating 

that the low-pass filtering improves the overall statistical sensitivity. 

 

 
Supplementary Figure 2: Investigation of differences between binarized 1st-level activation count 
maps, thresholded at p<0.001, after multiple functional preprocessing approaches analyzing dataset 
TR1000. Preprocessing was done with fMRIflows (with and without a temporal low-pass filter at 0.2 Hz), 

fMRIPrep, FSL and SPM (from top to bottom). The diagonal images represent the original activation count 

map of the toolbox. The diagonal offset images represent the difference between the horizontal and vertical 

toolbox. Activation count maps were normalized to the ICBM 2009c brain template. Color code represents 

the fraction of participants that show significant activation above a p-value threshold at 0.001 and corrected 

for false positive rate (FPR). 
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Dataset TR600: The comparison between the binarized 1st-level activation count maps computed 

on the TR600 dataset show clear differences between fMRIflows with a low-pass filter at 0.2 Hz and the 

other approaches. The images on the diagonal seem overall comparable. However, fMRIflows with a low-

pass filter at 0.2 Hz shows a clearly increased activation count map. The significantly increased activation 

count map values between fMRIflows with a low-pass filter at 0.2 Hz and the other approaches, seem to 

be centered around locations with already increased overlap, indicating that the low-pass filtering improves 

the overall statistical sensitivity. 

 

 
Supplementary Figure 3: Investigation of differences between binarized 1st-level activation count 
maps, thresholded at p<0.001, after multiple functional preprocessing approaches analyzing dataset 
TR600. Preprocessing was done with fMRIflows (with and without a temporal low-pass filter at 0.2 Hz), 

fMRIPrep, FSL and SPM (from top to bottom). The diagonal images represent the original activation count 

map of the toolbox. The diagonal offset images represent the difference between the horizontal and vertical 

toolbox. Activation count maps were normalized to the ICBM 2009c brain template. Color code represents 

the fraction of participants that show significant activation above a p-value threshold at 0.001 and corrected 

for false positive rate (FPR). 
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Supplementary Note 8: Complete group-level T-statistic maps comparison between 
toolboxes, separated by dataset. 

 
Dataset TR2000: The investigation of group-level T-statistic maps differences due to toolbox 

specific preprocessing pipelines on the TR2000 dataset does not show any clear differences between the 

results. The Bland-Altman 2D histograms show no particular trend in the x-direction and are centered 

around the horizontal zero line. 

 

 
Supplementary Figure 4: Bland-Altman 2D histograms of datasets TR2000, comparing 
unthresholded group-level T-statistic maps between multiple processing approaches. Density plots 

show the relationship between average T-statistic value (horizontal) and difference of T-statistic values 

(vertical) at corresponding voxels for different pairwise combinations of toolboxes. The difference in T-

statistics was computed in contrast to a preprocessing with (from top to bottom) fMRIflows with and 

without a low-pass filter at 0.2 Hz, fMRIPrep and FSL in respect to a preprocessing with (from left to 

right) fMRIflows without a low-pass filter at 0.2 Hz, fMRIPrep, FSL and SPM. Distribution plots next to 

x- and y- axis depict occurrence of a given value in this domain. Color code within figure indicates number 
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of voxels at this given overlap, from a few (blue) to many (yellow). Yellow horizontal line at zero indicates 

no value differences between corresponding voxels. Red dashed line depicts horizontal density average. 
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Dataset TR1000: The investigation of group-level T-statistic maps differences due to toolbox 

specific preprocessing pipelines on the TR1000 dataset shows clear differences between the results 

obtained with fMRIflows with a low-pass filter at 0.2 Hz and all the other approaches. The Bland-Altman 

2D histograms show clearly increased t-statistic value differences in the first column of the following 

figure, especially for higher t-values. No clear differences can be seen between the analysis approach 

fMRIflows without a low-pass filter, fMRIPrep, FSL and SPM. 

 

 
Supplementary Figure 5: Bland-Altman 2D histograms of datasets TR1000, comparing 
unthresholded group-level T-statistic maps between multiple processing approaches. Density plots 

show the relationship between average T-statistic value (horizontal) and difference of T-statistic values 

(vertical) at corresponding voxels for different pairwise combinations of toolboxes. The difference in T-

statistics was computed in contrast to a preprocessing with (from top to bottom) fMRIflows with and 

without a low-pass filter at 0.2 Hz, fMRIPrep and FSL in respect to a preprocessing with (from left to 

right) fMRIflows without a low-pass filter at 0.2 Hz, fMRIPrep, FSL and SPM. Distribution plots next to 

x- and y- axis depict occurrence of a given value in this domain. Color code within figure indicates number 

of voxels at this given overlap, from a few (blue) to many (yellow). Yellow horizontal line at zero indicates 

no value differences between corresponding voxels. Red dashed line depicts horizontal density average.  
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Dataset TR600: The investigation of group-level T-statistic maps differences due to toolbox 

specific preprocessing pipelines on the TR600 dataset shows clear differences between the results obtained 

with fMRIflows with a low-pass filter at 0.2 Hz and all the other approaches. The Bland-Altman 2D 

histograms show increased t-statistic value differences in the first column of the following figure, 

especially for high t-values. No clear differences can be seen between the analysis approach fMRIflows 

without a low-pass filter, fMRIPrep, FSL and SPM. 

 

 

Supplementary Figure 6: Bland-Altman 2D histograms of datasets TR600, comparing 
unthresholded group-level T-statistic maps between multiple processing approaches. Density plots 

show the relationship between average T-statistic value (horizontal) and difference of T-statistic values 

(vertical) at corresponding voxels for different pairwise combinations of toolboxes. The difference in T-

statistics was computed in contrast to a preprocessing with (from top to bottom) fMRIflows with and 

without a low-pass filter at 0.2 Hz, fMRIPrep and FSL in respect to a preprocessing with (from left to 

right) fMRIflows without a low-pass filter at 0.2 Hz, fMRIPrep, FSL and SPM. Distribution plots next to 

x- and y- axis depict occurrence of a given value in this domain. Color code within figure indicates number 

of voxels at this given overlap, from a few (blue) to many (yellow). Yellow horizontal line at zero indicates 

no value differences between corresponding voxels. Red dashed line depicts horizontal density average.  
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�iBp2 *QKKQMb �ii`B#miBQM 9Xy AM@
i2`M�iBQM�H GB+2Mb2 U**@"uVX

amKK�`v

� K�DQ` �/p�Mi�;2 Q7 K�;M2iB+ `2bQM�M+2 BK�;BM; UJ_AV Qp2` Qi?2` M2m`QBK�;BM; K2i?@
Q/b Bb Bib +�T�#BHBiv iQ MQMBMp�bBp2Hv HQ+�i2 � `2;BQM Q7 BMi2`2bi U_PAV BM i?2 ?mK�M #`�BMX
6Q` 2t�KTH2- mbBM; 7mM+iBQM�H J_A- r2 �`2 �#H2 iQ TBMTQBMi r?2`2 BM i?2 #`�BM � +Q;MB@
iBp2 i�bF 2HB+Bib ?B;?2` �+iBp�iBQM `2H�iBp2 iQ � +QMi`QHX "mi Dmbi FMQrBM; i?2 *�`i2bB�M
+QQ`/BM�i2 Q7 bm+? � _PA Bb MQi mb27mH B7 r2 +�MMQi �bbB;M Bi � M2m`Q�M�iQKB+�H H�#2HX 6Q`
i?Bb `2�bQM- J_A BK�;2b �`2 mbm�HHv MQ`K�HBx2/ BMiQ � +QKKQM i2KTH�i2 bT�+2 U6QMQp 2i
�HX- kyRRV- r?2`2 r2HH@2bi�#HBb?2/ �iH�b2b +�M #2 mb2/ iQ �bbQ+B�i2 � ;Bp2M +QQ`/BM�i2 rBi?
i?2 H�#2H Q7 � #`�BM `2;BQMX JQbi K�DQ` M2m`QBK�;BM; bQ7ir�`2 T�+F�;2b T`QpB/2 bQK2
7mM+iBQM�HBiv iQ HQ+�i2 i?2 K�BM T2�Fb Q7 �M _PA #mi i?Bb 7mM+iBQM�HBiv Bb Q7i2M `2bi`B+i2/
iQ � 72r �iH�b2b- 7`2[m2MiHv `2[mB`2b K�Mm�H BMi2`p2MiBQM- /Q2b MQi ;Bp2 i?2 mb2` Km+?
~2tB#BHBiv BM i?2 QmiTmi +`2�iBQM T`Q+2bb- �M/ M2p2` +QMbB/2`b i?2 7mHH 2ti2Mi Q7 i?2 _PAX
hQ i�+FH2 i?Qb2 b?Q`i+QKBM;b- r2 +`2�i2/ �iH�b_2�/2`- � Svi?QM BMi2`7�+2 7Q` ;2M2`�iBM;
+QQ`/BM�i2 i�#H2b �M/ `2;BQM H�#2Hb 7`QK bi�iBbiB+�H J_A BK�;2bX qBi? �iH�b_2�/2`- mb2`b
+�M mb2 �Mv Q7 i?2 7`22Hv �M/ Tm#HB+Hv �p�BH�#H2 M2m`QBK�;BM; �iH�b2b- rBi?Qmi �Mv `2bi`B+@
iBQM iQ i?2B` T`272``2/ bQ7ir�`2 T�+F�;2- iQ +`2�i2 Tm#HB+�iBQM@`2�/v QmiTmi };m`2b �M/
i�#H2b i?�i +QMi�BM `2H2p�Mi BM7Q`K�iBQM �#Qmi i?2 T2�Fb �M/ +Hmbi2`b 2ti2Mi Q7 2�+? _PAX
hQ Qm` FMQrH2/;2- T`QpB/BM; �iH�b BM7Q`K�iBQM �#Qmi i?2 7mHH 2ti2Mi Q7 � +Hmbi2`- BX2X Qp2`
r?B+? �iH�b `2;BQMb /Q2b � _PA 2ti2Mi- Bb � M2r 72�im`2 i?�i Bb MQi �p�BH�#H2 BM �Mv Qi?2`-
+QKT�`�#H2 M2m`QBK�;BM; bQ7ir�`2 T�+F�;2X
1t2+miBM; �iH�b_2�/2` QM �M J_A BK�;2 rBHH +`2�i2 i?2 7QHHQrBM; 7Qm` QmiTmib,

