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A B S T R A C T

This paper formalizes selection on a quantitative trait affecting the evolution of behavior (or development)
rules through which individuals act and react with their surroundings. Combining Hamilton’s marginal rule
for selection on scalar traits and concepts from optimal control theory, a necessary first-order condition for
the evolutionary stability of the trait in a group-structured population is derived. The model, which is of
intermediate level of complexity, fills a gap between the formalization of selection on evolving traits that are
directly conceived as actions (no phenotypic plasticity) and selection on evolving traits that are conceived as
strategies or function valued actions (complete phenotypic plasticity). By conceptualizing individuals as open
deterministic dynamical systems expressing incomplete phenotypic plasticity, the model captures selection on
a large class of phenotypic expression mechanisms, including developmental pathways and learning under
life-history trade-offs. As an illustration of the results, a first-order condition for the evolutionary stability
of behavior response rules from the social evolution literature is re-derived, strengthened, and generalized.
All results of the paper also generalize directly to selection on multidimensional quantitative traits affecting
behavior rule evolution, thereby covering neural and gene network evolution.
1. Introduction

This paper is about formalizing selection on quantitative traits and
exploring mixing two pieces of magic. On one side, there is the magic
of Hamilton’s marginal rule, which describes the direction of selection
on a quantitative trait in a group (or family) structured population
and provides a necessary first-order condition for evolutionary stability
(Rousset, 2004; Van Cleve, 2015 for reviews). The magic here, actually
mathematics, is that the problem of solving the possibly gigantic system
of equations describing the distribution of genetics states among locally
interacting individuals is reduced to the much simpler task of comput-
ing the probability that two individuals from the same group share a
common ancestor under a neutral evolutionary process (all individuals
bear the same trait). On the other side, we have the magic of the
control theory approach to the calculus of variations, which provides
necessary first-order conditions for optimization problems involving
objective functions that depend on whole trajectories of dynamical
systems (Liberzon, 2011; Weber, 2011 for reviews), e.g., life-time re-
productive success depends on development and resource allocation
scheduling. The manifold magic here is that the problem of dynamic op-
timization and solving multidimensional partial differential equations
is broken down to the much simpler task of static optimization and
computing lower dimensional dynamical systems. In an evolutionary
biology context, such partial differential equations capture selection
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on reactions norms or behavioral strategies, and the analysis can often
be reduced to solving ordinary differential equations under a neutral
process only.

Both these approaches have opened the door to many applications
in evolutionary biology as is illustrated by the vast literatures on
social evolution and life-history theories (e.g. Stearns, 1992; Frank,
1998). Wizards have also blended Hamilton’s rule and control theory.
In particular, Day and Taylor (1997, 1998, 2000) and Wild (2011)
investigated selection on so-called open loop traits under limited ge-
netic mixing. Open loop traits describe phenotypic plastic expression
as a function of time (or some other exogenous variable), for instance
from birth to death, and represent the standard formalization of reac-
tion norm evolution in life-history theory for panmictic populations.
Here, control theory has actually long been applied under the head-
ing of Pontryagin’s maximum principle (e.g., León, 1976; Iwasa and
Roughgarden, 1984; Perrin, 1992; Irie and Iwasa, 2005). But plastic
phenotypes evolve to vary not only as a function of time or exogenous
variables, but also as a function of any fitness relevant state variables
determining the physiology, morphology or behavior of an individual,
which may themselves depend on phenotypic expression. Such so-
called closed loop traits can be thought of as a contingency plans or
strategies, since they specify a conditional trait expression rule accord-
ing to fitness relevant conditions and close the output–input feedback
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loop between phenotypic expression and individual states. For closed
loop traits too, mixtures between Hamilton’s rule and control theory
have been explored (Avila et al., 2021), and the evolution of closed loop
traits is often studied using dynamic programming (e.g., Houston and
McNamara, 1999; Mangel et al., 1988; Ewald et al., 2007; Nakamura
and Ohtsuki, 2016).

In the bulk of these formalizations, however, open and closed loop
traits display a form of complete plasticity, in the sense that given val-
ues of the independent variable(s), time and/or state(s), the phenotype
is quantitative and can evolve freely (subject to physiological con-
straints). As such, the genetically evolving trait is of large dimensions
if the independent variables can take many values and evolving traits
are typically of infinite dimensions when the range of the dependent
variables is continuous. Yet, one can conceive situations of incomplete
phenotypic plasticity, where an individual is conceptualized as an open
system acting and reacting with its surroundings, but the number
of genetic evolving traits affecting phenotypic scheduling is small.
Examples actually abound in the literature and include models for
the evolution of reactive strategies, behavior response rules, learning
rules, preferences, or neural and gene networks with a few number of
nodes (e.g., Ezoe and Iwasa, 1997; McNamara et al., 1999; Akçay and
Van Cleve, 2009; Killingback and Doebeli, 2002; Taylor and Day, 2004;
McNamara et al., 2004; André and Day, 2007; Wakano and Miura,
2014; Dridi and Lehmann, 2015; Kobayashi et al., 2019; Alon, 2020). In
each of these cases, there is a dynamical system underlying phenotypic
scheduling, which, in turn, affects survival and reproduction, and this
dynamical system is affected by one or a few number of genetically
evolving traits. To a first approximation, most analytical models for
reaction norm evolution when interactions occur between individuals
are actually of this type.

The goal of this paper is to show how standard concepts from
control theory, originally devised for situations of complete plasticity
where the magic is most effective, are actually also useful to analyze
the evolution of behavioral interactions in group-structured popula-
tions under incomplete plasticity. While this topic was partly explored
in Avila et al. (2021, their ‘‘Constant control result’’), some of their
results are here generalized. Moreover, life-history scenarios where
the analysis turns out be completely analytically tractable are fully
worked out. Finally, a more detailed formalization of an individual
interacting with its surroundings is provided. This allows to make ex-
plicit connections with the extensive literature on incomplete plasticity
and social evolution. The rest of this paper is organized as follows.
(i) Hamilton’s marginal rule for selection on scalar traits is recalled
and a formalization of an individual as an open system is provided.
(ii) Control theory concepts are used in Hamilton’s marginal rule to
derive necessary first-order conditions for the evolutionary stability of
a scalar trait affecting any feature of dynamic phenotypic expression
of interacting individuals in a life-history evolution contexts. (iii) The
generic first-order condition for selection on a trait affecting a behavior
response rule in group-structured population (Akçay and Van Cleve,
2012, eq. 5, Akçay and Van Cleve, 2014, eq. 8) is re-derived, strength-
ened, and generalized. (iv) Limitations and generalities of the model
are discussed.

2. Model

2.1. Main assumptions

2.1.1. The evolutionary setting and Hamilton’s marginal rule
Consider a population of homogeneous individuals (no class struc-

ture) that can be subdivided into a large number of groups of fixed
size 𝑛 and were the population is censused at discrete demographic
ime steps, i.e., the standard social evolution model setting as reviewed
n Michod (1982) and Rousset (2004). Interactions may occur among
ndividuals within groups and/or between groups before reproduc-
2

ion. These interaction are assumed to be affected by an evolving
quantitative genetic trait 𝑢, which either belongs to the whole set
R of real numbers or a subset  = [𝑢min, 𝑢max] thereof (i.e., 𝑢 ∈
 ⊂ R, for instance when 𝑢 is a probability, then 𝑢min = 0 and
𝑢max = 1). The interactions are also assumed to be such that a focal
(or representative) individual from the population has its survival
and reproduction affected by individuals in up to three distinct roles
sensu (Grafen, 2006, p. 544) in relation to the focal. Namely, the focal
individual itself with trait 𝑢∙, its group members with average trait
𝑢◦, and individuals at large from the population with average trait
𝑢. Individuals in each role are thus different types of actor on the
focal individual’s fitness 𝑤(𝑢∙, 𝑢◦, 𝑢), which gives its expected number
of successful offspring produced over one demographic time step (in-
cluding self through survival) when expressing trait value 𝑢∙, when
group neighbors express average trait value 𝑢◦, and individuals from the
population at large express average trait value 𝑢 (formally, 𝑤 ∶  3 →
R+, which is assumed differentiable and demographic consistency due
to density-dependent regulation requires that when the population is
phenotypically monomorphic for trait value 𝑢, fitness is equal to one:
𝑤(𝑢, 𝑢, 𝑢) = 1 for all 𝑢 ∈  ).

Let us further denote by 𝑟(𝑢) the neutral relatedness between two
randomly sampled individuals from the same group when the popula-
tion is phenotypically monomorphic for trait value 𝑢. Thus, 𝑟(𝑢) is the
probability that in a neutral process (where all individuals are alike
with trait 𝑢) two homologous genes of these individuals coalesce in
a common ancestor (e.g., Michod and Hamilton, 1980; Frank, 1998;
Roze and Rousset, 2003; Rousset, 2004; Lehmann and Rousset, 2014;
Van Cleve, 2015). A necessary first-order condition for trait value 𝑢∗ ∈
[𝑢min, 𝑢max] to be uninvadable (all mutant deviations go extinct) is that

if 𝑢∗ = 𝑢min then 𝑠(𝑢∗) ≤ 0,

if 𝑢min < 𝑢∗ < 𝑢max then 𝑠(𝑢∗) = 0,

if 𝑢∗ = 𝑢max then 𝑠(𝑢∗) ≥ 0,

(1)

where

𝑠(𝑢) =
𝜕𝑤(𝑢∙, 𝑢◦, 𝑢)

𝜕𝑢∙

|

|

|

|𝑢∙=𝑢◦=𝑢
+ 𝑟(𝑢)

𝜕𝑤(𝑢∙, 𝑢◦𝑢)
𝜕𝑢◦

|

|

|

|𝑢∙=𝑢◦=𝑢
(2)

is the inclusive fitness effect from changing trait value in a popu-
lation monomorphic for 𝑢. This is the sum of the marginal effect
𝜕𝑤(𝑢∙, 𝑢◦𝑢)∕𝜕𝑢◦ of the focal individual varying (infinitesimally) its trait
expression level on its own fitness plus the marginal effect 𝜕𝑤(𝑢∙, 𝑢◦𝑢)∕
𝜕𝑢◦ of an average group neighbor on the focal’s fitness weighted by
neutral relatedness. This latter effect can also be read in an actor-
centered way as the sum of the effect on the fitness of any single
neighbor of the focal individual varying its trait expression (Mullon
et al., 2016, eq. 12).

This first-order condition for evolutionary stability (Eqs. (1)–(2))
is a central result of social evolution theory that has been derived
in many different ways, some more precise and detailed than others,
from the population genetics of allele frequency change and fixation
probabilities, to the Price equation and evolutionary invasion analysis,
and to quantitative genetics (see, e.g., Taylor and Frank, 1996; Frank,
1998; Rousset and Billiard, 2000; Roze and Rousset, 2003; Rousset,
2004; Taylor et al., 2007; Akçay and Van Cleve, 2012; Wakano et al.,
2012; Lehmann and Rousset, 2014; Mullon et al., 2016; Van Cleve,
2015; Mullon and Lehmann, 2019; Van Cleve, 2020; Avila et al., 2021).
All these derivations fully agree with each other and this stubbornly
robust result will be taken as the evolutionary backbone and starting
point of the present analysis. Eqs. (1)–(2) also imply that an increase
in trait value brought by mutation is favored, to the first-order in a
resident population at 𝑢, when 𝑠(𝑢) > 0, i.e., Hamilton’s marginal rule
holds and a trait value 𝑢 satisfying 𝑠(𝑢) = 0 will be called a singular trait
value. Nothing in Hamilton’s marginal rule implies that the evolving
trait is a particular behavioral action and this is true for Hamilton’s
(1964) initial formulation of the inclusive fitness effect. It could be
any quantitative genetic trait affecting more or less remotely morpho-

logical, physiological, or behavioral phenotypes potentially affecting
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interacting individuals under the model’s demographic assumptions. To
bring this upfront, we need to first detail phenotypic expression and
behavioral interactions and then describe how such interactions affect
fitness.

2.1.2. The individual-surroundings interface
Each individual is conceptualized as being an open system exchang-

ing energy, matter, and/or information with its local surroundings
possibly at each time point 𝑡 ∈ [0, 𝑇 ] of the span 𝑇 of behavioral in-
eraction occurring within one demographic time step. This behavioral
ime span 𝑇 can be thought of as the time available for interactions
etween individuals. If behavior occurs on a fast time scale relative to
eproduction one can take 𝑇 → ∞, i.e., a very large number of inter-
ctions occur before reproduction and the separation of times scales
etween demography and behavior is infinite (a frequently endorsed
ssumption). An individual as an open system implies that its behavior
an be predicted from the knowledge of a set of internal states and a
et of external inputs. This perspective is enshrined in animal behavior
heory (McFarland and Sibly, 1975; McFarland and Houston, 1981;
nquist and Ghirlanda, 2005) and follows more generally from control
heory (or system’s theory e.g., Arbib, 1987; Sontag, 1998; Athans and
alb, 2007; Weber, 2011). As such, the focal individual (Section 2.1.1)
an be characterized by three phenotypic attributes at each time point
∈ [0, 𝑇 ] of the behavioral interactions. First, an action 𝑎∙(𝑡) ∈ 

xpressed at time 𝑡, which is the fundamental phenotypic unit by which
he individual interacts with its surroundings, e.g., a motor pattern,

signal, a transfer of resources to another individual, and where 
enotes the set of actions. Second, an internal state 𝑥∙(𝑡) ∈  , which
s a description of an individual’s internal phenotypic features such
s those pertaining to physiology, morphology, or neurology e.g., fat
eserve, brain and gonad size, memory and beliefs about locations of
ood items or family members, and where  is the set of (internal)
tates. Third, an external input 𝜙∙(𝑡) ∈ 𝜱, which is any more or less
oisy private or public signal about other’s actions or any other cue or
aterial received from the surroundings, e.g., assimilated food, radiant

nergy, a signal, a perception of the actions of others, where 𝜱 denotes
he set of inputs. While this state-space representation of behavior is
n principle general, even universal (Haykin, 1999), we here make
wo specific sets of assumptions to obtain a tractable model. First, for
implicity of presentation of the main concepts, we start by assuming
hat actions and states are one-dimensional real-valued (i.e., 𝑎∙(𝑡) ∈ R
nd 𝑥∙(𝑡) ∈ R, and the relevant multidimensional case will be discussed
n Section 4). Second, we assume a deterministic model and that the
ehavior of the focal at time 𝑡 ∈ [0, 𝑇 ] can be described by the following
ystem of equations:

𝑎∙(𝑡) = 𝑑(𝑢∙, 𝑥∙(𝑡))
d𝑥∙(𝑡)
d𝑡

= 𝑔̃(𝑢∙, 𝑎∙(𝑡), 𝑥∙(𝑡), 𝜙∙(𝑡))

𝜙∙(𝑡) = ℎ(𝑢∙, 𝑎◦(𝑡), 𝑎(𝑡)).

(3)

he first line says that the action of the focal individual depends on
decision rule mapping its internal state to action and that this rule

s parameterized by the individual’s quantitative trait 𝑢∙ (formally 𝑑 ∶
× R → R). The second line says that the change in the state of the

ocal at time 𝑡 depends on its action 𝑎∙(𝑡) and state 𝑥∙(𝑡), as well as on
the input 𝜙∙(𝑡) received from the environment. The mapping 𝑔̃ relating
these quantities to behavior also depends on the evolving trait (formally
𝑔̃ ∶  ×R×R×𝜱 → R). Finally, the last line says that the input 𝜙∙(𝑡) to
the focal is a mapping depending on the average action 𝑎◦(𝑡) of group
neighbor, the average action 𝑎(𝑡) in the population at large, and the
focal’s genetically determined trait (formally ℎ ∶  × R2 → 𝜱). Here
and throughout all functions are assumed differentiable.

