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Cultural variation in a population is affected by the rate of occurrence of cultural innovations, whether
such innovations are preferred or eschewed, how they are transmitted between individuals in the
population, and the size of the population. An innovation, such as a modification in an attribute of a
handaxe, may be lost or may become a property of all handaxes, which we call “fixation of the innovation.”
Alternatively, several innovations may attain appreciable frequencies, in which case properties of the
frequency distribution—for example, of handaxe measurements—is important. Here we apply the Moran
model from the stochastic theory of population genetics to study the evolution of cultural innovations. We
obtain the probability that an initially rare innovation becomes fixed, and the expected time this takes.
When variation in cultural traits is due to recurrent innovation, copy error, and sampling from generation
to generation, we describe properties of this variation, such as the level of heterogeneity expected in the
population. For all of these, we determine the effect of the mode of social transmission: conformist, where
there is a tendency for each naive newborn to copy the most popular variant; pro-novelty bias, where
the newborn prefers a specific variant if it exists among those it samples; one-to-many transmission,
where the variant one individual carries is copied by all newborns while that individual remains alive.
We compare our findings with those predicted by prevailing theories for rates of cultural change and the

distribution of cultural variation.

© 2011 Elsevier Inc. All rights reserved.

1. Introduction

The rate of genetic (molecular) evolution viewed over a long
time is estimated by counting the (large) number of mutant
substitutions and dividing by the elapsed time. Similarly, for
studies of cultural evolution based on empirical observations in
the archaeological record or inferences from differentiation of
contemporary populations, the accumulated differences in many
cultural traits (e.g., morphometric data on handaxes, design traits
of canoes) are examined to obtain an estimate for the rate of
evolution (Guglielmino et al., 1995; Eerkens and Lipo, 2007; Lycett
and Gowlett, 2008; Rogers and Ehrlich, 2008; Rogers et al., 2009).

Drawing on this analogy, we define the long-term theoretical
rate of cultural change, R, as

R = Num,. (1.])

Eq. (1.1) is based on the “infinite site model” (Kimura, 1969)
of population genetics, where in the current context N is the
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population size, u is the innovation rate per individual per
generation, and sy is the fixation probability of an innovation
that is initially made by a single individual. Although this analogy
clearly has its limitations (e.g., Brown and Feldman, 2009), Eq. (1.1)
is conceptually useful because it provides a summary statement
relating three important factors that contribute to the cultural
evolutionary rate (Cavalli-Sforza and Feldman, 1981; see also Eq.
(1.2)).

More generally, if there are m different social roles (e.g., male
and female, more than one age class, teacher and non-teacher), the
long-term cultural evolutionary rate should be written as

m
R= ZNiuinliy (1.2)
i=1

where N; is the number of individuals in role i, u; is the innovation
rate of an individual in role i, and 7y; is the fixation probability of
an innovation made by an individual in role i.

In short-term cultural evolution, on the other hand, as
illustrated by the “diffusion of hybrid corn” (Ryan and Gross,
1943; Rogers, 1995), interest attaches to the pattern and timing
of the spread of a particular innovation. Here, an appropriate
theoretical measure of the rate of cultural evolution is the mean
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time until fixation (Kimura and Ohta, 1969). Results on the mean
fixation time and mean absorption time are presented for the
sake of completeness, but the emphasis in the present paper is on
the fixation probability, which determines the long-term rate of
cultural evolution.

It is also of interest to investigate the patterns of accumulation
of cultural traits and the amount of cultural variation that are
expected to be maintained within a population when the same
innovations to a cultural trait occur repeatedly. Using the methods
of Lehmann et al. (2011), we evaluate here the mean number of
distinct cultural traits carried by an individual and segregating
in the population, as well as the expected level of cultural
heterogeneity (trait diversity) among individuals at steady state of
the cultural accumulation dynamics.

A major difference between a gene and a cultural trait lies
in their modes of transmission. Whereas genetic information (in
higher organisms) flows solely from parent to child (vertical
transmission), the inheritance of a cultural trait is not necessarily
limited by the degree of relatedness. In addition, some cultural
traits may be acquired under the concerted influence of a
group of individuals (many-to-one transmission), while for others
one particular individual (e.g., teacher, authority, prestigious
individual) may serve as the exemplar (cultural parent) for a large
number of individuals (one-to-many transmission).

Semi-quantitative arguments have been invoked to predict the
theoretical rates of cultural evolution under various modes of
social transmission (Guglielmino et al., 1995; Lycett and Gowlett,
2008; Hewlett and Cavalli-Sforza, 1986; MacDonald, 1998). For
example, cultural changes under many-to-one (MtO) transmission
and one-to-many (OtM) transmission are described as being “very
slow” and “very rapid”, respectively. Archaeologists also discuss
the amount of cultural variation within a population (Lycett and
Gowlett, 2008; MacDonald, 1998). In particular, they agree that
MtO transmission would result in very low “cultural variation
between individuals”. A major motivation for the present paper is
to reevaluate these claims.

Theoretical studies have also addressed the consequences of
choosing the most adaptive or attractive variant of a cultural
trait from among k exemplars (best-of-k transmission) (Shennan,
2001; Henrich, 2004). Rates of popular culture change have
been investigated, assuming oblique transmission and recurrent
innovation in a finite population with discrete generations and
simultaneous reproduction using a statistical framework that
originated in population genetics (Bentley et al., 2004, 2007).

An important parameter in studies of cultural evolution is the
size of the population or social group in which the transmission
of cultural traits occurs. Here we are principally interested in
interpreting the rates of cultural change and amounts of cultural
variation in Pleistocene hominid populations. Hence, we use
band size in current hunter-gatherer societies, which averages
perhaps a total of 25 individuals of both sexes and all age
groups (Ichikawa, 1978; Lee, 1979; Terashima, 1985; Kelly, 1995).
However, bands do not exist in isolation, and a “local community”
may be formed by neighboring bands among which networks
of social transmission presumably extend. Perhaps five bands
comprising approximately 125 individuals are tightly linked into
a local community (Terashima, 1985; Dunbar, 1992 proposed 150,
which is now called Dunbar’s number.) These two estimates of
social group size (i.e., 25 and 125) are used to compare the rates
of cultural change under different modes of social transmission
(Table 5).