RX �M Qp2`pB2r };m`2 b?QrBM; �HH _PAb i?`Qm;?Qmi i?2 r?QH2 #`�BM U6B;X RVX
kX 6Q` 2�+? _PA- �M BM7Q`K�iBp2 };m`2 b?QrBM; i?2 b�;Bii�H- +Q`QM�H �M/ i`�Mbp2`b�H

TH�M2 +2Mi2`2/ QM i?2 K�BM T2�F Q7 i?2 _PA U6B;X kVX
jX � i�#H2 +QMi�BMBM; BM7Q`K�iBQM �#Qmi i?2 K�BM T2�Fb BM 2�+? _PA U6B;X jVX
9X � i�#H2 +QMi�BMBM; BM7Q`K�iBQM �#Qmi i?2 +Hmbi2` 2ti2Mi Q7 2�+? _PA U6B;X 9VX

lb2`b ?�p2 K�Mv T�`�K2i2`b �p�BH�#H2 iQ ;mB/2 i?2 +`2�iBQM Q7 i?2b2 QmiTmibX 6Q` 2t�K@
TH2- rBi? +Hmbi2`n2ti2Mi � mb2` +�M bT2+B7v i?2 KBMBKmK MmK#2` Q7 +QMiB;mQmb pQt2Hb
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`2[mB`2/ 7Q` � _PA iQ #2 b?QrM BM i?2 QmiTmi- KBMn/Bbi�M+2 +�M #2 mb2/ iQ 2ti`�+i BM7Q`@
K�iBQM 7`QK KmHiBTH2 T2�Fb rBi?BM � ;Bp2M _PA- �M/ �iH�b +�M #2 mb2/ iQ bT2+B7v r?B+?
�iH�b2b b?QmH/ #2 mb2/ 7Q` i?2 QmiTmi +`2�iBQMX "v /27�mHi- �iH�b_2�/2` mb2b i?2 ��G-
i?2 .2bBF�M@EBHHB�Mv- �M/ i?2 >�`p�`/@Pt7Q`/ �iH�b2b U6B;X 8VX AM i?2 +m``2Mi p2`bBQM-
mb2`b �HbQ ?�p2 �++2bb iQ i?2 �B+?�- i?2 .2bi`B2mt- i?2 Cm2HB+?- i?2 J�`b�iH�b- i?2 L2m`Q@
KQ`T?QK2i`B+b- �M/ i?2 h�H�B`�+? �iH�bX 6m`i?2` /2i�BHb �#Qmi i?2 BM/BpB/m�H �iH�b2b- ?Qr
iQ �+FMQrH2/;2 i?2K- �M/ i?2B` HB+2Mb2 `2[mB`2K2Mib �`2 /2i�BH2/ BM i?2 �iH�b`2�/2`f/�i�
/B`2+iQ`vX
�iH�b_2�/2` Bb HB+2Mb2/ mM/2` i?2 "a.@j HB+2Mb2 �M/ /2T2M/b QM i?2 7QHHQrBM; Tvi?QM
HB#`�`B2b, K�iTHQiHB# U>mMi2`- kyydV- MB#�#2H U"`2ii 2i �HX- kyR3V- MBH2�`M U�#`�?�K
2i �HX- kyR9V- MmKTv UPHBT?�Mi- kyydV- b+BTv UCQM2b- PHBT?�Mi- S2i2`bQM- � Qi?2`b- kyyRV-
b+BFBiH2�`M US2/`2;Qb� 2i �HX- kyRRV �M/ b+BFBiBK�;2 Uo�M /2` q�Hi 2i �HX- kyR9VX
6Q` � KQ`2 /2i�BH2/ 2tTH�M�iBQM �#Qmi ?Qr �iH�b_2�/2` rQ`Fb �M/ BMbi`m+iBQMb QM ?Qr
iQ BMbi�HH i?2 bQ7ir�`2 QM vQm` bvbi2K- b22 ?iiTb,ff;Bi?m#X+QKfKBvF�2Hf�iH�b`2�/2`X

LQii2` 2i �HX- UkyRNVX �iH�b_2�/2`, � Svi?QM T�+F�;2 iQ ;2M2`�i2 +QQ`/BM�i2 i�#H2b- `2;BQM H�#2Hb- �M/ BM7Q`K�iBp2 };m`2b 7`QK bi�iBbiB+�H J_A
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� T�`iB+mH�` �iH�bX
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+Hmbi2`- ;Bp2M � T�`iB+mH�` �iH�bX
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�+FMQrH2/;2K2Mi

JB+?�2H S?BHBTT LQii2` Bb ;`�i27mH 7Q` i?2 bmTTQ`i Q7 i?2 arBbb L�iBQM�H a+B2M+2 6QmM/�@
iBQM ;`�Mib- �r�`/2/ iQ JX Jm``�v Ujkyyjy@R9NN3k- jkyyjy@ReNkye- �M/ 8RL69y@R83ddeVX
EB`biB2 q?Bi�F2` Bb 7mM/2/ i?`Qm;? �M �H�M hm`BM; AMbiBimi2 _2b2�`+? 62HHQrb?BT mM/2`
1Sa_* _2b2�`+? ;`�Mi Uhlf�fyyyyRdVX h?Bb T`QD2+i r�b bi�`i2/ �i L2m`Q?�+F�/2Kv
kyR3 r?B+? Bb 7mM/2/ #v i?2 L�iBQM�H AMbiBimi2 Q7 J2Mi�H >2�Hi? i?`Qm;? � ;`�Mi iQ �`B2H
_QF2K �M/ h�H u�`FQMB U_k8J>RRk93yVX

_272`2M+2b

�#`�?�K- �X- S2/`2;Qb�- 6X- 1B+F2M#2`;- JX- :2`p�Bb- SX- Jm2HH2`- �X- EQbb�B}- CX- :`�K@
7Q`i- �X- 2i �HX UkyR9VX J�+?BM2 H2�`MBM; 7Q` M2m`QBK�;BM; rBi? b+BFBi@H2�`MX 6`QMiB2`b BM
M2m`QBM7Q`K�iB+b- 3- R9X /QB,RyXjj3Nf7MBM7XkyR9XyyyR9
"`2ii- JX- >�MF2- JX- J�`FB2rB+x- *X- *Ƭiû- JX@�X- J+*�`i?v- SX- :?Qb?- aX- q�bb2`@
K�MM- .X- 2i �HX UkyR3VX LB#�#2H, �++2bb � +�+QT?QMv Q7 M2m`Q@BK�;BM; }H2 7Q`K�ib-
p2`bBQM kXjXyX /QB,RyX8k3Rfx2MQ/QXRk3dNkR
6QMQp- oX- 1p�Mb- �X *X- "Qii2`QM- EX- �HKHB- *X _X- J+EBMbi`v- _X *X- *QHHBMb- .X GX-
:`QmT- "X .X *X- 2i �HX UkyRRVX lM#B�b2/ �p2`�;2 �;2@�TT`QT`B�i2 �iH�b2b 7Q` T2/B�i`B+
bim/B2bX L2m`QBK�;2- 89URV- jRjĜjkdX /QB,RyXRyRefDXM2m`QBK�;2XkyRyXydXyjj
>mMi2`- CX .X UkyydVX J�iTHQiHB#, � k. ;`�T?B+b 2MpB`QMK2MiX *QKTmiBM; AM a+B2M+2 �
1M;BM22`BM;- NUjV- NyĜN8X /QB,RyXRRyNfJ*a1XkyydX88
CQM2b- 1X- PHBT?�Mi- hX- S2i2`bQM- SX- � Qi?2`bX UkyyRVX a+BSv, PT2M bQm`+2 b+B2MiB}+
iQQHb 7Q` Svi?QMX _2i`B2p2/ 7`QK ?iiT,ffrrrXb+BTvXQ`;f
PHBT?�Mi- hX 1X UkyydVX Svi?QM 7Q` b+B2MiB}+ +QKTmiBM;X *QKTmiBM; BM a+B2M+2 � 1M;B@
M22`BM;- NUjVX /QB,RyXRRyNfJ*a1XkyydX83
S2/`2;Qb�- 6X- o�`Q[m�mt- :X- :`�K7Q`i- �X- JB+?2H- oX- h?B`BQM- "X- :`Bb2H- PX- "HQM/2H-
JX- 2i �HX UkyRRVX a+BFBi@H2�`M, J�+?BM2 H2�`MBM; BM Tvi?QMX CQm`M�H Q7 K�+?BM2 H2�`MBM;
`2b2�`+?- RkUP+iV- k3k8Ĝk3jyX _2i`B2p2/ 7`QK ?iiTb,ffb+BFBi@H2�`MXQ`;f
o�M /2` q�Hi- aX- a+?ƺM#2`;2`- CX GX- LmM2x@A;H2bB�b- CX- "QmHQ;M2- 6X- q�`M2`- CX .X-
u�;2`- LX- :QmBHH�`i- 1X- 2i �HX UkyR9VX a+BFBi@BK�;2, AK�;2 T`Q+2bbBM; BM Tvi?QMX S22`C-
k- 298jX /QB,RyXddRdfT22`DX98j

