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Summary 

MART-1 is a melanoma-specific antigen, which has been thoroughly studied in the context of 

immunotherapy against malignant melanoma, and which is found only in the pigment cell 

lineage. However, its exact function and involvement in pigmentation is not clearly 

understood. MART-1 has been shown to interact with the melanosomal proteins Pmel17 and 

OA1. To understand the function of MART-1 in pigmentation, we developed a new knockout 

mouse model. Mice deficient in MART-1 are viable, but loss of MART-1 leads to a coat 

color phenotype, with a reduction in total melanin content of the skin and hair. Lack of 

MART-1 did not affect localization of melanocyte-specific proteins nor maturation of 

Pmel17. Melanosomes of hair follicle melanocytes in MART-1 knockout mice displayed 

morphological abnormalities, which were exclusive to stage III and IV melanosomes. In 

conclusion, our results suggest that MART-1 is a pigmentation gene which is required for 

melanosome biogenesis and/or maintenance. 
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Significance 

MART-1 is one of the highly cited pigment cell-specific proteins since it has been considered 

as a good candidate for immunotherapy against malignant melanoma. However, little is 

known on its biology, regulation and function. Its specific expression in the pigment cell 

lineage and subcellular localization to melanosomes suggest that it might be involved in 

pigmentation. Here we addressed this issue and have generated a new knockout mouse 

model. Our study showed that MART-1 loss led to a coat color phenotype, reduced melanin 

production and aberrant melanosomes. 
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Introduction 

Pigment-producing cells are responsible for the color variation of organisms. In lower 

vertebrates, this can be exerted by chromatophores, xantophores and melanophores, whereas 

in mammals solely melanocytes are responsible for providing skin color. Apart from 

producing the melanin pigment and therefore providing pigment granules to skin and hair, 

melanocytes serve several other functions and are implicated in protection against UV 

damage, hearing function, inflammation, and reduction and binding of reactive oxygen 

species (Plonka et al., 2009). 

Pigmentation is a complex process that requires the involvement of almost 400 loci 

(Montoliu et al., 2011). Some of these loci code for pigment cell-specific genes, which are 

specifically located in the melanosomes. Such melanosomal proteins as the tyrosinase gene 

family members (tyrosinase, TYRP1, DCT), Pmel17, OA1 or MART-1 are involved either in 

melanosome biogenesis or production of the melanin pigment. Melanosomes are organelles 

which are specific for pigment cells. They originate from early endosomes and mature 

through four morphologically distinct stages. Stage I melanosomes contain the intralumenal 

vesicles (ILVs) carrying Pmel17. At stage II fibril formation starts and, by stage III, the 

melanosomal proteins are trafficked to the melanosomes and the pigment synthesis begins. 

The stage IV melanosomes are fully pigmented and, in skin melanocytes, move towards the 

dendrites to be transferred to the keratinocytes (Raposo and Marks, 2007). The timing and 

progress of melanosome biogenesis depend on proper trafficking and processing of the 

melanosomal proteins. Some of the melanosomal proteins as tyrosinase or DCT have defined 

functions in melanogenesis, however the involvement of OA1, MART-1 and p in 

melanogenesis is not completely understood. 
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In 1994, as a result of the search for melanoma antigens, two groups independently cloned a 

new gene, named MART-1/Melan-A/mlana (hereafter: MART-1), which encodes a melanoma 

antigen recognized by cytotoxic T lymphocytes (Coulie et al., 1994; Kawakami et al., 1994). 

The discovery of such melanoma antigens has been promising for developing peptide 

vaccines to generate an immune response against melanoma cells (Coulie et al., 1994; 

Kawakami et al., 1994). Expression of MART-1 is limited to melanocytes, melanomas and 

the RPE (Aydin and Beermann, 2009; Kawakami et al., 1994). The MART-1 gene encodes a 

single-pass membrane protein, which is located mainly in the endoplasmic reticulum, trans-

Golgi network and melanosomes, and here in particular to early melanosomes. MART-1 has 

a short half-life, it is ubiquitylated and is targeted from melanosomes to lysosomes for 

degradation (Basrur et al., 2003; De Maziere et al., 2002; Kawakami et al., 1997; Levy et al., 

2005; Rimoldi et al., 2001). 

