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corresponds to the respective coordinate of the metabolite profile on the first axis of the STATIS 
compromise. The 21 metabolites of the profiles are represented on the first axis of STATIS as indicated 
in panel (E). Metabolite profiles are indicated in blue for the injected, and in pink for the contralateral 
side for each PDOX-series. The temporal trends are visualized by loess regression. The colors of the 
metabolites (E) correspond to their major function as indicated (energy metabolism, red; myelination, 
yellow; macromolecules, black; neurotransmission, green; anti-oxidation & osmoregulation, blue). 
Abbreviations: N-acetyl aspartate (NAA), N-acetylaspartylglutamate (NAAG), glutamate (Glu), 
glutamine (Gln), glycerophosphocholine (GPC), phosphocholine (PCho), glucose (Glc), glycine (Gly), 
myo-inositol (Ins), creatine (Cr), phosphocreatine (PCr), lactate (Lac), glutathione (GSH), taurine (Tau), 
alanine (Ala), aspartate (Asp), ascorbate (Asc), phosphorylethanolamine (PE), acetate (Ace), gamma 
aminobutyric acid (GABA), macromolecules (Mac). 
 

important glioma marker), NAAG, PE and GSH. To determine the spatial pattern of the metabolite 

profiles, the MVS data of the three patients’ GBM was analyzed simultaneously by STATIS, for which 

the corresponding representation of the metabolites on the first axis is depicted in Fig. 2B. The 

metabolite profile attributed to each individual voxel, defined by their coordinates on the first axis of 

STATIS, was then projected as a heatmap onto the MRIs of the three patients to visualize the spatial 

organization of the metabolite profiles in the tumor (Fig. 2A).  

  

Fig. 2 Spatial metabolite profiles determined by multi-voxel analyses.  
(A) Multi-voxel spectroscopy (MVS) data was acquired for patients P1, P12 and P14. The metabolite 
spectra acquired were simultaneously analyzed by STATIS, and the respective coordinates from the 
first axis were then projected as a heatmap onto the corresponding voxel on the respective MRI. The 
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color gradient corresponds to the coordinates projected on the first axis of STATIS, as indicated. The 
most malignant parts of the tumors are located in the “orange-red” areas. (B) The first axis of STATIS 
shows the organization of the compromise of the 16 metabolites from MVS analyses of the three 
patients. The color code of the metabolites corresponds to their major function as indicated. (C) 
Comparison of the first axis of the 13 common metabolites between human MVS (spatial organization) 
and mouse metabolite data (temporal organization) is shown in a scatter plot, and displays a remarkable 
similarity (Spearman correlation = -0.68, p < 0.013). Abbreviations as in Fig 1. 
 
Globally, the spatial pattern of the metabolite profiles was characterized by low levels of NAA, and 

neurotransmitters, and high concentrations of GPC.PCho, Gln and lipids for voxels located in the tumor 

core, corresponding to high values on this first axis of STATIS (Fig. 2B) (red in the heatmap, Fig. 2A). 

In contrast, the probable infiltration zones and “normal” brain were reflected in low values on this first 

axis (blue in in the heatmap, Fig. 2A) with NAA as a prominent marker (Fig. 2B). To elucidate the 

resemblance of the spectral patterns of the patients’ GBM, composed of necrotic and infiltrative tumor 

regions, with the spectra from the PDOXs we analyzed the 13 common metabolites (less than 50% 

missing values). To this end, the correlation of the coordinates of the common metabolites of the 

respective STATIS analyses was determined as depicted in a scatter plot (Fig. 2C). This revealed a 

remarkable similarity (Spearman correlation = 0.68, p < 0.013) between the spatial metabolite profiles 

derived from MVS across the different areas of the human glioblastoma and the temporal metabolite 

profiles of the PDOX, reflecting early and late stages of tumor development and invasive growth. Hence, 

the observed alterations of the metabolite profiles across the sampled (MVS) areas of the patients that 

encompassed ”normal” brain, invasion zone, and the tumor core, resembled the temporal changes of 

the metabolite profiles in the mouse brains during tumor development, from normal brain, invasive 

growth, to the full blown orthotopic xenografts at end-stage. This reflected the progression of the 

metabolite profiles from high NAA/low GPC.PCho (more “normal”, low values on the first axes of human 