Eq. (3) specifies how the focal acts and reacts with its surround-
ings and thus defines its behavior rule sensu (Lehmann et al., 2015),
namely the collection of functions 𝑑, 𝑔̃, and ℎ together with initial
conditions for Eq. (3). In order to determine the resulting trajectory
3

o

of actions, we also need to specify the action and state dynamics of
group members and individuals at large from the population. Since we
assume that individuals are homogeneous and thus differ only by way
of expressing different genetic traits, their behavior rules can be taken
to be characterized by the same functions 𝑑, 𝑔̃ and ℎ. Thus, the action of
an average group neighbor and average individual from the population
are, respectively, given by 𝑎◦(𝑡) = 𝑑(𝑢◦, 𝑥◦(𝑡)) and 𝑎(𝑡) = 𝑑(𝑢, 𝑥(𝑡)). From
this and Eq. (3), we see that the action and change in state of the focal
individual is determined once we know the collections

𝒖∙ =
(

𝑢∙, 𝑢◦, 𝑢
)

𝒙∙(𝑡) =
(

𝑥∙(𝑡), 𝑥◦(𝑡), 𝑥(𝑡)
)

(4)

of traits and states, respectively, of all possible actors on the focal’s state
dynamics. Thus, it is useful to introduce the function 𝑔 ∶  3 ×R3 → R
efined as

(𝒖∙,𝒙∙(𝑡)) = 𝑔̃(𝑢∙, 𝑑(𝑢∙, 𝑥∙(𝑡)), 𝑥∙(𝑡), ℎ(𝑢∙, 𝑑(𝑢◦, 𝑥◦(𝑡)), 𝑑(𝑢, 𝑥(𝑡)))), (5)

hich simply concatenates the different dependencies given in Eq. (3).
his brings upfront the dependency of the focal’s state dynamics on
he collection of traits 𝒖∙ and states 𝒙∙(𝑡) of each actor on the focal’s
ehavior rule. Thereby, we can write the focal state dynamics as
d𝑥∙(𝑡)
d𝑡

= 𝑔(𝒖∙,𝒙∙(𝑡)), (6)

and since all individuals are homogeneous we can express the rate of
change of the state of an average neighbor of the focal and an average
individual simply by permuting the arguments of the function 𝑔 to
obtain
d𝑥◦(𝑡)
d𝑡

= 𝑔(𝒖◦,𝒙◦(𝑡)) and d𝑥(𝑡)
d𝑡

= 𝑔(𝒖,𝒙(𝑡)), (7)

where the vectors
𝒖◦ = (𝑢◦, 𝑢n, 𝑢), 𝒙◦(𝑡) = (𝑥◦(𝑡), 𝑥n(𝑡), 𝑥(𝑡))

= (𝑢, 𝑢, 𝑢), 𝒙(𝑡) = (𝑥(𝑡), 𝑥(𝑡), 𝑥(𝑡))
(8)

ollect the (average) traits and states of actors on the state variables
f an average neighbor of the focal individual (first line), and on an
verage individual in the population (second line), respectively (here
nd throughout all vectors are defined by default as being column
ectors). These actors are thus second-order level actors on the focal
ecipient since they affect the state variables of actors affecting the
ocal’s state dynamics. Note that the subscripts of the trait vectors
𝒖∙, 𝒖◦ and 𝒖) and state vectors (𝒙∙(𝑡), 𝒙◦(𝑡) and 𝒙(𝑡)) emphasize the
ndividual (actor) from who is perspective the second-order actors’
ontrol and variables are collected. Accordingly, since groups are of
ize 𝑛, the vectors in Eq. (8) contain the elements

n =
1

𝑛 − 1
𝑢∙+

( 𝑛 − 2
𝑛 − 1

)

𝑢◦, 𝑥n(𝑡) =
1

𝑛 − 1
𝑥∙(𝑡)+

( 𝑛 − 2
𝑛 − 1

)

𝑥◦(𝑡), (9)

which are, for an average neighbor of the focal, the control and
state expressions of average neighbors viewed as actors on the focal
individual.

Eqs. (3)–(7) together fully determine how an individuals acts and
reacts with its surroundings. While tracking the dynamics of three state
variables (Eqs. (6)–(7)) may appear complicated, it is much simpler
than tracking the state of all individuals in a group separately plus those
in the population, which would require as many equations as there are
individuals in the group plus at least the average in the population, and
this is the approach often taken in the game theory (e.g., Basar and
Olsder, 1999; Weber, 2011) or the evolutionary literatures (e.g., Day
and Taylor, 2000). The useful reduction in complexity embodied in
Eqs. (6)–(7) obtains because using only the average phenotypes and
states variable of the different actors on the focal approximates possibly
more complicated relationships between genetic states and phenotypic
feature to the first-order. Average phenotypes are sufficient to evalu-
ate the selection gradient 𝑠(𝑢), since, to the first-order, expectations
f functions depending on phenotypes (or functions thereof) can be
eplaced by functions of expected phenotypes (or functions thereof)

wing to Taylor expansion about mean values [see Rousset (2004,
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p. 95) for general social evolution considerations, Avila et al. (2021)
for application to state space models, and Lynch and Walsh (2018,
Appendix 1) for Taylor expansions of functions of random variable in
a general context].

2.1.3. Fitness
Having specified how individuals interact, let us now specify how

the focal’s fitness 𝑤(𝑢∙, 𝑢◦, 𝑢) is determined as a result of these interac-
ions and consider two types of fitness functions. First, the discounted
itness

(𝑢∙, 𝑢◦, 𝑢) = ∫

𝑇

0
𝑙∙(𝑡)𝑤̃(𝒖∙,𝒙∙(𝑡))d𝑡 + 𝑙∙(𝑇 )𝜎(𝒙∙(𝑇 )), (10)

where 𝑙∙(𝑡) is the probability that the focal individual survives until time
𝑡, which satisfies
d𝑙∙(𝑡)
d𝑡

= −𝜇(𝒖∙,𝒙∙(𝑡))𝑙∙(𝑡) with initial condition 𝑙∙(𝑡) = 1. (11)

Here, 𝜇(𝒖∙,𝒙∙(𝑡)) is the instantaneous death rate of the focal, which
depends on traits and states (since death eventually occurs, we have
𝑙∙(𝑡) → 0 as 𝑡 → ∞) and 𝑤̃(𝒖∙,𝒙∙(𝑡)) is the rate of increase of fitness
due to effective reproduction at time 𝑡 (or the contribution to effective
reproduction of the states at time 𝑡). The term 𝑙∙(𝑇 )𝜎(𝒙∙(𝑇 )) is the so-
called scrap value, which gives the contribution to fitness from effective
reproduction 𝜎(𝒙∙(𝑇 )) at the final time 𝑡 = 𝑇 (formally 𝑤̃ ∶  3 × R3 →

R+ and 𝜎 ∶ R3 → R+). Fitness is actually mediated by actions, since this
is the medium by which individuals interact with their surroundings
and so the vital rates, 𝑤̃(𝒖∙,𝒙∙(𝑡)) and 𝜇(𝒖∙,𝒙∙(𝑡)), should all depend on
actions. But since actions in turn depend on states (recall Eq. (3)), this
justifies to write the vital rates directly as function of the states so that
fitness is entirely determined once we have the solution to Eqs. (6)–
(7) given initial conditions. Thus, writing fitness in terms of states is
a reduced-form expression that implicitly yet fully takes into account
the full behavioral model (Eq. (3)), which is useful to keep in mind for
biological applications.

The discounted fitness Eq. (10) covers at least three classes of
demographic situations. (a) Interaction between family members, like
between siblings, in a family structured populations (e.g., Michod,
1982; Roze and Rousset, 2004), where individuals can die during the
ontogenic period. Depending on the model formulation 𝑤̃(𝒖∙,𝒙∙(𝑡)) may
be zero and all fitness contribution is captured by the scrap value. (b)
Interactions among group members in a geographically structured pop-
ulation. With limited dispersal, the fitness component 𝑤̃(𝒖∙,𝒙∙(𝑡)) can
depends in a non-linear way on various vital rates of group members
and individuals from the population at large (e.g., Roze and Rousset,
2003, eq. 35, Akçay and Van Cleve, 2012, eq. A12, Van Cleve, 2015,
eq. 38, Mullon et al., 2016, eq. box 1a), which themselves may depend
on integrals depending on the traits of the individuals in interaction.
Such situations are taken into account in the above formalization either
by (i) defining state variables whose integrated values represent the
integral, and are covered by the scrap value 𝜎(𝒙∙(𝑇 )) in Eq. (12) or
(ii) by noting that to the first-order, functions of integrals can be
replaced by integrals of first-order Taylor series of fitness and hence
the 𝑤̃(𝒖∙,𝒙∙(𝑡)) fitness component in Eq. (12) may be evaluated as a
first-order Taylor expansion of fitness in its vital rates (e.g., Van Cleve,
2015, eq. 39, Mullon et al., 2016, eq. A60–A61). (c) Finally, Eq. (10)
covers a case that is not fully apparent under the main assumptions
(Section 2.1.1) yet is useful to mention. This is the case of the standard
life-history evolution context in a panmictic age-structured population
where the vital rates 𝑤̃ and 𝜇 depend only on the state of the focal
𝑥∙(𝑡) and its own trait 𝑢∙ (e.g., Stearns, 1992; Perrin, 1992) and possibly
the trait 𝑢 of the population at large to capture density-dependent
regulation [or on 𝑢, 𝑥◦(𝑡) to capture interactions among individuals of
the same age, e.g., Day and Taylor (1997)]. In this case, relatedness is
zero relatedness (𝑟(𝑢) = 0), 𝑤̃(𝒖∙,𝒙∙(𝑡)) is simply the effective fecundity
4

of the focal individual at age 𝑡, and 𝜎(𝒙∙(𝑇 )) is usually considered nil.
Second, we consider the average fitness

𝑤(𝑢∙, 𝑢◦, 𝑢) = lim
𝑇→∞

1
𝑇 ∫

𝑇

0
𝑤̃(𝒖∙,𝒙∙(𝑡))d𝑡, (12)

hich is the average of the instantaneous contribution 𝑤̃(𝒖∙,𝒙∙(𝑡)) to
itness. Since 𝑇 → ∞, the interactions during behavioral time are
ssumed to occur on a faster time scale than reproduction. Another way
f interpreting this assumption biologically is to say that the behavioral
ynamics is able to reach an equilibrium before reproduction occurs.
he average fitness Eq. (10) can be applied to demographic situations
a)–(b) described above, but does not cover the standard life-history
volution context [demographic situation (c) above], since survival is
mplicitly assumed to be equal to one.

.2. Selection on behavior rules

.2.1. The Hamiltonian and the co-state variables
Having specified the assumptions about behavioral interactions

Eqs. (3) and (6)) and fitness (Eqs. (10) and (12)), we now turn to
ork out a meaningful representations of the inclusive fitness effect
(𝑢) using concepts from optimal control theory (Bryson and Ho, 1975;
thans and Falb, 2007; Sydsaeter et al., 2008; Weber, 2011). For this,

et us introduce the so-called Hamiltonian function defined here as
(

𝒖∙,𝒙∙(𝑡), 𝑙∙(𝑡),𝝀(𝑡), 𝑣(𝑡)
)

=
(

𝑤̃(𝒖∙,𝒙∙(𝑡)) − 𝜇(𝒖∙(𝑡),𝒙∙(𝑡)) 𝑣(𝑡)
)

𝑙∙(𝑡)

+ 𝑔(𝒖∙,𝒙∙(𝑡))𝜆∙(𝑡) + 𝑔(𝒖◦,𝒙◦(𝑡))𝜆◦(𝑡), (13)

here 𝝀(𝑡) = (𝜆∙(𝑡), 𝜆◦(𝑡)). Extending a classical interpretation (Dorfman,
969, p. 822), the Hamiltonian (formally the function 𝐻 ∶  3 × R3 ×

R × R2 × R → R) can be regarded as the contribution to the focal indi-
vidual’s expected fitness of the expression of own and others’ current
actions, holding the expression of all future actions constant and thus
at their behavioral level determined by the resident trait 𝑢. The Hamil-
tonian is thus the sum of the focal individual’s expected current fitness
𝑙∙(𝑡)𝑤̃(𝑡, 𝒖∙(𝑡),𝒙∙(𝑡)) plus the changes of its survival [−𝜇(𝒖∙(𝑡),𝒙∙(𝑡))𝑙∙(𝑡)]
and fitness relevant states [𝑔(𝒖∙,𝒙∙(𝑡)) and 𝑔(𝒖◦,𝒙◦(𝑡))], resulting from
current actions, were each such change is weighted by its marginal
effect on the focal’s expected remaining fitness. These marginal effects
on fitness, 𝑣(𝑡), 𝜆∙(𝑡) and 𝜆◦(𝑡), are collectively referred to as the costates.
The first, 𝑣(𝑡), is actually Fisher’s (1930) reproductive value (change in
remaining fitness at 𝑡 resulting from change in survival until 𝑡) while
𝝀(𝑡) = (𝜆∙(𝑡), 𝜆◦(𝑡)) will be called the shadow values of the actions
(change in expected remaining fitness stemming from change in states
at 𝑡). All costates are evaluated in a monomorphic resident population
where all individual bear trait value 𝑢 (see Box I in Appendix B.2.2
and Avila et al. (2021) for more formalities and interpretations about
how the costates connect to reproductive value).

The Hamiltonian thus captures the fundamental trade-off between
current and future fitness consequence of expressing current actions
and delineates all pathways that can affect this trade-off by bringing
upfront the fitness value of changing states. The Hamiltonian also
allows to generate the rate of changes of the costates, which are ob-
tained by differentiation: d𝑣(𝑡)∕d𝑡 = −𝜕𝐻∕𝜕𝑙∙(𝑡), d𝜆∙(𝑡)∕d𝑡 = −𝜕𝐻∕𝜕𝑥∙(𝑡),
and d𝜆◦(𝑡)∕d𝑡 = −𝜕𝐻∕𝜕𝑥◦(𝑡), where all partial derivatives, here and
throughout, are evaluated at 𝒖∙ = 𝒖 = (𝑢, 𝑢, 𝑢) and 𝒙∙(𝑡) = 𝒙(𝑡) =
(𝑥(𝑡), 𝑥(𝑡), 𝑥(𝑡)). From this and using Eq. (9) in Eq. (13), the costates
are fully determined by the following system of ordinary differential
equations (ODE’s):

d𝑥(𝑡)
d𝑡

= 𝑔(𝒖,𝒙(𝑡)) with i.c. 𝑥(0) = 𝑥0

(14a)
d𝑙(𝑡)
d𝑡

= −𝜇(𝒖,𝒙(𝑡))𝑙(𝑡) with i.c. 𝑙(0) = 1 (14b)

−
d𝝀(𝑡)
d𝑡

= 𝐛(𝒙(𝑡), 𝑙(𝑡), 𝑣(𝑡)) + 𝐀(𝒙(𝑡))𝝀(𝑡) with b.c. 𝝀(𝜁 ) = 𝝀𝜁
(14c)
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−
d𝑣(𝑡)
d𝑡

= 𝑤̃(𝒖,𝒙(𝑡)) − 𝜇(𝒖,𝒙(𝑡)) 𝑣(𝑡) with b.c. 𝑣(𝜁 ) = 𝑣𝜁 ,

(14d)

where

𝐛(𝒙(𝑡), 𝑙(𝑡), 𝑣(𝑡)) = 𝑙(𝑡)
⎛

⎜

⎜

⎝

𝜕𝑤̃(𝒖,𝒙∙(𝑡))
𝜕𝑥∙(𝑡)

− 𝜕𝜇(𝒖,𝒙∙(𝑡))
𝜕𝑥∙(𝑡)

𝑣(𝑡)
𝜕𝑤̃(𝒖,𝒙∙(𝑡))

𝜕𝑥◦(𝑡)
− 𝜕𝜇(𝒖,𝒙∙(𝑡))

𝜕𝑥◦(𝑡)
𝑣(𝑡)

⎞

⎟

⎟

⎠𝒙∙(𝑡)=𝒙(𝑡)

(15)

is a vector of marginal changes in fitness stemming from changes in
state and

𝐀(𝒙(𝑡)) =
⎛

⎜

⎜

⎝

𝜕𝑔(𝒖,𝒙∙(𝑡))
𝜕𝑥∙(𝑡)

𝜕𝑔(𝒖◦ ,𝒙◦(𝑡))
𝜕𝑥∙(𝑡)

𝜕𝑔(𝒖,𝒙∙(𝑡))
𝜕𝑥◦(𝑡)

𝜕𝑔(𝒖◦ ,𝒙◦(𝑡))
𝜕𝑥◦(𝑡)

⎞

⎟

⎟

⎠𝒙∙(𝑡)=𝒙(𝑡)

=
⎛

⎜

⎜

⎝

𝜕𝑔(𝒖,𝒙∙(𝑡))
𝜕𝑥∙(𝑡)

𝜕𝑔(𝒖,𝒙∙(𝑡))
𝜕𝑥◦(𝑡)

1
𝑛−1

𝜕𝑔(𝒖,𝒙∙(𝑡))
𝜕𝑥◦(𝑡)

𝜕𝑔(𝒖,𝒙∙(𝑡))
𝜕𝑥∙(𝑡)

+ 𝜕𝑔(𝒖,𝒙∙(𝑡))
𝜕𝑥◦(𝑡)

(

𝑛−2
𝑛−1

)

⎞

⎟

⎟

⎠𝒙∙(𝑡)=𝒙(𝑡)

(16)

is a matrix of changes in state dynamics. The second representation of
𝐀(𝒙(𝑡)) follows from using Eq. (9), which allows to express 𝐀(𝒙(𝑡)) only
n terms of the changes in state dynamics of the focal individual and
oth representations of 𝐀(𝒙(𝑡)) in Eq. (16) can be useful. In system (14),

‘i.c’’ stands for initial condition, i.e., the value of the states at time
= 0 and ‘‘b.c’’. stands for boundary condition, i.e., the value of the
ostates at some arbitrary time 𝑡 = 𝜁 . This is due to the fact that,
epending on the situation, the boundary conditions of the costates are
nitial or final values (more on this below). While Eq. (14a) will gen-
rally be non-linear, Eq. (14c) is a linear non-homogeneous ODE with
arying coefficients and the representation of its solution is discussed
n Appendix A.1.