Even though MART-1 has been widely studied in the context of melanoma immunotherapy, 

the information regarding its function in pigment cells is very limited. Nevertheless, the high 

enrichment of MART-1 in early melanosomes suggested that it might play a role in early 

melanogenesis. In 2005, Hoashi et al (Hoashi et al., 2005) published a report providing first 

results on a possible function of MART-1. They showed that, in human melanoma cells, 

MART-1 physically interacts with the melanosomal protein Pmel17, and depletion of 

MART-1 by siRNA led to defects in stability, processing and trafficking of Pmel17. Re-

expression of MART-1 in WM266-4 human melanoma cells lacking MART-1 expression led 

to Pmel17 upregulation and formation of striated fibrils, which are very few in WM266-4 

cells (Hoashi et al., 2005). More recently, it was reported that MART-1 interacts directly with 

the melanosomal protein OA1 (Giordano et al., 2009). Upon MART-1 depletion by siRNA, 

OA1 protein levels were reduced and its subcellular distribution was affected. The cells 

devoid in MART-1 had many aberrant enlarged compartments which contained abnormally 
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large intralumenal vesicles (ILVs). Even though Pmel17 processing seemed to be affected, an 

effect on Pmel17 trafficking could not be confirmed (Giordano et al., 2009; Hoashi et al., 

2005). Their data led to the suggestion that MART-1 might have a function in transport and 

stabilization of OA1 and thus might act as an escort protein. Since MART-1 is exclusively 

expressed in pigment cells and it is abundantly found in early melanosomes, it might indeed 

play a role in melanosome biogenesis.  

These published works on MART-1 function have been performed using melanocyte and 

melanoma cells. However, a genetic approach to MART-1 function was not realized until 

now, and it remained an open question whether MART-1 would be required in mouse 

pigmentation. To address this issue, we followed a different approach from the previous 

studies and genetically inactivated the MART-1 gene by gene targeting in embryonic stem 

(ES) cells and have generated a novel mouse model lacking MART-1. Our data provide 

evidence that MART-1 is a pigmentation gene which leads to a coat color phenotype in 

MART-1 knockout mice.   

 

Results 

Generation of MART-1 knockout mice 

The MART-1 gene comprises 5 exons, with the translation start site located in the second 

exon, and the second and third exons encoding the transmembrane domain (Rimoldi et al., 

2001) (Figure 1A). To eliminate the function of MART-1 we therefore targeted and removed 

exons 2 (containing the ATG) and 3. We did not remove the first exon, since it is untranslated 

and thus not yields a truncated protein. The targeting construct contained loxP sites flanking 

the second and third exon, as well as the selection cassette Pgk-neo flanked by frt sites 
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(Figure 1A). The targeting construct was linearized and electroporated into mouse embryonic 

stem (ES) cells from 129/SvEv mice, the correctly recombined clones were detected by PCR 

and Southern blot analysis (Figure 1B). 7 out of 480 ES cell clones showed correct 

recombination. One of the clones was then used for blastocyst injection (Porret et al., 2006), 

and 2 chimeric males transmitted the MART-1lox-neo allele through the germline. Successive 

rounds of mating to hACTB::FLP mice (Dymecki, 1996) and to Nestin::Cre mice (Dubois et 

al., 2006) allowed to remove the Pgk-neo cassette (resulting in MART-1fl/+ mice, Figure 1C) 

and to generate a constitutive MART-1 knockout (MART-1-) allele. In further rounds of 

matings, the transgenes hACTB::FLP and Nestin::Cre were eliminated from mice carrying 

the MART-1+/- genotype. Mating of MART-1+/- mice resulted in MART-1-/- mice (Figure 1C, 

G), in accordance with the expected Mendelian ratio (MART-1+/+: 23.3%, MART-1+/-: 50.3%, 

MART-1-/-: 26.4%, n=360). RT-PCR on skin samples of MART-1-/- mice confirmed absence 

of MART-1 mRNA while tyrosinase mRNA and Dct mRNA were detected (Figure 1D). We 

then used an antibody recognizing the C terminus of MART-1 which is encoded by 

sequences not deleted in the mice. No MART-1 protein was detected in melanocytes isolated 

from the trunk of newborn MART-1-/- mice (Figure 1E, F), and these results altogether 

confirmed the generation of a knockout of MART-1. 