MV and PDOX), to low NAA, GABA, Glu and high GPC.PCho, and Gln (more “tumoral”, high values on 

the first axes of human MV and PDOX), and remarkably respecting the gradient of the metabolites.  

Gene expression profiles integrating human and mouse reads  
To investigate the molecular underpinnings of tumor invasion the human glioblastoma (n=8, excluding 

P10) and the macro-dissected PDOX of the injected and corresponding region of the contralateral side, 

corresponding to patients P1, 7, 12, and 14, were subjected to RNA-sequencing (Table 1, 

Supplementary Table 2). The human and mouse reads, classified using the Disambiguate algorithm 

[23] were proportional to the presence of human cells in the mouse brain, as estimated on the DNA 

level with species-specific PCR and the ratio of human tumor cells/mouse cells (Spearman correlation 

=0.867, p<0.001) as determined by immunohistochemistry with a human-specific nuclear marker 

(huNCL). Analyzing the human reads only, the genomic variant analysis (SNVs) established the filiation 

of the original patient tumors and the corresponding PDOX [24]. Characteristic molecular features of 

the parental tumors, such as mutations or previously described expression signatures [25] (e.g. 

associated with EGFR overexpression), were mostly retained in the PDOX (Supplementary Fig. 3).  

Integration of mouse and human reads, expectedly revealed that the first axis of the PCA of all samples, 

based on a gene set selected by sparse PCA (SPCA, 274 genes, selected with lasso regression, 

consolidated bootstrap; see flowchart of analysis in Supplementary Fig. 4A) was dominated by the 
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species origin, which at the same time reflected the tissue type (tumor vs mouse brain) (Supplementary 

Fig. 5, Supplementary Table 3). In line, pathway analysis, using gene set enrichment analysis (GSEA) 

and the molecular signature database (MSigDB), for which the mouse genes were converted into the 

human homologs, revealed that the top 25 pathways were dominated by cell cycle, proliferation, EGFR 

signaling, and tumor progression associated gene signatures, and were expectedly mainly described 

by the human/tumor derived genes (Supplementary Table 4). Interestingly, a tumor invasion related 

signature was among these top 25 pathways, with similar contributions from both mouse/host-derived 

and human/tumor-derived genes.  

Molecular pathways associated with changes in metabolite profiles (1H-MRS) of invasive tumors 
The main interest in this study was to investigate molecular changes underlying tumor development 

and invasion by integrating gene expression and metabolite information. The latter is amenable to non-

invasive analyses allowing longitudinal monitoring of tumor progression and invasion with potential for 

clinical use.  

We determined gene expression profiles associated with the metabolite profiles in the PDOXs acquired 

from the injected and contralateral side at the last MRI/S scan (end-stage) (see flowchart of analysis in 

Supplementary Fig. 4C). The patient specific effects were removed in the expression data using within-

group PCA (WCA) [26] in order to focus on features of tumor host interaction. A set of 185 genes 

associated with the metabolite profiles was selected using sparse Partial Least Squares analysis 