In this paper, we obtain detailed quantitative predictions on
cultural evolutionary rates and on cultural variation within a
population. Stochastic models based on the Moran model (Moran,
1958) are suitable vehicles for this analysis (see also Lehmann et al.,
2011). There are several reasons why this approach is preferable

to one based on the Wright-Fisher model (Wright, 1931; Fisher,
1930). First, Moran-type models are mathematically simpler since
they involve asynchronous as opposed to synchronous updating.
Second, they result in overlapping generations. Third, they allow
an in-depth treatment of OtM transmission (cf. Cavalli-Sforza and
Feldman, 1981, pp. 192-202).

Our major findings are as follows. First, the type of MtO
transmission considered in this paper is conformist transmission
(Lumsden and Wilson, 1981; Boyd and Richerson, 1985). With the
specific functional form of conformist transmission we assume (see
Egs. (3.1)-(3.5)), the fixation probability of an innovation (Table 2)
is extremely small. In other words, cultural change under MtO
transmission is predicted to be very slow (Eq. (1.1)). In addition,
this social learning rule results in a very low number of distinct
traits carried by an individual and a moderately low number
present in the population, but a high level of cultural heterogeneity
under the process of cultural accumulation (in contradiction to
prevailing theory).

Second, our best-of-k (Bok) model posits that each newborn
prefers the new cultural variant over the old and adopts the
former (pro-novelty bias) provided it is carried by at least one
individual among k exemplars sampled from the population.
Fixation probabilities of the innovation are quite large and depend
little on whether it is selectively neutral, adaptive, or maladaptive
(Table 3). With this social learning rule, individuals and the
population are both predicted to accumulate a high number
of different traits on average, and the cultural heterogeneity is
relatively low.

Third, in our OtM transmission model, one individual has the
special status of teacher and - as long as it remains alive - is
copied by each newborn individual. The fixation probability of an
innovation then depends on whether it is made by the teacher or
some other individual. In the former case the fixation probability
is high, but in the latter it is lower than with vertical, oblique,
or horizontal transmission (Egs. (5.7)-(5.8), and Table 4). When
Eq. (1.2) is applied, we do not observe a substantial acceleration
of the long-term cultural evolutionary rate unless teachers are
highly innovative (again in contradiction to prevailing theory). For
cultural accumulation, OtM transmission results in individuals and
the population carrying a low number of distinct traits and a high
level of cultural homogeneity.

Before proceeding, we wish to point out that the specific
models of cultural transmission we introduce and analyze in this
paper make extreme simplifying assumptions. This allows us to
rigorously demonstrate the large effect that different modes of
social transmission can have on cultural evolutionary rates and
cultural variation (in addition to the effect of natural selection
often considered in genetic models). Predictions based on extreme
functional forms do not give realistic cultural evolutionary rates,
for example, even if accurate estimates of the innovation rate are
available. Hence, the values derived from our models should be
used only in a comparative fashion.

2. The Moran model and vertical, oblique, or horizontal
transmission

Moran (1958) proposed a model of random genetic drift, which
we modify as follows to describe cultural evolution. Assume a finite
population comprising N individuals. A cultural trait exists in two
variant forms A and B, with i individuals of type A and N — i of type
B. At each arbitrary time step, an individual is born and acquires
one or the other of these types by social learning (e.g., imitation),
followed by the death of an individual other than this newborn
(birth-death event). If the newborn copies a randomly chosen
member of the population—oblique or horizontal transmission,
there being no conceptual distinction between the two in the
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Moran model—it acquires type A with probability b, (i) = i/N and
type B with probability bg(i) = (N —i)/N. Similarly, if death occurs
at random, the dying individual will be of type A with probability
da(i) = i/N and type B with probability dg(i) = (N — i)/N. The
probability that after this birth-death event the number of type A
individuals has increased by one (up-transition) is

pi = ba(i)dp(i) = i(N — i)/N?, (2.1)
the probability it has decreased by one (down-transition) is
qi = bp(i)da(i) = i(N — i)/N?, (2.2)

and the probability it has not changed is 1 — p; — q; = (i/N)? +
[(N —i)/NP2.

Interestingly, these transition probabilities also apply when
social learning is vertical - the newborn acquires the cultural type
of one of its parents — provided we assume equal fertilities. For
brevity, we will refer to this model of social transmission as the
oblique transmission model.

Differential mortality (viability selection) can be incorporated
by setting the mortality of type B to be v times that of type
A (0 < v < 00). Then, the probabilities of death for type A and
B individuals are

da(i) =i/[i + (N —i)v], (2.3)
and

dg(i) = (N —i)v/[i + (N —i)v], (2.4)
respectively.

In Appendix A we present general formulas from Ewens (2004,
p. 90) for: (i) the fixation probability of type A, 7; (the probability
that type A will ultimately spread through the population,
eliminating type B); (ii) the mean absorption time, t; (the average
time until type A is either lost or fixed); and (iii) the mean fixation
time of type A, £ (the average time until type A is fixed, excluding
the cases when it is lost), if there are initially i individuals of type A.
These values can be computed for the oblique transmission model
from the transition probabilities Eqgs. (2.1)-(2.4).

In particular, the fixation probability of type A is

m; =1i/N (2.5)
in the selectively neutral case (v = 1), and
mi = [1—(1/v)1/[1 = (1/v)"] (26)

when there is viability selection (v # 1; Ewens, 2004, p. 109).
The appropriate formula to be used in computing the long-term
rate of cultural evolution is Eq. (1.1), since social roles are not
distinguished in this oblique transmission model. In the selectively
neutral case, Eq. (1.1) reduces toR = u.

Of particular interest is the case where type A is initially
represented once in the population, as when it arises by innovation
or is introduced by one individual from an external source.
The tables illustrate the fixation probabilities, mean absorption
times, and mean fixation times for this special but important
instance. Table 1 gives results for the oblique transmission model.
These values serve as baselines against which the accelerating or
decelerating effects of the alternative modes of social transmission
we investigate can be compared. Note the equivalence of t; for
v = 49/50 and 50/49 and also for v = 9/10 and 10/9. This result
- the mean fixation time of type A, initially represented once in
the population, depends on the intensity but not the direction of
selection - is proved in general in Appendix B.

3. Many-to-one (conformist) transmission

As before, let variant cultural types A and B exist in numbers
i and N — i, respectively. Suppose each newborn samples

Table 1

Numerical examples of the fixation probability (1), the mean absorption time (&),
and the mean fixation time (f;‘) in the oblique transmission model. The population
size is N, and the mortality of type B is v times that of type A. One individual of type
Ais assumed to be initially present. Units for £; and £} are N birth-death events, the
equivalent of one generation when v = 1.