 

Loss of MART-1 leads to a coat color dilution 

MART-1-/- mice displayed a dilution of the coat color (Figure 1G), visible at 5 days after 

birth. The coat color phenotype was not progressive, and it was visible throughout the life of 

the mice. MART-1+/- mice did not have any coat color phenotype (not shown). This remained 

the only visible effect of MART-1 deletion and such MART-1-/- mice did not display any 

problems of growth or fertility. A dilution in the color was not visible in other pigmented 
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tissues such as tail skin or footpads. Histological analysis of heart, lung, kidney, liver, 

thymus, spleen, pancreas, gallbladder, brain, stomach, small intestine, colon, prostate, testis, 

tongue, skin, eyes and spinal column did not reveal any abnormalities (not shown). 

In order to evaluate the coat color phenotype, melanin content of hair samples was 

determined, revealing a 25% reduction in hairs from knockout mice (Figure 2A). For a more 

precise analysis, the eumelanin content of skin samples from 1 month-old MART-1+/+ and 

MART-1-/- mice was measured by HPLC. The reduction in the eumelanin content of the 

MART-1-/- skin confirmed the reduction observed in hair melanin content (Figure 2B), and 

was thus in accordance with the visible phenotype. Preliminary HPLC measurements of 

pheomelanin did not yield reliable values, and we can therefore not exclude that pheomelanin 

might be differently affected. The results nevertheless indicate that the observed coat color 

phenotype is due to a reduction in melanin. 

 

Loss of MART-1 does not affect other melanosomal proteins 

The results on melanin production suggested a possible effect on melanogenesis. It has been 

shown previously that down-regulation of MART-1 in human melanoma cells affects the 

processing and trafficking of the melanosomal protein Pmel17 (Hoashi et al., 2005). We 

therefore investigated the localization and processing of proteins that are important for 

melanosome biogenesis and melanin biosynthesis. 

We first performed immunostaining of skin sections of P6 (not shown) and P30 (Figure 3) 

mice, and, here, neither distribution of Pmel17 nor of other melanosomal proteins as 

tyrosinase, Tyrp1, and Dct seemed to be affected by MART-1 loss. Hoashi et al (2005) had 

reported that, upon MART-1 depletion, human melanoma cells displayed aberrant processing 
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of Pmel17. We therefore asked whether this is true for MART-1-deficient mouse 

melanocytes. Since skin extracts would not allow to reveal sufficient levels of melanocyte 

proteins, we established melanocyte cultures from newborn MART-1+/+ and MART-1-/- mice. 

Immunofluorescence for melanocyte proteins corroborated the origin of the cultures (not 

shown), and they were either expressing (MART-1+/+) or lacking MART-1 (MART-1-/-) 

(Figure 1E, F). In addition, the immunofluorescence stainings and detailed confocal analysis 

(Figure S1) on these established cell lines did not reveal any changes in protein localization 

upon MART-1 loss. During melanosome biogenesis, Pmel17 normally undergoes a series of 

proteolytic cleavages. First, the immature P1 form is processed and the interim P2 form is 

produced, which is then cleaved by a proprotein convertase. Mα and Mβ fragments are 

formed, and Mα is further cleaved into MαN and MαC fragments. The αPep13h antibody 

recognizes the C terminus of the protein, and allows to detect both P1 and Mβ forms (Figure 

4D) (Berson et al., 2001; Kummer et al., 2009). Western blot analysis against Pmel17 using 

the αPep13h antibody nevertheless revealed that, in MART-1-/- melanocytes, Pmel17 was 

successfully cleaved and the Mβ fragment was produced (Figure 4A). Additionally, using the 

HMB45 antibody recognizing the Mα and MαC fragments (Figure 4D), mature MαC 

fragments were detected in MART-1-/- melanocytes (Figure 4B), and in particular found in the 

insoluble protein fraction (Figure 4C). Due to rapid degradation, it was not possible to 

visualize the C-terminal fragment (CTF) of Pmel17 (Hoashi et al., 2006; Theos et al., 2005). 