(SPLS) [27, 28], consolidated by bootstrap) that allows combination of different data types linked to the 

same samples (common column of both tables). The gene set comprised 60 mouse and 125 human 

genes (Supplementary Table S5). A heatmap illustrates the strong association between the 13 

metabolites obtained by MRS and the 185 selected genes in the cross platform comparison (cross table 

coinertia analysis; coefficient of vectorial correlation, RV 0.73, p=0.01, Fig. 3A). Representing the PDOX 

samples in function of their metabolite and gene expression profiles (defined by their coordinates on 

the first axes of the coinertia analysis) revealed a clear gradient following tumor progression, from 

normal brain (high in NAA) to tumor (low in NAA, and high in choline compounds and enhanced Lac), 

and change of gene expression (Fig. 3B, C). The extreme features were most prominent for XP12 that 

yielded the most compact xenografts with some contrast enhancement, while in the contralateral side 

tumor spread was neither detectable by MRS nor subsequent histology. Of note, the detection of 

metabolites by MRS is agnostic to the species origin. The RNA coverage revealed a drift from mouse 

to human reads during tumor development, as expected.  

Pathway analysis of the 185 selected genes using the MSigDB database, identified a set of 24 

significant pathways (p≤0.1, Bonferroni adjusted). The majority of the pathways were associated with 

extracellular matrix, extracellular structure, tissue remodeling, adhesion, morphogenesis and 

remodeling of blood vessels, multi-cancer signature(s) of invasion, metastasis, epithelial mesenchymal 

transition, and including a mesenchymal glioblastoma signature (Supplementary Table 6). Interestingly, 

expression of both, mouse and human genes contributed to the selection of all these pathways, ranging  
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Fig. 3 Correlation structure between metabolite profiles (1H-MRS) and associated transcriptome 
(human and mouse). The heatmap (A) illustrates the correlations between 13 metabolites from the last 
scans of the xenograft bearing mice (injected and contralateral side) and the 185 metabolite associated 
genes selected by SPLS and retained by the bootstrap procedure (≥0.1). The correlation matrix 
(coinertia) between genes (rows) and metabolites (columns) is ordered by the 1st axes obtained from 
coinertia. For each gene the species origin (human or mouse) and the frequency of selection by 
bootstrap are annotated on the right. (B) The relation between metabolite profiles and gene expression 
is visualized for all PDOX samples per patient on the vectorial plane defined by the coordinates on the 
first axes of gene expression and the metabolite profiles from the coinertia analysis, respectively. The 
samples from the injected side are represented by squares, and by circles for the contralateral side, the 
color gradient of the symbols indicates the percentage of human reads. (C) The metabolites projected 
on the first axis of the coinertia analysis. (D) Similarly, the correlation structure between metabolite 
profiles (1H-MRS) and averaged expression of the significant pathways emerging from GSEA (p ≤0.1) 
using the MSigDB is illustrated in a heatmap (D). The pathways are annotated with the adjusted p-value 
(p≤0.1), and the proportion of human genes contributing to the pathway.  
 

from 20% to 80% human genes, depending on the pathway. A heatmap visualizes the correlation of the 

pathways with the metabolite profiles (Fig. 3D). Interestingly, the gene set linked to epithelial to 

mesenchymal transition was associated with early stages, while gene sets such as those for matrix 
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remodeling, and mesenchymal glioblastoma were associated with metabolite profiles of more advanced 

stages of tumor growth. 

Pathway analysis of the invaded brain 
In order to determine the molecular effects of glioblastoma invasion on the mouse brain, we specifically 

analyzed the mouse reads that originate from mouse derived cells enclosed in the macro-dissected 

xenografts, and the mouse cells of the respective mirrored region from the contralateral side, invaded 

or not by GBM cells. Two samples with <106 mouse reads were excluded. Both samples were from the 

injected side of the PDOX, derived from P12 that are highly compact and therefore comprise only few 

mouse cells (Fig. 1). The heatmap of genes selected by SPCA (n=208, consolidated by bootstrap; 

supplementary Table 3; see flowchart of analysis, Supplementary Fig. 5B) yielded 3 major gene clusters 

(Fig. 4A). The organization of the samples by gene expression seemed to be driven by the extent and  