N v m t tr
25 1 0.04 3.776 24.000
49/50 0.0311 3.552 23913
50/49 0.0504 3.996 23913
9/10 0.00859 2.672 21.947
10/9 0.108 4770 21.947
125 1 0.008 5.402 124.000
49/50 0.00178 4.256 114.355
50/49 0.0217 6.524 114.355
9/10 2.12 x 1077 2.390 57.380
10/9 0.100 8.112 57.380

Table 2

Numerical examples of the fixation probability (1), the mean absorption time
(t1), and the mean fixation time (ff) in the many-to-one (conformist) transmission
model. The population size is N, the mortality of type B is v times that of type A,
and the number of exemplars sampled is k. The error rate is fixed at ¢ = 0.001. One
individual of type A is initially present. Units for ¢; and ¢} are N birth-death events,
the equivalent of one generation when v = 1.

N v k T t t
25 1 3 9.98 x 1078 1.002 9.373
4 1.35 x 1077 1.002 9.379
5 1.63 x 1071 1.003 7.761
9/10 3 2.67 x 1078 0.905 9.383
4 3.62 x 1078 0.906 9.389
5 4.46 x 10712 0.906 7.786
10/9 3 3.35 x 1077 1.109 9.383
4 4.54 x 1077 1.109 9.389
5 5.59 x 10~ 1.110 7.786
125 1 3 2.59 x 10726 1.002 16.834
4 3.98 x 10726 1.002 16.847
5 6.14 x 10~* 1.003 13.342
9/10 3 2.71 x 1072° 0.902 16.875
4 417 x 1072 0.902 16.888
5 7.40 x 1074 0.903 13.394
10/9 3 1.28 x 1073 1.112 16.875
4 1.97 x 1072 1.112 16.888
5 3.49 x 1074 1.113 13.394

k exemplars without replacement from the population of N
individuals (2 < k < N).The probability that there arej individuals
of type A and k — j individuals of type B in this sample is given by
the hypergeometric distribution,

k= () (Y7 /().

where h(j; k,N,i) =0ifj < 0,j > i,j > k,orj < k— (N —i).

Pure conformist transmission entails that each newborn adopt
the majority cultural type among its k exemplars. Here we
modify this condition slightly by introducing a small probability
proportional to ¢ (error rate) of adopting the minority cultural
type provided there is at least one individual of this minority type
among the k exemplars. Moreover, when both cultural types are
equally represented in the sample, it is natural to assume that the
newborn will adopt either type with probability one-half.

Then, when k > 2 is even, the newborn will copy type A with
probability

(3.1)

k/2—1

bat) = Y h(s k. N, i)je + h(k/2: k. N, i)/2
j=0

k
+ Y hGik N DI — (k= jel,

j=k/2+1
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Table 3

Numerical examples of the fixation probability (1), the mean absorption time (),
and the mean fixation time (£} ) in the best-of-k (pro-novelty) model. The population
size is N, the mortality of type B is v times that of type A, and the number of
exemplars sampled is k. One individual of type A is a initially present. Units for f;
and t} are N birth-death events, the equivalent of one generation when v = 1.

N v k m t t
25 1 2 0.531 3.719 6.399
3 0.701 3.577 4.933
4 0.785 3.559 4453
5 0.836 3.570 4224
9/10 2 0.481 3.719 6.957
3 0.668 3.686 5.310
4 0.762 3.723 4.792
5 0.819 3.767 4.551
10/9 2 0.576 3.689 5.914
3 0.730 3.462 4.597
4 0.806 3.400 4.148
5 0.853 3.384 3.931
125 1 2 0.506 5.384 9.963
3 0.673 5.182 7.498
4 0.757 5.144 6.703
5 0.807 5.144 6.320
9/10 2 0.452 5.357 10.977
3 0.637 5.326 8.121
4 0.730 5.373 7.250
5 0.786 5.425 6.841
10/9 2 0.555 5.354 9.112
3 0.706 5.020 6.947
4 0.781 4915 6.213
5 0.826 4.874 5.852
and type B with probability
k/2—1
bs(i) = Y h(i k. N, i)(1 — je) + h(k/2; k, N, i)/2
j=0

k
+ Z h(G; k, N, ) (k — j)e.

j=k/2+1

(3.3)

Similarly, when k > 3 is odd, the newborn will copy type A with
probability

(k=1)/2
bat) = Y hGik.N. Dje

=0

k
+ Y hGik N, DI = (k= jel,

j=k+1)/2

(3.4)

and type B with probability
(k=1)/2

bs(i) = > h(i k. N, i)(1 — je)

=0

k
+ > hG:k N i)k —je.

j=(k+1)/2

(3.5)

Note that Egs. (3.1)-(3.5) entail a more extreme form of
conformity than the often-used sigmoid function (e.g., Boyd and
Richerson, 1985).

If the mortality of type B is v times that of type A, the up- and
down-transition probabilities for this model are p; = ba(i)dp(i)
and q; = bp(i)d,(i), respectively, where b4 (i) and bg(i) are defined
by Eqgs. (3.1)-(3.5), and d4(i) and dp(i) by Egs. (2.3)-(2.4). When
k = 2,orwhen k = N and ¢ = 1/N, this model reduces to the
oblique transmission model.

The fixation probability, mean absorption time, and mean
fixation time of type A, when there are initially i individuals of
this type, can be computed from the formulas of Appendix A.

Table 4

Numerical examples of the fixation probability (71,), the mean absorption time
(f1¢), and the mean fixation time (fj‘a) in the one-to-many (teacher) transmission
model. The population size is N. Types A and B are equally viable. Initially, there is
one individual of type A, and the teacher may be type A (@ = A) or type B (« = B).
Units for f;, and £}, are N birth-death events, the equivalent of one generation
whenv = 1.

N « Tia tia ty
25 A 0.52 3.776 4.092
B 0.02 1.107 5.054
125 A 0.504 5.402 5.851
B 0.004 1.035 6.843
Table 5

Numerical examples of the selectively neutral cultural evolutionary rate under
various modes of social transmission. Innovation rate of u = 1 per individual per
generation is assumed in all models except the OtM teacher model, where we have
setu; = 2, uy, = 1. Where applicable, k = 4 and ¢ = 0.001. See text for details.