The ODE system (14) is centerpiece to the analyzes of selection
nd given initial condition for the states, boundary conditions for the
ostates, and trait value 𝑢, its solution is unique. So system (14) can
e seen to be parameterized by 𝑢 and while the initial condition of the
tates, 𝑥0 is a parameter as well, the boundary conditions of the costates
re determined by the specificities of the situation at hand. No general
ecipe for determining the boundary conditions exists (e.g., Aseev and
ryazhimskiy, 2008; Sydsaeter et al., 2008), yet for the finite horizon
ase, the boundary conditions are straightforwardly obtained from
heir definitions as marginal effects of changes in states on remaining
itness evaluated in a monomorphic population at 𝑢: 𝑣(𝑇 ) = 𝜎 (𝒙(𝑇 ))

and 𝝀(𝑇 ) = (𝑙(𝑇 ) 𝜕𝜎
(

𝒙∙(𝑇 )
)

∕𝜕𝑥∙(𝑇 ), 𝑙(𝑇 ) 𝜕𝜎
(

𝒙∙(𝑇 )
)

∕𝜕𝑥◦(𝑇 ))|𝒙∙(𝑇 )=𝒙(𝑇 )
see Box I). Difficulties for determining the boundary condition arise
or discounted fitness under the infinite horizon case, where it may
e felt that the costates go asymptotically to zero but this is not
enerally the case (Sydsaeter et al., 2008; Aseev and Kryazhimskiy,
008; Weber, 2011). For instance, for constant survival and reproduc-
ion, the reproductive value remains the same throughout lifespan and
he reproductive value has the constraint that its initial value is one
see Box I). In the presence of dominating discount, however, where

constant discount rate suppresses the growth rate of the expected
urrent fitness, the growth rate of trajectory 𝑥(𝑡), as well as that of the
rajectory of the corresponding regular linearized dynamical system,
hen the shadow values should go to zero; namely lim𝑇→∞ 𝝀(𝑇 ) = (0, 0),

which fixes their boundary conditions (Aseev and Kryazhimskiy, 2008;
Aseev and Veliov, 2019). Since external mortality can usually be taken
as a constant, there is always a background of constant discount to
potentially suppress the growth rates. Further, because physiological
state variables are bounded and thus cannot grow indefinitely, it is
actually plausible that the majority of biological situations of interest
do satisfy the dominating discount assumption, at least by assuming
high enough external mortality, one may be able to enforce it for a large
class of biological scenarios. This is proved in Appendix A.2, where the
conditions leading to lim𝑇→∞ 𝝀(𝑇 ) = (0, 0) are discussed more formally
and biologically. Now fully endorsing dominating discount, we are lead
to our first result about the representation of the selection gradient
proved in Appendix B.2.1
5

m

Result 1 (Discounted Fitness with Finite and Infinite Horizon). Suppose
individual fitness is given by Eq. (10) with state dynamics by Eqs. (6)–(7),
then the inclusive fitness effect for condition (1) can be represented as

𝑠(𝑢) = ∫

𝑇

0
𝑠(𝑡, 𝑢)d𝑡, (17)

here

(𝑡, 𝑢) =

⎡

⎢

⎢

⎢

⎣

𝜕𝐻
(

𝒖∙,𝒙∙(𝑡), 𝑙∙(𝑡),𝝀(𝑡), 𝑣(𝑡)
)

𝜕𝑢∙

+𝑟(𝑢)
𝜕𝐻

(

𝒖∙,𝒙∙(𝑡), 𝑙∙(𝑡),𝝀(𝑡), 𝑣(𝑡)
)

𝜕𝑢◦

⎤

⎥

⎥

⎥

⎦ 𝒖∙=𝐮
𝒙∙(𝑡)=𝒙(𝑡)

, (18)

which, owing to Eq. (13), can also be written as

𝑠(𝑡, 𝑢) =
[(

𝜕𝑤̃(𝒖∙,𝒙(𝑡))
𝜕𝑢∙

−
𝜕𝜇(𝒖∙,𝒙(𝑡))

𝜕𝑢∙
𝑣(𝑡)

)

𝑙(𝑡)

+
𝜕𝑔(𝒖∙,𝒙(𝑡))

𝜕𝑢∙
𝜆∙(𝑡) +

𝜕𝑔(𝒖◦,𝒙(𝑡))
𝜕𝑢∙

𝜆◦(𝑡)

+𝑟(𝑢)
((

𝜕𝑤̃(𝒖∙,𝒙(𝑡))
𝜕𝑢◦

−
𝜕𝜇(𝒖∙,𝒙(𝑡))

𝜕𝑢◦
𝑣(𝑡)

)

𝑙(𝑡)

+
𝜕𝑔(𝒖∙,𝒙(𝑡))

𝜕𝑢◦
𝜆∙(𝑡) +

𝜕𝑔(𝒖◦,𝒙(𝑡))
𝜕𝑢◦

𝜆◦(𝑡)
)]

𝒖∙=𝐮
. (19)

Therein, the states and costates satisfy Eq. (14) with b.c. of the costates given
by 𝑣(𝑇 ) = 𝜎 (𝒙(𝑇 )) and 𝝀(𝑇 ) = (𝑙(𝑇 ) 𝜕𝜎

(

𝒙∙(𝑇 )
)

∕𝜕𝑥∙(𝑇 ), 𝑙(𝑇 ) 𝜕𝜎
(

𝒙∙(𝑇 )
)

∕
𝑥◦(𝑇 ))|𝒙∙(𝑇 )=𝒙(𝑇 ) for a finite horizon. For an infinite horizon, Eq. (17) holds
ith the assumption that lim𝑇→∞ 𝝀(𝑇 ) = (0, 0), i.e., dominating discount
btains.

Result 1 generalizes to the infinite horizon case and to an explicit
ehavioral rule evolution context the Constant control result of Avila
t al. (2021, p. 11). From a biological perspective, it says that the
election gradient on the evolving trait is the sum over all times, of
he inclusive effect of trait change on expected current and remaining
eproduction. The latter effect is mediated by how the change in trait
alue changes own and others’ state, weighted by the marginal effect of
hanging these states on expected remaining reproduction. It is useful
o note that the selection gradient can also be expressed solely in terms
f the (Fisher) reproductive values by factoring out 𝑙(𝑡) from 𝑠(𝑡, 𝑢),
hich yields

(𝑢) = 𝑙 ∫

𝑇

0

[

𝜕𝑤̃(𝒖∙,𝒙(𝑡))
𝜕𝑢∙

𝑣(0) −
𝜕𝜇(𝒖∙,𝒙(𝑡))

𝜕𝑢∙
𝑣(𝑡) +

𝜕𝑔(𝒖∙,𝒙(𝑡))
𝜕𝑢∙

𝜆∙(𝑡)
𝑙(𝑡)

+
𝜕𝑔(𝒖◦,𝒙(𝑡))

𝜕𝑢∙

𝜆◦(𝑡)
𝑙(𝑡)

+𝑟(𝑢)
(

𝜕𝑤̃(𝒖∙,𝒙(𝑡))
𝜕𝑢◦

𝑣(0) −
𝜕𝜇(𝒖∙,𝒙(𝑡))

𝜕𝑢◦
𝑣(𝑡) +

𝜕𝑔(𝒖∙,𝒙(𝑡))
𝜕𝑢◦

𝜆∙(𝑡)
𝑙(𝑡)

+
𝜕𝑔(𝒖◦,𝒙(𝑡))

𝜕𝑢◦

𝜆◦(𝑡)
𝑙(𝑡)

)]

𝑢(𝑡)d𝑡. (20)

Here, 𝑙 = ∫ ∞
0 𝑙(𝑡)d𝑡 is the average lifespan of an individual and 𝑢(𝑡) =

𝑙(𝑡)∕𝑙 is the probability that a randomly sampled individual from the
opulation is of age 𝑡. According to Eq. B-c of Box I, 𝜆∙(𝑡)∕𝑙(𝑡) and

𝜆◦(𝑡)∕𝑙(𝑡), are the changes in reproductive value stemming from change
n own and other’s state at 𝑡, respectively. Hence, 𝑠(𝑢) consists of two
erms connected to reproductive value. First, the two first summands
n each line of Eq. (20) together give the expectation over all ages
n which an individual can reside of the reproductive value weighted
hanges of vital rates induced by inclusive trait change effect (hence the
elineation of the offspring reproductive value 𝑣(0) = 1, Box I). This is
onceptually equivalent to the standard representations of the selection
radient in heterogeneous populations (e.g., Lion, 2018, eq. 21 for
anmictic populations and Priklopil and Lehmann, 2020, eq. 2 for

etapopulations). Second, the last two summands on each line together
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give the expectation over all ages in which an individual can reside of
the changes in reproductive value resulting from state changes induced
by inclusive effects of trait change. This second term arises owing to
the dynamic constraints on state and is thus bound to the first term
through the common currency reproductive value. In the absence of
such constraints, Eq. (20) is fully consistent with the classical selection
gradient on a mutation that affects survival and/or fecundity in a
panmictic populations and obtained from the geometric growth rate
of the mutation (Ronce and Promislow, 2010, eqs. 3.1–3.3 by noting
that their scaling of reproductive values, i.e., their eq. A-11, implies
that for a continuous time model ∫ 𝑇

0 𝑣(𝑡)𝑢(𝑡) = 𝑣(0)𝑇G∕𝑙, where 𝑇G
s the mean generation time, a scaling factor allowing to covert the
irst-order perturbation of the basic reproductive number into that of
he geometric growth rate). Finally, Eq. (20) is also consistent, as it
hould, with the representation of selection on life-history traits to any
rder and given by the Hamilton–Bellman–Jacobi equation expressed
n terms of (Fisher) reproductive value only (León, 1976, eq. 36).

From, a computational perspective, Result 2 shows that the main
echnical difficulty to evaluate condition (1) is to solve the ODE sys-
em (14) and integrate 𝑠(𝑡, 𝑢) over time. This is generally a much simpler
ask than attempting to solve the problem by ‘‘brute force’’, i.e. solv-
ng Eqs. (6)–(7), substituting into fitness (Eq. (10) or Eq. (12)) and
hen differentiating. Hence, there are gains to use the control theory
oncepts for both obtaining a biological interpretation of the selection
radient on a trait under incomplete plasticity and for the concrete
omputation of that gradient. Depending on the model, however it
ay remain a challenge to solve the ODE system (14) and we now
escribe a case where this can be markedly simplified. This is the case
here the biological situation dictates that the initial state satisfies

he resident equilibrium, i.e., 𝑥0 = 𝑥̂ with 𝑔(𝒖, (𝑥̂, 𝑥̂, 𝑥̂)) = 0 where
= (𝑢, 𝑢, 𝑢). While this clearly excludes many situations pertaining

o life-history evolution, it does include biologically relevant cases.
or instance, it obtains when the initial condition of the states are
nherited from the previous generation, which occurs in the case where
nowledge, resources, or stationary behavior, is transferred between
enerations and this is typical of models for the evolution of learning
r social interactions (e.g., Killingback and Doebeli, 2002; Taylor and
ay, 2004; Aoki et al., 2012; Wakano and Miura, 2014; Kobayashi
t al., 2019, see also Section 3). To analyze this case, let 𝝀̄ = (𝜆̄∙, 𝜆̄◦) =
(∫ ∞

0 𝜆∙(𝑡)d𝑡∕𝑙, ∫
∞
0 𝜆◦(𝑡)d𝑡∕𝑙) be the average shadow values over lifespan

(or average of the change of Fisher reproductive value). This leads us
to the following result proved in Appendix B.2.2.

Result 2 (Discounted Fitness with Infinite Horizon and Initial Resident
Equilibrium State). Suppose individual fitness is given by Eq. (10) with
state dynamics by Eqs. (6)–(7) under an infinite horizon with dominating
iscounts, i.e., 𝑇 → ∞ with lim𝑇→∞ 𝝀(𝑇 ) = (0, 0), and that the initial state

𝑥0 = 𝑥̂ satisfies 𝑔(𝒖, 𝒙̂) = 0 where 𝒙̂ = (𝑥̂, 𝑥̂, 𝑥̂). Then, the inclusive fitness
for condition (1) can be written as

𝑠(𝑢) = 𝑙

⎡

⎢

⎢

⎢

⎣

𝜕𝐻
(

𝒖∙, 𝒙̂, 1, 𝝀̄, 1
)

𝜕𝑢∙
+ 𝑟(𝑢)

𝜕𝐻
(

𝒖∙, 𝒙̂, 1, 𝝀̄, 1
)

𝜕𝑢◦

⎤

⎥

⎥

⎥

⎦𝒖∙=𝐮

, (21)

or more explicitly as

𝑠(𝑢)𝜇(𝒖, 𝒙̂) =
[

𝜕𝑤̃(𝒖∙, 𝒙̂)
𝜕𝑢∙

−
𝜕𝜇(𝒖∙, 𝒙̂)

𝜕𝑢∙
+

𝜕𝑔(𝒖∙, 𝒙̂)
𝜕𝑢∙

𝜆̄∙ +
𝜕𝑔(𝒖◦, 𝒙̂)

𝜕𝑢∙
𝜆̄◦

]

𝒖∙=𝐮

+𝑟(𝑢)
[

𝜕𝑤̃(𝒖∙, 𝒙̂)
𝜕𝑢◦

−
𝜕𝜇(𝒖∙, 𝒙̂)

𝜕𝑢◦

+
𝜕𝑔(𝒖∙, 𝒙̂)

𝜕𝑢◦
𝜆̄∙ +

𝜕𝑔(𝒖◦, 𝒙̂)
𝜕𝑢◦

𝜆̄◦

]

𝒖∙=𝐮
, (22)

here 𝑙 = 1∕𝜇(𝒖, 𝒙̂) and 𝝀̄ = (𝜇(𝒖, 𝒙̂)𝐈 − 𝐀(𝒙̂))−1 𝐛(𝒙̂, 1, 1) with 𝐈 being the
identity matrix.
6

From a biological perspective, this result says that the selection
gradient on the trait is the sum of the inclusive effects of trait change on
the current growth rate (𝑤̃(𝒖∙, 𝒙̂) − 𝜇(𝒖∙, 𝒙̂)) and on reproductive value
averaged through lifespan. This latter effect is mediated by how the
change in trait value changes own and others’ state expression weighted
by the marginal effect of the state changes on average reproductive
value. From, a computational perspective, there is no difficulty at all
in evaluating 𝑠(𝑢), since it only requires inversion of a 2 by 2 matrix.
This result makes analytically tractable behavior rule evolution models
when there is a trade-off between effects on fecundity and mortality.
Let us finally turn to a closely related result proved in Appendix B.2.2,
which is the representation of the selection gradient under average
fitness (12).