 
Fig. 4 Effect of tumor invasion on the mouse brain transcriptome. Mouse gene expression profiles 
included PODX samples and one mock injected mouse brain (mB). The heatmap (A) illustrates the 
normalized expression of the 208 mouse genes selected by SPCA and consolidated by bootstrap 
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(≥0.1). The genes were classified in 3 clusters (consensus k-means clustering for 100 repetitions). (B-
D) The samples are projected onto the first two axes of the PCA for the selected genes, where the 
human read proportion (B), the sample type (C) and tumor origin (D) were added as supplementary 
variables, annotated with the color code. The contribution of each gene cluster to explain the variance 
is evaluated by variation partitioning (E) represented by a Venn diagram of variation fractions 
(percentage) for the three supplementary variables (frequency of human reads, FreqHum; sample 
origin, Origin; type if tissue, Type). (F) The averaged gene expression of the significant pathways 
emerging from GSEA (p≤0.1) of cluster 3 is illustrated in a heatmap. The pathways are annotated with 
the adjusted p-value and the gene ratio (number of selected genes in pathway/number of selected 
genes in the analysis). 
 

pattern of the tumor invasion the mouse brains were exposed to. This intriguing observation seems 

impacted by the patient origin of the injected tumor cells, despite the fact that GBM-derived human 

reads were excluded from the analysis. A PCA illustrates the samples projected onto the first 2 axes of 

gene expression (Fig. 4B-D). The first axis explains the difference between the injected and the 

contralateral side dominated by cluster 3 genes. The gradient of expression of these genes are 

explained by the extent of invasion, as measured by combination of the percentage of human reads in 

the samples, and the PDOX type (injected or contralateral side) and explains more than 50% of the 

variance (combined variation fraction >0.5; Fig. 4E). The pathways associated with gene expression of 

cluster 3 are related to immune response, regulation of cytokine production, including interferon-α,  

interleukin 6, and cytokine signaling (e.g. via C-X-C Motif Chemokine Receptor 1, CXCR1), and 

inflammatory response such as response to interferon-γ (Fig. 4F, Supplementary Table 4). Interestingly, 

it includes the mesenchymal GBM signature as significant pathway that we also identified as significant, 

when selecting metabolism associated gene expression signatures, as described above (Fig. 3). Of 

note, this signature, included in the MSiGDB, corresponds to the signature associated with the 

expression-based classification of the mesenchymal subtype of GBM [29]. The second axis of the PCA 

seems to be driven by the impact of PDOX of patient P7 (plus 1 PDOX of P14), with a particular 

expression pattern captured in cluster 2 that is independent of the extent of tumor invasion. A 

characteristic feature of these PDOX was rapid growth and/or massive invasion of both hemispheres 

(Fig. 1). The pathways selected with cluster 2 genes were dominated by ribosomal genes that were 

highly redundant among the numerous selected pathways. They represented generic protein and RNA 

related processes, such as regulation of translation, cellular localization of proteins, catabolic 

processes, and pathways linked to infectious disease.  

Discussion 

The invasive capacity of GBM plays a key role in the aggressiveness of the tumor, its resistance to 

treatment, recurrence and poor prognosis. The invasive component is typically shielded by the BBB, 

and it remains a challenge to monitor tumor infiltration of the brain parenchyma using standard MRI 

techniques [30, 31]. It is therefore of crucial importance to develop adequate tumor models featuring 

this invasive part that is considered highly relevant for tumor recurrence.  

We evaluated molecular features of invasive PDOX that may serve as proxy for studying the invasive 

front of GBM. To this aim, we present the first in vivo comparison of human tumors and respective 
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PDOX in the mouse brain on the levels of radiological behavior and metabolism, as determined by ultra-

high field 1H-MRS of the patients (7T) and the respective PDOX (14.1T). We found a good concordance 

between the temporal changes of the metabolite profiles observed during invasive growth of the PDOX, 

and the metabolite profiles reflecting the spatial organization of MVS originating from different parts of 

the human tumors, comprising normal brain, infiltration zone, and the tumor core (Fig. 2C). Hence, 

metabolic changes may inform on alterations in the infiltration zone that is not visible on routine MRI 

evaluation. Importantly, highly resolved 1H-MRS was more sensitive to detect early development of the 

highly invasive PDOX than conventional structural MRI acquisitions. This may open the possibility to 

test and non-invasively monitor early treatment effects in the invasion zone shielded by an intact BBB.  