Mode of transmission N =25 N =125
Oblique 1 1
Conformist 3.38 x 107° 9.95 x 1072
Best-of-k 19.6 94.6
Teacher 1.52 1.504

[llustrative results are shown in Table 2 for the case of i = 1. The
values 3-5 for parameter k represent the likely number of (same-
sex) adults in a band who may serve as exemplars for the newborn.
The most salient feature of Table 2 is the low fixation probabilities.
Conformist transmission entails that a newborn is unlikely to adopt
the minority cultural type. Hence, an innovation that is initially
represented once in the population (i = 1) has only a small chance
of spreading through the population. Table 2 shows a sharp drop in
the fixation probabilities as the number of exemplars, k, increases
from 4 to 5. There is an even larger effect of the population size,
N. In this model also, the long-term evolutionary rate is given by
Eq. (1.1).

The mean fixation times are shorter than with oblique
transmission, indicating that in the rare cases when fixation
occurs, spread of the innovation is fast. When viability selection
is imposed, the mean fixation time is identical whether cultural
type A is selected for or against (e.g., compare 4th and 7th lines of
Table 2). This was also observed in the oblique transmission model.

4. Best-of-k (pro-novelty) transmission

As in the previous model, each newborn samples k exemplars
from the population of N individuals with i of type A and N — i of
type B. Suppose that type A is preferred over type B. Specifically,
type A is adopted by the newborn provided there is at least one
individual of type A among the k exemplars. Since we regard type
A to be the newly arisen cultural type (i.e., the innovation), this
implies a pro-novelty bias. The probabilities of adoption of type A
and B can be written, respectively, as

=15 /()
o= () /()
ifi <N —k,and

ba(i) =1, (4.3)
bg(i) =0, (4.4)

ifi > N — k + 1. These assumptions entail an extreme form of
pro-novelty bias.
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Eq. (4.4) implies that the down-transition probability, q; =
bg(i)da(i), is 0 wheni > N — k + 1. As a result, Eqs. (A.3)-
(A7) of Appendix A are ill-defined. Revised formulas applicable
to this model are derived in Appendix C and used to calculate
the entries in Table 3. Fixation probabilities are quite high
whether the preferred cultural type is selectively neutral, adaptive,
or maladaptive. Moreover, in contrast to the oblique and MtO
transmission models, fixation probabilities are not substantially
lower for the larger population size. Mean fixation times are also
relatively short.

5. One-to-many (teacher) transmission

Assume that the population of size N contains two selectively
and preferentially neutral variant cultural types A and B. One
individual in this population has the special status of teacher. At
each time step, one newborn is produced and adopts the cultural
type of the current teacher, followed by the death of one random
individual excluding the newborn. If the teacher is the one to die,
its social role is taken by another individual, randomly chosen from
among the survivors including the newborn.

As with the other models considered in this paper, the
OtM transmission model entails some extreme assumptions. For
example, there is just one teacher that is copied by all newborns
while it remains alive. Nevertheless, this assumption receives
some empirical support in the case of the transmission of stone-
tool-making. Based on the evidence from refitted débitage at
the Magdalenian site of Etiolles (France), Pigeot (1990) argues
that novices may have turned to skilled knappers for instruction.
Moreover, she suggests that there may have been just one
specialist who served as teacher to all other individuals at this site.

The state of the population is completely described by the
number i of type A individuals and the type « of the current teacher.
We require 1 < i < Nwhenoe = Aand0 < i < N — 1 when
o = B. States 0B and NA are absorbing, whereas the remaining
2(N — 1) states are transient. Let p;, jg be the transition probability
from state i« to state jB. Then, the assumptions of the paragraph
before last entail that the positive transition probabilities are

Pis,i—1s = i/N, (5.1
pisis = (N —i—1)/N + (N — i)/N?, (5.2)
Pigia = i/N?, (5.3)
pinis = (N —i)/N?, (54)
piaia = (i—1)/N +i/N?, (5.5)
pia,i+1a = (N —D)/N, (5.6)

when1 < i < N — 1, and moreover pogop = pnana = 1. For

example, pia i (Eq. (5.5)) is obtained by noting that (i) the newborn

will be type A since the teacher is type A (probability 1), and (ii)

one of the i — 1 type A individuals that is not the teacher dies

(probability (i — 1)/N), or (iii) the teacher dies (probability 1/N)

and its role is adopted by a type A individual (probability i/N).
The fixation probabilities for this model are

7g = i/2N (5.7)

if initially there are i individuals of type A and the teacher is type
B, and

7 = (N +i)/2N (5.8)

if initially there are i individuals of type A including the teacher
(Appendix D). In the latter case, the fixation probability exceeds
one-half for all population sizes (Eq. (5.8)). With a type B teacher,
on the other hand, the fixation probability is one-half that for the
oblique transmission model (compare Eq. (5.7) with Eq. (2.5)). The

mean absorption and mean fixation times from state 1A and 1B
given in Table 4 are computed using the formulas in Appendix E.

The OtM model posits two social roles, teacher and non-teacher.
If the one teacher and each of the N — 1 non-teachers innovate
at rates u; and uy,, respectively, then from Eq. (1.2) the long-term
cultural evolutionary rate is given by

R=[u(N+ 1)+ upn(N—1]/2N), (5.9)

where we have used Egs. (5.7) and (5.8) with i = 1. Clearly, we
recover R = u if we substitute u; = u,; = u in Eq. (5.9), which
parallels the standard result for oblique transmission that the rate
of change of a selectively neutral cultural trait is independent of
population size.

6. Accumulation and maintenance of cultural variation with
oblique transmission

In order to address the question of the amount of cultural
variation maintained in a finite population, we introduce a
different model of cultural innovation which allows for imperfect
copying. As before, in a population of size N, assume two cultural
types A and B, where we now interpret A as the presence of some
trait and B as its absence. At each birth-death event, a newborn
may innovate with probability u (0 < u < 1), resulting in its
acquisition of cultural type A. When it does not innovate, it acquires
cultural type A by social learning with probability 8 (0 < 8 <
1, imperfect copying). Then, with oblique transmission (random
copying) and i individuals of type A, the probability that a newborn
is of cultural type A can be expressed as

ba(i) = u+ (1 — u)Bi/N, (6.1)
and the probability it is of cultural type B is
bg(i) = (1 —u) [(N —i)/N + (1 — B)i/N]. (6.2)

The probabilities of death, d4(i) and dg(i), are unchanged
(Egs. (2.3)-(2.4)).