LQii2` 2i �HX- UkyRNVX �iH�b_2�/2`, � Svi?QM T�+F�;2 iQ ;2M2`�i2 +QQ`/BM�i2 i�#H2b- `2;BQM H�#2Hb- �M/ BM7Q`K�iBp2 };m`2b 7`QK bi�iBbiB+�H J_A
BK�;2bX CQm`M�H Q7 PT2M aQm`+2 aQ7ir�`2- 9Uj9V- Rk8dX ?iiTb,ff/QBXQ`;fRyXkRRy8fDQbbXyRk8d
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Abstract 1 

Ample evidence indicates that recognition memory performance can be facilitated by multisensory 2 

stimuli at the time of encoding. While it is not necessary that multisensory information is present dur-3 

ing the decoding of a memory, a beneficial effect of the multisensory stimulation only takes place if 4 

the initial encoding happened in a semantically congruent audio-visual context. The goal of this study 5 

was to investigate the brain mechanisms involved during the encoding and subsequent retrieval of 6 

semantically congruent multisensory objects. In a functional MRI paradigm, participants performed a 7 

continuous recognition task in which they discriminated between initially and previously seen objects. 8 

The task was independent of the semantic congruence of the sound with the initially shown image. We 9 

performed a univariate analysis to identify regions involved in the information processing of semantic 10 

context dependent multisensory memory traces. Next, a multivariate pattern analysis (MVPA) located 11 

where the representational content of these traces is encoded and later again retrieved. We show that 12 

low-level visual cortex can reliably decode whether incoming visual stimuli had been previously en-13 

countered on a single-trial with either a semantically congruent or incongruent sound. Aside from fur-14 

ther reinforcing the notion that low-level visual cortex is fundamentally multisensory in its architec-15 

ture, our findings suggest that these functions extend to include both semantically-related and 16 

memory-related functions. 17 

 18 

Keywords: multisensory integration, multivariate pattern analysis, memory, semantic context, audito-19 

ry & visual perception, fMRI 20 

  21 
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Introduction 1 

Most studies investigating how our brain creates and retrieves memories focus predominantly 2 

on unisensory stimuli. However, in naturalistic environments, stimuli are rarely experienced in only 3 

one sensory modality. Multisensory information is differentially processed by our brains and can posi-4 

tively impact our behavior (Calvert, Spence, & others, 2004; Molholm, Ritter, Javitt, & Foxe, 2004; 5 

Murray et al., 2004; Murray & Wallace, 2012; Thomas, Nardini, & Mareschal, 2017). This has been 6 

extended from perception of current information to the manner in which multisensory information 7 

promotes distinctly different object representations in the brain that can affect memory-related pro-8 

cesses. Research has shown that brain regions involved in encoding multisensory memories are also 9 

again active during subsequent retrieval, even if this retrieval is based on unisensory information 10 

(Gibson & Maunsell, 1997; Nyberg, Habib, McIntosh, & Tulving, 2000; Wheeler, Petersen, & 11 

Buckner, 2000).  12 

Several studies have characterized how memory traces generated from previous multisensory 13 

experiences differed from those created from exclusively unisensory experiences. In particular, the 14 

lateral occipital cortex (LOC) and the superior temporal cortex (STC) appear to play an important role 15 

in the retrieval of multisensory memories (Doehrmann & Naumer, 2008; Lu, Zhang, Xu, & Liu, 2018; 16 

Matusz, Wallace, & Murray, 2017). In the case of visual objects that had been presented initially with 17 

semantically congruent sounds (versus those only encountered visually), both electroencephalography 18 

(EEG) and functional magnetic resonance imaging (fMRI) have shown that the LOC responds more 19 

strongly (Murray, Foxe, & Wylie, 2005; Murray et al., 2004) reviewed in (Matusz et al., 2017) see 20 

also (Matusz et al., 2015) for the case of auditory objects impacted by semantically congruent images). 21 

Our group has worked to identify determinant factors for differential effect of multisensory ver-22 

sus unisensory experiences on memory performance (reviewed in (Matusz et al., 2017; Thelen & 23 

Murray, 2013)). In particular, semantic context appears to play a critical role. Visual objects initially 24 

experienced with a semantically congruent sound, even if task-irrelevant and unpredictable, are better 25 

remembered when repeated in a unisensory visual context than those objects initially experienced 26 

without a sound or with a sound that was either meaningless or semantically incongruent (Lehmann & 27 

Murray, 2005; Murray et al., 2005; Thelen, Talsma, & Murray, 2015). This pattern also holds when 28 



Michael P. Notter University of Lausanne July 2021 

Innovation and standardization of processing pipelines for functional MRI data analysis -LXVII- 

Page 4/28 

participants perform the task in the auditory modality and visual information is task-irrelevant (Matusz 1 

et al., 2015; Thelen et al., 2015). We have contended that such effects might rely on multisensory 2 

stimuli either themselves creating or accessing an enhanced memory trace that is, in turn, activated 3 

more readily or efficiently upon repetition of just the task-relevant unisensory component several trials 4 

later (Matusz et al., 2017). This conjecture is largely based, at present, on psychophysical results.  5 

The effect of multisensory semantic context on current stimulus processing has been investigat-6 

ed in prior fMRI studies. In particular, the superior temporal cortex (STC) seems to have higher sensi-7 

tivity to semantically congruent stimuli (van Atteveldt, Formisano, Goebel, & Blomert, 2004), while 8 

the inferior frontal cortex (IFC) is responsive to incongruent stimuli (Jung, Larsen, & Walther, 2018; 9 

Noppeney, Josephs, Hocking, Price, & Friston, 2008). These findings support the notion that the acti-10 

vation of cortical object representations varies with semantic congruence. However and to our 11 

knowledge, no investigation has described the brain mechanisms involved during the encoding and 12 

subsequent retrieval of semantically congruent multisensory objects. Such is necessary to provide evi-13 

dence regarding where in the brain the creation and reactivation of those memory traces take place. 14 

Thus, the present fMRI study aimed (1) to identify brain networks that are involved in the pro-15 

cess of creating and retrieving memory traces of semantically congruent episodic multisensory experi-16 

ences; and (2) to identify where in the brain these mechanisms take place. To answer the first question, 17 

we used a standard univariate analysis approach to analyze fMRI data of an experiment with multisen-18 

sory stimuli in different semantic contexts, which will provide information about the overall activation 19 

differences between conditions and therefore will highlight which brain regions are involved during 20 

the processing of the stimuli. While this type of analysis can show the degree of involvement of a giv-21 

en region, it does not provide information about the representational content that is computed at this 22 

location. For this purpose, we performed a multivariate pattern analysis (MVPA) on the same dataset. 23 

Determining the distinct activation pattern during the encoding of semantically congruent and incon-24 

gruent multisensory memory objects and comparing this pattern to the activation pattern during the 25 

subsequent retrieval of those memory traces based on exclusively unisensory visual inputs, will allow 26 

us to identify where in the brain the multisensory object representations are processed during encoding 27 

and retrieval. 28 
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Materials and Methods 1 

Participants 2 

Twelve healthy adults (8 female; aged 22-35 years mean ± SD = 28.06 ± 3.29) participated in 3 

this study. All reported normal hearing and normal (or corrected-to-normal) vision, and provided writ-4 

ten informed consent in accordance with procedures approved by the cantonal ethics committee of 5 

Vaud, Switzerland and according to the World Medical Association Helsinki Declaration (WMA 6 

General Assembly, 2008). Subjects were compensated a fixed sum for their participation and were free 7 

to end their participation at any time. All subjects were right-handed according to the Edinburgh hand-8 

edness inventory (Oldfield, 1971) and had no history of neurological or psychiatric illnesses. 9 

 10 

Behavioral procedures and task 11 

Subjects performed a continuous recognition task on equal numbers of initial and repeated 12 

presentations of line drawings of common objects, which were pseudo-randomized within a session of 13 

trials. The stimuli used in this experiment were the same as in Lehmann & Murray (2005). On each 14 

trial, subjects indicated whether the visual stimulus was appearing for the first time or had appeared 15 

previously. They were instructed to ignore the sounds and to focus on the visual information. The ex-16 

perimental paradigm is schematized in Figure 1. 17 

Visual stimuli were comprised of 108 line drawings selected from either a standardized set 18 

(Snodgrass & Vanderwart, 1980) or obtained from an online library (dgl.microsoft.com) and modified 19 

to stylistically resemble those from the standardized set. Images were equally likely coming from a 20 

multitude of semantic categories (e.g., animals, miscellaneous household items, musical instruments, 21 

tools, vehicles, etc.) and their occurrence was balanced across experimental conditions. Images were 22 

centrally presented for 500ms and appeared black on a white background. On initial presentations, 23 

visual stimuli were subdivided into 3 groups: visual presentation only (V), which were appearing 50% 24 

of the initial presentations; visual with semantically congruent sound (AVc), which were presented 25 

25% of the initial presentations; and visual with semantically incongruent sound (AVi), which were 26 

shown on the remaining 25% of initial presentations. In this way, the amount of unisensory and multi-27 

sensory initial presentations were equal. 28 
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Auditory stimuli were complex, meaningful sounds (16 bit stereo; 44100 Hz digitization; 500 1 

ms duration) and were either semantically congruent (e.g. a “dong” sound with the image of a bell) or 2 

semantically incongruent (e.g. a “woof” sound with the image of a gun) to one of the visual stimuli. 3 

Sounds were obtained from an online library (dgl.microsoft.com) and modified using audio editing 4 

software (Adobe Audition version 1.0) to be 500ms in duration. The volume was adjusted to a com-5 

fortable and comprehensible level for each subject, such that sounds were clearly, but not uncomforta-6 

bly, audible in the scanner environment. 7 

On repeated presentations, only the visual stimuli from initial presentations were displayed. 8 

