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Abstract

Background: The retroviral restriction factor tripartite motif protein (TRIM)5q, is characterized
by marked amino acid diversity among primates, including specific clusters of residues under
positive selection. The identification of multiple non-synonymous changes in humans suggests that
TRIM5a variants might be relevant to retroviral pathogenesis. Previous studies have shown that
such variants are unlikely to modify susceptibility to HIV-1 infection, or the course of early
infection. However, the longterm effect of carrying Trim5ol variants on disease progression in
individuals infected with HIV-I has not previously been investigated.

Methods: In a cohort of 979 untreated individuals infected with HIV-1 with median follow up 3.2
years and 9,828 CD4 T cell measurements, we analysed common amino acid variations: H43Y,
VI1I12F, R136Q, G249D, and H419Y. The rate of CD4 T cell decline before treatment was used as
the phenotype. In addition, we extended previous work on the in vitro susceptibility of purified
donor CD4 T cells (n = 125) to HIV-1 infection, and on the susceptibility of Hela cells that were
stably transduced with the different TRIM5 variants. Haplotypes were analysed according to the
most parsimonious evolutionary structure, where two main human TRIM5a groups can be defined
according to the residue at amino acid 136. Humans present both Q136 and RI136 at similar
frequency, and additional TRIM5a. amino acid variants are almost exclusively derived from R136-
carrying haplotypes.

Results: We observed modest differences in disease progression for evolutionary branches
carrying R136-derived haplotypes, and with the non-synonymous polymorphisms G249D and
H419Y. In vitro analysis of susceptibility of donor CD4 T cells, and of the various transduced Hela
cell lines supported the absence of significant differential restriction of HIV-I infection by the
various huTRIM5a alleles.

Conclusion: Common human variants of TRIM5c have no effect or modest effect on HIV-I
disease progression. These variants occur at sites conserved throughout evolution, and are remote
from clusters of positive selection in the primate lineage. The evolutionary value of the
substitutions remains unclear.
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Background

The tripartite motif (TRIM) family is a well conserved fam-
ily of proteins characterized by a structure comprising a
RING domain, one or two B-boxes and a predicted coiled-
coil region [1]. In addition, most TRIM proteins have
additional C-terminal domains. Members of the TRIM
protein family are involved in various cellular processes,
including cell proliferation, differentiation, development,
oncogenesis and apoptosis (for recent review [2,3]). Some
TRIM proteins display antiviral properties, targeting retro-
viruses in particular [4].

TRIM50q is a retroviral restriction factor targeting the early
steps of cellular infection [4]. TRIM5a. restricts retroviral
infection by specifically recognizing the capsid and pro-
motes its premature disassembly [5]. Human TRIM5o
(huTRIM50) has limited efficacy against HIV-1, while
some primate TRIM5a orthologues can potently restrict
this particular lentivirus (for review see [2,3]). Considera-
ble inter-species sequence diversity characterizes TRIM5a
and might underlie differences in the pattern and breadth
of restriction of multiple lentiviruses. Evolutionary analy-
sis reveals that up to 2% of codons of TRIM5a are pre-
dicted to be under positive selection with high confidence
[6,7]. Residues under positive selection cluster in the C-
terminal B30.2 domain. A first cluster resides between
amino acids 322 to 340 in the variable region v1 [7,8], a
region previously described as a "patch" of positive selec-
tion [6]. Replacement of the v1 region, or of specific
amino acids within v1, modifies the restriction pattern of
TRIM5a [9,10]. The second cluster, localized between
amino acids 381 to 389 [7], corresponds to the previously
described variable region v2 of the B30.2 domain [8]. Sub-
stitution of the human v2 region by a v2 from Rhesus
monkeys exhibits no inhibitory activity against HIV-1
[9,10]. However, v2 variants are thought to result in spe-
cies-specific lentiviral restriction patterns [11]. An addi-
tional region of considerable variation among Sooty
mangabeys and Rhesus monkeys has been mapped to the
coiled-coil motif [12].

Recently, two studies have addressed the potential role of
huTRIM5a variants in modulating susceptibility to HIV-1
[13,14]. Sawyer et al. identified several non-synonymous
SNPs in huTRIM5a, but only one of these (H43Y) was
found to have a functional consequence [13]. H43Y lies in
the RING domain of TRIM5a and may negatively affect its
putative E3 ubiquitin ligase activity. Although huTRIM5a
weakly restricts HIV-1, H43Y might further reduce viral
restriction to a level similar to that of cells expressing no
exogenous huTRIM5a [13]. To assess whether the
impaired retroviral restriction seen with exogenously
expressed huTRIM5a H43Y resulted in altered susceptibil-
ity in human cells, Sawyer et al. tested B-lymphocytes
from four individuals: one homozygous for H43, two
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homozygous for 43Y, and one heterozygous at this resi-
due. Challenge with HIV-1 failed to demonstrate a signif-
icant effect of the H43Y change, although 43Y
homozygous cells could be infected with N-MLV about
100-fold more efficiently than cells with the common
H43 allele [13]. In a second study, Speelmon et al.
assessed the association of various non-synonymous vari-
ants with susceptibility to HIV-1 among 110 HIV-1
infected subjects and 96 exposed seronegative persons
[14]. This study identified possible associations between
specific haplotypes and alleles and susceptibility to infec-
tion and viral setpoint after acute infection.