These results altogether suggest that neither the localization nor the expression of Pmel17 and 

the members of the tyrosinase gene family were affected by loss of MART-1 in mouse 

melanocytes.  

 

Loss of MART-1 affects the melanosome morphology 
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Defects or depletion of pigment-cell specific genes such as Dct (14), Pmel17 (34, 35), and 

OA1 (8, 13), or genes encoding the subunits of cargo proteins involved in melanosomal 

protein trafficking such as Cno, Hps3, Hps5, Hps6, Bloc1s3 or Ap3b1 (26) are known to 

affect melanosome morphology. In order to detect the effect of MART-1 deficiency on 

melanosome morphology, we examined the ultrastructure of hair follicle melanocytes, 

knowing that they are providing the visible coat color phenotype. Bulb regions of anagen hair 

follicles from 1 month-old MART-1+/+ and MART-1-/- littermates were examined under a 

transmission electron microscope (TEM). Visual inspection of sections revealed no obvious 

change in number and size of melanosomes, even though we cannot include some minor 

effects. In contrast, the sections clearly revealed that MART-1 loss was indeed affecting 

melanosome structure. Different from the melanosomes of MART-1+/+ littermates (Figure 

5A), the melanosomes of MART-1-/- mice (Figure 5B, C) displayed blebbing of the limiting 

membrane and vesicles were observed between the pigmented compartment and the limiting 

membrane. Some of the stage IV melanosomes in the MART-1 knockout skin had a gap 

between the pigmented compartment and the limiting membrane and some vesicles were 

observed in this space (Figure 5D-G). In contrast, such structures were not seen in 

melanosomes from wildtype mice (Figure 5A). Interestingly, loss of MART-1 did not affect 

the morphology of the melanosomes located in the RPE (Figure S2). There is very little or no 

melanin turnover in adult eyes (Schraermeyer, 1993; Schraermeyer et al., 2006), and, at the 

time of melanosome biogenesis during embryonic development, MART-1 expression seems 

rather low. This might explain the lack of a visible melanosome morphology phenotype in the 

eyes of MART-1 knockout mice.  

The affected melanosomes were of the stages III and IV, and stage I and II melanosomes 

seemed to be unaffected. To further confirm this we analyzed the ultrastructure of hair 

follicle melanocytes of albino mice which lack stage III and IV melanosomes. Albino (Tyrc) 
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MART-1-/- mice were obtained following mating to FVB/N mice. Electron micrographs 

confirmed the presence of unaffected stage I and II melanosomes (Figure 5I). This confirms, 

that the absence of MART-1 is affecting stage III and stage IV melanosomes.  

 

Discussion 

Since its identification and cloning in 1994, MART-1 has been one of the most studied 

proteins in melanoma immunotherapy, even though nearly nothing is known on MART-1 

function (Coulie et al., 1994; Kawakami et al., 1994). Since MART-1 is exclusively located 

in melanosomes of pigment cells, it was considered to be involved in melanogenesis. 

Previous results in human melanoma cells have suggested that MART-1 is required for 

trafficking and processing of Pmel17 (Hoashi et al., 2005). More recently, another study 

showed that MART-1 depletion causes a reduction of OA1 protein levels due to rapid 

lysosomal degradation and thus affects its subcellular distribution (Giordano et al., 2009). 

Here, we report the generation of a new knockout mouse model, which contributes to 

elucidating the function of MART-1 in the pigmentary system. Upon MART-1 deletion we 

observed a coat color phenotype and a reduction in total melanin content, which is most 

probably caused by abnormal melanosome morphology. 