Subjects’ task was to indicate as quickly and as accurately as possible, via a right-hand button press, 9 

whether the image had been seen before. Thus, there were three classes of repeated presentations: (1) 10 

initially presented as visual alone; (2) initially presented with a semantically congruent sound; and (3) 11 

initially presented with a semantically incongruent sound. These conditions differ in (1) whether there 12 

was a visual unisensory or an auditory-visual multisensory experience associated with the image, and 13 

(2) whether this multisensory experience had semantically congruent or incongruent stimuli. To sim-14 

plify, we refer to repetitions of the images from the V condition as V-, to repetitions of images from 15 

the AVc condition as V+c, and to repetitions of images from the AVi condition as V+i. Subjects were 16 

not asked to judge if the semantic stimuli were incongruent or not, so the context (i.e., whether the 17 

initial encounter with the image during the experiments was unisensory or multisensory) was com-18 

pletely orthogonal to the task. 19 

Stimuli were presented for 500ms. The inter-trial interval (ITI) ranged from 5000ms to 12000ms 20 

in steps of 1000ms, varying randomly from one trial to the next though evenly distributed within each 21 

experimental condition to provide adequate temporal sampling of the blood oxygen level dependent 22 

(BOLD) response. Stimulus delivery and the recording of behavioral data (reaction time and accuracy) 23 

were controlled by E-prime in conjunction with their serial response box (www.pstnet.com; Psycholo-24 

gy Software Tools). Subjects were instructed to respond as fast as possible, whilst still being accurate. 25 

Button presses longer than 1300ms after stimuli presentation were not recorded and the trial was la-26 

beled as a miss. Misses were considered as incorrect responses in the behavioral analysis. 27 
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Stimuli were presented in sessions of 64 trials, with equal likelihood of initial and repeated 1 

presentations as well as balanced trials between initial unisensory and multisensory conditions (i.e., 16 2 

trials of V-, 8 trials of V+c and 8 trials of V+i per session). Within each session, the conditions were 3 

pseudo-randomized, and each image was repeated once, independently of how the image was initially 4 

presented. The average number of trials between the initial and repeated presentation of any given 5 

stimulus was 8.58 images (range = 3-20 images). Each subject completed 4 sessions. No object was 6 

repeated more than once for any subject - that is, each experiment was comprised of distinct stimuli. 7 

Likewise, sounds/images used for the incongruent condition were neither previously nor later used for 8 

other conditions. There were four new multisensory events during each quarter of trials in each of the 9 

four sessions, with an average of 10.25 new images during the first quarter and 7.0 new images during 10 

the final quarter. Thus, neither experiment had a clear bias in the distribution of multisensory vs. 11 

unisensory events nor in terms of old/new images that would readily explain performance differences 12 

between images with multisensory vs. unisensory pasts. 13 

 14 

MRI Data acquisition 15 

Structural and functional images were collected on a 3 Tesla Siemens TrioTim scanner 16 

equipped with an 8-channel head coil at the Center for Biomedical Imaging (CIBM) at the University 17 

Hospital Lausanne (CHUV). A 3-dimensional high-resolution isotropic T1-weighted sequence provid-18 

ed 160 contiguous, anatomical slices (MPRAGE; TR/TE/flip angle = 1480ms/3.42ms/15°; 256 x 19 

256mm in-plane resolution; a slice thickness of 1 mm; voxel size = 1x1x1 mm). Functional MRI im-20 

ages were continuously acquired using a standard gradient echo sequence (TR/TE/flip angle = 21 

2007.5ms/30ms/90°) with 36 axial functional images (224x224mm in-plane resolution; 3 mm slice 22 

thickness; 0.30 mm inter-slice gap; voxel size = 3.50 × 3.50 × 3.30mm) acquired in descending order 23 

covering the whole brain. For each subject four separate sessions were recorded, each having 275 vol-24 

umes. 25 

The raw data has been curated and organized according to the Brain Imaging Data Structure 26 

(BIDS) standards (Gorgolewski et al., 2016) and is freely available via the OpenNeuro repository at 27 

https://openneuro.org/datasets/ds001345. 28 
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 1 

Behavioral analyses 2 

Response accuracy and reaction time were analyzed using the SPSS statistical software (IBM 3 

Corporation, version 25). Two two-way repeated measures ANOVAs over the factors Condition (se-4 

mantically congruent, semantically incongruent, no semantic context) and Presentation time (initial 5 

and repeated stimuli presentation) were conducted to identify main effects and interactions, once to 6 

investigating response accuracy and once to investigate reaction time. When necessary, Greenhouse-7 

Geisser correction was applied when data violated assumptions of sphericity. Missed trails were con-8 

sidered as errors. Only correct responses were used for the investigation of reaction time. 9 

 10 

fMRI analysis 11 

Imaging data processing and analysis was carried out with fMRIflows v0.1 12 

(https://github.com/miykael/fmriflows), a python-based neuroimaging toolbox that combines the fol-13 

lowing software packages: Nipype v1.1.9 (K. Gorgolewski et al., 2011), integrating algorithms of the 14 

software packages FSL v5.0.9 (Smith et al., 2004), ANTs v2.2.0 (Avants et al., 2011), SPM12 v7219 15 

(Penny, Friston, Ashburner, Kiebel, & Nichols, 2011), AFNI v18.0.5 (Cox & Hyde, 1997), Nilearn 16 

v0.5 (Abraham et al., 2014), PyMVPA v2.6.5 (Hanke et al., 2009), AtlasReader v0.1 (Notter et al., 17 

2019), and Docker v18.09.2 (https://docker. com). 18 

Preprocessing: The preprocessing of the functional images was done for each session individu-19 

ally and was based on FSL’s FEAT workflow. As a first step, non-steady state volumes at the begin-20 

ning of each functional image were removed with Nipype and FSL and a brain extraction process was 21 

applied to the images, using Nilearn. This was followed by motion correction using FSL, where all 22 

images of a session were realigned to the mean of the session. Images were then slice-time corrected 23 

relative to the 18th (i.e. middle) slice using FSL. The mean image of the slice-time corrected images 24 

was then used to co-register the functional images to the subject specific anatomical image. This co-25 

registration was based on FSL’s FEAT pipeline and uses a two-step co-registration. The first step uses 26 

the anatomical image to pre-align the mean image, followed by the second co-registration step where 27 

the white matter probabilistic image computed with SPM’s segmentation function is used together 28 
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with the anatomical image in a boundary-based registration (BBR) approach to co-register the slice-1 

time corrected mean image to the anatomy. This co-registration is than applied to all functional images 2 

of the session. In this step, images were also resampled to an isometric voxel resolution of 3.5 × 3.5 × 3 

3.5mm. Following this transformation, images were temporally filtered with a high pass filter of 4 

100Hz, using AFNI. Finally, functional images were spatially smoothed with a smoothing kernel with 5 

FWHM of 3.5mm and 7mm using Nilearn, to create the data for the multivariate and univariate analy-6 

sis respectively. In order to preserve small patterns of activation in the signal, a smaller smoothing 7 

kernel of 3.5mm was applied for the multivariate analysis compare to the univariate analysis. Prior to 8 

the spatial smoothing, functional images were used to compute confound regressors, such as 9 

Framewise Displacement (FD), DVARS to identify motion-affected frames (Power, Barnes, Snyder, 10 

Schlaggar, & Petersen, 2012), as well as average signal within the brain volume using Nilearn. Specif-11 

ic volumes were labeled as outliers if their value was above 99%, or 3.27 standard deviation from the 12 

whole time-series in either FD, DVARS or average brain volume signal. Outlier volumes were not 13 

deleted from the preprocessed functional images, but each outlier volume was added as a nuisance 14 

vector in the general linear model (GLM). On average, 2.64% of all volumes were identified as outli-15 

ers. 16 

Univariate analysis: The functional images used for the univariate analysis were the ones with a 17 

smoothing kernel of FWHM = 7.0mm. Individual statistics were based on a least-square estimation 18 

using the GLM for serially autocorrelated observations and were performed separately on each voxel 19 

in the individual participant’s space (Friston et al., 1995) with SPM12. Six covariates of interest were 20 

calculated, representing the stimulus onset of the six experimental conditions AVc, AVi, V, V+c, V+i 21 

and V-. Covariates were convolved with the canonical hemodynamic response function. For each co-22 

variate of interest, a temporal derivative was added to the GLM. The serial autocorrelation of the 23 

BOLD time series was modeled using a first-order autoregressive mode. The four experimental runs 24 

were treated as separate sessions. No global intensity normalization was applied. The following 25 

regressors of no interest were added to the statistical model: six realignment-parameters (3 rotational 26 

and 3 translational), one regressor for FD and one for DVARS to identify motion-affected frames 27 

(Power et al., 2012), and, finally, one regressor containing the average activation in the whole brain. A 28 
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temporal high-pass filter of 100s was applied to remove low-frequency drifts over a timescale longer 1 

than this cutoff. For the random-effects analysis, contrasts of interest on the individual level were cal-2 

culated and normalized to the ICBM 2009c Nonlinear Asymmetric template (Fonov et al., 2011), us-3 

ing ANTs. Spatial resolution after the normalization was 1×1×1mm3. One-sample t-tests were per-4 

formed on the second level. The analysis was restricted to the gray matter voxels by the use of a binary 5 

mask. This mask was obtained by thresholding the gray matter probability map of the ICBM 2009c 6 

Nonlinear Asymmetric template at 10%, meaning that voxels were included in the mask if they had a 7 

chance higher than 10% to be classified as gray matter. T-maps were thresholded on the voxel level at 8 

p < 0.001, and topological False Discovery Rate (FDR)-correction for multiple comparisons, as im-9 

plemented in Nipype, was applied on the whole-brain activation cluster-extent level at p < 0.05. 10 