Result 3 (Average Fitness). Suppose individual fitness is given by Eq. (12)
with state dynamics by Eqs. (6)–(7) and that given initial conditions 𝑥(0) =
𝑥0 and 𝝀(0) = 𝝀0 at 𝑡 = 0, the dynamics (14a) and (14c) converge to the
hyperbolically stable) equilibrium 𝒙̂ = lim𝑡→∞ 𝒙(𝑡) and 𝝀̂ = lim𝑡→∞ 𝝀(𝑡).
hen the inclusive fitness effect for condition (1) can be written as

(𝑢) =

⎡

⎢

⎢

⎢

⎣

𝜕𝐻
(

𝒖∙, 𝒙̂, 1, 𝝀̂, 0
)

𝜕𝑢∙
+ 𝑟(𝑢)

𝜕𝐻
(

𝒖∙, 𝒙̂, 1, 𝝀̂, 0
)

𝜕𝑢◦

⎤

⎥

⎥

⎥

⎦𝒖∙=𝐮

, (23)

or more explicitly as

𝑠(𝑢) =
[

𝜕𝑤̃(𝒖∙, 𝒙̂)
𝜕𝑢∙

+
𝜕𝑔(𝒖∙, 𝒙̂)

𝜕𝑢∙
𝜆̂∙ +

𝜕𝑔(𝒖◦, 𝒙̂)
𝜕𝑢∙

𝜆̂◦

+𝑟(𝑢)
(

𝜕𝑤̃(𝒖∙, 𝒙̂)
𝜕𝑢◦

+
𝜕𝑔(𝒖∙, 𝒙̂)

𝜕𝑢◦
𝜆̂∙ +

𝜕𝑔(𝒖◦, 𝒙̂)
𝜕𝑢◦

𝜆̂◦

)]

𝒖∙=𝐮
, (24)

where 𝒙̂ satisfies 𝑔(𝒖, 𝒙̂) = 0 and the costates 𝝀̂ = (𝜆̂∙, 𝜆̂◦) satisfy 𝝀̂ =
−𝐀(𝒙̂)−1𝐛(𝒙̂, 1, 0).

From a biological perspective, this result says that the selection
gradient is the sum of the inclusive effects of trait change on stationary
current and future reproduction. The latter effect is mediated by how
the change in trait value changes own and others’ future state values
weighted by the marginal effect of state change on stationary future
reproduction. This is so because the average fitness–(12) entails that
only the equilibrium value of the state variable and shadow value will
matter for fitness (a consequence of the ergodic theorem). From, a
computational perspective, we are in the same straightforward position
to evaluate explicitly 𝑠(𝑢) as under Result 2.

These Results 1–3 can be seen from at least two perspectives. First,
they allow to analyze new situations for the evolution of phenotypic
scheduling under various social evolution and life-history contexts
by providing a recipe to compute the selection gradient on the trait
affecting phenotypic dynamics. Second, they provide a biological in-
terpretation of selection on such traits using control theory concepts,
which can be used to get insights about the selection pressure in
previous evolutionary models under incomplete plasticity. In the next
section, we turn to illustrate these points.

3. Application: behavioral response models

We now illustrate the results by applying them to the evolution
of behavior response rules, in which one or a few scalar traits affect
how individuals interact with each other under various type of games
(e.g. McNamara et al., 1999; Killingback and Doebeli, 2002; Taylor and
Day, 2004; Lehmann and Keller, 2006; André and Day, 2007; Akçay
and Van Cleve, 2009, 2012). To make the connection to this literature,
we make the main assumptions implied by the model formulation in
this literature for the control theory framework. First, states correspond
directly to actions; namely the decision rule is the identity function
(𝑎∙(𝑡) = 𝑥∙(𝑡)) and thus does depend on the evolving trait. Further, the
input is simply the action of group neighbors (𝜙∙(𝑡) = 𝑎◦(𝑡)). Second,

the transition rule describing change of action depend only on the
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actor’s evolving trait; namely 𝑔(𝒖∙,𝒙∙(𝑡)) = 𝑔(𝑢∙,𝒙∙(𝑡)) and 𝑔(𝒖◦,𝒙◦(𝑡)) =
𝑔(𝑢◦,𝒙◦(𝑡)). Third, reproduction and survival depend directly only on
state variables and not on the evolving trait of the actor; namely

𝑤̃(𝒖∙,𝒙∙(𝑡)) = 𝑤̃(𝑢,𝒙∙(𝑡)) and 𝜇(𝒖∙,𝒙∙(𝑡)) = 𝜇(𝑢,𝒙∙(𝑡)), (25)

where the dependence on the resident trait 𝑢 must remain owing to
density-dependent regulation (i.e, the iron rule that 𝑤(𝑢, 𝑢, 𝑢) = 1).
Together, the second and third assumption imply that
𝑔(𝒖◦,𝒙◦(𝑡))

𝜕𝑢∙
=

𝑔(𝒖∙,𝒙∙(𝑡))
𝜕𝑢◦

= 0,
𝜕𝑤̃(𝒖∙,𝒙∙(𝑡))

𝜕𝑢∙
=

𝜕𝑤̃(𝒖∙,𝒙∙(𝑡))
𝜕𝑢◦

= 0,

𝜕𝜇(𝒖∙,𝒙∙(𝑡))
𝜕𝑢∙

=
𝜕𝜇(𝒖∙,𝒙∙(𝑡))

𝜕𝑢◦
= 0.

(26)

his setting covers more or less implicitly models for the evolution of
o-called reactive strategies in the iterated prisoner’s dilemma game
r other repeated games (e.g. McNamara et al., 1999; Killingback and
oebeli, 2002; Taylor and Day, 2004; Lehmann and Keller, 2006;
ndré and Day, 2007; Akçay and Van Cleve, 2014), certain models

or the evolution of preferences in games (e.g. Heifetz et al., 2007;
kçay and Van Cleve, 2009; Alger and Weibull, 2012; Akçay and
an Cleve, 2012), as well as models for the evolution of learning in
ames (e.g. Dridi and Akçay, 2018; Leimar, 2021). This is so because
ll formalize the evolution of behavior rule parameterized by one or a
ew quantitative genetic traits and it can further be useful to note that a
arge class of (stochastic) learning dynamics can actually be described
y differential equations fitting into the setting of the behavioral rule
odel Eq. (3) (Fudenberg and Levine, 1998; Dridi and Lehmann, 2014).

.1. Average fitness

Let us consider selection on a trait affecting the evolution of a
ehavioral response rule following assumptions (26) by using aver-
ge fitness (Eq. (12)). This setting should cover the model analyzed
n Akçay and Van Cleve (2012) (that generalizes Akçay and Van Cleve,
009 to interactions between relatives and 𝑛 players) since this model
s premised on the facts that (i) individuals interactions occur among
roups of fixed size 𝑛 in a geographically structured population; (ii) the
ynamical system underlying the action of an individual has reached
tationarity (Fig. 1 and eq. 12 of Akçay and Van Cleve (2012)); (iii)
his dynamical system is influenced only by the evolving genetic trait
f that individual (eq. 2 of Akçay and Van Cleve, 2009 and implied by
he analysis in Akçay and Van Cleve, 2012); and (iv) the fitness/payoff
epends only on state variables having reached equilibrium and not
irectly on the evolving traits (first equation on p. 260 of Akçay and
an Cleve, 2012). This is thus an ideal situation to check the consis-

ency of the optimal control approach to behavior rule evolution, since
e should be able to recover the first-order condition for uninvadability
f Akçay and Van Cleve (2012, eq. 5).

Under these assumptions, the analysis of the model is covered by
esult 3. Substituting Eq. (26) into Eq. (24) shows that the selection
radient reduces to

(𝑢) =
𝜕𝑔(𝑢∙, 𝒙̂)

𝜕𝑢∙

(

𝜆̂∙ + 𝑟(𝑢)𝜆̂◦
)

. (27)

election thus depends on how the change in trait of the focal individ-
al affects the change in its action dynamics, 𝜕𝑔(𝒖∙, 𝒙̂)∕𝜕𝑢∙, weighted
y 𝜆̂∙ + 𝑟(𝑢)𝜆̂◦, which can be interpreted as the stationary inclusive
hadow value of the focal’s actions. This is the sum of the effect 𝜆̂∙ of

the focal’s action on its (stationary) fitness and the effect 𝜆̂◦ of these
actions on the (stationary) fitness of an average neighbor weighted
by relatedness 𝑟(𝑢) between the two individuals. A singular trait must
atisfy 𝜕𝑔(𝑢∙, 𝒙̂)∕𝜕𝑢∙ and/or 𝜆̂∙ + 𝑟(𝑢)𝜆̂◦ = 0. Since the behavior response
ule literature usually assumes that the function 𝑔 is monotonic in its

̂ ̂
7

irst argument, we focus on characterizing the condition 𝜆∙ + 𝑟(𝑢)𝜆◦ = b
0. Under assumptions (25)–(26) and from Eq. (14c), the equilibrium
shadow values satisfy
𝜕𝑤̃(𝑢,𝒙∙(𝑡))

𝜕𝑥∙(𝑡)
+ 𝜆̂∙

𝜕𝑔(𝑢,𝒙∙(𝑡))
𝜕𝑥∙(𝑡)

+ 𝜆̂◦
𝜕𝑔(𝑢,𝒙∙(𝑡))
𝜕𝑥◦(𝑡)

1
𝑛 − 1

= 0

𝜕𝑤̃(𝑢,𝒙∙(𝑡))
𝜕𝑥◦(𝑡)

+ 𝜆̂◦
𝜕𝑔(𝑢,𝒙∙(𝑡))
𝜕𝑥◦(𝑡)

+ 𝜆̂∙

[

𝜕𝑔(𝑢,𝒙∙(𝑡))
𝜕𝑥∙(𝑡)

+
𝜕𝑔(𝑢,𝒙∙(𝑡))
𝜕𝑥◦(𝑡)

( 𝑛 − 2
𝑛 − 1

)

]

= 0,

(28)

where recall that all derivatives are evaluated at 𝒙∙(𝑡) = 𝒙̂. Note that
for the behavior response rule setting, the first column of matrix 𝐀(𝒙(𝑡))
(recall Eq. (16)) describes the change in action of the focal individual
when its own action and that of its neighbors are varied [first and sec-
ond entry, respectively, given by 𝜕𝑔(𝑢,𝒙∙(𝑡))∕𝜕𝑥∙(𝑡) and 𝜕𝑔(𝑢,𝒙∙(𝑡))∕𝜕𝑥◦(𝑡)
in Eq. (28)]. The second column of 𝐀(𝒙(𝑡)) describes the change of
action of a neighbor of the focal when the focal and its neighbors
change action. Matrix 𝐀(𝒙(𝑡)) can thus be interpreted as describing the
ction reaction to action between interacting individuals and since the
quilibrium shadow values satisfy 𝝀̂ = (𝜆̂∙, 𝜆̂◦) = −𝐀(𝒙̂)−1𝐛(𝒙̂, 1, 0), the
quilibrium action interdependence is captured by matrix −𝐀(𝒙̂)−1. The
atio 𝜌(𝑢) = 𝑎12∕𝑎11, where 𝑎𝑖𝑗 stands for entry 𝑖𝑗 of matrix −𝐀(𝒙̂)−1,
an thus be regarded as a behavioral response coefficient that tells us
ow much, in equilibrium, the action of a single neighbor of the focal
s varied when the focal varies its action relative to the focal’s own
nduced action variation. Algebraic rearrangements (easily done with a
ymbolic algebra system) then show that the response coefficient can
e expressed as

(𝑢) = −
1

(𝑛−1)
𝜕𝑔(𝑢,𝒙∙(𝑡))
𝜕𝑥◦(𝑡)

(𝑛−2)
(𝑛−1)

𝜕𝑔(𝑢,𝒙∙(𝑡))
𝜕𝑥◦(𝑡)

+ 𝜕𝑔(𝑢,𝒙∙(𝑡))
𝜕𝑥∙(𝑡)

. (29)

Now solving for (𝜆̂∙, 𝜆̂◦) in Eq. (28), substituting into Eq. (27), and
rearranging shows that the condition for 𝑢 to be singular can be written
as
𝜕𝑤̃(𝑢,𝒙∙(𝑡))

𝜕𝑥∙(𝑡)
⏟⏞⏞⏞⏞⏟⏞⏞⏞⏞⏟

−𝑐

+𝜌(𝑢)
𝜕𝑤̃(𝑢,𝒙∙(𝑡))

𝜕𝑥◦(𝑡)
⏟⏞⏞⏞⏞⏟⏞⏞⏞⏞⏟

(𝑛−1)𝑏

+ 𝑟(𝑢)

⎛

⎜

⎜

⎜

⎜

⎜

⎝

(

1 + 𝜌(𝑢)(𝑛 − 2)
) 𝜕𝑤̃(𝑢,𝒙∙(𝑡))

𝜕𝑥◦(𝑡)
⏟⏞⏞⏞⏞⏟⏞⏞⏞⏞⏟

(𝑛−1)𝑏

+𝜌(𝑢)(𝑛 − 1)
𝜕𝑤̃(𝑢,𝒙∙(𝑡))

𝜕𝑥∙(𝑡)
⏟⏞⏞⏞⏞⏟⏞⏞⏞⏞⏟

−𝑐

⎞

⎟

⎟

⎟

⎟

⎟

⎠

= 0.

(30)

This first-order condition turns out to be conceptually exactly equiva-
lent to eq. (5) of Akçay and Van Cleve (2012) [and eq. (8) of Akçay
and Van Cleve (2014)], since we can write 𝜕𝑤̃(𝒙∙(𝑡))∕𝜕𝑥◦(𝑡) = (𝑛 − 1)𝑏,

here 𝑏 is conceptually equivalent to the effect of Akçay and Van Cleve
2012) of a single neighbor changing action on the focal’s fitness and
he response coefficient (29) is actually exactly eq. (13) of Akçay and
an Cleve (2012). This can be seen by noting that 𝜕𝑔(𝐮,𝒙∙(𝑡))∕𝜕𝑥◦(𝑡) is

he effect of the whole set of group neighbors on the action dynamics
f the focal individual, while 𝜕2𝑥𝑗∕(𝜕𝑎𝑗𝜕𝑎𝑖) is the effect of a single

neighbor on the action dynamics of the focal in Akçay and Van Cleve
(2012) and so 𝜕𝑔(𝐮,𝒙∙(𝑡))∕𝜕𝑥◦(𝑡)∕(𝑛 − 1) = 𝜕2𝑥𝑗∕(𝜕𝑎𝑗𝜕𝑎𝑖) (the special
otation 𝜕2𝑥𝑗∕(𝜕𝑎𝑗𝜕𝑎𝑖) stems from the fact that Akçay and Van Cleve
2012) endorse a gradient dynamics).

Since the response coefficient can be interpreted as the effect of
he focal changing action on the action of a single neighbor (see
lso eq. 2 of Akçay and Van Cleve, 2012), this paves the way to an
ntuitive actor-centered interpretation of Eq. (30) by considering that
𝑐 = 𝜕𝑤̃(𝒙∙(𝑡))∕𝜕𝑥∙(𝑡) is a fitness cost. Namely, Eq. (30) says that the

itness cost to self of varying (infinitesimally) action expression can be
ecouped by two pathways. First, by the sum of the effect of each neigh-
or changing actions on the focal fitness weighted by the extent 𝜌(𝑢) to
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which any neighbor’s action is varied when the focal varies its action.
Second, by the net indirect effect on the fitness of any related neighbor,
which consists of three distinct fitness effects: (i) the immediate effect
of the focal varying action on the fitness of each related neighbor [effect
of intensity 𝑟(𝑢)(𝑛 − 1)𝑏]; (ii) the correlated effect resulting from the
change of action of each neighbor of a focal’s neighbor when the focal
varies its action, which induces a change in fitness in any of the focal’s
related neighbor [effect of intensity 𝑟(𝑢)𝜌(𝑢)(𝑛−2)(𝑛−1)𝑏]; and (iii) the
correlated effect of the change of action of each related neighbor of a
focal’s neighbor when the focal varies its action, which changes those
neighbors fitness [effect of intensity −𝑟(𝑢)𝜌(𝑢)(𝑛 − 1)𝑐]. As emphasized
by Akçay and Van Cleve (2014), this entails an interesting but neglected
interaction between relatedness and behavioral responses, owing to the
product 𝜌(𝑢)𝑟(𝑢) appearing in Eq. (30).