If0 <u < 1and0 < B < 1, the stochastic process describing
the evolution of the frequency of cultural type A (Egs. (2.3)-(2.4),
(6.1)—(6.2)) has a stationary distribution whose properties refer to
the cultural variation in the population. Considering a collection
of ¢ independent traits, from this stationary distribution we
can evaluate the mean number of distinct traits carried by an
individual, Af; the mean number of traits segregating in the
population, A,; and the mean number of traits shared between
two randomly chosen distinct individuals, A;. We can also calculate
the proportion of shared traits between two randomly sampled
individuals, ¢ = A;/A (see Lehmann et al., 2011). More precisely,
¢ is the conditional probability that a trait carried by an individual
is also carried by another individual. Hence, we may regard ¢ as a
measure of the cultural homogeneity of the population (similarity
between individuals in the traits that they carry), whereas 1 — ¢ is
a measure of cultural heterogeneity (trait diversity).

With a very large number of independent and selectively
neutral traits (c large and v = 1), we have for large N (see Lehmann
etal,2011)

A =U/(1= ), (63)
where U = cu is the total innovation rate. Moreover,
U NU 7
= =M ioga )+ 4], 64
»=1F~ 5 o8 -B)+3 (6.4)
where
¢ =B/N1-B), (6.5)

which we use as benchmarks for comparison with the other modes
of social transmission.
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Fig. 1. Measures of variation for a selectively neutral cultural trait. In the first column of panels, s, A,, and ¢ are graphed as functions of population size N for the many-
to-one (conformist) transmission model with U = 0.1 and 8 = 0.9. Curves from top to bottom correspond to ¢ = 0.01, 0.001, and 0.0001 (the latter two are nearly
indistinguishable), respectively. Similarly, in the second column of panels, A¢, A,, and ¢ are plotted against N for the best-of-k (pro-novelty) transmission model, again with
U = 0.1and 8 = 0.9. From top to bottom, curves are drawn for k = 2, 4, and 8 (when k > N, we set k = N). When N becomes large we consistently observe that ¢
convergences to 8. Finally, in the third column of panels, values of A, A,, and ¢ are given for the one-to-many (teacher) transmission model, where in this case the curves
from top to bottom are for 8 = 0.9, 0.7, and 0.5. All curves are graphed as functions of N for 1 < N < 25 because this allows for a good compromise between distinguishing
the different curves in the panels and letting the variable ¢ approximate its limiting value. The qualitative increase of the remaining variables for larger values of N can be
inferred from the panels. By comparison, for the oblique transmission model with U = 0.1 and 8 = 0.9, we have for large N, Ay = 1, A, = 0.3 4 0.26N, and ¢ = 9/N.

7. Cultural variation at equilibrium with alternative modes of
social transmission

With MtO (conformist) transmission, the probabilities of birth
of A and B, respectively, are

ba()) = u+ (1 —u)Bba(i), (7.1)
and
be(i) = (1 —u) [b(i) + (1 — B)ba(i)], (7.2)

where b, (i) and bp(i) are given by Egs. (3.1)-(3.3) (for k > 2 even)
or by Egs. (3.1), (3.4)-(3.5) (for k > 3 odd).

The stationary distribution is obtained numerically for various
parameter sets, which allows computation of As, A,, and ¢.
Examples are presented in the first column of Fig. 1, where we see
that the average number of traits carried by an individual, Ay, is
very small (top panel). In addition, values of A, are moderately low
(middle panel) while values of ¢ are extremely low (bottom panel
for, say, N > 10), where the latter entails that most individuals
carry different traits, implying high cultural heterogeneity (trait
diversity) among individuals. These results are in qualitative
agreement with our previous work (Fig. 3 of Lehmann et al., 2011).

For Bok transmission, we substitute Eqs. (4.1)-(4.4) in
Egs. (7.1)-(7.2). The stationary distribution is again obtained nu-
merically for various parameter sets, with an example shown in the
middle column of Fig. 1. We find that individuals carry a large num-
ber of traits on average (high Ay), the population has alarge number
of segregating traits (high A,), and the proportion of shared traits
is relatively high (high ¢). Hence, the effects of pro-novelty bias on
the accumulation of cultural variation are similar to sensitivity to
the minority (Lehmann et al., 2011). Note also that ¢ appears to ap-
proach 8 as N becomes large (bottom panel), which was observed
for all parameter sets tested.

Finally, for the model of OtM (teacher) transmission, the
positive transition probabilities, piq jg, incorporating recurrent
innovation and imperfect copying are as shown in Appendix F.
From the stationary distribution of the frequency of type A, we can
compute the statistics A¢, A, and ¢ for any values of N, u,and 8. An
example is given in the third column of Fig. 1: the average number
of traits per individual, A, is low, while the average number of
traits in the population, A,, increases with N in an almost linear
fashion. The bottom panel shows that the proportion of shared
traits between two randomly sampled distinct individuals, ¢, is
high - hence the cultural heterogeneity 1 — ¢ is low - unless
the copying fidelity, 8, is low. This last result is an intuitively
reasonable consequence of one-to-many transmission.

8. Discussion

In Table 5 we compare the long-term evolutionary rates for
selectively neutral cultural variants expected under the various
modes of social transmission. In computing R as defined by
Eq. (1.1), we have arbitrarily assumed that each individual
produces, or introduces from an external source, one innovation
during a generation (u = 1). In this case, the cultural evolutionary
rate for oblique transmission is R = 1 regardless of the population
size. Also, we have set k = 4 and ¢ = 0.001 where applicable.
For the OtM transmission model where Eq. (1.2) is appropriate, we
have assumed that the teacher innovates at rate u;, = 2, while each
non-teacher innovates at rate u,, = 1.

Oblique transmission here includes vertical and horizontal
transmission, since in the Moran model either there is no
conceptual distinction or their effects are identical. It is often
claimed that more rapid cultural evolution is possible with
horizontal than vertical transmission (Guglielmino et al., 1995;
Lycett and Gowlett, 2008; MacDonald, 1998). This prediction
follows from the assumption of discrete generations, which
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entails that horizontal transmission can occur repeatedly during
a generation while vertical transmission occurs just once.

With conformist transmission, the evolutionary rates are
exceedingly low. The value of R = 3.38 x 108 for N = 25
means that an innovation that ultimately becomes fixed arises, on
average, once every 1 = (3.38 x 107%) = 2.96 x 10° generations.
This is approximately how long hominids have walked the earth.
When the population size is N = 125, the mean interval between
successful innovations is even longer. The functional form of
Egs. (3.1)-(3.5) and the setting for parameter ¢ (Table 2) result
in a low probability that a minority cultural variant will spread.
Larger values of ¢ or alternative functional forms for conformist
transmission (e.g., Boyd and Richerson, 1985) would produce
higher evolutionary rates. Our numerical examples show how
extreme the decelerating effect of conformist transmission can
be and support the suggestion of Lycett and Gowlett (2008) that
“a many-to-one system could have operated ...within Acheulean
populations, at least ...with handaxe manufacture”, which they
made to explain the extremely conservative nature of this lithic
tradition.