In our study, we analysed data from a large cohort of sub-
jects infected with HIV-1 to explore whether different
huTRIMS5a variants are associated with long-term disease
evolution. The study is complemented by analysis of CD4
cell susceptibility to HIV-1, and the in vitro functionality
of selected huTRIM5a variants. We conclude from our
study that there is no impact for some and negligible to
modest impact for other common human variants of
TRIM50 on disease progression.

Results and discussion

TRIMS o polymorphism

TRIM5a is characterized by important sequence diversity
in humans, as shown in this and in previous studies
[13,14]. Analysis of huTRIM5a polymorphism in blood
donors identified 21 genetic variants (Additional file 1),
including four SNPs leading to non-synonymous changes:
127C>T (13740996, H43Y, allelic frequency f = 0.11),
407G>A (rs10838525, R136Q, f = 0.35), 12468G>A
(rs11038628, G249D, f = 0.08), and 15142C>T
(rs28381981, H419Y, f = 0.05). One additional common
variant (rs11601507, V112F, f = 0.08), and several rare
non-synonymous variants have been described in the
other studies [13,14]. Changes involve evolutionary con-
served positions(Figure 1). None of these changes are
within patches of positive selection in primates, in partic-
ular none are in the proximity of variable regions v1 and
v2 of the B30.2 domain (Figure 1), and thus their evolu-
tionary significance is uncertain. We speculate that R136Q
might result from balancing selection because humans
carry Q136, the ancestral amino acid, and R136, an amino
acid shared only with chimpanzees, with similar frequen-
cies.

Association of genetic variants with in vitro susceptibility
to infection

Data from Sawyer et al. indicated that H43Y results in
reduced capacity to restrict N-MLV, but has minimal or no
impact on HIV-1 susceptibility to infection in vitro in
feline fibroblasts (CRFK) cells [13]. We extend and con-
firm these results by showing that HeLa cells stably trans-
duced with the different human variants of TRIM5 do not
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Position of common human TRIM5a amino acid variants in the context of primate sequence conservation and
of the vl and v2 patches of positive pressure. Y-axis: posterior probabilities of positively selected codons. X-axis: human
TRIM5a amino acid numbering. The evolutionary analysis is adapted from reference [7].

differ in susceptibility to HIV-1 infection (Figure 2). We
also confirmed that the H43Y variant failed to restrict N-
MLV in the HeLa background (Additional file 2). Thus,
results in Hela cells, that express TRIM50. endogenously,
are in full concordance with data from CRFK cells. HeLa
cells have the most common TRIM5 alleles (-2CC, H43,
V112, heterozygous R136Q, G249, H419).

Speelmon et al. [14] reported on the permissiveness of
purified CD4 T cells from 77 seronegative donors. Analy-
sis included assessment of H43Y, R136Q, H419Y, and a
series of less common variants. We performed similar
experiments by infecting purified CD4 T cells from 125
Caucasian healthy blood donors with replicating HIV-1.
Alleles tested included H43Y, R136Q, H419Y, and the
common variant G249D (not tested in the above study).
There was no significant association of specific variants or
haplotypes with in wvitro p24 production after 7 days

(Additional file 3). None of the additional SNPs investi-
gated in vitro were associated with differences in cell per-
missiveness (Additional file 1).

Association of genetic variants with disease progression in
vivo

The reports by Sawyer et al and Speelmon et al. [13,14]
suggested that some of the alleles could indeed have an
impact on HIV-1 susceptibility in vivo. We extended their
analyses by investigating the association of the various
huTRIMS5a variants with long-term disease progression in
a large cohort of individuals infected with HIV-1. The clin-
ical phenotype was defined as the patient-specific rate of
CD4 T cell decline, a recognized marker of disease pro-
gression [15]. Analysis excluded any CD4 T cell values
after initiation of treatment. The median follow up time
was 3.2 years, during which 979 cohort participants, not
receiving antiretroviral treatment, contributed 9,828 CD4
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Restriction of HIV-1 by common human TRIM50 var-
iants. Hela cells were stably transduced by oncoretroviral
vectors expressing the Rhesus (Rh) TRIM50, the common
huTRIM5a and its variants, separately or in a hypothetical
four-mutation protein. Panel A: Single-cycle infectivity assays
used VSV-pseudotyped recombinant viruses (HIV.I-GFP) at
various m.o.i. After 48 h, cells were analysed by fluores-
cence-activated cell sorter, and scored for number of GFP-
positive cells. Panel B: Expression of HA-tagged TRIM50. pro-
teins was determined by western blotting using an anti-HA
antibody. Tubulin was detected with the anti-o. tubulin anti-
body. Control: Hela cells transduced with an empty
oncoretroviral vector.