Multivariate pattern analysis (MVPA) preparation: The functional images used for the multi-11 

variate analysis had a smoothing kernel of FWHM = 3.5 mm. In order to preserve small patterns of 12 

activation in the signal, a smaller smoothing kernel was applied to the data for the multivariate analy-13 

sis than the univariate analysis. The multivariate analysis was performed within each subject. The 14 

individual statistics were performed in the same way as for the univariate analysis (i.e. same setup of 15 

GLM, usage of motion regressors and specification of outliers). The only differences were the reduced 16 

smoothing kernel and that the β-maps were normalized to an isometric voxel resolution of 17 

3.5×3.5×3.5mm3. To prepare for the multivariate analysis, β-maps from the GLM were normalized by 18 

voxel-wise z-scoring per run across all six conditions and sessions. The classification was based on 16 19 

β-maps (4 conditions x 4 sessions), as the two unisensory conditions V and V- were not used for the 20 

MVPA classification. A binary mask was created to selectively include voxels in the searchlight anal-21 

ysis that have a value in at least one of the β-maps. This binary mask was then dilated by two voxels 22 

and eroded by one voxel in order to ensure that the mask does not include single voxel “islets”. For the 23 

classification analysis, a linear support vector machine (SVM) from the LIBSVM package 24 

(https://www.csie.ntu.edu.tw/~cjlin/libsvm) as implemented in PyMVPA v2.6.5 (Hanke et al., 2009) 25 

was used. A four-fold leave-one-run-out cross-validation (i.e. training on the beta maps of three ses-26 

sions and testing on the beta maps of the remaining session) was performed (Pereira, Mitchell, & 27 
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Botvinick, 2009). The SVM Nu hyper-parameter was automatically scaled according to the data norm 1 

for each training data fold. 2 

Searchlight analysis: This type of analysis was performed due to its sensitivity to functional 3 

brain organization, and because the searchlight analysis is an approach to localize brain regions with 4 

high discriminative information (Kriegeskorte, Goebel, & Bandettini, 2006). A binary classifier was 5 

trained to discriminate between semantically congruent and incongruent stimuli, during the encoding 6 

as well as during the retrieval phase (see Figure 2). To detect reoccurring and discriminative activation 7 

patterns during encoding and retrieval, the classifier was once trained on “AVc vs. AVi” and tested on 8 

“V+c vs. V+i”, and once trained on “V+c vs V+i” and tested on “AVc vs AVi”. The two searchlight 9 

output maps were than averaged to receive a new accuracy map. With this approach, we can distin-10 

guish brain regions where the stored information is identical during encoding and retrieval, from brain 11 

regions that are discriminative between the two semantic conditions.  12 

The searchlight analysis was performed across the brain in template space and for each subject 13 

and classification, separately. Every voxel in the brain mask was taken as a center point for a sphere 14 

with a radius of 3.5 voxels (i.e. 12.25mm radius, up to 123 voxels). For each of those spheres, a four-15 

fold leave-one-out cross-validation was performed, resulting in one accuracy value per sphere. The 16 

classification accuracy of a given voxel was the average accuracy of all spheres that included this 17 

voxel. The resulting subject specific accuracy maps per classification pair were averaged over all par-18 

ticipants to obtain the group classification accuracy map. Significance testing in the searchlight analy-19 

sis was performed by using permutation and bootstrap sampling methods, followed by cluster 20 

thresholding with correction for multiple comparisons as suggested by Stelzer, Chen, & Turner (2013) 21 

and implemented by PyMVPA. The permutation was achieved by conducting the previously men-22 

tioned searchlight for each subject an additional 99 times, each time with randomly permuted data 23 

labels resulting in one condition relevant accuracy map and 99 “noise” accuracy maps per subject. For 24 

the bootstrapping process, new group-level “noise” accuracies maps were generated by selecting ran-25 

domly one of the 100 accuracy maps per subject and averaging them into a new group-level chance 26 

accuracy map. This process was repeated 100’000 times to create a voxel-wise null distribution of the 27 
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classification accuracy map on the group level. All volumes were thresholded with a voxel-wise 1 

threshold of p < 0.002. Only clusters with size bigger than 214mm3 were retained. 2 

Visualization & cluster information: Extraction of cluster information of the univariate and mul-3 

tivariate analysis were obtained with the freely available AtlasReader (Notter et al., 2019), which de-4 

pends on Nilearn (v0.5.0; nilearn.github.io; Abraham et al., 2014). Only clusters bigger than 100 mm3 5 

and 214mm3 were retained for the univariate and multivariate analysis, respectively. This represents a 6 

minimum cluster size of 100 voxels for the univariate and 5 voxels for the multivariate analysis. 7 

 8 

Results 9 

Behavior 10 

Participants performed at near-ceiling levels, with an average accuracy rate across conditions 11 

above 95%. Mean (± standard error) accuracy and reaction time for each condition are shown in Fig-12 

ure 3. The two-way repeated measures ANOVA investigating accuracy showed a significant main 13 

effect of Condition (F(2, 22) = 5.36; p = 0.013; ηp
2=0.33), but none for Presentation Time (F(1, 11) = 1.71; 14 

p = 0.22; ηp
2=0.13), nor their interaction (F(1.27, 13.98) = 2.27; p = 0.15; ηp

2=0.17). The main effect of 15 

condition was due to generally lower performance when no multisensory stimulus was or had been 16 

presented (93.8%), independently of semantic congruence (95.9%; t(11)=2.9; p=0.021) or incongruence 17 

(96.5%; t(11)=3.22; p=0.008). There was no evidence for a general accuracy difference between condi-18 

tions that were or had been presented in a semantically congruent vs. semantically incongruent multi-19 

sensory context (p=0.56).  20 

The two-way repeated measures ANOVA investigating reaction time showed a significant ef-21 

fect of Condition (F(2, 22) = 3.53; p = 0.047; ηp
2=0.24) and of the interaction between Condition and 22 

Presentation Time (F(2, 22) = 4.10; p = 0.031; ηp
2=0.27), but none for Presentation Time alone (F(1, 11) = 23 

0.620; p = 0.45; ηp
2=0.05). Given this interaction, separate ANOVAs were computed for initial and 24 

repeated presentation times. For initial presentations, there was a main effect of condition (F(2,22)=4.95; 25 

p=0.017; ηp
2=0.31) that was due to the generally faster reaction times to visual than either multisenso-26 
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ry condition, independent of semantic congruency. For repeated presentations, there was no main ef-1 

fect of condition (F(2,22)<1; p>0.65; ηp
2=0.04). 2 

Univariate fMRI analysis 3 

The univariate analysis investigated the following four contrasts: “AVc vs. AVi“, “V+c vs. 4 

V+i“, “V+c vs. V-“ and “V+i vs. V-“. Significant results are shown in Figure 4. The contrast “AVc vs. 5 

AVi“ highlighted that the first presentation of a congruent multisensory stimuli induced a lower acti-6 

vation in the left occipital pole and LOC, and in the right superior temporal gyrus and planum 7 

temporale, in contrast to an incongruent multisensory stimuli (Figure 4A, Table 1). Comparing the 8 

second presentation of a visual stimulus, if the first presentation was paired with a congruent sound in 9 

contrast to no sound showed an increased activation in the left LOC and a decreased activation in the 10 

left precentral gyrus and the right middle frontal gyrus (Figure 4B, Table 1). No statistically signifi-11 

cant group activation differences were observed when comparing "V+c vs. V+i" or "V+i vs. V-", when 12 

the voxel threshold was set to p<0.001. Increasing the voxel threshold to p<0.005, while keeping the 13 

cluster threshold at p<0.05 (FDR) reveals bilateral increased activation in the LOC during the percep-14 

tion of V+c in comparison to V+i (Figure 4C, Table 1). No group differences were observed in the 15 

contrast "V+i vs. V-", even at a voxel threshold of p<0.01. 16 

 17 

Multivariate fMRI analysis 18 

To identify brain regions that encode and retrieve semantically congruent multisensory stimuli, 19 

a searchlight analysis was performed using SVM Nu classifiers, that investigated the binary classifica-20 

tions “AVc vs. AVi” and “V+c vs. V+i” (i.e. a cross-classification analysis). The clusters depicted in 21 

Figure 5 show areas where a classifier trained on one contrast (e.g. “AVc vs. AVi”) could predict the 22 

class differences in the other contrast (e.g. “V+c vs. Vi”) and vice versa. This represents brain regions 23 

where the activation pattern difference between congruent and incongruent multisensory stimuli dur-24 

ing the encoding phase was informative for the discrimination of repeated visual stimuli differing only 25 

in whether they had been previously encountered with a semantically congruent or incongruent sound. 26 
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Significantly increased prediction accuracy was observed in the left inferior frontal gyrus, frontal pole 1 

and occipital pole, and in the right superior frontal gyrus (see Figure 5, Table 2). 2 

 3 

  4 
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Discussion 1 

We show, for the first time, that decoding of semantically congruent from incongruent multisen-2 

sory information not only occurs within low-level visual cortices, but is also effective for the decoding 3 

of responses to unisensory, visual repetitions of these contexts several trials later. This decoding ap-4 

pears to be independent from subjects explicitly attending to the multisensory context or its semantic 5 

congruence. As a reminder, the task here required the discrimination of initial from repeated presenta-6 

tion of visual objects, with the auditory information being task-irrelevant. One possibility for why 7 

these effects were observed here within visual cortices might be due to the visually-based task. Future 8 

studies should therefore explore stimuli paradigms with a task based on other or multiple modalities. 9 

Our results cannot be explained by behavioural differences across conditions, as there were no reliable 10 

accuracy differences between the AVc and AVi conditions nor between the V+c and V+I conditions. 11 

In contrast to prior works, where stimuli were presented repeatedly across trials and/or for a relatively 12 

long time, participants’ exposure to any multisensory stimulus in this study was limited to a single 13 