Three other facts about the first-order condition Eq. (30) are note-
worthy. First, its original derivation by Akçay and Van Cleve (2012)
is more direct and simpler. Namely, it consist of letting the state
first go to equilibrium and use fitness at that state as 𝑤(𝑢∙, 𝑢◦, 𝑢) =
𝑤̃(𝒖∙, 𝒙̂) (which can be obtained from Eq. (12) by invoking the ergodic
theorem). Then, using implicit differentiation of the growth rates of
actions at equilibrium with respect to trait values eventually leads to
Eq. (30). Second, Eq. (30) is written at the fitness levels and the units of
measurements therein are thus different than those of eq. (5) of Akçay
and Van Cleve (2012), since they do not consider effective fecundity 𝑤̃,
but actual fecundity. As such 𝑟 in their eq. (5) is not relatedness but the
scaled relatedness coefficient (e.g., Van Cleve, 2015, eq. 74, Alger et al.,
2020, eq. 22) for an iteroparous population. This connects to the point
of the last paragraph of Section 2.1.3: given some specific life-cycle
assumptions express fitness in terms of vital rates and then use the chain
rule to express fitness effects in terms of vital rates effect and then one
would recover eq. (5) of Akçay and Van Cleve (2012) with the same
units of measurement. In other words, Eq. (30) and eq. (5) of Akçay
and Van Cleve (2012) are scaled differently. Third, while preference
evolution was emphasized in the original derivation of condition (30),
it can as well be used to study the evolution of reactive strategies
(e.g., Killingback and Doebeli, 2002; Taylor and Day, 2004; André and
Day, 2007), which is a connection that is worked out in Akçay and
Van Cleve (2014) and so will not be repeated here.

More generally, the first-order condition (30) also applies to the
evolution of traits affecting learning dynamics. In fact, it applies to any
model that can be put under the form of the behavior rule model Eq. (3)
[along with assumptions (25)–(26)] and so is robust to a multitude
of assumptions about behavioral dynamics. Hence, depending on the
biological context at hand, evolution my lead to quite different values
of the response coefficient 𝜌(𝑢) and it is not a conclusion that 𝜌(𝑢) always
evolves to be positive. For instance, results on preference evolution un-
der incomplete information (Alger et al., 2020) implies that 𝜌(𝑢) goes to
zero and results under complete information (e.g., Heifetz et al., 2007)
imply that it can take a variety of intermediate values depending on the
nature of the interactions between individuals and the constraints on
preferences. On the other hand, models of reactive strategies suggest
that 𝜌(𝑢) can sometimes go to one (André and Day, 2007). Hence, the
values to which 𝜌(𝑢) evolves depends on assumption about phenotypic
expression mechanisms as well as the type of interactions individuals
face.

3.2. Discounted fitness

Let us now consider selection on a trait affecting the evolution of a
behavioral response rule under assumptions (26) by using discounted
fitness under an infinite time horizon (Eq. (10) with 𝑇 → ∞) under
the assumptions of Result 2. This entails that the initial condition of
the state 𝑥0 = 𝑥̂ satisfies 𝑔(𝒖, 𝒙̂) = 0, so that the behavioral dynamics
is at steady state. Then, the analysis is covered by Result 2, and
8

f

on substituting Eqs. (25)–(26) into Eq. (22) shows that the selection
gradient reduces to

𝑠(𝑢) =
𝜕𝑔(𝑢∙, 𝒙̂)

𝜕𝑢∙

(

𝜆̄∙ + 𝑟(𝑢)𝜆̄◦
)

. (31)

Hence, selection now depends on how the change in trait affect the
change in the action dynamics of the focal individual, 𝜕𝑔(𝒖∙, 𝒙̂)∕𝜕𝑢∙

eighted by the inclusive average shadow value of these actions. As
or the selection gradient in the previous section (Eq. (27)), let us
ocus on the condition where 𝜆̄∙ + 𝑟(𝑢)𝜆̄◦ = 0. To characterize this in
erms of the expressions of the shadow values, note that, as in the
revious section, matrix 𝐀(𝒙(𝑡)) describes the action reaction to action
etween interacting individuals. Yet individuals may die as they age
nd for this model, the average action interdependence is captured by
he matrix (𝜇(𝑢, 𝒙̂)𝐈 − 𝐀(𝒙̂))−1 since 𝝀̄ = (𝜇(𝑢, 𝒙̂)𝐈 − 𝐀(𝒙̂))−1 𝐛(𝒙̂, 1, 1). As
uch the ratio 𝜌̃(𝑢) = 𝑎12∕𝑎11, where 𝑎𝑖𝑗 now stands for entry 𝑖𝑗 of
atrix (𝜇(𝑢, 𝒙̂)𝐈 − 𝐀(𝒙̂))−1, can be regarded as the behavioral response

oefficient that tells us how much, on average throughout the whole
pan of interactions, the action of a single neighbor of the focal is varied
hen the focal varies its action relative to the focal own induced action
ariation. Algebraic rearrangements show that the response coefficient
s now given by

̃(𝑢) = −
1

(𝑛−1)
𝜕𝑔(𝑢,𝒙∙(𝑡))
𝜕𝑥◦(𝑡)

(𝑛−2)
(𝑛−1)

𝜕𝑔(𝑢,𝒙∙(𝑡))
𝜕𝑥◦(𝑡)

+ 𝜕𝑔(𝑢,𝒙∙(𝑡))
𝜕𝑥∙(𝑡)

− 𝜇(𝑢, 𝒙̂)
, (32)

and the difference with Eq. (29) is thus only the −𝜇(𝑢, 𝒙̂) in the de-
nominator. This will act to reduce the value of the response coefficient
(owing to the minus sign in front of the ratio). This makes biological
sense: the change of action by an individual may not feedback on future
fitness through change of action by neighbors if the individual dies.

Using assumptions (25)–(26) in Eqs. (15)–(16), computing 𝝀̄ =
(𝜇(𝑢, 𝒙̂)𝐈 − 𝐀(𝒙̂))−1 𝐛(𝒙̂, 1, 1), substituting into Eq. (31), and rearranging
shows that the condition for 𝑢 to be singular can be written as
𝜕ℎ(𝑢,𝒙∙(𝑡))

𝜕𝑥∙(𝑡)
+ 𝜌̃(𝑢)

𝜕ℎ(𝑢,𝒙∙(𝑡))
𝜕𝑥◦(𝑡)

+ 𝑟(𝑢)
(

(

1 + 𝜌̃(𝑢)(𝑛 − 2)
) 𝜕ℎ(𝑢,𝒙∙(𝑡))

𝜕𝑥◦(𝑡)
+ 𝜌̃(𝑢)(𝑛 − 1)

𝜕ℎ(𝑢,𝒙∙(𝑡))
𝜕𝑥∙(𝑡)

)

= 0,

(33)

where

ℎ(𝑢,𝒙∙(𝑡)) = 𝑤̃(𝑢,𝒙∙(𝑡)) − 𝜇(𝑢,𝒙∙(𝑡)) (34)

s the stationary growth rate of an individual with trait value 𝑢. Eq. (33)
as exactly the same structural form as Eq. (30), and so we do not need
o repeat its interpretation, since everything carries over mutatis mutan-
is from Eq. (30). The difference, however, is that one can now study
ehavior response evolution analytically in the presence of survival-
ecundity trade-offs and thus embed such evolution in a more explicit
ife-history context to analyze how behavioral responses depend on de-
ographic variables. We can also conclude that the structural feature of

he selection gradient derived by Akçay and Van Cleve (2012) is robust
o changes in a number of demographic assumptions. And it is now
ppropriate to circle back to their assumption of the separation of time
cales between behavioral dynamics and demography. This assumption
ould be one way to justify the assumption that the initial states satisfy
he behavioral equilibrium (needed to use Eq. (31)). In other words,
ehavior dynamics is so fast that equilibrium is reached before any
vent, such as death, can occur. Alternatively, individuals could be
orn in a population that has reached the behavioral equilibrium and
nherit that from their parents. This suggests that, as long as there
re no interactions between the convergence towards the behavioral
quilibrium and the demographic variables themselves, the selection
radient on traits underlying response rules should take the functional

orm given by the left hand side of Eq. (30).



Journal of Theoretical Biology 555 (2022) 111282L. Lehmann

f

𝝀

w

𝛹

a

w
1
T

4. Discussion

This paper combined Hamilton’s marginal rule for scalar quanti-
tative traits and concepts from optimal control theory to derive the
selection gradient on a trait affecting the phenotypic scheduling of an
individual interacting with its surroundings. The different first-order
conditions (results 1–3) allow to study selection on behavior rules
under incomplete plasticity for a reasonably large class of different sce-
narios under (i) evolution in homogeneous group (or family) structured
populations and (ii) life-history evolution under panmixia.

As an application and sanity check of the results, the seminal
first-order condition for behavior response rule evolution in group
structured populations of Akçay and Van Cleve (2012, eq. 5) was re-
derived and generalized to broader behavioral and life-history contexts.
This illustrates that the control theory approach provides an overar-
ching framework to formalize selection on quantitative traits affecting
phenotypic expression and scheduling that feed back on survival and
reproduction. Control theory concepts straddle the layers of plasticity
and complexity, since they can be applied to models of complete
plasticity ranging from standard open and closed loop traits to models
of incomplete plasticity as considered here. And for each case, Hamil-
ton’s rule is seamlessly blended in to consider evolution in spatially
structured populations (Avila et al., 2021).

An obvious limitation of the present formalization is that it applies
only to homogeneous group-structured populations and it would thus
be relevant to think about developing it for heterogeneous group-
structure and possibly isolation-by-distance. This is in principle doable
since control theory can be applied to age-structured populations that
are also class-structured (Avila et al., 2019). Another limitation is that
the model is deterministic and thus does not consider stochastic effects
on state dynamics. Such effects may not only impact state dynamics
directly but also indirectly through environmental stochasticity, which
will impact environmentally dependent state variables. In order to
include stochasticity one could replace the system of ordinary differen-
tial equations (ODE’s) for the state dynamics by stochastic differential
equations (SDE’s), and then attempt to apply results from stochastic
control theory (e.g. Basar and Olsder, 1999; Kamien and Schwartz,
2012; Fleming and Soner, 2006) to generalize the first-order conditions
to the case where fitness involves expectation of integrals over lifespan.
This opens avenues for future research.

For ease of presentation of the concepts, the two central phenotypic
attributes of the model, the state 𝑥 and evolving trait 𝑢, were assumed to
be one dimensional. Is anything changed if these variables take values
in some finite multidimensional space; namely, if state 𝑥 = (𝑥1, 𝑥2,…) is
a finite vector with 𝑥𝑖 being the 𝑖th state variable and trait 𝑢 = (𝑢1, 𝑢2, ..)
is a finite vector with 𝑢𝑖 being the 𝑖th quantitative trait? For this
case, the selection gradient on trait 𝑢𝑖 is still given by the inclusive
fitness effect (Eq. (2)). Further, all other equations of the paper are
actually maintained functionally, one just need to carefully read all
one-dimensional mappings as multidimensional ones, and any product
of scalars as the corresponding dot product between vectors if the scalar
has a vectorial counterpart. But no new concept is needed and therefore
results 1–3 directly generalize to finite multidimensional traits, states,
and actions.

An interesting and perhaps biologically surprising fact that is gained
by going from the one-dimensional to the finite multidimensional case,
is that this is sufficient to make the model universal in the sense that
any behavior rule can in principle be modeled with it. The reason is that
a finite multidimensional state dynamics is sufficient to describe the
dynamics of a finite recurrent neural network, and the neural network
weights can be taken as the evolving quantitative traits. In turn, finite
recurrent neural network can implement any type of behavior since
they are computationally equivalent to Turing machines (Siegelman
and Sontag, 1995; Haykin, 1999). In other words, evolving neural
9

networks allow to consider in principle the evolution of any behavior −
rule, and here one could let the level of plasticity itself be evolving.
This could also open avenues for future research.

It has long been stressed that constructing more explicit mechanistic
models for the evolution of phenotypes would be useful (e.g. McNamara
and Houston, 1999; Lotem, 2012; Fawcett et al., 2012; Akçay, 2020).
Perhaps one reason this has not been systematically undertaken is
the lack of the identification by evolutionary biologists of a coher-
ent framework that allows to analyze adaptive models across a wide
spectrum of mechanistic formulations. Control theory blended with
adaptive dynamics–‘‘evolutionary control theory’’–provides just that.
My hope is thus that the present formalization and more generally the
many spellbinding insights from control theory (e.g., Bryson and Ho,
1975; Arbib, 1987; Sontag, 1998; Haykin, 1999; Dockner et al., 2000;
Liberzon, 2011; Athans and Falb, 2007; Sydsaeter et al., 2008; Astrom
and Murray, 2008; Weber, 2011) can be used as sources of inspirations
to attempt to close the loop between mechanistic and functional aspects
of phenotypic expression evolution.
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Appendix A. Cauchy formula

A.1. Cauchy formula and Fisher reproductive value

We here give a representation of the solution to the non-
homogeneous linear system of ordinary differential equations of the
form d𝝀(𝑡)∕d𝑡 = −𝐛(𝑡) − 𝐀(𝑡)𝝀(𝑡) with b.c. 𝝀(𝜁 ) at 𝑡 = 𝜁 . This covers
the shadow value dynamics, Eq. (14c) of the main text, since for that
case 𝐛(𝑡) = 𝐛(𝒙(𝑡), 𝑙(𝑡), 𝑣(𝑡)) and 𝐀(𝑡) = 𝐀(𝒙(𝑡)). According to the Cauchy
ormula, the following solution then holds for all 𝑡 ∈ [0, 𝑇 ]:

(𝑡) = 𝛹 (𝑡, 𝜁)
[

𝝀(𝜁 ) − ∫

𝑡

𝜁
𝛹 (𝜏, 𝜁)−1𝐛(𝜏)d𝜏

]

= 𝛹 (𝑡, 𝜁)𝝀(𝜁 )−∫

𝑡

𝜁
𝛹 (𝑡, 𝜏)𝐛(𝜏)d𝜏,

(A.1)

here 𝛹 (𝑡, 𝜏) is the so-called fundamental matrix satisfying

(𝑡, 𝜏) = 𝛹 (𝑡, 𝜁)𝛹 (𝜏, 𝜁)−1 (A.2)

s well as the initial value problem
d𝛹 (𝑡, 𝜏)

d𝑡
= −𝐀(𝑡)𝛹 (𝑡, 𝜏) with i.c. 𝛹 (𝜏, 𝜏) = 𝐈 (A.3)

ith 𝐈 being the identity matrix (e.g., Athans and Falb, 2007, pp. 127–
30, Weber, 2011, pp. 69–72, Aseev and Kryazhimskiy, 2008, eq. 15).
he 𝑖th column of 𝛹 (𝑡, 𝜏) is the solution 𝝀(𝑡) of the system d𝝀(𝑡)∕d𝑡 =
𝐀(𝑡)𝝀(𝑡) when the initial condition 𝝀(𝜏) is the standard basis with unit
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value at entry 𝑖, zero otherwise. For the one dimensional case, the
olution is

(𝑡, 𝜏) = exp
(

−∫

𝑡

𝜏
𝐴(ℎ)dℎ

)

. (A.4)

For the multidimensional case, there is no analytic representation for
𝛹 (𝑡, 𝜏) when the system has variable coefficients and various method
have been developed to evaluate the fundamental matrix 𝛹 (𝑡, 𝜏) (We-
er, 2011, p. 71). For the constant coefficient case, where 𝐀(𝑡) = 𝐀 for

all 𝑡, we get the standard matrix exponential form solution

𝛹 (𝑡, 𝜏) = 𝑒−(𝑡−𝜏)𝐀, (A.5)

whereby Eq. (A.1) reduces to

𝝀(𝑡) = 𝑒−(𝑡−𝜁 )𝐀𝝀(𝜁 ) − ∫

𝑡

𝜁
𝑒−(𝑡−𝜏)𝐀𝐛(𝜏)d𝜏. (A.6)

The above results can be used to solve for the reproductive value
dynamics d𝑣(𝑡)∕d𝑡 = −𝑤̃(𝒖,𝒙(𝑡)) + 𝜇(𝒖,𝒙(𝑡)) 𝑣(𝑡) under the finite horizon
case (recall Eq. (14d)), which, in terms of the above notation, is
obtained by setting 𝜆(𝑡) = 𝑣(𝑡), 𝐛(𝜏) = 𝑤̃(𝒖,𝒙(𝜏)), and 𝐀(𝑡) = −𝜇(𝒖,𝒙(𝑡)).
Then taking 𝜁 = 𝑇 as the final condition with 𝑣(𝑇 ) = 𝜎(𝒙(𝑇 )) and
recalling that ∫ 𝑡

𝜏 𝑓 (ℎ)dℎ = − ∫ 𝜏
𝑡 𝑓 (ℎ)dℎ, we see that by substituting

Eq. (A.4) into Eq. (A.1), we get

𝑣(𝑡) = exp
(

−∫

𝑇

𝑡
𝜇(𝒖,𝒙(ℎ))dℎ

)

𝜎(𝒙(𝑇 ))

+ ∫

𝑇

𝑡
exp

(

−∫

𝜏

𝑡
𝜇(𝒖,𝒙(ℎ))dℎ

)

𝑤̃(𝒖,𝒙(𝜏))d𝜏, (A.7)

which is exactly the expression for the reproductive value given in
Box I, as it should.