T cell determinations to the analysis (median 7 CD4 T cell
determinations per participant). We first tested for associ-
ations of individual non-synonymous polymorphisms
with differences in the natural history of disease progres-
sion. H43Y and R136Q had no effect on disease progres-
sion. Participants who had one or two copies of G249D or
H419Y had slower progression although confidence inter-
vals were wide due to small numbers. Compared to non-
carriers who had a square root transformed CD4 gradient
of -2.02, participants who were carriers of G249D and
H419Y had gradients of -1.74 (95% CI -1.39 t0 -2.09, p =
0.11) and -1.64 (95% CI -1.33 to -1.95, p = 0.02) respec-
tively.

Haplotypes were assessed according to the most parsimo-
nious evolutionary analysis, where two main huTRIM5a
groups can be defined according to the residue at amino
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acid 136 (Figure 3). With the notable exception of chim-
panzees and humans that carry an arginine at position
136, all other primates code for a glutamine at codon 136
(glutamic in tamarins), which therefore represents the
ancestral sequence for old world monkeys, gibbons and
apes. However, humans have similar frequencies of Q136
and R136, and additional TRIM5a amino acid variants are
almost exclusively derived from R136-carrying haplotypes
(data from this study and from [14]). We did not observe
differences in HIV-1 disease progression for evolutionary
branches carrying Q136- or R136-containing haplotypes
(Figure 3). Weak associations of some haplotypes with
disease progression were found, but the p values did not
reach the experiment wide corrected significance level of p
= 0.0028 (Simes modified Bonferroni p value).

Whilst our study was being completed, Sawyer et al. [13]
and Speelmon et al [14] reported on an additional com-
mon variant V112F (allelic frequency of 7%). We re-gen-
otyped the cohort and identified the presence of 112F in
R136-carrying haplotypes. We confirm the absence of sig-
nificant effect of this particular amino acid on disease pro-
gression [CD4 T cell gradient: -2.21 (95% CI -1.89 to -
2.534) compared to mean reference slope -2.01 |. In addi-
tion, Speelmon et al. included in their analysis the 5'UTR
-2C>G SNP [14]. The -2C represents the ancestral allele
and is present in high linkage disequilibrium with Q136.
Speelmon et al. identified a rare haplotype, where individ-
uals carried -2G in the context of Q136, possibly associ-
ated with susceptibility to HIV infection (OR 5.49, p =
0.02) [14]. We also identified this rare haplotype (fre-
quency of 1.4%), but did not observe any association with
disease progression [CD4 T cell gradient: -2.04 (95% CI -
1.20 to -2.88)].

Conclusion

We have extended previously reported findings on
huTRIM5a by showing that the amino acid variant H43Y
which results in loss of restriction of N-MLV [13] is not
associated with significant differences in HIV-1 disease
progression in a large human cohort. The present study
also underscores the modest or negligible effect of human
variants G249D and H419Y and of some haplotypes on
HIV-1 susceptibility and disease progression. Despite the
conserved nature of these residues in primates, the evolu-
tionary relevance of the variants in humans is uncertain.
However, it is possible that the polymorphisms found in
TRIM50 might have been selected in past epidemics by
viruses unrelated to HIV-1.

Materials and methods

Cells

CD4 T cells from 125 healthy Caucasian blood donors
were isolated by anti-CD4 magnetic beads (Miltenyi Bio-
tech) and cultured ex vivo in RPMI-1640 (Gibco-Invitro-
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Haplotype 127C>T 407G>A 12468G>A 15142C>T Haplotype Frequency
H1 C G G C 0.45
H2 C G G T 0.01
H3 C G A C 0.08
H4 C A G (@ 0.34
H5 C A G T <0.01
H6 C A A C <0.01
H7 T G G C 0.07
H8 T G G T 0.04
H9 T G A C <0.01
H10 T A G C <0.01
Allele Frequency 0.11 0.35 0.08 0.05
Aminoacid change H43Y R136Q G249D H419Y
H1
B -2.04 (N=502, p=0.77)
-1.97 (N=183, p=0.81)
H3
-1.77 (N=143, p=0.19)
-2.10 (N=7, p=0.89)
R136 (H1,H2,H3,H7,H8,H9
-2.03 (N=451, p=0.86)
-1.96 (N=412, p=0.75) H2,H3,H7,H8
i -1.97 (N=326, p=0.81) H7
A batients -1.62 (N=40, p=0.11) -2.13 (N=126, p=0.49)
o H7,H8 -1.34 (N=10, p=0.02)