500ms trial. This short, single-trial exposure was sufficient to engender distinct representations both 14 

during encoding and later unisensory-based retrieval. The fact that there was overlap in representations 15 

of semantic congruence (i.e. the decoding of the AVc from AVi condition) and representations of prior 16 

multisensory context (i.e. the decoding of V+c from V+i) is consistent with the notion of 17 

redintegration (Hamilton, 1859) that postulates that a component part suffices to activate a consolidat-18 

ed memory representation (cf. Thelen and Murray, 2013 for discussion). 19 

We identified brain networks and specific regions involved in the encoding and retrieval of mul-20 

tisensory memories during a continuous recognition task, where visual stimuli were presented either 21 

alone or with semantically congruent or incongruent auditory stimuli. Our behavioral results high-22 

lighted that multisensory pairing during the initial presentation improved memory performance by 23 

increasing accuracy. These behavioral results were linked to the activation of several brain regions 24 

involved differently in the encoding and retrieval of the multisensory memories. Using an univariate 25 

analysis, our results indicate different involvement of brain networks in the left occipital pole, the right 26 

superior temporal gyrus and the left LOC, while multivariate analysis revealed that semantically con-27 
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gruent multisensory information is encoded and retrieved in specific brain regions, such as the left 1 

inferior frontal gyrus, left frontal and occipital poles and the right superior frontal gyrus. 2 

Our univariate results showed significant differences in the primary auditory and visual cortices 3 

for the comparison of the initial presentation of multisensory stimuli in a congruent vs. an incongruent 4 

context (see Figure 4A), which were consistent with findings of previous studies (Beauchamp, Lee, 5 

Argall, & Martin, 2004; Lu et al., 2018; Martuzzi et al., 2007; Murray, Lewkowicz, Amedi, & 6 

Wallace, 2016; van Atteveldt et al., 2004) and supported their involvement during functional integra-7 

tion. Additional to the primary cortices, we also observed an involvement of the LOC. This latter acti-8 

vation was not surprising as many studies have already shown the involvement of the LOC in line with 9 

object representation and multisensory integration (Lacey, Tal, Amedi, & Sathian, 2009; Matusz et al., 10 

2017).  11 

Memory traces of natural and well-established objects, which were different from those of new-12 

ly established modality pairings, seem to require a different memory strategy to be reactivated at a 13 

later stage. This was highlighted by the univariate analysis shown in Figure 4B. Participants showed 14 

an increased activation during V+c in the left LOC, which has been shown to process episodic 15 

memory, memory encoding and retrieval (Hassabis, Kumaran, & Maguire, 2007; Qin et al., 2007; 16 

Ranganath, Johnson, & D’Esposito, 2003), while the increased activation during V- in the right middle 17 

frontal gyrus is known to be involved in working memory tasks (Sabb, Bilder, Chou, & Bookheimer, 18 

2007; Yeh, Kuo, & Liu, 2007). The lack of significant differences between “V+i and V-“, even at a 19 

lenient voxel threshold of p<0.01, might indicate that the brain processes during the perception of both 20 

conditions were too similar. 21 

Using a multivariate approach, we investigated if the representational content in a given area 22 

differed between conditions, even if the overall activation within this region was the same (Mur, 23 

Bandettini, & Kriegeskorte, 2009). This multivariate analysis revealed that the primary visual cortex 24 

was not just involved during the encoding of semantic congruent stimuli, but also during the retrieval 25 

of memory traces thereof. While our findings did not provide information about the direction of the 26 

involvement of a region, they matched previous reports by Doehrmann & Naumer (2008), who pro-27 
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posed that the STC was more sensitive to semantically congruent stimuli, while the inferior frontal 1 

gyrus was more responsive to semantically incongruent stimuli, and that those effect were more often 2 

lateralized in the left hemisphere. Several studies have shown that the inferior frontal cortex was 3 

linked to semantic memory retrieval (Chou, Chen, Wu, & Booth, 2009; Forgács et al., 2012; Raposo, 4 

Mendes, & Marques, 2012), which supports the hypothesis that semantically congruent memory trac-5 

es, in contrast to incongruent ones, require episodic memory to be stored and reactivated. 6 

Our study introduced a novel approach to investigate the differences in brain regions for the en-7 

coding and retrieval of the representations of multisensory induced and semantic context dependent 8 

objects, by looking at reoccurring activation patterns of specific memory traces. While compelling for 9 

the specific modality pairing, these results should be tested with other paradigms before being further 10 

generalized. Future studies should therefore investigate if the location of stable activation pattern dur-11 

ing encoding and retrieval of specific memory traces might take part in the same brain regions, and/or 12 

if the modality pairings might be different from the ones used in this study. We might expect that simi-13 

lar, but slightly weaker results will be observed if the repeated stimuli modality was auditory instead 14 

of visual (as used in Noppeney et al., 2008). Another way to test the generalization of these multisen-15 

sory integration regions will be to pair different sensorial modalities, such as touch or olfactory, or 16 

move away from well-established natural objects and investigate the encoding and decoding of new 17 

memory traces by creating newly primed object pairings, such as used in Noppeney et al. (2008). Such 18 

a paradigm would clarify our results, and their explicit causality with well-established natural object 19 

representation and episodic memory, but also if the same networks are involved in newly created 20 

memory traces. 21 

Previous work has demonstrated that categories of sounds either presented in a unisensory man-22 

ner or alternatively imagined in response to a heard word can be successfully decoded by patterned 23 

responses within low-level visual cortices, including V1 (Vetter, Smith, & Muckli, 2014). The impli-24 

cation is that low-level visual cortices represent not only the occurrence of multisensory events (i.e. 25 

that there is something multisensory in one’s real or imagined environment), but also the quality of 26 

these events in terms of semantic categories. Our results provide an important extension to this claim. 27 

First, we showed that it is possible to decode the semantic congruence itself. This suggests that visual 28 
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cortices represent qualitative information about experiences; namely whether or not information from 1 

different senses refer to the same object. Second and extending beyond the above, we furthermore 2 

show that the visual cortex can decode unisensory visual information according to how it had been 3 

previously encountered several trials earlier. Visual repetitions of images previously encountered in a 4 

semantically congruent or incongruent context could be reliably decoded by primary visual cortex. 5 

 6 

  7 
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Tables 1 
 2 
Table 1. Cluster information corresponding to the univariate fMRI results shown in Figure 4. 3 

MNI coordinate 
of peak in (x,y,z) 

Mean 
t- value 

Cluster extent 
(in mm3) 

Cluster extent according to 
Harvard-Oxford probabilistic atlas 

A) AVc vs. AVi – voxel threshold at p<0.001 and cluster threshold at p<0.05 (FDR) 
-16, -95, 10 -5.16 1283 100.00% Left_Occipital_Pole 
68, -28, 9 -4.76 1100 74.00% Right_Superior_Temporal_Gyrus_posterior_division 

17.18% Right_Planum_Temporale 
5.73% Right_Postcentral_Gyrus 

-32, -89, 14 -5.04 795 84.53% Left_Lateral_Occipital_Cortex_superior_division 
12.96% Left_Occipital_Pole 

    
B) V+c vs. V- – voxel threshold at p<0.001 and cluster threshold at p<0.05 (FDR) 
-33, -79, 37 5.06 1826 99.07% Left_Lateral_Occipital_Cortex_superior_division 
-36, -11, 66 -4.56 953 95.91% Left_Precentral_Gyrus 
39, 6, 54 -5.15 488 100.00% Right_Middle_Frontal_Gyrus 
    
C) V+c vs. V+i – voxel threshold at p<0.005 and cluster threshold at p<0.05 (FDR) 
42, -70, 42 3.77 1884 75.58% Right_Lateral_Occipital_Cortex_superior_division; 

16.35% Right_Angular_Gyrus 
47, -66, 20 3.89 1787 53.44% Right_Lateral_Occipital_Cortex_superior_division; 

29.66% Right_Angular_Gyrus 
8.90% Right_Lateral_Occipital_Cortex_inferior_division 
8.00% Right_Middle_Temporal_Gyrus_temporooccipital_part 

-36, -61, 39 3.58 1711 91.88% Left_Lateral_Occipital_Cortex_superior_division; 
6.78% Left_Angular_Gyrus 

 4 
 5 
Table 2. Cluster information corresponding to the multivariate fMRI results shown in Figure 5. 6 

MNI coordinate 
of peak in (x,y,z) 

Mean 
accuracy 

Cluster extent 
(in mm3) 

Cluster extent according to 
Harvard-Oxford probabilistic atlas 

Trained on AVc vs. AVi - tested on V+c vs. V+i – voxel threshold at p<0.002 and cluster extent at 214mm3 
-61, 22, 6 0.590 2187 41.2% Left_Inferior_Frontal_Gyrus_pars_opercularis 

17.7% Left_Precentral_Gyrus 
17.7% Left_Inferior_Frontal_Gyrus_pars_triangularis 
15.7% Left_Temporal_Pole 

-29.5, 50, 41 0.594 2058 85.4% Left_Frontal_Pole; 14.58% no_label 
16, 11.5, 72.5 0.599 1501 100.0% Right_Superior_Frontal_Gyrus 
-12, -107.5, 6 0.599 1415 100.0% Left_Occipital_Pole 