Previously, it has been reported that MART-1 is involved in Pmel17 processing and 

trafficking (Hoashi et al., 2005). Downregulation of human MART-1 affected subcellular 

distribution and processing of Pmel17 and therefore reduced the formation of mature MαC 

fragments. However, these experiments were performed essentially with human melanocytes 

and melanoma cells, and MART-1 was silenced and not absent (Hoashi et al., 2005). We thus 

analyzed Pmel17 processing in melanocyte cell lines established from MART-1 knockout 

mice (Figure 4). Surprisingly, Pmel17 was normally processed and the MαC fragments were 
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produced similarly in knockout and wildtype mouse melanocytes. This difference might be 

due to the silencing approach, since it can never completely be excluded that other genes 

besides MART-1 are affected. In addition, the kinetics of Pmel17 processing in mouse and 

human melanocytes differs (Theos et al., 2006). In mice, Pmel17 processing is very rapid and 

most of the intermediate processing products observed in human melanocytes are not seen in 

the mouse. Processing of Pmel17 leading to fibril formation could therefore be different in 

mouse and human, and Pmel17 processing might be independent of MART-1 in mice, and 

hence not different in the MART-1 knockout melanocyte. We would equally like to 

emphasize at this point that we did not aim to address the trafficking and the biochemistry of 

the melanosomes as in the published in vitro work, and can thus not completely exclude any 

differences due to the methods used. Recently, MART-1 was reported to be required for 

stability of OA1 (Giordano et al., 2009). Unfortunately, we were not able to monitor any 

changes in OA1 (not shown), most likely due to the failure of the antibody to unequivocally 

recognizing the mouse OA1 protein. 

When electron micrographs of hair follicle melanocytes of pigmented mice were analyzed, 

melanosome biogenesis seemed normal at early stages. This was confirmed by analyzing hair 

follicle melanocytes of albino (Tyrc) wildtype and MART-1 knockout mice, where no stage 

III and IV melanosomes are present. However, morphological defects became apparent when 

stage III and stage IV melanosomes of pigmented MART-1 knockout and wildtype hair 

follicle melanocytes were compared, showing for example blebbing of the limiting membrane 

of the melanosome (Figure 5C-G). A similar melanosomal phenotype has been observed in 

melanocytes of the pearl (Ap3b1pe) mice, which are a model for Hermansky-Pudlak syndrome 

(HPS) (Nguyen et al., 2002). Nevertheless, MART-1 seems to be an unlikely candidate for 

HPS, since MART-1 expression is restricted to the pigment cell lineage, whereas HPS is a 

multiple-system disease affecting the lysosome related organelles from many different cell 



	 13	

types (Huizing et al., 2000). A link to HPS had equally been suggested due to the 

chromosomal localization of MART-1 next to identified coat color mutations of the HPS6 

gene. However, this has been subsequently ruled out by chromosomal in situ hybridization 

(Wright et al., 1997).  

The vesicles we observed in late stage melanosomes of MART-1-/- mice (Figure 5D-F) 

resemble autophagic vesicles. It might thus be possible that MART-1 loss triggers a chain of 

events that leads to melanosome autophagy. In this case the melanosomes would be lysed 

before and/or after being transferred to the neighboring keratinocytes. This would lead to a 

significant reduction in the number of healthy melanosomes successfully transferred to 

keratinocytes and due to the reduced number of melanosomes received by keratinocytes a 

reduction in total melanin content of hair and skin could be explained. This theory is also 

supported by several studies showing the involvement of autophagic processes in order to 

eliminate defective melanosomes (Boissy et al., 1986; Bomirski et al., 1987; Ho and 

Ganesan, 2011; Lazova et al., 2010; Lazova and Pawelek, 2009; Smith et al., 2005). The 

effect of MART-1 loss on melanosome numbers was not obvious. Nevertheless, we cannot 

exclude at this point that melanin synthesis is less efficient in such malformed melanosomes 

and might thus at least partially contribute to a lower melanin level. 

In the melanosome, MART-1 is located on the limiting membrane (De Maziere et al., 2002), 

and has no domains that would suggest an enzymatic role. Previous studies (Giordano et al., 

2009; Hoashi et al., 2005) showed that MART-1 might be involved in trafficking of 

melanosomal proteins. We observed an irregular membrane structure of the melanosomes of 

MART-1 knockout mice, which could be due to abnormal or increased fusion of transport 

vesicles. This observation indicates that MART-1 might play a role in vesicular trafficking.  
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There are no known MART-1 gene mutations and it has not been associated with any 

pigmentation disorders in humans, mice or zebrafish which might be explained partly by the 

small size of the gene. In addition, the expected effect of loss of MART-1 would only lead to 

a 25% reduction in total melanin content (Figure 2), and putative point mutations might not 

lead to loss-of-function alleles.  Thus, it would be difficult to detect a small reduction 

considering the variation of skin and hair color in humans. In conclusion, our results show 

that MART-1 affects melanosome morphology by a yet unidentified mechanism. Whereas 

deficiency of MART-1 is compatible with life, our results are consistent with an expression 

of MART-1 only in the pigment cell lineage, confirming that it is an appropriate target for 

melanoma therapy. Moreover, our results add MART-1 to the growing list of genes affecting 

coat color in mice. 