A.2. Cauchy formula and dominating discount

We here use the insights and adapt the argument of Aseev and
Kryazhimskiy (2008) and Aseev and Veliov (2019) to characterize
the condition under which lim𝑡→∞ 𝝀(𝑡) = (0, 0) when fitness takes
the infinite horizon discount form 𝑤(𝑢∙, 𝑢◦, 𝑢) = ∫ ∞

0 𝑙∙(𝑡)𝑤̃(𝒖∙,𝒙∙(𝑡))d𝑡
(Eq. (10) with 𝑇 → ∞). To do this, let us first write the death rate of the
focal individual as 𝜇(𝒖∙,𝒙∙(𝑡)) = 𝜇e + 𝜇i(𝒖∙,𝒙∙(𝑡)), where 𝜇e ∈ R+ is the
external mortality and 𝜇i(𝒖∙,𝒙∙(𝑡)) is the part of the death rate that is
endogenously (or internally) determined by the evolving trait and the
states. The term 𝜇i(𝒖∙,𝒙∙(𝑡)) could be positive or negative but is assumed
to never suppress the external mortality, i.e., 𝜇e + 𝜇i(𝒖∙,𝒙∙(𝑡)) > 0. With
this, the discounted fitness can be expressed as

𝑤(𝑢∙, 𝑢◦, 𝑢) = ∫

∞

0
exp

(

−𝑡[𝜇e + 𝜇i,∙(𝑡)]
)

𝑤̃(𝒖∙,𝒙∙(𝑡))d𝑡, (A.8)

where 𝜇i,∙(𝑡) = ∫ 𝑡
0 𝜇i(𝒖∙,𝒙∙(𝑡))∕𝑡 is the average death rate until time 𝑡.

Now, setting 𝐛(𝜏) = 𝐛(𝒙(𝜏), 𝑙(𝜏), 𝑣(𝜏)) and 𝐀(𝜏) = 𝐀(𝒙(𝜏)), and taking
the boundary condition 𝜁 = ∞ and assuming that 𝝀(∞) = (0, 0) in
the Cauchy formula (A.1), we get 𝝀(𝑡) = − ∫ 𝑡

∞ 𝛹 (𝑡, 𝜏)𝐛(𝒙(𝜏), 𝑙(𝜏), 𝑣(𝜏))d𝜏.
Interchanging the boundaries and using Eq. (A.4) at 𝜁 = 0, the
representation of the solution of the shadow values dynamics becomes

𝝀(𝑡) = ∫

∞

𝑡
𝛹 (𝑡, 0)𝛹 (𝜏, 0)−1𝐛(𝒙(𝜏), 𝑙(𝜏), 𝑣(𝜏))d𝜏, (A.9)

where
d𝛹 (𝑡, 0)

d𝑡
= −𝐀(𝒙(𝑡))𝛹 (𝑡, 0) with i.c. 𝛹 (0, 0) = 𝐈. (A.10)

The remaining goal is to determine the conditions under which lim𝑡→∞
𝝀(∞) = (0, 0) in Eq. (A.9) such that it is consistent with the assumption
𝝀(∞) = (0, 0) that was put into its derivation and so Eq. (A.9) indeed
atisfies Eq. (14c) with boundary condition 𝝀(∞) = (0, 0). For this, we

make the following assumptions.
(i) There exist numbers 𝐶1 ≥ 0 and 𝐶2 ≥ 0 such that
10

‖𝑥(𝑡)‖ ≤ 𝐶1 and ‖𝑣(𝑡)‖ ≤ 𝐶2 for any 𝑡 ≥ 0, (A.11) s
where, here and throughout ‖ ⋅‖ denotes an appropriate norm. This as-
sumption says that the value of the state dynamics and the reproductive
value are bounded. Bounded reproductive value is biologically realistic
and if 𝑥(𝑡) is a morphological or physiological state variable, bounded
state variable is also realistic.

(ii) There exist numbers 𝐶3 ≥ 0, 𝐶4 ≥ 0, 𝑟1 ≥ 0, and 𝑟2 ≥ 0 such that

‖𝐛(𝒙(𝑡), 𝑙(𝑡), 𝑣(𝑡))‖ ≤
[

𝐶3(1 + ‖𝒙(𝑡)‖𝑟1 ) + 𝐶4(1 + ‖𝒙(𝑡)‖𝑟2 )𝑣(𝑡)
]

exp(−𝜇e𝑡)

(A.12)

or any admissible 𝒙(𝑡) and 𝑣(𝑡). The terms 𝐶3(1 + ‖𝒙(𝑡)‖𝑟1 ) and 𝐶4(1 +
𝒙(𝑡)‖𝑟2 ) in this condition ensures that 𝐛(𝒙(𝑡), 𝑙(𝑡), 𝑣(𝑡)), which can be
een as the gradient of expected current conditional individual fitness
(𝑡)(𝑤̃(𝒖,𝒙∙(𝑡))−𝜇(𝒖,𝒙∙(𝑡)𝑣(𝑡))) with respect to change of states is not too
brupt (i.e., the slope is not infinite; the first term accounts for the slope
f 𝑤̃(𝒖,𝒙∙(𝑡)), while the second for that of 𝜇(𝒖,𝒙∙(𝑡)). In evolutionary
odels, this is generally the case when the value of the state variables

s bounded away from zero. The multiplier exp(−𝜇e𝑡) indicates that fit-
ess (A.8) and thus 𝑙(𝑡)(𝑤̃(𝒖,𝒙∙(𝑡))−𝜇(𝒖,𝒙∙(𝑡))𝑣(𝑡)) contains the death rate
e. Condition (ii) appears applicable to a broad class of evolutionary
odels and it would be interesting to document a model where it does
ot hold. Owing to Eq. (A.11), condition (ii) actually reduces to

𝐛(𝒙(𝑡), 𝑙(𝑡), 𝑣(𝑡))‖ ≤ 𝐶5 exp(−𝜇e𝑡) (A.13)

or some constant 𝐶5 ≥ 0.
(iii) Let the non-homogeneous linearized dynamical system

d𝐳(𝑡)
d𝑡

= 𝐀(𝒙(𝑡))𝐳(𝑡), (A.14)

for the state variable be regular. This means that the sum of the two
characteristic exponents of the (Lyapunov) spectrum of system (A.14) is
equal to the average, over time, of the traces of the sequence of 𝐀(𝒙(𝑡))

atrices (Aseev and Kryazhimskiy, 2008, p. 524). If system (A.14) has
constant matrix, like under the assumptions of Result 2, then it is

ecessarily regular. More generally, if the process 𝒙(𝑡) is ergodic so
hat the sequence of matrices 𝐀(𝒙(𝑡)) is ergodic, then system (A.14) is
egular (Pikovsky and Politi, 2016, p. 22). Then for any 𝜖 > 0, as small
s needed, the following inequality holds

𝛹 (𝑡, 0)𝛹 (𝜏, 0)−1‖ ≤ 𝐶6 exp(𝜆L(𝜏 − 𝑡) + 𝜖𝜏), (A.15)

here 𝜆L is the largest characteristic exponent of system (A.14) and
6 ≥ 0 is a constant depending only on 𝜖 (Aseev and Kryazhimskiy,
008, eq. 28, Aseev and Veliov, 2019, eq. 72).

With these assumptions in hand, let us recall that owing to (a)
he relationship between norms and integrals (Athans and Falb, 2007,
q. 3-111) and (b) the relationship between norms of matrices and
ectors (Cohen, 2003, p. 16), we have from Eq. (A.9) that

𝝀(𝑡)‖ ≤ ∫

∞

𝑡
‖𝛹 (𝑡, 0)𝛹 (𝜏, 0)−1‖‖𝐛(𝒙(𝜏), 𝑙(𝜏), 𝑣(𝜏))‖d𝜏. (A.16)

hen, using Eqs. (A.12)–(A.15) into Eq. (A.17), we get

𝝀(𝑡)‖ ≤ 𝐶7 ∫

∞

𝑡
exp(−𝜇e𝜏) exp(𝜆L(𝜏 − 𝑡) + 𝜖𝜏)d𝜏 =

exp(−𝑡(𝜇e − 𝜖))
𝜇e − (𝜆L + 𝜖)

(A.17)

for some constant 𝐶7 ≥ 0 and where the equality holds if 𝜇e > 𝜆L + 𝜖.
ince 𝜖 can be chosen as small as required, the condition

e > 0 and 𝜇e > 𝜆L (A.18)

nsures the validity of lim𝑡→∞ ‖𝝀(𝑡)‖ = 0 and thus lim𝑡→∞ 𝝀(𝑡) = (0, 0).
In summary, if state variables are bounded, fitness components do

ot change too abruptly, and the external mortality rates suppresses
he growth rate of the regular linearized dynamical system of the states
ariables, then the shadow values go to zero, i.e., lim𝑡→∞ 𝝀(𝑡) = (0, 0). It
s plausible that a majority of evolutionary models where state variables
epresent internal factors fall into this category, hence the claim of the
ain text. For the cases falling outside this category, it is relevant to

now that Aseev and Kryazhimskiy (2008) and Aseev and Veliov (2019)
rovide conditions on the discount rate under which the shadow value

till takes the useful representation (A.17) even if lim𝑡→∞ 𝝀(𝑡) ≠ (0, 0).
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Appendix B. Selection gradient

B.1. Generic expression for the selection gradient

We here give the generic representation of the inclusive fitness
effect 𝑠(𝑢) when fitness takes the form of Eq. (10) or Eq. (12), and the
state dynamics satisfy Eqs. (6)–(7). The representation of 𝑠(𝑢) for these
cases is implicitly contained in the calculations of Avila et al. (2021,
Appendix B.2.1), who derived an expression for the selection gradient
in the broader context where the evolving trait itself is dynamic and of
infinite dimensions, thus covering generally both open-loop and closed-
loop traits as well. But since this more broader context involves more
complicated mathematics and notations, the representation of 𝑠(𝑢) is
here (re)-derived for clarity and completeness.

To that end, note first that the survival probability 𝑙∙(𝑡) can itself be
thought of as a state variable and Eq. (10) of the main text can then be
written as

𝑤(𝑢∙, 𝑢◦, 𝑢) =∫

𝑇

0
𝑓 (𝒖∙, 𝐲∙(𝑡))d𝑡 +𝛷(𝐲∙(𝑇 ))

=∫

𝑇

0
𝑓 (𝒖∙, 𝐲∙(𝑡))d𝑡 +𝛷(𝐲∙(𝑇 ))

+ ∫

𝑇

0

[

𝜦(𝑡) ⋅
(

𝒈(𝒖∙, 𝐲∙(𝑡)) −
d𝐲∙(𝑡)
d𝑡

)]

d𝑡

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
=0

,

(B.1)

where 𝑓 (𝒖∙(𝑡), 𝐲∙(𝑡)) = 𝑙∙(𝑡)𝑤̃(𝒖∙,𝒙∙(𝑡)), 𝛷(𝐲∙(𝑇 )) = 𝑙∙(𝑇 )𝜎(𝒙∙(𝑇 )), the vec-
tor 𝐲∙(𝑡) = (𝒙∙(𝑡), 𝑙∙(𝑡)) = (𝑥∙(𝑡), 𝑥◦(𝑡), 𝑙∙(𝑡)) collects all the state variables,
the vector 𝜦(𝑡) = (𝜆∙(𝑡), 𝜆◦(𝑡), 𝑣(𝑡)) collects all costates, and the vec-
tor d𝐲∙(𝑡)∕d𝑡 = 𝒈(𝒖∙, 𝐲∙(𝑡)) = (𝑔(𝒖∙,𝒙∙(𝑡)), 𝑔(𝒖◦,𝒙◦(𝑡)),−𝜇(𝒖∙(𝑡),𝒙∙(𝑡))𝑙∙(𝑡))
collects all changes in states. The symbol ⋅ denotes the dot product
between two vectors and integrating the last term in Eq. (B.1) by parts
yields

− ∫

𝑇

0
𝜦(𝑡) ⋅

d𝐲∙(𝑡)
d𝑡

d𝑡

= ∫

𝑇

0

d𝜦(𝑡)
d𝑡

⋅ 𝐲∙(𝑡)d𝑡 −𝜦(𝑇 ) ⋅ 𝐲∙(𝑇 ) +𝜦(0) ⋅ 𝐲∙(0),
(B.2)

and hence Eq. (B.1) becomes

𝑤(𝑢∙, 𝑢◦, 𝑢) =∫

𝑇

0

(

𝑓 (𝒖∙(𝑡), 𝐲∙(𝑡)) +𝜦(𝑡) ⋅ 𝒈(𝒖∙, 𝐲∙(𝑡)) +
d𝜦(𝑡)
d𝑡

⋅ 𝐲∙(𝑡)
)

d𝑡

− 𝐲∙𝜦(𝑇 ) ⋅ 𝐲∙(𝑇 ) +𝜦(0) ⋅ 𝐲∙(0) +𝛷(𝐲∙(𝑇 )).