Interrogating the molecular mechanisms related to tumor invasion by means of multi-dimensional 

analysis allowed simultaneous exploration of metabolic and transcriptomic changes of the samples and 

respective associated pathways. This combined analysis provided insights into the biological 

mechanisms that are underlying the metabolic changes that can be followed non-invasively. Most 

importantly, both tumor and host contributed to gene expression profiles associated with the biological 

pathways uncovered, supportive of their biological relevance. These signatures indicated active 

processes associated with changes of the extracellular matrix, tissue and blood vessel remodeling, 

along with signatures attributed to tumor invasion, metastasis, and mesenchymal GBM. Lately, the 

tumor matrix, and the associated cell-matrix interaction have received more attention in solid extra 

cerebral tumors [32], while little remains known in brain tumors [33]. Interestingly, gene expression 

annotated for hallmarks of epithelial/mesenchymal transition was associated with more normal brain-

like metabolic features, while the gene expression related to matrisome, metastasis, and mesenchymal 

GBM were more strongly correlated with metabolite profiles of more advanced tumors (Fig. 3D).  

Taking a different view, and evaluating the transcriptome originating from the invaded brain only (mouse 

reads, Fig. 4), revealed inflammatory signatures and profiles of cytokine mediated regulation of immune 

response. The mesenchymal GBM signature that was again associated with a more aggressive extent 

of tumor invasion/tumor burden as estimated by the proportion of human reads, despite the fact that 

they were excluded from the analysis. The mesenchymal GBM subtype has been associated with more 

prominent recruitment of macrophages [34] for which the functional interaction with the GBM cells has 

been described recently, evoking that this interaction drives the mesenchymal-like state of GBM [35]. 

Along the same lines, testing our previously reported GBM gene expression signatures [25] with GSEA, 

we found two matching clusters that were significantly associated with the expression profiles of the 

invaded brain: an interferon-induced gene signature (G12; adjusted p-value, 0.0002), and an innate 

immune response signature (G24; adjusted p-value, 0.0001). This suggests some concordance of the 

brain reacting to tumor invasion in the present PDOX model and human GBM. 

These molecular insights suggest that the tumor/host interaction of tumor invasion can be modeled by 

monitoring metabolic changes in PDOX and that these changes present a good match with their human 

counterparts as described in this study. The insights derived from temporal metabolic changes 

associated with diffuse tumor invasion and progression may be applicable to help monitor the invasion 

zone in patients to identify early responses to treatment or on the contrary, early tumor progression. 
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The obvious limitations are the lack of an intact immune system in this mouse model that is obviously 

expected to play an important role in tumor progression and treatment [36]. 

The PDOX may represent an attractive perspective to develop and evaluate drugs aimed at treating 

tumor cells in the invasion zone. Other invasive orthotopic brain tumor models may also be suitable for 

metabolic monitoring. For instance, we have reported similar longitudinal metabolic changes using 

established GBM derived sphere (GS) lines yielding highly invasive orthotopic xenografts [21]. The 

changes in the metabolic profiles were sensitive enough to follow the distinct evolution when 

transducing the GS cells with a tumor suppressor gene (Wnt inhibitory factor 1) [21]. This is important, 

as the median latency of freshly resected patient derived tumor cells to fully develop into PDOX is 

generally too long (5-35 weeks in this study) to serve as faithful avatars for patient specific testing of 

targeted drugs to guide treatment choices. 