Ref slope -2.01

Q136 (H4,H5,H6,H10)

-2.09 (N=195, p=0.59)

-1.44 (N=18, p=0.02) H8

-1.93 (N=81, p=0.68)
-2.91 (N=2, p=0.39)

H4
-2.02 (N=448, p=0.92)

-2.03 (N=451, p=0.86)
-2.20 (N=116, p=0.32)

Figure 3

-2.22 (N=115, p=0.29)

Association of human TRIM5a haplotypes with HIV-1 disease progression in vivo. Panel A, Inferred haplotypes car-
rying non-synonymous variants. Panel B, Analysis of haplotypes according to the most parsimonious evolutionary analysis,
where two main huTRIMS5a. groups can be defined according to the residue at codon 136. Shown are square root CD4 gradi-
ent (reference slope for all patients is -2.01). Top set of slope estimates corresponds to one copy of haplotype(s) group, bot-
tom set is for two copies of haplotype(s) group. Only the H7 haplotype presented a slope significantly different from that of all
patients (uncorrected p value). However, p values did not reach the experiment-wide significance of 0.003 (Simes modified

Bonferroni p value).

gen), supplemented with 20% fetal calf serum (FCS), 20
U/ml human IL-2 (Roche) and 50 pg/ml gentamicin, fol-
lowing stimulation with 2 pg/ml phytohaemagglutinin
(PHA) during two days. CD4 T cells (10° cells) were
infected with R5 clone HIV-1 NL4-3BaLenv (1000 pg p24
antigen) for 2 hours at 37°C, 5% CO,, in 1 ml final vol-
ume. Cells were washed and cultured for 7 days. Virus-
containing supernatant was harvested and p24 antigen
production was monitored by ELISA (Abbott). Permis-
siveness was defined as the ability of cells to be infected

and sustain replication of HIV-1 [16]. The ex vivo viral rep-
lication for each genotype was represented by the median
p24 antigen production at day 7.

Identification of SNPs, and allelic discrimination

Single nucleotide polymorphism (SNP) discovery used
single strand conformation polymorphism and sequenc-
ing of 94 chromosomes (47 Caucasian blood donors). For
this, a total of 21 PCR reactions were designed to cover
exons, putative promoter regions, and intron-exon
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boundaries (6771 bp/subject). SNPs resulting in non-syn-
onymous substitutions were then genotyped by using
TagMan allelic discrimination (Additional file 4).

Biological analysis of huTRIMS5 ¢ variants

The pLPCX oncoretroviral vector containing the human
and Rhesus TRIM5¢« gene with an HA epitope tag was
obtained from the NIH AIDS Reagent Program (donated
by J. Sodroski). Variants of huTRIM50. were made by
using the QuikChange protocol (Stratagene). Retroviral
vectors were packaged by co-transfecting the various
pLPCX constructs with the pNB-tropic MLV Gag-Pol and
pVSV-G packaging plasmids [17]. Supernatants were con-
centrated and used to transduce Hela cells. Seventy two
hours after transduction, cells were selected in 0.5 mg/ml
puromycin. Expression of HA-tagged TRIM5a. proteins
were determined by Western blotting using an anti-HA
antibody (Roche). Tubulin was detected with the anti-o
tubulin antibody (Sigma). Single-cycle infectivity assays
in HeLa cells used the VSV-pseudotyped recombinant
viruses HIV.1-GFP and N-MLV-GFP at various m.o.i. Cells
were analysed by fluorescence-activated cell sorter (FACS)
48 h after transduction.

In vivo analysis: CD4 cell count decline

Study participants (n = 979) were recruited within the
genetics project of the Swiss HIV Cohort Study [18]. The
ethics committees of all participant centers approved the
study. Patients gave written informed consent for genetic
testing. DNA from PBMCs was used for genotyping. Their
characteristics are shown in Additional file 5. The rate of
decline in CD4 T cell count during the natural history of
disease progression was defined as study phenotype as
previously reported [19]. The CD4 T cell trajectories were
modeled using a repeated measures hierarchical approach
using Mlwin software [20]. Square root transformed CD4
T cell counts were modeled as a linear function of time
since estimated date of seroconversion with random
effects for both the intercept and the gradient with addi-
tional terms for sex, age, and risk group [19]. For each gen-
otype, the average square root CD4 decline per year was
estimated in dominant and recessive models. Haplotypes
were attributed using PHASE [21].
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