 7 

  8 
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Figure Legends 1 
 2 
Figure 1. Experimental paradigm: The recognition task comprised of initial and repeated image 3 
presentations. 50% of the initial presentations were only visually (V), 25% of initial presentations 4 
were simultaneously appearing with semantically congruent sounds (AVc) and 25% of initial presenta-5 
tions were simultaneously appearing with semantically incongruent sounds (AVi). All repeated 6 
presentations contained only images but were subdivided for analyses into three conditions - those that 7 
initially had been presented with congruent sounds (V+c trials), with incongruent sounds (V+i trials) 8 
or only visually (V- trials). 9 
 10 
Figure 2. Illustration of the searchlight classification. Fictitious brain activation is shown during the 11 
perception of semantically congruent (top; i.e. AVc and V+c) and incongruent (bottom; i.e. AVi and 12 
V+i) stimuli, during the initial encoding (left; yellow box) and subsequent retrieval (right; green box) 13 
phase. Red-white-blue colors indicate different relative activation levels within a voxel. In black out-14 
line, the searchlight sphere in 2D is shown, with a radius of 3.5 voxels around the center (outlined in 15 
green). Each classifier will use the information from all voxels within a searchlight sphere to try to 16 
discriminate between the two semantic conditions, while looking for a stable activation pattern during 17 
encoding and retrieval. 18 
 19 
Figure 3. Behavioral results for accuracy (left) and reaction time (right). Group averages for the initial 20 
stimuli presentation for the condition AVc, AVi and V are shown in blue and group averages for the 21 
repeated stimuli presentation for the condition V+c, V+i and V- are shown in orange. Error bars repre-22 
sent standard errors. 23 
 24 
Figure 4. Univariate fMRI results showing significant difference between (A) the initial presentation 25 
of congruent and incongruent multisensory stimuli; (B) the repeated presentation of visual stimuli if 26 
they were previously seen with congruent sounds or no sounds and (C) the repeated presentation of 27 
visual stimuli if they were previously seen with congruent or incongruent sounds. Colors represent 28 
stronger (red-yellow) or lower (blue-white) activation during the first comparison object, i.e. AVc or 29 
V+c. Shown values represent t-values from the group statistics. 30 
 31 
Figure 5. Multivariate fMRI results showing regions with significant prediction accuracy of a classifi-32 
er which looked for stable activation pattern between the conditions AVc and V+c, but also differed 33 
significantly from the stable activation pattern between the conditions AVi and V+i. Shown values 34 
represent prediction accuracies. 35 
 36 
  37 



Michael P. Notter University of Lausanne July 2021 

Innovation and standardization of processing pipelines for functional MRI data analysis -LXXXVI- 

Page 23/28 

References 1 

Abraham, A., Pedregosa, F., Eickenberg, M., Gervais, P., Mueller, A., Kossaifi, J., … Varoquaux, G. 2 

(2014). Machine learning for neuroimaging with scikit-learn. Frontiers in Neuroinformatics, 3 

8(February), 14. https://doi.org/10.3389/fninf.2014.00014 4 

Avants, B. B., Tustison, N. J., Song, G., Cook, P. A., Klein, A., & Gee, J. C. (2011). A reproducible 5 

evaluation of ANTs similarity metric performance in brain image registration. NeuroImage, 6 

54(3), 2033–2044. https://doi.org/10.1016/j.neuroimage.2010.09.025 7 

Beauchamp, M. S., Lee, K. E., Argall, B. D., & Martin, A. (2004). Integration of auditory and visual 8 

information about objects in superior temporal sulcus. Neuron, 41(5), 809–823. 9 

https://doi.org/10.1016/S0896-6273(04)00070-4 10 

Calvert, G. A., Spence, C., & others. (2004). The Handbook of multisensory processes, MIT Press., 11 

Cambridge, MA. 12 

Chou, T.-L., Chen, C.-W., Wu, M.-Y., & Booth, J. R. (2009). The role of inferior frontal gyrus and 13 

inferior parietal lobule in semantic processing of Chinese characters. Experimental Brain 14 

Research, 198(4), 465–475. https://doi.org/10.1007/s00221-009-1942-y 15 

Cox, R. W., & Hyde, J. S. (1997). Software tools for analysis and visualization of fMRI data. NMR in 16 

Biomedicine, 10(4–5), 171–178. https://doi.org/10.1002/(SICI)1099-17 

1492(199706/08)10:4/5<171::AID-NBM453>3.0.CO;2-L 18 

Doehrmann, O., & Naumer, M. J. (2008). Semantics and the multisensory brain: how meaning 19 

modulates processes of audio-visual integration. Brain Research, 1242, 136–150. 20 

https://doi.org/10.1016/j.brainres.2008.03.071 21 

Fonov, V., Evans, A. C., Botteron, K., Almli, C. R., McKinstry, R. C., & Collins, D. L. (2011). 22 

Unbiased average age-appropriate atlases for pediatric studies. NeuroImage, 54(1), 313–327. 23 

https://doi.org/10.1016/j.neuroimage.2010.07.033 24 

Forgács, B., Bohrn, I., Baudewig, J., Hofmann, M. J., Pléh, C., & Jacobs, A. M. (2012). Neural 25 

correlates of combinatorial semantic processing of literal and figurative noun noun compound 26 

words. NeuroImage, 63(3), 1432–1442. https://doi.org/10.1016/j.neuroimage.2012.07.029 27 

Friston, K. J., Holmes, A. P., Poline, J. B., Grasby, P. J., Williams, S. C., Frackowiak, R. S., & Turner, 28 



Michael P. Notter University of Lausanne July 2021 

Innovation and standardization of processing pipelines for functional MRI data analysis -LXXXVII- 

Page 24/28 

R. (1995). Analysis of fMRI time-series revisited. NeuroImage, 2(1), 45–53. 1 

https://doi.org/10.1006/nimg.1995.1007 2 

Gibson, J. R., & Maunsell, J. H. (1997). Sensory modality specificity of neural activity related to 3 

memory in visual cortex. Journal of Neurophysiology, 78(3), 1263–1275. 4 

Gorgolewski, K., Burns, C. D., Madison, C., Clark, D., Halchenko, Y. O., Waskom, M. L., & Ghosh, 5 

S. S. (2011). Nipype: a flexible, lightweight and extensible neuroimaging data processing 6 

framework in python. Frontiers in Neuroinformatics, 5(August), 13. 7 

https://doi.org/10.3389/fninf.2011.00013 8 

Gorgolewski, K. J., Auer, T., Calhoun, V. D., Craddock, R. C., Das, S., Duff, E. P., … Poldrack, R. A. 9 

(2016). The brain imaging data structure, a format for organizing and describing outputs of 10 

neuroimaging experiments. Scientific Data, 3, 160044. https://doi.org/10.1038/sdata.2016.44 11 

Hanke, M., Halchenko, Y. O., Sederberg, P. B., Hanson, S. J., Haxby, J. V., & Pollmann, S. (2009). 12 

PyMVPA: A python toolbox for multivariate pattern analysis of fMRI data. Neuroinformatics, 13 

7(1), 37–53. https://doi.org/10.1007/s12021-008-9041-y 14 

Hassabis, D., Kumaran, D., & Maguire, E. A. (2007). Using imagination to understand the neural basis 15 

of episodic memory. The Journal of Neuroscience : The Official Journal of the Society for 16 

Neuroscience, 27(52), 14365–14374. https://doi.org/10.1523/JNEUROSCI.4549-07.2007 17 

Jung, Y., Larsen, B., & Walther, D. B. (2018). Modality-Independent Coding of Scene Categories in 18 

Prefrontal Cortex. The Journal of Neuroscience : The Official Journal of the Society for 19 

Neuroscience, 38(26), 5969–5981. https://doi.org/10.1523/JNEUROSCI.0272-18.2018 20 

Kriegeskorte, N., Goebel, R., & Bandettini, P. (2006). Information-based functional brain mapping. 21 

Proceedings of the National Academy of Sciences of the United States of America, 103(10), 22 

3863–3868. https://doi.org/10.1073/pnas.0600244103 23 

Lacey, S., Tal, N., Amedi, A., & Sathian, K. (2009). A putative model of multisensory object 24 

representation. Brain Topography, 21(3–4), 269–274. https://doi.org/10.1007/s10548-009-0087-25 

4 26 

Lehmann, S., & Murray, M. M. (2005). The role of multisensory memories in unisensory object 27 

discrimination. Brain Research. Cognitive Brain Research, 24(2), 326–334. 28 



Michael P. Notter University of Lausanne July 2021 

Innovation and standardization of processing pipelines for functional MRI data analysis -LXXXVIII- 

Page 25/28 

https://doi.org/10.1016/j.cogbrainres.2005.02.005 1 

Lu, L., Zhang, G., Xu, J., & Liu, B. (2018). Semantically Congruent Sounds Facilitate the Decoding of 2 

Degraded Images. Neuroscience, 377, 12–25. https://doi.org/10.1016/j.neuroscience.2018.01.051 3 

Martuzzi, R., Murray, M. M., Michel, C. M., Thiran, J.-P., Maeder, P. P., Clarke, S., & Meuli, R. A. 4 

(2007). Multisensory Interactions within Human Primary Cortices Revealed by BOLD 5 

Dynamics. Cerebral Cortex, 17(7), 1672–1679. https://doi.org/10.1093/cercor/bhl077 6 

Matusz, P. J., Thelen, A., Amrein, S., Geiser, E., Anken, J., & Murray, M. M. (2015). The role of 7 

auditory cortices in the retrieval of single-trial auditory-visual object memories. European 8 

Journal of Neuroscience, 41(5), 699–708. https://doi.org/10.1111/ejn.12804 9 

Matusz, P. J., Wallace, M. T., & Murray, M. M. (2017). A multisensory perspective on object 10 

memory. Neuropsychologia, (April), 1–10. 11 

https://doi.org/10.1016/j.neuropsychologia.2017.04.008 12 

Molholm, S., Ritter, W., Javitt, D. C., & Foxe, J. J. (2004). Multisensory visual-auditory object 13 

recognition in humans: a high-density electrical mapping study. Cerebral Cortex (New York, 14 

N.Y. : 1991), 14(4), 452–465. https://doi.org/10.1093/cercor/bhh007 15 

Mur, M., Bandettini, P. A., & Kriegeskorte, N. (2009). Revealing representational content with 16 

pattern-information fMRI--an introductory guide. Social Cognitive and Affective Neuroscience, 17 