Taken together, invasive PDOX models exert spectroscopic and transcriptomic features of brain 

infiltration that show similarities with the presumed infiltration zone of GBM. This supports their suitability 

as relevant models for studying the non-enhancing part of GBM. The possibility of non-invasive in vivo 

monitoring of invasive growth in this difficult to evaluate compartment, may allow early detection of 

relapse and monitoring of treatment effects of novel drugs that eventually may be translated into the 

human setting. 

 

METHODS 

Patient selection and 1H MRS of patients 

Patients planned for surgery of a suspected GBM at the Lausanne University Hospital (CHUV) were 

enrolled (clinicaltrials.gov, NCT02904525) with written informed consent. The study was conducted in 

accordance with the Declaration of Helsinki, and the protocol was approved by the local ethics 

committee CER-VD (F-25/99, 268/14).  

Patients underwent 1H-MRS/I in a 7 Tesla/68 cm MR-scanner (Siemens Medical Solutions, Erlangen, 

Germany). B0 field homogeneity was optimized using FASTMAP [37]. A 32-channel receive coil (NOVA 

Medical Inc., MA) with a single channel volume transmit coil or a 1H two loops surface coil were used 

depending on the location of the gliomas. 3D T1-weighted MR images acquired using MP2RAGE 

(TE/TR = 3.37/5000 ms, TI1/TI2 = 700/2200 ms, slice thickness = 1 mm, FOV = 176 × 256 mm2, matrix 

size = 176 × 256) [38] were used to position the volume of interest (VOI) for MRS measurements. Single 

voxel 1H MR spectra (SVS) were obtained using the semi-adiabatic SPECIAL localization sequence 

[18, 39] with TE = 16ms, TR = 5.5-8.5s (depends on the SAR restriction), and number of averages = 

48-96. 2D multi-voxel 1H MRSI was measured by a sEmi-Adiabatic Spin-Echo MRSI sequence (EASE) 

[40] for P1, P12 and P14, using the following parameters: TE=16ms, TR=4.3s, NA=1, 

FOV=200×200mm2, VOI= 60×60mm2, slice thickness=15mm, matrix=16×16, elliptical k-space 

sampling. Water and lipid suppression techniques were applied prior to the localization using VAPOR 

with OVS according to consensus recommendations [41].  
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1H MRS spectra were analyzed by LCModel [42] using a basis set with simulated metabolite spectra 

and an experimentally measured macromolecule baseline [43]. LCModel simulated macromolecule and 

lipid components were used during the analysis to allow fitting for potential lipid and MM resonances 

that arose from tumors. Due to time restriction in patient scans, additional water acquisition for 

normalization purposes could not always be performed. Metabolite ratios to total creatine were 

calculated for both SVS and MRSI measurement. Metabolites that were quantified with CRLB > 50% 

were excluded in the analysis.    

Orthotopic Mouse Glioma Model 

Tumor tissue obtained at surgery was split in two, one part was frozen for subsequent analyses and the 

second part was dissociated into single cells and re-suspended in stem cell media (DMEM/F12 

supplemented with B27 and growth factors) as described [44]. The next day 105 cells were transplanted 

stereotactically in a volume of 5 µl (Hanks’ balanced salt solution, HBBS, with phenol red, no calcium, 

no magnesium; Thermo Fisher Scientific) into the striatum (coordinates: bregma 0.5mm anterior, 2mm 

lateral and 3mm ventral)[45] of male immunocompromised mice (n=3-6/patient; age, 6-8 weeks; NOD-

SCID gamma knock-out mice, NOD.Cg-Prkdcscid II2rgtm1Wjl/SzJ, bred in-house) using a micro pump 

(injection rate 5 µl/min, Stoelting). For the procedure, anesthetized mice were placed into a stereotactic 

frame, and fixed with a mouth piece (Stoelting) as previously described [46]. Mice were checked daily 

and sacrificed at first signs of neurologic symptoms (lethargy, ataxia and seizures) or body weight loss 

(>10%). All animal procedures were performed under anesthesia/ analgesia, and protocols were 

approved by the concerned Swiss authorities (VD-1181_6; VD-2777).  