Table 5 shows that Bok transmission, on the other hand,
accelerates cultural evolution relative to oblique transmission.
In the Bok model, each newborn has a preference for a newly
introduced cultural variant (type A), which it adopts regardless of
its fitness effects, provided there is at least one individual of this
type among the k exemplars. Table 3 records the results of a more
detailed numerical analysis. We see that fixation probabilities are
high (about 1/2) even when only two exemplars are sampled
(k = 2) and when type A is selected against (v = 9/10). Hence,
the cultural evolutionary rates are also high. (However, with even
stronger selection against type A, the fixation probability may be
substantially reduced). Tables 3 and 5 also reveal that a larger
population size implies a higher cultural evolutionary rate. This is
because the fixation probability in the Bok model decreases with
N, but at a rate slower than 1/N.

OtM transmission has different consequences depending on
whether the innovator is the teacher or some other individual.
In the former case, the fixation probability exceeds one-half for
all population sizes (r14 = (N + 1)/2N), whereas in the latter
case, the fixation probability is exactly one-half that with oblique
transmission (g = 1/2N).

If the one teacher and each of the N — 1 non-teachers innovate
at rates u, and uy, respectively, then the long-term cultural
evolutionary rate is given by Eq. (5.9)—a weighted average of the
innovation rates. In particular, if we make the arbitrary assumption
as in Table 5 that u; = 2 and u,; = 1, we obtain

R=3/2+1/2N) ~ 3/2. (8.1)

It is arguable whether teachers are more innovative than non-
teachers. One may be a teacher by virtue of a large fund of
knowledge, which may facilitate innovation. Similarly, the teacher
may have many contacts outside the population and hence be
more aware of externally occurring innovations. On the other
hand, a non-teacher may be more willing to experiment with
new techniques and styles. If all individuals are equally likely to
innovate, then substituting u; = u,, = 1yieldsR = 1, i.e, the
OtM model predicts the same cultural evolutionary rate as the
oblique transmission model. Thus, evidence for teaching such as
has been found at the Magdalenian archaeological site of Etiolles
(Pigeot, 1990) cannot necessarily be invoked to explain the rapid
turnover of lithic traditions during the Upper Paleolithic.

Let us now turn to the question of the amount of cultural
variation at equilibrium when there is recurrent innovation and
imperfect copying of each trait. The various social transmission
models we investigated produce remarkably different predictions.
For example, the cultural heterogeneity or trait diversity, 1 —

¢, expected under MtO (conformist) transmission is appreciably
greater than with oblique (random copying) transmission. This is
because a moderately but not negligibly small number of traits
accumulate in the equilibrium population (middle panel of first
column of Fig. 1), but since each exists at a low frequency (top
panel), they are unlikely to be copied. The result is a decrease in
¢ (bottom panel), or equivalently an increase in the trait diversity,
1—o.

This prediction would appear to contradict prevailing theory
in archaeology, where the intuitive claim is often made that
MtO transmission will produce little cultural variation among
individuals (Lycett and Gowlett, 2008; MacDonald, 1998). If
by little variation among individuals it is meant that artifacts
produced by different individuals tend to share the same traits,
then this claim requires revision, as we have shown. Lehmann et al.
(2011) discuss in more detail why intuition should fail in this case.
On the other hand, Fig. 1 (middle panel of first column) shows that
the mean number of traits segregating in the population, A,, will be
smaller than with oblique (random copying) transmission. Hence,
MtO transmission should result in reduced intra-site variability, in
the sense that fewer cultural traits (e.g., identifiable attributes of
stone tools) are present and variable at one location.

By contrast, the Bok (pro-novelty) transmission yields large
values of A5, Ap, and ¢ (second column of Fig. 1) relative to oblique
transmission. Hence, the trait diversity, 1 — ¢, will be low. This
model of social transmission is similar to sensitivity to minority
studied by Lehmann et al. (2011). It also effectively constitutes a
stochastic version of the model suggested by Enquist et al. (2010),
in which each individual has more than one (k) cultural parent
and traits are copied with probability 8 (see their Eq. (5)). Fig. 2
shows the results for k = 2 (first column) and k = 5 (second
column) and with 8 = 0.9, 0.7, 0.5 (top to bottom curves). The
predictions of the two models are consistent; in particular the
cultural homogeneity remains substantial for 8 > 0.5 and is very
high for 8 = 0.9.

The other transmission scheme that we consider, OtM (teacher),
represents the maximum possible level of cultural inbreeding
(Cavalli-Sforza and Feldman, 1981), giving here an effective size
of approximately 2.26, which is independent of population size
(see Appendix G for the derivation). In other words, one and the
same individual, i.e., the teacher, acts as the cultural parent for
all individuals that are born during its lifetime. We obtain the
intuitively reasonable result that a substantial level of cultural
homogeneity is maintained for each of the three values of g
(bottom panel of third column of Fig. 1). Thus, our teacher model
(Egs. (F.1)-(F.16) of Appendix F) does not require multiple cultural
parents in order for cultural homogeneity to evolve. On the other
hand, when just one cultural parent is chosen at random as in our
oblique transmission model, cultural homogeneity will be low in
a large population at equilibrium (Eq. (6.5)), which agrees with
Enquist et al. (2010).
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Appendix A

The fixation probability and mean times for a finite birth-death
chain with two absorbing states (i = 0 and i = N) and with



K. Aoki et al. / Theoretical Population Biology 79 (2011) 192-202 199

100

80

60

As

40

20

100

80

60

40

20

20 25

08

o6 f —m — ]
SN
0.4 \\
02 |

0.0

5 10 15 20 25
N

100
80
60
~
~
40

20

0

100

80

60

40

20

0.8

0.6

0.4

0.2

0.0

Fig. 2. Measures of variation for a selectively neutral trait in the best-of-k transmission model. In the first column of panels, A, A, and ¢ are graphed as functions of
population size N for the case of U = 0.1 and k = 2. The top to bottom curves correspond to transmission rates § = 0.9, 0.7, and 0.5, respectively. The second column of

panels is the same as the first except that k = 5.
positive probabilities of transition from each of the transient states