 

Methods 

Generation of the targeting vector and the knockout mice 

The targeting vector was constructed in separate steps (Rubera et al., 2002). The amplicons 

were amplified using a BAC clone (bMQ-318G24) (from 129S7/SvEv mice) as a template 

(Adams et al., 2005). First, the C1 plasmid was prepared by cloning the 5’ homologous arm 

(ApaI/XhoI fragment, exon 1 and intron 1, amplified with primers MKO_5F: AAAGGGCCC 

ATATGACATACAGAGCCAGACAGCA, MKO_5R: AAACTCGAG 

CTAAAGGAAGGGCACATAGGGATT) into K13pATRTneolox antisense (Trumpp et al., 

2001). Then C2 was constructed by cloning the 3’ homologous arm (HindIII fragment, from 

intron 3 to the end of exon 5, amplified with primers MKO3F: AAAAAGCTT 

GTGGGTAATGGTCCCCTGAAG, MKO3R: AAAGTTTAAAC 

AATATACATTGAGATGTTTATTG) into lox-targeting vector neo/Tk (Radtke et al., 1999). 
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The third construct, C3, was prepared by cloning the MART-1 vital region (NotI/AscI 

fragment, from exon 2 to the end of exon 3, amplified with primers MKO_VF: AAA 

GCGGCCGCGTGTCAGAGCCTGAACTAATCTGA, MKO_VR: AAAGGCGCGCC 

CACGAGATAGGAGAGAACCAACTC) into C2. The final targeting construct was 

prepared by cloning the MKO5-frt-Neo-frt-lox cassette (KpnI(blunt)/NotI fragment) from C1 

into C3. The targeting construct was sequenced and no mutations were found. In order to 

control the loxP sites, the targeting vector was transformed into 294-Cre E.coli cells 

(Buchholz et al., 1996) and a successful recombination was observed. The frt sites were 

tested by electroporating the targeting vector into EL250 E.coli cells (Lee et al., 2001). The 

construct was linearized and electroporated into mouse embryonic stem (ES) cells originated 

from 129/SvEv mice (Porret et al., 2006).  

After selection with G418 and Ganciclovir, 480 ES cell clones were obtained. The 

recombination was tested by PCR on genomic DNA extracts from ES cells. 5’ recombination 

was confirmed by PCR using the primers ES_5F: GGTAGAATGAAGTTGGTTTCTTTCA, 

5R: GAGACTAGTGAGACGTGCTACTTCC. 3’ recombination was confirmed by PCR 

using the primers ES_3F: CGCCATAACTTCGTATAGCATACAT, ES_3R1: 

AATTAATTGCATTACTGCCCAGAC, ES_3R2: GAGGATGGTTTTCTCCTCCTG. After 

confirmation of recombination by Southern blot analysis, one of the correctly recombined 

clones was selected, injected into 129/SvEv donor blastocysts and male chimeras that 

transmitted the targeted allele through the germline were obtained. 

Southern blot analysis 

20µg of ES cell DNA was digested overnight with BamHI, and subjected to Southern blot 

analysis. Briefly, digested DNA was separated on a 0.8% agarose gel, transferred onto a 

Hybond N+ membrane and hybridized with αP32-labeled DNA probes. A MART-1 probe 
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(1.6kb, isolated from 2.5::luc (Aydin and Beermann, 2009) by NcoI digestion) or a 

Neomycin probe (Merillat et al., 2009) were used for detection. The MART-1 probe allowed 

to distinguish the wildtype (13.9 kb) and recombined (9.5 kb) alleles, and correct insertion of 

Pgk-neo was confirmed with the Neomycin probe. 