In vivo 1H-MRS of orthotopic xenografts in the mouse 

1H-MRS experiments were carried out in a 14.1 Tesla animal scanner with a 28-cm horizontal bore 

(Agilent Technologies, Palo Alto, CA, USA) using the SPECIAL sequence (TR = 4s, TE = 2.8ms, 160 

or 240 scans) [18] as previously described [21]. An axial T2-weighted image (fast spin-echo sequence, 

TR/TE = 5000/13 ms, FOV =18x18 mm, slice thickness 0.6 mm, 6 averages) was acquired before the 
1H-MRS for voxel positioning (VOI, 2x2x2 mm3), centered in the striatum of the injected, and 

symmetrically, in the contralateral hemisphere. SVS was preferred over MVS due to the location of the 

tumors and the shorter acquisition time, thus allowing repeated measurement in the same animal. 

Modifications in the BBB were assessed in selected cases with T1-weighted coronal fast spin-echo 

images with Gadolinium contrast (Gadovist 1.0, Bayer, Leverkusen, Germany).  

The first scan was performed 6 weeks after injection or at onset of symptoms (earliest week 4), and 

was repeated every 1-2 weeks. Spectra were quantified using the LCModel [21, 42] using a simulated 

basis set of brain metabolites combined with an experimental spectrum of macromolecules (Mac) 

acquired in a healthy subject and simulated lipids (at 0.9, 1.3 and 2.0ppm) when present according 

expert recommendations [47]. Data shown are selected for accurate quantification, following the 

criterion Cramer-Rao lower bound (CRLB) < 40%. Metabolites were normalized to tCr unless stated 

otherwise. Metabolite concentrations using water as internal reference were also computed and used 

in Supplementary Fig. 1. 
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Tissue Processing and Immunohistochemistry 

At final sacrifice, the fresh mouse brain was cut using a brain mold. The central coronal brain slice 

(~5mm) encompassing the injection-site was frozen in OCT (Tissue Tek), and the rest was formalin 

fixed and paraffin embedded for histology. Serial frozen sections were cut on a cryostat from the central 

slice of the mouse brains. The first and last sections were used to determine tumor location and estimate 

tumor cell content, based on hematoxylin and eosin (H&E) staining and nuclear immune-positivity for 

human-specific NCL (ab13541, Abcam, Cambridge, UK) as previously described [21]. Xenografts were 

macro-dissected, guided by H&E and NCL staining, and collected from the injected and contralateral 

side separately. In absence of apparent spread to the contralateral side, the tissue of the symmetric 

area on the contralateral side was collected. Immunohistochemistry was performed for EGFR (E30), 

Ki67 (MIB1), GFAP (G-A-5), and TP53 (DO-7) (platform Ventana, Roche). 

DNA/RNA isolation, PCR, and RNA sequencing 

RNA/DNA was isolated from the macro-dissected xenografts (injected/contralateral side, separately) 

and human GBM (AllPrep DNA/RNA Mini Kit, Qiagen). The ratio of human/mouse cells in the xenografts 

was estimated by species specific PCR (DNA) [48]. Library preparation and RNA-sequencing was 

performed at the Lausanne Genomic Technologies Facility (LGTF, University of Lausanne; TruSeq 

Stranded Total RNA Library Kit; Illumina HiSeq 2500). The samples were barcoded and randomized 

between lanes for sequencing. For samples with a tumor/mouse cell ratio of ~50%, we aimed at 60x106 

reads, and for all other samples, including the human GBM 30x106 reads.  