(pi>0andg; >0for1 <i<N-—1).
Let

I
po=1, o= H (ai/pj) .
=1

and assume there are initially i type A individuals. Then the fixation
probability of type A is

i—1 N—-1
w=3 p / S
1=0 1=0
In terms of the number of birth-death events, the mean sojourn
time in statej is

(A1)

(A2)

N-1 j—1 N-1

ti=) p Zm/(ﬂj—ﬂj Zm) (A3)
= =0 1=0

ifj <iand
i—1 N—1 N-1

=Y p ZP!/(PJ'PJ' ZP() (A4)
=0 =0

ifj > i. The mean sojourn time in state j conditional on fixation
(averaging over the cases where type A is fixed) is

(A5)

and similarly the mean sojourn time in state j conditional on loss
(averaging over the cases where type A is lost) is

b =t(1-m) /(0 —m). (A.6)

Finally, the mean fixation time, mean loss time, and mean
absorption time are, respectively,

N—1 N—1 N—1
=)0 =) b= h=mi + (1 —m) . (A7)
— = j=1

j=1 j=1

-
tij = tijT[j/T[j,

Appendix B

Equality of } with positive and negative selection in the oblique
transmission model.

Applying the formulas of Appendix A with pg = 1and p; =
(1/v)!, we can write the mean sojourn time atj > i conditional on
fixation as

B = {[1- /] [1- "I} A0 - a/v]

x [1 = (1/)"BN [+ (N —jv] /LN —j)v], (B.1)
which does not depend on i. When selection is reversed — mortality
of type Bis 1/v times that of type A - we have

G0/ ={(1-2) (1 ="}/ {a - (1-Y)}
X N [vj+ (N = D1/ [iN = )]
= {[1 - /Y] [1 = a/w"7]} /i1 = /o)l

X [1— /)" IN [vj+ (N =1/ [N = jjv],  (B2)
which differs subtly from Eq. (B.1). Hence, the equality of mean
sojourn times for positive and negative genic selection as predicted
by diffusion theory (Maruyama, 1974) does not hold in the Moran
model.

Nevertheless, substituting the dummy variable | = N — j and
summing over the transient states gives

N—1
HUDES P
j=1

N—1

=Y {1 - a1 - aw' ]} A - A/l

=1
x[1—= (1/0)NIN[v(N = 1) + 1] / [(N — D]

N—-1
=2 G
j=1

(B.3)
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Appendix C

Derivation of mean times in the best-of-k transmission model.

It is convenient to view the state space as comprising two
overlapping subspaces, S; = {0,1,...,N—k,N —k+ 1} and

={N—k+1,N—k+2,...,N—1,N}.Egs.(4.1)-(4.4) entail
that S; has two absorbing states, 0 and N — k + 1, either of which
can be reached from any of the remaining, N — k transient, states
within S;. On the other hand, only up-transitions are possible in
S,, and state N will eventually be reached (fixation of type A will
occur).

Let the initial state i lie between 1 and N — k. For j such that
1 < j < N — k, the mean sojourn time at state j conditional on
fixation of type A can be computed from Eqs. (A.3)-(A.5) withN —1
replaced by N — k. Similarly, the mean sojourn time conditional
on loss can be obtained from Egs. (A.3), (A.4) and (A.6). When
N —k+ 1 <j < N — 1, the mean sojourn time conditional on
fixation is equal to the mean waiting time until an up-transition,
since down-transitions are impossible. Hence,

ES? = pjfl, (C.1)
On the other hand, given that type A is eventually lost, we clearly
have

6 =0 (C2)
whenN —k+1<j<N-1.
Thus, the mean fixation time from state i < N — k has the form

N—k
¥ [nfzm/ o]
Jj=i+1
i—1 N—k
«onf(myn)+
1=0 1=0
and similarly the mean loss time can be expressed as

i J
Ei**:Z|:1_7Tj Zp/l)j 1QJ:|

=1 1=0

x Nka:/[(l—m)_iopz}

I=i

+ 2[1—7@ Nipz/ p]pj}

j=it1

i—1 N—k
x> n / [(1 —m Y ,011| : (C4)
=0 =0

The mean absorption time can then be obtained from Eq. (A.7).

N—-1
> o (€3)

j=N—k+1

Appendix D

Recursions satisfied by the fixation probability of type A in the
one-to-many transmission model.

From Gale (1990, p. 155), the fixation probabilities satisfy the
recursions

= [(N —1)/N]mirna

+ [ = D/N +i/N*] 7tia + [(N — i) /N?] 7, (D.1)
Tipg = (i/Nz) 7ia + (i/N)m 1B

+ [(N=i—=1)/N+ (N —i)/N*] 7 (D.2)
for1 <i < N—1,where we have used Egs. (5.1)-(5.6). The bound-

ary conditions are mog = 0 and 74 = 1. Truth of Egs. (5.7)-(5.8)
can be confirmed by direct substitution into Egs. (D.1)-(D.2).

Appendix E

Mean sojourn times in the one-to-many transmission model.

Order the transient states 1B, 1A, 2B, 2A, ..., (N — 1)B, (N —
DA. Let P = {pisjs} be the 2(N — 1) x 2(N — 1) submatrix
of transition probabilities between the transient states (see
Egs. (5.1)-(5.6)). Also, let I be the 2(N — 1) x 2(N — 1) identity
matrix, and let T = {f;, js} be the 2(N — 1) x 2(N — 1) matrix of
mean sojourn times (in numbers of birth-death events).

State 1B must be visited when type A is ultimately lost.
Similarly, state (N — 1)A must be visited when type A is ultimately
fixed. Hence,

- - 1-— Tig
tio, 18 = t1B,1B ) (E.1)
1— TT1B
_ _ T
Bi.(N— 1A = EN—1)A.(N—1)A ———— (E.2)
TT(N-1)A

where m;, is the fixation probability from state ix (see
Egs. (5.7)-(5.8)) (Gale, 1990, p. 90, p. 214).

We have (I — P)T = I (Gale, 1990, p. 217). Equating the 1B, 1B
elements on both sides yields

N+1_ 1
t1g,18 — N*tm =1

NZ
Then, using Eq. (E.1) gives
N+ 1E 1 N-—-1 P 1
Nz T g oy e =
Hence, t3 13 = (2N — 1)/2 and using Eq. (E.1) again gives
tin1g = (N —1)/2, (E3)
tig1g = 2N —i)/2. (E.4)

By symmetry, tv—1a n—1)a = tip,18 = (2N — 1)/2 and hence
tia.v—1a = (N +1)/2,
tip.(n—1)a = /2.