(B.3)

Using the Hamiltonian

𝐻
(

𝒖∙,𝒙∙(𝑡), 𝑙∙(𝑡)
⏟⏞⏞⏟⏞⏞⏟

𝐲∙(𝑡)

,𝝀(𝑡), 𝑣(𝑡)
⏟⏞⏟⏞⏟

𝜦(𝑡)

)

= 𝑓 (𝒖∙(𝑡), 𝐲∙(𝑡)) + 𝒈(𝒖∙, 𝐲∙(𝑡)) ⋅𝜦(𝑡) (B.4)

(Eq. (13) of the main text), and

𝛷aug(𝑇 , 𝐲∙(𝑇 )) = 𝛷(𝐲∙(𝑇 )) −𝜦(𝑇 ) ⋅ 𝐲∙(𝑇 ), (B.5)

allows to write Eq. (B.3) as

𝑤(𝑢∙, 𝑢◦, 𝑢) = ∫

𝑇

0

[

𝐻(𝒖∙, 𝐲∙(𝑡),𝜦(𝑡)) +
d𝜦(𝑡)
d𝑡

⋅ 𝐲∙(𝑡)
]

d𝑡

+𝛷aug(𝑇 , 𝐲∙(𝑇 )) +𝜦(0) ⋅ 𝐲∙(0).
(B.6)

Taking the derivative of fitness (B.6) with respect to the focal’s trait
𝑢∙ yields in force of the chain rule and Leibniz’s formula (Sydsaeter
et al., 2008, p. 160) that

𝜕𝑤(𝑢∙, 𝑢◦, 𝑢)
𝜕𝑢∙

= ∫

𝑇

0

(

𝜕𝐻(𝒖∙, 𝐲∙(𝑡),𝜦(𝑡))
𝜕𝑢∙

+
(

∇𝐻(𝒖, 𝐲∙(𝑡),𝜦(𝑡)) +
d𝜦(𝑡)

)

⋅
𝜕𝐲∙(𝑡)

)

d𝑡
11

d𝑡 𝜕𝑢∙
+ ∇𝛷aug(𝑇 , 𝐲∙(𝑇 )) ⋅
𝜕𝐲∙(𝑇 )
𝜕𝑢∙

, (B.7)

where the gradient operator ∇ is with respect to variable 𝐲∙(𝑡), e.g.,
∇𝐻 = (𝜕𝐻∕𝜕𝑥∙(𝑡), 𝜕𝐻∕𝜕𝑥◦(𝑡), 𝜕𝐻∕𝜕𝑙∙(𝑡)), 𝜕𝐲∙(𝑇 )∕𝜕𝑢∙ = (𝜕𝑥∙(𝑇 )∕𝜕𝑢∙, 𝜕𝑥◦
𝑇 )∕𝜕𝑢∙, 𝜕𝑙∙(𝑇 )∕𝜕𝑢∙), and all derivatives, here and throughout, are eval-
ated at 𝒖∙ = 𝒖 = (𝑢, 𝑢, 𝑢) and 𝐲∙(𝑡) = (𝒙(𝑡), 𝑙(𝑡)) = ((𝑥(𝑡), 𝑥(𝑡), 𝑥(𝑡)), 𝑙(𝑡)).
ikewise, we have

𝜕𝑤(𝑢∙, 𝑢◦𝑢)
𝜕𝑢◦

= ∫

𝑇

0

(

𝜕𝐻(𝒖∙, 𝐲∙(𝑡),𝜦(𝑡))
𝜕𝑢◦

+
(

∇𝐻(𝒖, 𝐲∙(𝑡),𝜦(𝑡)) +
d𝜦(𝑡)
d𝑡

)

⋅
𝜕𝐲∙(𝑡)
𝜕𝑢◦

)

d𝑡

+ ∇𝛷aug(𝑇 , 𝐲∙(𝑇 )) ⋅
𝜕𝐲∙(𝑇 )
𝜕𝑢◦

, (B.8)

where 𝜕𝐲∙(𝑇 )∕𝜕𝑢◦ = (𝜕𝑥∙(𝑇 )∕𝜕𝑢◦, 𝜕𝑥◦(𝑇 )∕𝜕𝑢◦, 𝜕𝑙∙(𝑇 )∕𝜕𝑢◦).
Note that the derivatives of the term 𝜦(0) ⋅ 𝐲∙(0) in Eqs. (B.7)–(B.8)

ave vanished because the initial state variables 𝑥∙(0) = 𝑥◦(0) = 𝑥(0) =
init do not depend on the evolving traits are thus fixed. Note also that

𝐻(𝒖, 𝐲∙(𝑡),𝜦(𝑡)) = ∇𝑓 (𝒖, 𝐲∙(𝑡)) + ∇𝒈(𝒖, 𝐲∙(𝑡))𝜦(𝑡) (B.9)

here

𝒈(𝒖(𝑡),𝒙(𝑡)) =
⎛

⎜

⎜

⎜

⎝

𝜕𝑔(𝒖∙ ,𝒙∙(𝑡))
𝜕𝑥∙(𝑡)

𝜕𝑔(𝒖◦ ,𝒙◦(𝑡))
𝜕𝑥∙(𝑡)

− 𝜕𝜇(𝒖∙(𝑡),𝒙∙(𝑡))
𝜕𝑥∙(𝑡)

𝑙∙(𝑡)
𝜕𝑔(𝒖∙ ,𝒙∙(𝑡))

𝜕𝑥◦(𝑡)
𝜕𝑔(𝒖◦ ,𝒙◦(𝑡))

𝜕𝑥◦(𝑡)
− 𝜕𝜇(𝒖∙(𝑡),𝒙∙(𝑡))

𝜕𝑥◦(𝑡)
𝑙∙(𝑡)

0 0 −𝜇(𝒖∙(𝑡),𝒙∙(𝑡))

⎞

⎟

⎟

⎟

⎠

𝒖∙=𝒖
𝑙∙(𝑡)=𝑙(𝑡)
𝒙∙(𝑡)=𝒙(𝑡)

(B.10)

is a matrix, the gradient of vector 𝒈 (hence ∇𝒈(𝒖, 𝐲∙(𝑡))𝜦(𝑡) is the
multiplication of a matrix by a vector). Finally,

∇𝛷aug(𝑇 , 𝐲∙(𝑇 )) = ∇𝛷(𝐲∙(𝑇 )) −𝜦(𝑇 ) (B.11)

here

𝛷(𝐲∙(𝑇 )) = (𝑙(𝑇 )𝜕𝜎(𝒙∙(𝑇 ))∕𝜕𝑥∙(𝑇 ),

𝑙(𝑇 )𝜕𝜎(𝒙∙(𝑇 ))∕𝜕𝑥◦(𝑇 ), 𝜎(𝒙(𝑇 )))|𝒙∙(𝑡)=𝒙(𝑡). (B.12)

Now if we set

−
d𝜦(𝑡)
d𝑡

= ∇𝐻(𝑡, 𝒖, 𝐲∙(𝑡),𝜦(𝑡)), (B.13)

then the second term in the integral of Eqs. (B.7)–(B.8) vanishes. Thus,
on substituting Eqs. (B.7)–(B.8) into the inclusive fitness effect

𝑠(𝑢) =
𝜕𝑤(𝑢∙, 𝑢◦, 𝑢)

𝜕𝑢∙

|

|

|

|𝑢∙=𝑢◦=𝑢
+ 𝑟(𝑢)

𝜕𝑤(𝑢∙, 𝑢◦𝑢)
𝜕𝑢◦

|

|

|

|𝑢∙=𝑢◦=𝑢
, (B.14)

(Eq. (2) of the main text) and simplifying shows that the inclusive
fitness effect with discounted fitness (10) can be written as

𝑠(𝑢) = ∫

𝑇

0
𝑠(𝑡, 𝑢)d𝑡 + 𝐹 (𝑇 ), (B.15)

ith

(𝑡, 𝑢) =

⎡

⎢

⎢

⎢

⎣

𝜕𝐻
(

𝒖∙,𝒙(𝑡), 𝑙(𝑡),𝝀(𝑡), 𝑣(𝑡)
)

𝜕𝑢∙

+ 𝑟(𝑢)
𝜕𝐻

(

𝒖∙,𝒙(𝑡), 𝑙(𝑡),𝝀(𝑡), 𝑣(𝑡)
)

𝜕𝑢◦

⎤

⎥

⎥

⎥

⎦𝒖∙=𝐮

(B.16)

and

𝐹 (𝑇 ) = ∇𝛷aug(𝑇 ,𝒙(𝑇 )) ⋅
[

𝜕𝐲∙(𝑇 )
𝜕𝑢∙

+ 𝑟(𝑢)
𝜕𝐲∙(𝑇 )
𝜕𝑢◦

]

. (B.17)

Since all state variables therein are evaluated at 𝒖∙ = 𝒖 = (𝑢, 𝑢, 𝑢), they
atisfy the dynamics
d𝑥(𝑡)

= 𝑔(𝒖,𝒙(𝑡)) (B.18)

d𝑡
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d𝑙(𝑡)
d𝑡

= −𝜇(𝒖,𝒙(𝑡))𝑙(𝑡).

Exactly the same line of arguments can be applied to the integral ap-
earing in the average fitness (12), with the difference that there is no
tate variable associated to survival and thus no costate. Carrying out
he parallel calculations, then shows that the selection gradient (B.14)
nder average fitness can be represented as

(𝑢) = lim
𝑇→∞

1
𝑇

(

∫

𝑇

0

⎡

⎢

⎢

⎢

⎣

𝜕𝐻
(

𝒖∙,𝒙(𝑡), 1,𝝀(𝑡), 0
)

𝜕𝑢∙

+ 𝑟(𝑢)
𝜕𝐻

(

𝒖∙,𝒙(𝑡), 1,𝝀(𝑡), 0
)

𝜕𝑢◦

⎤

⎥

⎥

⎥

⎦

d𝑡 + 𝐹a(𝑇 )
)

(B.19)

ith

a(𝑇 ) = −𝜦(𝑇 ) ⋅
[

𝜕𝐲∙(𝑇 )
𝜕𝑢∙

+ 𝑟(𝑢)
𝜕𝐲∙(𝑇 )
𝜕𝑢◦

]

. (B.20)

.2. The three expressions for the selection gradient

We here prove the three main text results using the generic repre-
entation for 𝑠(𝑢) derived in Appendix B.1.

.2.1. Result 1
We here prove Result 1. Let us first consider the finite horizon

ase (𝑇 < ∞). Then, the boundary conditions for the costates are
(𝑡) = 𝜎 (𝒙(𝑇 )) and 𝝀(𝑇 ) = ∇𝜎(𝒙∙(𝑇 )) because this satisfies the definition
f the costates as marginal changes of fitness at 𝑇 (Box I). These
oundary conditions are also standard in control theory (Bryson and
o, 1975; Dockner et al., 2000; Athans and Falb, 2007; Sydsaeter
t al., 2008; Aseev and Kryazhimskiy, 2008; Weber, 2011) and imply
hat ∇𝛷aug(𝑇 ,𝒙(𝑇 )) = (0, 0, 0). Hence, it follow from Eq. (B.17) that
(𝑇 ) = 0, whereby the first line of Eq. (B.15) reduces to Eq. (17) and

ince together Eqs. (B.13) and (B.18) are equivalent to Eq. (14), this
roves the finite horizon case of Result 1.

Let us now consider the infinite horizon case (𝑇 → ∞). Owing to the
ssumptions of dominating discount, i.e., lim𝑇→∞ 𝝀(𝑇 ) = (0, 0) and that
im𝑡→∞ 𝑙∙(𝑡) = 0, whereby lim𝑡→∞ 𝜕𝑙∙(∞)∕𝜕𝑢∙ = lim𝑡→∞ 𝜕𝑙∙(∞)∕𝜕𝑢◦ = 0,
e have

lim
𝑇→∞

∇𝛷(𝐲∙(𝑇 )) = (0, 0, lim
𝑇→∞

𝜎(𝒙(𝑇 ))) (B.21)

lim
𝑇→∞

𝜦(𝑇 ) = (0, 0, lim
𝑇→∞

𝑣(𝑇 ))

lim
𝑇→∞

𝜕𝐲∙(𝑇 )∕𝜕𝑢◦ = ( lim
𝑇→∞

𝜕𝑥∙(𝑇 )∕𝜕𝑢◦, lim𝑇→∞
𝜕𝑥◦(𝑇 )∕𝜕𝑢◦, 0)

lim
𝑇→∞

𝜕𝐲∙(𝑇 )∕𝜕𝑢∙ = ( lim
𝑇→∞

𝜕𝑥∙(𝑇 )∕𝜕𝑢∙, lim𝑇→∞
𝜕𝑥◦(𝑇 )∕𝜕𝑢∙, 0).

Substituting into Eq. (B.17) shows that lim𝑇→∞ 𝐹 (𝑇 ) = 0 (provided all
entries remain bounded). Thereby Eq. (B.15) reduces to Eq. (17), which
proves the infinite horizon part of Result 1.

B.2.2. Result 2
We here prove Result 2, which relies on the assumption that the

initial condition of the state variable is given by the equilibrium 𝑥0 = 𝑥̂
satisfying 𝑔(𝒖, (𝑥̂, 𝑥̂, 𝑥̂)) = 0 at 𝒖 = (𝑢, 𝑢, 𝑢). With this and owing to the
fact that the selection coefficient 𝑠(𝑡, 𝑢) in Eq. (B.16) is evaluated at state
𝒙(𝑡) and thus at 𝒙(𝑡) = 𝒙̂ = (𝑥̂, 𝑥̂, 𝑥̂) for all 𝑡 ∈ [0,∞), allows us to write
Eq. (B.16) as

𝑠(𝑡, 𝑢) =
[

𝑙(𝑡)
(

𝜕𝑤̃(𝒖∙, 𝒙̂)
𝜕𝑢∙

−
𝜕𝜇(𝒖∙, 𝒙̂)

𝜕𝑢∙
𝑣(𝑡)

)

+
𝜕𝑔(𝒖∙, 𝒙̂)

𝜕𝑢∙
𝜆∙(𝑡) +

𝜕𝑔(𝒖◦, 𝒙̂)
𝜕𝑢∙

𝜆◦(𝑡)

+𝑟(𝑢)
(

𝑙(𝑡)
(

𝜕𝑤̃(𝒖∙, 𝒙̂)
𝜕𝑢◦

−
𝜕𝜇(𝒖∙, 𝒙̂)

𝜕𝑢◦
𝑣(𝑡)

)

+
𝜕𝑔(𝒖∙, 𝒙̂)𝜆∙(𝑡) +

𝜕𝑔(𝒖◦, 𝒙̂)𝜆◦(𝑡)
)]

. (B.22)
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𝜕𝑢◦ 𝜕𝑢◦ 𝒖∙=𝐮
All vital rates and transition functions are here independent of time,
since they are all evaluated at 𝑥̂. Hence, substituting Eq. (B.22) into
Eq. (B.15), the vital rates and transition functions can be factored out
from the integral and since an infinite time horizon with dominating
discount is assumed, we have 𝐹 (𝑇 ) = 0. Therefore

(𝑢) = 𝑙
[

𝜕𝑤̃(𝒖∙, 𝒙̂)
𝜕𝑢∙

−
𝜕𝜇(𝒖∙, 𝒙̂)

𝜕𝑢∙
𝑣̄ +

𝜕𝑔(𝒖∙, 𝒙̂)
𝜕𝑢∙

𝜆̄∙ +
𝜕𝑔(𝒖◦, 𝒙̂)

𝜕𝑢∙
𝜆̄◦

]

𝒖∙=𝐮

+𝑟(𝑢)𝑙
[

𝜕𝑤̃(𝒖∙, 𝒙̂)
𝜕𝑢◦

−
𝜕𝜇(𝒖∙, 𝒙̂)

𝜕𝑢◦
𝑣̄

+
𝜕𝑔(𝒖∙, 𝒙̂)

𝜕𝑢◦
𝜆̄∙ +

𝜕𝑔(𝒖◦, 𝒙̂)
𝜕𝑢◦

𝜆̄◦

]

𝒖∙=𝐮
, (B.23)

where 𝑙 = ∫ ∞
0 𝑙(𝑡)d𝑡, 𝑣̄ = ∫ ∞

0 𝑣(𝑡)𝑙(𝑡)d𝑡∕𝑙, 𝝀̄ = (𝜆̄∙, 𝜆̄◦) = (∫ ∞
0 𝜆∙(𝑡)d𝑡∕𝑙,

∫ ∞
0 𝜆◦(𝑡)d𝑡∕𝑙). Using the definition of the Hamiltonian function, this can

be equivalently written as

𝑠(𝑢) = 𝑙

⎡

⎢

⎢

⎢

⎣

𝜕𝐻
(

𝒖∙, 𝒙̂, 1, 𝝀̄, 𝑣̄
)

𝜕𝑢∙
+ 𝑟(𝑢)

𝜕𝐻
(

𝒖∙, 𝒙̂, 1, 𝝀̄, 𝑣̄
)

𝜕𝑢◦

⎤

⎥

⎥

⎥

⎦𝒖∙=𝐮

, (B.24)

which gives Eq. (21) for 𝑣̄ = 1.
To complete the proof of Result 2, it thus remains to prove that

𝑙 = 1∕𝜇(𝒖, 𝒙̂), 𝑣̄ = 1, and 𝝀̄ = (𝜇𝐈 − 𝐀(𝒙̂))−1 𝐛(𝒙̂, 1, 1). For this, let us first
ote that under the assumptions underlying Result 2, which involves
ominating discounts, Eq. (14) reduces to

d𝑥(𝑡)
d𝑡

= 𝑔(𝒖, 𝒙̂) = 0 (B.25a)

d𝑙(𝑡)
d𝑡

= −𝜇(𝒖, 𝒙̂)𝑙(𝑡) with i.c. 𝑙(0) = 1 (B.25b)

−
d𝝀(𝑡)
d𝑡

= 𝐛(𝒙̂, 𝑙(𝑡), 𝑣(𝑡)) + 𝐀(𝒙̂)𝝀(𝑡) with b.c. lim
𝑡→∞

𝝀(𝑡) = (0, 0)

(B.25c)

−
d𝑣(𝑡)
d𝑡

= 𝑤̃(𝒖, 𝒙̂) − 𝜇(𝒖, 𝒙̂) 𝑣(𝑡) with i.c. 𝑣(0) = 1, (B.25d)

here we used the demographic consistency relation of Box I to obtain
he boundary condition of the reproductive value. Straightforward
ntegration of Eq. (B.25c), yields 𝑙 = 1∕𝜇(𝒖, 𝒙̂). And since survival and
ffective fecundity is constant, we have 𝑣(0) = 𝑤̃(𝒖, 𝒙̂)∕𝜇(𝒖, 𝒙̂) = 1
Box I), and so 𝑣(𝑡) = 1 for all 𝑡 satisfies Eq. (B.25d), and thus 𝑣̄ = 1. In
rder to prove the third equality, let us use the vectors

w(𝒙̂) =
(

𝜕𝑤̃(𝒖,𝒙∙(𝑡))∕𝜕𝑥∙(𝑡), 𝑤̃(𝒖,𝒙∙(𝑡))∕𝜕𝑥◦(𝑡), 𝜕𝑤̃(𝒖,𝒙∙(𝑡))∕𝜕𝑥(𝑡)
)

𝒙∙(𝑡)=𝒙̂

(B.26)

𝐛μ(𝒙̂) =
(

𝜕𝜇(𝒖,𝒙∙(𝑡))∕𝜕𝑥∙(𝑡), 𝜇(𝒖,𝒙∙(𝑡))∕𝜕𝑥◦(𝑡), 𝜕𝜇(𝒖,𝒙∙(𝑡))∕𝜕𝑥(𝑡)
)

𝒙∙(𝑡)=𝒙̂
,

whereby Eq. (15) can be written

𝐛(𝒙̂, 𝑙(𝑡), 𝑣(𝑡)) = 𝐛w(𝒙̂)𝑙(𝑡) − 𝐛μ(𝒙̂)𝑙(𝑡)𝑣(𝑡). (B.27)

Substituting this into Eq. (B.25) and integrating yields

∫

∞

0

d𝝀(𝑡)
d𝑡

d𝑡 = −𝐛w(𝒙̂)∫
∞

0
𝑙(𝑡)d𝑡 + 𝐛μ(𝒙̂)∫

∞

0
𝑙(𝑡)𝑣(𝑡)d𝑡 − 𝐀(𝒙̂)∫

∞

0
𝝀(𝑡)d𝑡.