Data preparation and analysis of RNA sequencing  

Preprocessing of RNAseq data was performed following the standard pipeline and recommendations 

from bcbio-nextgen (version 1.0.4, http://bcbio-nextgen.readthedocs.org/en/latest/). Reads were 

aligned to the human (GRCh37) and mouse reference genome assembly (mm10) by hisat2 aligner 

(version 2.1.0), and classified into three classes (mouse, human, ambiguous) by the Disambiguate 

algorithm [23]. Transcripts with low read counts, or classified as ambiguous were removed. The gene 

expression data were summarized by trimmed means of M-values (TMM) of normalized counts (R 

package edgeR) [49, 50], including log-transformation and using read counts and full library size. The 

Variant calling analysis was performed with the software VarDict [24] and the genomic variant 

annotations were obtained by SNPeff [51]. SNVs with low quality estimation and silent and synonymous 

mutations were excluded. The genes listed in the COSMIC database as mutated in glioma and 

glioblastoma [52] were used for our analysis. In addition, the SNVs identified were compared with the 

mutation database from TCGA for Glioma and Glioblastoma (R package RTCGA.mutations). For 

personal privacy reasons the RNA-sequencing raw data will be made available upon request. 

Data analyses and variable selection 

The metabolite profiles and expression data were examined by principal component analysis (PCA) 

and heatmap representation based on Euclidean distance and Ward’s algorithm for clustering. Missing 

values were imputed by regularized iterative PCA algorithm [53]. The global differences between groups 
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were tested by a Monte-Carlo test (permutation) on the between-groups inertia percentage [54].  

The MVS in patients and longitudinal metabolic profiles in mice were analyzed by STATIS [55, 56] that 

allows simultaneous analysis of different data arrays, matched by common columns (same variables) 

based on principal component analysis (PCA). Briefly, in using inertia operators and RV-coefficients 

[52], STATIS compares the “images” (interstructure) of each dataset, to find a consensus (compromise) 

and simultaneous representations of each dataset on the same factorial plane (intrastructure). 

A flowchart details the strategies for gene selection and procedures used for data integration with 

metabolites and gene ontology (Supplementary Fig. 4). Gene expression was analyzed by sparse PCA 

(SPCA) [57] for gene selection, using singular value decomposition and lasso regularization 

(Supplementary Fig. 4A-B). The gene signature was consolidated by bootstrap (50 repetitions). At each 

iteration, two components were retained to describe data organization, and 50 variables (genes) were 

kept in each loading vector [57]. Thus, the most frequently selected genes were retained (cut-off ≥0.1). 

The correlation structure between metabolite profiles and gene expression, was investigated by sparse 

Partial Least Squares analysis (SPLS) [27, 28] after removing unwanted effects of tumor origin by 

within-group PCA (WCA) [26] (Supplementary Fig. 4C). The SPLS approach combines both integration 

and additional variable selection (lasso regularization) simultaneously on two data sets in a one-step 

strategy. The selected gene-set was consolidated by bootstrap (50 repetitions). At each iteration, the 

association between metabolite profiles and gene expression was summarized by two components, for 

which all metabolites were retained and 50 variables (genes) were kept in each loading vector. Finally, 

the most frequently selected genes were retained (cut-off ≥0.1). The Coinertia analysis [58], a 

multivariate method for coupling two tables, summarizes the correlation structure between metabolite 

profiles (1H-MRS) and expression of the selected genes (R packages ade4 and mixOmics). The 

common correlation structures between gene expression and metabolite profiles were investigated by 

permutation test and reported as RV-coefficient (vectorial correlation coefficient) [59]. 

Gene set enrichment analysis (GSEA) was performed with the molecular signature database (MSigDB 

v7.0, updated August 2019, all 8 collections) [60] using hypergeometric tests (R packages msigdbr and 

ClusterProfiler). Gene-sets with Bonferroni adjusted P-values≤0.1 were considered significant. The 

conversion of mouse genes into the corresponding human homologs was performed with R package 

biomaRt [61]. All analyses and graphical representation were performed with R version 3.6.1 (URL 

http://www.R-project.org 

) [62] and the R packages survival [63], missMDA and ade4 [64]. 
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