4(1), 101–109. https://doi.org/10.1093/scan/nsn044 18 

Murray, M. M., Foxe, J. J., & Wylie, G. R. (2005). The brain uses single-trial multisensory memories 19 

to discriminate without awareness. NeuroImage, 27(2), 473–478. 20 

https://doi.org/10.1016/j.neuroimage.2005.04.016 21 

Murray, M. M., Lewkowicz, D. J., Amedi, A., & Wallace, M. T. (2016). Multisensory Processes: A 22 

Balancing Act across the Lifespan. Trends in Neurosciences, 39(8), 567–579. 23 

https://doi.org/10.1016/j.tins.2016.05.003 24 

Murray, M. M., Michel, C. M., Grave de Peralta, R., Ortigue, S., Brunet, D., Gonzalez Andino, S., & 25 

Schnider, A. (2004). Rapid discrimination of visual and multisensory memories revealed by 26 

electrical neuroimaging. NeuroImage, 21(1), 125–135. 27 

https://doi.org/10.1016/j.neuroimage.2003.09.035 28 



Michael P. Notter University of Lausanne July 2021 

Innovation and standardization of processing pipelines for functional MRI data analysis -LXXXIX- 

Page 26/28 

Murray, M. M., & Wallace, M. T. (2012). The Neural Bases of Multisensory Processes. (M. M. 1 

Murray & M. T. Wallace, Eds.). Boca Raton, FL: CRC Press. 2 

Noppeney, U., Josephs, O., Hocking, J., Price, C. J., & Friston, K. J. (2008). The effect of prior visual 3 

information on recognition of speech and sounds. Cerebral Cortex (New York, N.Y. : 1991), 4 

18(3), 598–609. https://doi.org/10.1093/cercor/bhm091 5 

Notter, M., Gale, D., Herholz, P., Markello, R., Notter-Bielser, M.-L., & Whitaker, K. (2019). 6 

AtlasReader: A Python package to generate coordinate tables, region labels, and informative 7 

figures from statistical MRI images. Journal of Open Source Software, 4(34), 1257. 8 

https://doi.org/10.21105/joss.01257 9 

Nyberg, L., Habib, R., McIntosh, A. R., & Tulving, E. (2000). Reactivation of encoding-related brain 10 

activity during memory retrieval. Proceedings of the National Academy of Sciences of the United 11 

States of America, 97(20), 11120–11124. Retrieved from 12 

http://www.pnas.org/cgi/doi/10.1073/pnas.97.20.11120 13 

Oldfield, R. C. (1971). The assessment and analysis of handedness: the Edinburgh inventory. 14 

Neuropsychologia, 9(1), 97–113. Retrieved from http://www.ncbi.nlm.nih.gov/pubmed/5146491 15 

Penny, W. D., Friston, K. J., Ashburner, J. T., Kiebel, S. J., & Nichols, T. E. (2011). Statistical 16 

parametric mapping: the analysis of functional brain images. Elsevier. 17 

Pereira, F., Mitchell, T., & Botvinick, M. (2009). Machine learning classifiers and fMRI: a tutorial 18 

overview. NeuroImage, 45(1 Suppl), S199-209. 19 

https://doi.org/10.1016/j.neuroimage.2008.11.007 20 

Power, J. D., Barnes, K. A., Snyder, A. Z., Schlaggar, B. L., & Petersen, S. E. (2012). Spurious but 21 

systematic correlations in functional connectivity MRI networks arise from subject motion. 22 

NeuroImage, 59(3), 2142–2154. https://doi.org/10.1016/j.neuroimage.2011.10.018 23 

Qin, S., Piekema, C., Petersson, K. M., Han, B., Luo, J., & Fernández, G. (2007). Probing the 24 

transformation of discontinuous associations into episodic memory: an event-related fMRI study. 25 

NeuroImage, 38(1), 212–222. https://doi.org/10.1016/j.neuroimage.2007.07.020 26 

Ranganath, C., Johnson, M. K., & D’Esposito, M. (2003). Prefrontal activity associated with working 27 

memory and episodic long-term memory. Neuropsychologia, 41(3), 378–389. 28 



Michael P. Notter University of Lausanne July 2021 

Innovation and standardization of processing pipelines for functional MRI data analysis -XC- 

Page 27/28 

https://doi.org/10.1016/S0028-3932(02)00169-0 1 

Raposo, A., Mendes, M., & Marques, J. F. (2012). The hierarchical organization of semantic memory: 2 

executive function in the processing of superordinate concepts. NeuroImage, 59(2), 1870–1878. 3 

https://doi.org/10.1016/j.neuroimage.2011.08.072 4 

Sabb, F. W., Bilder, R. M., Chou, M., & Bookheimer, S. Y. (2007). Working memory effects on 5 

semantic processing: priming differences in pars orbitalis. NeuroImage, 37(1), 311–322. 6 

https://doi.org/10.1016/j.neuroimage.2007.04.050 7 

Smith, S. M., Jenkinson, M., Woolrich, M. W., Beckmann, C. F., Behrens, T. E. J., Johansen-Berg, H., 8 

… Matthews, P. M. (2004). Advances in functional and structural MR image analysis and 9 

implementation as FSL. NeuroImage, 23 Suppl 1(SUPPL. 1), S208-19. 10 

https://doi.org/10.1016/j.neuroimage.2004.07.051 11 

Snodgrass, J. G., & Vanderwart, M. (1980). A standardized set of 260 pictures: Norms for name 12 

agreement, image agreement, familiarity, and visual complexity. Journal of Experimental 13 

Psychology: Human Learning & Memory, 6(2), 174–215. https://doi.org/10.1037/0278-14 

7393.6.2.174 15 

Sperdin, H. F., Cappe, C., Foxe, J. J., & Murray, M. M. (2009). Early, low-level auditory-16 

somatosensory multisensory interactions impact reaction time speed. Frontiers in Integrative 17 

Neuroscience, 3(1), 2. https://doi.org/10.3389/neuro.07.002.2009 18 

Stelzer, J., Chen, Y., & Turner, R. (2013). Statistical inference and multiple testing correction in 19 

classification-based multi-voxel pattern analysis (MVPA): random permutations and cluster size 20 

control. NeuroImage, 65, 69–82. https://doi.org/10.1016/j.neuroimage.2012.09.063 21 

Thelen, A., Cappe, C., & Murray, M. M. (2012). Electrical neuroimaging of memory discrimination 22 

based on single-trial multisensory learning. NeuroImage, 62(3), 1478–1488. 23 

https://doi.org/10.1016/j.neuroimage.2012.05.027 24 

Thelen, A., & Murray, M. M. (2013). The efficacy of single-trial multisensory memories. 25 

Multisensory Research, 26(5), 483–502. https://doi.org/10.1163/22134808-00002426 26 

Thelen, A., Talsma, D., & Murray, M. M. (2015). Single-trial multisensory memories affect later 27 

auditory and visual object discrimination. Cognition, 138, 148–160. 28 



Michael P. Notter University of Lausanne July 2021 

Innovation and standardization of processing pipelines for functional MRI data analysis -XCI- 

  Page 28/28 

https://doi.org/10.1016/j.cognition.2015.02.003 1 

Thomas, R. L., Nardini, M., & Mareschal, D. (2017). The impact of semantically congruent and 2 

incongruent visual information on auditory object recognition across development. Journal of 3 

Experimental Child Psychology, 162, 72–88. https://doi.org/10.1016/j.jecp.2017.04.020 4 

van Atteveldt, N., Formisano, E., Goebel, R., & Blomert, L. (2004). Integration of letters and speech 5 

sounds in the human brain. Neuron, 43(2), 271–282. 6 

https://doi.org/10.1016/j.neuron.2004.06.025 7 

Vetter, P., Smith, F. W., & Muckli, L. (2014). Decoding sound and imagery content in early visual 8 

cortex. Current Biology : CB, 24(11), 1256–1262. https://doi.org/10.1016/j.cub.2014.04.020 9 

Wheeler, M. E., Petersen, S. E., & Buckner, R. L. (2000). Memory’s echo: vivid remembering 10 

reactivates sensory-specific cortex. Proceedings of the National Academy of Sciences of the 11 

United States of America, 97(20), 11125–11129. Retrieved from 12 

http://www.ncbi.nlm.nih.gov/pubmed/11005879 13 

WMA General Assembly. (2008). World Medical Asssociation Declaration of Helsinki: Ethical 14 

Principles for Medical Research Involving Human Subjects (as amended by the 59th WMA 15 

General Assembly, Seoul, October 2008). World Medical Association. 16 

Xie, Y., Xu, Y., Bian, C., & Li, M. (2017). Semantic congruent audiovisual integration during the 17 

encoding stage of working memory: An ERP and sLORETA study. Scientific Reports, 7(1), 1–18 

10. https://doi.org/10.1038/s41598-017-05471-1 19 

Yeh, Y.-Y., Kuo, B.-C., & Liu, H.-L. (2007). The neural correlates of attention orienting in 20 

visuospatial working memory for detecting feature and conjunction changes. Brain Research, 21 

1130(1), 146–157. https://doi.org/10.1016/j.brainres.2006.10.065 22 

 23 



Michael P. Notter University of Lausanne July 2021 

Innovation and standardization of processing pipelines for functional MRI data analysis -XCII- 

Figure 1 
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Figure 2 
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Figure 4 
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Closing words 
 

Dear reader, 

 

Thank you for going through my thesis until the end! I hope it was interesting and gave you some new 

insights. 

 

Let me now finish the thesis with where this journey started more than ten years ago, the Nipype logo, of 

which I changed the color scheme and used it for my first Nipype Beginner’s Guide. Image credit goes to 

Arno Klein (License CCO). 

 

 
 
To this day and into the future, the Nipype logo, depicting a Python in the shape of a human brain, perfectly 

symbolizes my fascination and passion for programming, data analysis, open-source software and 

neuroscience! 

 