(B.28)

rom the fundamental theorem of calculus ∫ ∞
0

d𝝀(𝑡)
d𝑡 d𝑡 = 𝝀(∞)−𝝀(0) and

so we can write

𝝀(∞)−𝝀(0) = 𝑙
(

−𝐛w(𝒙̂) + 𝐛μ(𝒙̂)𝑣̄ − 𝐀(𝒙̂)𝝀̄
)

= 𝑙
(

−𝐛w(𝒙̂) + 𝐛μ(𝒙̂) − 𝐀(𝒙̂)𝝀̄
)

.

(B.29)

Since 𝝀(∞) = 0 by the assumption of dominating discounts, we need
an expression for 𝝀(0) to obtain 𝝀̄. To than end, insert Eq. (B.27) into
Eq. (A.6), which, for 𝑡 = 0 and 𝜁 = 𝑇 with 𝑇 = ∞ and 𝝀(∞) = 0, yields
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𝝀

In order to understand the biologically useful interpretation of the costates, consider the discounted fitness case (Eq. (10)) and let us introduce
the future value reproductive value defined as

𝑣̃(𝑡,𝒙(𝑡), 𝑙(𝑡)) = ∫

𝑇

𝑡
𝑙(𝜏)𝑤̃(𝒖,𝒙(𝜏))d𝜏 + 𝑙(𝑇 )𝜎(𝒙(𝑇 )), (B-a)

which depends on the whole set of values (or trajectory) of states {𝒙(𝜏)}𝑇𝜏=𝑡 and survival {𝑙(ℎ)}𝑇ℎ=𝑡 from time 𝑡 to 𝑇 evaluated at 𝑢. Thus,
𝑣̃(𝑡,𝒙(𝑡), 𝑙(𝑡)) is the expected remaining fitness from time 𝑡 onwards of an individual in a monomorphic population at 𝑢 when the initial
conditions for its state is 𝒙(𝑡) and survival is 𝑙(𝑡). These are the two arguments that, besides time, are emphasized in the notation 𝑣̃(𝑡,𝒙(𝑡), 𝑙(𝑡))
because changes in these initial values will change the future reproductive value by changing the whole trajectories of states and survival
starting at 𝑡, which are themselves functions of the initial states. By contrast, Fisher’s reproductive value, noted 𝑣(𝑡,𝒙(𝑡)), is the expected
remaining effective fitness from time 𝑡 onwards conditional on the individual surviving until time 𝑡 (Fisher, 1930; Goodman, 1982) and it is
therefore given as the current value reproductive value:

𝑣(𝑡,𝒙(𝑡)) = 𝑣̃(𝑡,𝒙(𝑡), 𝑙(𝑡))
𝑙(𝑡)

= ∫

𝑇

𝑡
𝑙(𝜏 − 𝑡)𝑤̃(𝒖,𝒙(𝜏))d𝜏 + 𝑙(𝑇 − 𝑡)𝜎(𝒙(𝑇 )). (B-b)

The second equality was reached by noting that 𝑙(𝜏 − 𝑡) = 𝑙(𝜏)∕𝑙(𝑡) = exp
(

− ∫ 𝜏
𝑡 𝜇(𝒖,𝒙(ℎ))dℎ

)

is the probability of survival from time 𝑡 to time
𝜏 ≥ 𝑡 conditional on surviving until 𝑡. This shows that 𝑣(𝑡,𝒙(𝑡)), similarly to 𝑣̃(𝑡,𝒙(𝑡), 𝑙(𝑡)), depends on the state trajectory {𝒙(𝜏)}𝑇𝜏=𝑡 from time
𝑡 to 𝑇 . Yet by contrast to 𝑣̃(𝑡,𝒙(𝑡), 𝑙(𝑡)), the reproductive value 𝑣(𝑡,𝒙(𝑡)) depends on the survival trajectory {𝑙(ℎ)}𝑇−𝑡ℎ=0 starting at 𝑙(0) = 1. Since
the initial value 𝑙(0) = 1 is fixed, it does not make biological sense to vary it and this explains why the argument of 𝑣(𝑡,𝒙(𝑡)), besides time,
only involves 𝒙(𝑡) whose variation will indeed affect 𝑣(𝑡,𝒙(𝑡)). Hence, it follows from 𝑣̃(𝑡,𝒙(𝑡), 𝑙(𝑡)) = 𝑙(𝑡)𝑣(𝑡,𝒙(𝑡)) that

𝑣(𝑡) = 𝑣(𝑡,𝒙(𝑡)) = 𝜕𝑣̃(𝑡,𝒙(𝑡), 𝑙(𝑡))
𝜕𝑙(𝑡)

,

which is the usual partial derivative of 𝑣̃(𝑡,𝒙(𝑡), 𝑙(𝑡)) with respect to 𝑙(𝑡). In other words, Fisher’s reproductive value is the marginal change of
the future value reproductive value with respect to change in survival (see also León, 1976; Perrin, 1992). Such interpretation of the costates
variables as partial derivatives, namely, as marginal changes in future value reproductive value when the initial state variable values are
changed holds generally (Sydsaeter et al., 2008), since one also has

𝜆∙(𝑡) =
𝜕𝑣̃(𝑡,𝒙∙(𝑡), 𝑙(𝑡))

𝜕𝑥∙(𝑡)
=

𝜕𝑣(𝑡,𝒙∙(𝑡))
𝜕𝑥∙(𝑡)

𝑙(𝑡) 𝜆◦(𝑡) =
𝜕𝑣̃(𝑡,𝒙∙(𝑡), 𝑙(𝑡))

𝜕𝑥◦(𝑡)
=

𝜕𝑣(𝑡,𝒙∙(𝑡))
𝜕𝑥◦(𝑡)

𝑙(𝑡), (B-c)

where all partial derivatives are evaluated at 𝑢 and 𝒙∙(𝑡) = 𝒙(𝑡) = (𝑥(𝑡), 𝑥(𝑡), 𝑥(𝑡)). The second equality follows from using Eq. B-b under the
form 𝑣̃(𝑡,𝒙∙(𝑡), 𝑙(𝑡)) = 𝑙(𝑡)𝑣(𝑡,𝒙∙(𝑡)) [see Avila et al., 2021, Appendix B.1 for a proof that, in an evolutionary context, costates are generally the
partial derivatives of 𝑣̃(𝑡,𝒙(𝑡), 𝑙(𝑡)) with respect to state change regardless of the mode of trait control]. Finally, it can be useful to note that
demographic consistency entails that

𝑤(𝑢, 𝑢, 𝑢) = 𝑣̃(0,𝒙(0), 𝑙(0)) = 𝑣(0) = 1. (B-d)

Further, under the infinite horizon case (𝑇 → ∞) for constant reproduction and mortality, say 𝑤̃(𝒖∙,𝒙∙(𝑡)) = 𝑤̃(𝒖,𝒙∙) and 𝜇(𝒖∙,𝒙∙(𝑡)) = 𝜇(𝒖,𝒙∙(𝑡)),
one has 𝑣(𝑡) = ∫ 𝑇

𝑡 exp
(

−𝜇(𝒖,𝒙∙(𝑡))(𝜏 − 𝑡)
)

𝑤̃(𝒖,𝒙(𝜏))d𝜏 = 𝑤̃(𝒖,𝒙∙)∕𝜇(𝒖,𝒙∙(𝑡)) = 𝑣(0) = 1 for all 𝑡.

Box I. Shadow values and Fisher reproductive value as marginal values.
I

(
t

𝝀

U
𝝀

R

c
t
𝝀
2

(0) = −∫

0

∞
𝑒𝐀(𝒙̂)𝜏𝐛(𝒙̂, 𝑙(𝜏), 𝑣(𝜏))d𝜏 (B.30)

= ∫

∞

0
𝑒𝐀(𝒙̂)𝜏𝐛(𝒙̂, 𝑙(𝜏), 𝑣(𝜏))d𝜏

= ∫

∞

0
𝑒𝐀(𝒙̂)𝜏 𝑙(𝜏)𝐛w(𝒙̂)d𝜏 − ∫

∞

0
𝑒𝐀(𝒙̂)𝜏 𝑙(𝜏)𝑣(𝜏)𝐛μ(𝒙̂)d𝜏

= ∫

∞

0
𝑒𝐀(𝒙̂)𝜏𝑒−𝜇𝜏𝐛w(𝒙̂)d𝜏 − ∫

∞

0
𝑒𝐀(𝒙̂)𝜏𝑒−𝜇𝜏𝐛μ(𝒙̂)d𝜏

= ∫

∞

0
𝑒𝐀(𝒙̂)𝜏

(

𝐛w(𝒙̂) − 𝐛μ(𝒙̂)
)

𝑒−𝜇𝜏d𝜏

= (𝜇𝐈 − 𝐀(𝒙̂))−1
(

𝐛w(𝒙̂) − 𝐛μ(𝒙̂)
)

.

The second inequality follows from interchanging the boundaries, the
third from inserting Eq. (B.27), the fourth from inserting 𝑙(𝜏) = 𝑒−𝜇𝜏
and 𝑣(𝑡) = 1 (and using the shorthand notation 𝜇 = 𝜇(𝒖, 𝒙̂)), the fifth
from rearranging, and the sixth from noting that the fifth line defines
a Laplace transform and so ∫ ∞

0 𝑒𝐀(𝒙̂)𝜏𝐛𝑒−𝜇𝜏d𝜏 = (𝜇𝐈 − 𝐀(𝒙̂))−1 𝐛 for a
constant vector 𝐛 (Athans and Falb, 2007, p. 140). Inserting this into
Eq. (B.29) and solving for 𝝀̄ finally yields

𝝀̄ = (1∕𝑙)𝐀(𝒙̂)−1
[

𝝀(0) − 𝑙
(

𝐛w(𝒙̂) − 𝐛μ(𝒙̂)
)]

(B.31)

= (1∕𝑙)𝐀(𝒙̂)−1
[

(𝜇𝐈 − 𝐀(𝒙̂))−1
(

𝐛w(𝒙̂) − 𝐛μ(𝒙̂)
)

− 𝑙
(

𝐛w(𝒙̂) − 𝐛μ(𝒙̂)
)

]

= (1∕𝑙)𝐀(𝒙̂)−1
[

(𝜇𝐈 − 𝐀(𝒙̂))−1 − 𝑙
]

(

𝐛 (𝒙̂) − 𝐛 (𝒙̂)
)

13

w μ a
= 𝐀(𝒙̂)−1
[

(1∕𝑙) (𝜇𝐈 − 𝐀(𝒙̂))−1 − 1
]

(

𝐛w(𝒙̂) − 𝐛μ(𝒙̂)
)

=
[

(1∕𝑙)𝐀(𝒙̂)−1 (𝜇𝐈 − 𝐀(𝒙̂))−1 − 𝐀(𝒙̂)−1
]

(

𝐛w(𝒙̂) − 𝐛μ(𝒙̂)
)

.

n order to further simplify this expression, note that 𝐈 = (𝜇𝐈 − 𝐀(𝒙̂))
(𝜇𝐈 − 𝐀(𝒙̂))−1 = 𝜇 (𝜇𝐈 − 𝐀(𝒙̂))−1 − 𝐀(𝒙̂) (𝜇𝐈 − 𝐀(𝒙̂))−1. Hence, we have
𝜇𝐈 − 𝐀(𝒙̂))−1 = (1∕𝜇)

(

𝐈 + 𝐀(𝒙̂) (𝜇𝐈 − 𝐀(𝒙̂))−1
)

and on substituting into
he last line of Eq. (B.31) and using (1∕𝑙) = 𝜇 produces

̄ =
[

𝐀(𝒙̂)−1
(

𝐈 + 𝐀(𝒙̂) (𝜇𝐈 − 𝐀(𝒙̂))−1
)

− 𝐀(𝒙̂)−1
]

(

𝐛w(𝒙̂) − 𝐛μ(𝒙̂)
)

(B.32)

=
[

𝐀(𝒙̂)−1 + (𝜇𝐈 − 𝐀(𝒙̂))−1 − 𝐀(𝒙̂)−1
]

(

𝐛w(𝒙̂) − 𝐛μ(𝒙̂)
)

= (𝜇𝐈 − 𝐀(𝒙̂))−1
(

𝐛w(𝒙̂) − 𝐛μ(𝒙̂)
)

.

sing Eq. (B.27) and reminding that 𝜇 = 𝜇(𝒖, 𝒙̂), we finally obtain
̄ = (𝜇(𝒖, 𝒙̂)𝐈 − 𝐀(𝒙̂))−1 𝐛(𝒙̂, 1, 1), as needed to be proved.

esult 3
We here prove Result 3, which assumes that given any initial

onditions 𝑥(0) = 𝑥0 and 𝝀(0) = 𝝀0 at 𝑡 = 0 for the states and costates,
he variables converge to a unique equilibrium, 𝒙̂ = lim𝑇→∞ 𝒙(𝑡), and
̂ = lim𝑇→∞ 𝝀(𝑡), which is hyperbolically stable (sensu Hirsch et al.,
004). Then, owing to the facts that (a) 𝐹a(𝑇 ) is finite in Eq. (B.19)

nd (b) invoking the ergodic theorem, which informs us that the time
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average is the spatial average (Karlin and Taylor, 1975), then Eq. (B.19)
can be reduced to

𝑠(𝑢) =

⎡

⎢

⎢

⎢

⎣

𝜕𝐻
(

𝒖∙, 𝒙̂, 1, 𝝀̂, 0
)

𝜕𝑢∙
+ 𝑟(𝑢)

𝜕𝐻
(

𝒖∙, 𝒙̂, 1, 𝝀̂, 0
)

𝜕𝑢◦

⎤

⎥

⎥

⎥

⎦𝒖∙=𝐮

. (B.33)

This proves the required result, since from Eq. (14) the equilibrium
𝒙̂ = lim𝑇→∞ 𝒙(𝑡) satisfies 𝑔(𝒖, 𝒙̂) = 0 and the equilibrium 𝝀̂ = lim𝑇→∞ 𝝀(𝑡)
satisfies 𝝀̂ = −𝐀(𝒙̂)−1𝐛(𝒙̂, 1, 0) (see Goodman (1982)).
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