Thus, the first and last columns of matrix T are readily obtained.
The other elements can be obtained by reversing the order of
matrix multiplication—from T (I — P) = I (Gale, 1990, p. 217). The
mean sojourn times can be defined recursively by this method, but
closed formulas are not generally forthcoming. In what follows, we
first derive recursions in g ;3 and £1p ;4 and then in t14 3 and £14 ja.
Using the former permits us to evaluate the mean absorptlon time
and the mean fixation time from initial state 1B, and the latter gives

us the corresponding values for state 1A.
The elements of the first row of T(I — P) = I are

1 _ N—-1 _ 2
— ttiga| — N2 + t1p,2B N =1

_ 1 _ (N-DNN+1)
tig,1B <_ﬁ> + t]B,]AT =0

+f13m< N_l)+f13(z+1)3< H—]):O(Ef’)
N2 N
N—i—l—l)_’_E ( i)

Nz B8 | ~

t18,18

_ i(N+1)
t1s, BTN

E113,(1‘—1),«\ <—

- (N=DN+1

+ tip.ia - N - (E6)
i (N—1)(N+1) 1
tlB,(Nfl)BT + tip.(v—1)a N =0
_ 2 N -1
t1B,(N—2)A N2 + tip.(v—1)B N

N+1

+tig Nt ——— e =

Eq. (E.5) holds for 2 < i < N — 2 whereas Eq. (E.6) holds for

2<i<N-1
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Rearranging Eq. (E.5) and renumbering (i + 1 — 1) yields

_ _ IN+DGE—-1) - N—-i+1

fipip = b -0~ ~ hmG-va (E7)
valid for 3 <i < N — 1. Using Eq. (E.7), we rewrite Eq. (E.6) as

i _ i—1 (N—DWIN—i+1)

tigia = big (i_1)p———— + E.8
1B,iA 1B,(i 1)BN(N A + tig.i-1)a NN —1) (E.8)
for2<i<N-1.

Eqs. (E7)—(E8), together WlEh ElB,lB = (2N — 1)/2, ElB,lA =
@2N — D/[2(N=1D(N+ 1], tigog = (N — 2)/4(N + 1), and
tig2a = (N — 1)/ [(N — 2)(N + 1)], are sufficient to compute the
mean absorption time from state 1B

N—-1
tip = Z (fig.is + 1g.ia) - (E9)
i=1

When the initial state is 1A, we equate the elements of the

second row on both sides of T(I — P) = I. Then, we obtain on
repeating the above analysis,

_ ) N+DG—1) - N—i+1
tiaip = tia(ictp——————— — tia(ic)a———, E.10
1A,iB 1A,(i—1)B Nl 1A,(i—1)A Nl ( )
_ _ i— (N—DN—i+1)

fiaim = biago1p———— + 1 , (E11
1A,iA 1A, (i 1)BN(N ) 1A,(i—1)A N(N — l) ( )

which are valid for 2 < i < N — 1. The coefficients in Egs. (E.10)
and (E.11) are identical to those in Eqs. (E.7) and (E.8), respectively.
The mean absorption time can be computed from

N—-1

t = Z (EIA,iB + ElA,iA)

i=1

(E.12)
where tj413 = (N — 1)/2 and tj4,14 = 2N — 1)/2(N — 1).
Appendix F

Positive transition probabilities, piy js, for the one-to-many

transmission model, incorporating recurrent innovation (with
probability u) and imperfect copying (with probability g).

Pis,i—np = (1 —w)i/N, (E.1)
Pigis = ui/N + (1 —u) [(N —i—1)/N + (N — )/N?], (F.2)
Pin.grns =u[(N—i—1)/N+ (N —i—1)/N?], (F.3)
Pis.ia = (1 — w)i/N?, (F.4)
Pig,ir1ya = u(i + 1)/N?, (E5)
P = (1 —w)(1 — B)(N — i+ 1)/N?, (F6)
P = [u+ (1 —wB] (N —i)/N?, (F7)
Pai—a =1 —w(A—p)[(—1/N+ (- 1)/N], (F8)

Pinia = [u+ (1 —wpl
x [(—1)/N+i/N*]+ (1 —u)(1— )N —i)/N, (F9)

Piai+na = [u+ (1 —wpBl(N —i)/N, (F.10)
for 1 <i < N — 1. From the terminal states, 0B and NA, we have

Pos.os = 1—1u, (F.11)
Pos, 15 = u(N — 1) [1/N + 1/N?], (F.12)
Pos.1a = U/NZ» (F.13)
Prnana = u+ (1 —w)p, (F.14)
Prav-na = (1=w(1 = BN = D [1/N + 1/N*], (F.15)
prnav-1p = (1 —w)(1 — 5)/N2- (F.16)

Appendix G

Largest non-unit eigenvalue of the one-to-many transmission
model

In order to find the rate of approach to either fixation (u = 0,
B = 1) or the stationary distribution (0 < u < 1,0 < 8 < 1), we
examined the numerically obtained largest non-unit eigenvalue of
the transition matrix specified by Egs. (F.1)-(F.16). For each of a
large number of values of N, we obtained this eigenvalue as a func-
tion of u and B using Mathematica. The inductively determined
eigenvalue has the form

2 C AN(N — 1)(1—C) + 2"
A_l—N—N2+{ N4 } ; (G.1)
where
C=u+1—u)(l-p). (G.2)

In particular, when u = 0 and 8 = 1 this eigenvalue reduces to

2 [aiN -1
M=1-5+ iWTl

From Eq. (G.3), we may estimate the corresponding effective
population size, N,, as follows. Clearly, after N birth-death events

the cultural variation declines to (AS)N of its previous value (Gale,
1990, p. 49). Then, because N birth-death events in this Moran-
type model are analogous to one generation in the Wright-Fisher

model, we can set 1 — Nie = (XS)N from which we obtain N, =

(G.3)

-1
- (/\g)”] . Note that we cannot use the standard (approxi-

mate) formula given by Felsenstein (1971), since 1 — Aj is of order
of magnitude 1/N. Hence, as N becomes large we see that for this
one-to-many (teacher) transmission model the dependence on N
disappears and

N, — exp (2 — «/5) / [exp (2 — \f2> — 1] = 2.26,

which we can interpret as extreme cultural inbreeding—the cul-
tural variation is dictated by the equivalent of only 2.26 individu-
als, a small number indeed.

(G4)
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