Mouse care and genotype analysis 

The mouse colonies were maintained in the animal facility of the EPFL. All mouse work has 

been performed under authorization of cantonal authorities and was conducted according to 

Swiss guidelines. After breeding, the pups were weaned at P21 and ear biopsies were taken 

for genotype analysis. For genomic DNA extraction, ear biopsies were lysed in 300µl 50mM 

NaOH for 10 minutes at 95°C. Then 25µl 1M Tris-HCl (pH 8) were added, samples were 

vortexed and centrifuged at 12000xg at room temperature for 6 minutes. The supernatant was 

used for genotyping by PCR. For genotype analysis of the mice the following primers were 

used: MART-1 knockout (F1: ATCAAGCTGAAGGCCAGAGA, F2: 

CGAAGTGGATACAGA ACCTTGA, R: CACCCAGACTGACAAGCTGA), p16 knockout 

(1: TCCCTCTACTTTTTCTTCTGAC, 2: CGGAACGCAAATATCGCAC, 3: 

CTAGTGAGACGTGCTACTTC) (Lavado et al., 2005), Nestin::Cre (F: 

CTTGGCTTTGTACTTTCTGTGACTG, R: CCTCCATCCCAGACAAATACATTA C), 

hACTB::FLP (F: GTGGATCGATCCTACCCCTTGCG, R: 

GGTCCAACTGCAGCCCAAGCTT). 

RNA extraction, cDNA synthesis, RT-PCR 

For RNA extraction the TRIzol reagent (Invitrogen) was used. Frozen tissue samples 

(100mg) were pulverized in a mortar in liquid nitrogen, and the tissue powder was 

homogenized in 1ml TRIzol. For further steps, the manufacturer’s protocol was followed. 

The RNA concentration was spectrophotometrically measured and the quality of the samples 
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was assessed by gel electrophoresis. cDNA synthesis was performed using RevertAid H 

Minus First Strand cDNA synthesis kit (Fermentas). 3µg of RNA was used for each reaction, 

following the recommended protocol of the manufacturer. cDNA samples were used as a 

template for RT-PCR analysis. The following primers were used for the RT-PCR reactions 

(Aydin and Beermann, 2011): MART-1: F, ATTGCTCTGCTTATCGGCTGCT, 

R,CACCATTCCTCCAATATCCCTCT; tyrosinase: F, AAGTTTACCCAGAAGCCAATG, 

R, CTGTGGTAGTCGTCTTTGTC; Dct; F: AGCAGTATGGCTGGAGCACT, R: 

AGCCCTTTCCTCTCCTCTCA, GAPDH: F, CAAGGTCATCCATGACAACTTTG, R, 

GTCCACCACCCTGTTGCTGTAG. 

Isolation of melanocytes from dorsal skin 

In order to establish immortal melanocyte cell lines, MART-1 knockout mice were mated to 

Ink4a-Arf–/– mice that have been backcrossed to C57BL6/N mice for >10 generations 

(Sviderskaya et al., 2002). Newborn mice (24-36 hours) were used for the protocol developed 

by Sviderskaya et al (1997). Briefly, the day before isolation, XB2 mouse keratinocyte feeder 

cells were treated with Mitomycin C (Sigma). Dorsal skin was incubated in 0.5% Trypsin 

(Invitrogen) at 37°C for 1 hour. After trypsinization, the epidermis was separated carefully 

and minced in 0.025% Trypsin. In order to prevent fibroblast contamination, only the 

epidermis was used. The minced epidermis was then seeded on XB2 feeder cells in RPMI 

1640 containing GlutaMax I (Gibco) supplemented with 5 µg/ml soybean trypsin inhibitor, 

10% FCS (not inactivated), 200pM cholera toxin and 200nM TPA. The cells were maintained 

at 37°C in a 10% CO2 incubator. After isolation, the medium was changed every 3 days. On 

day 10-12, cells were harvested for the first time and reseeded on Mitomycin C-treated XB2 

cells. Once the culture was confluent, cells were harvested, counted and passaged. For the 

first 2-4 passages they were seeded on XB2 cells, thereafter they were weaned off the 
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feeders. Before Western blot and immunostaining experiments, cells were passaged at least 4 

times without XB2 feeders. 

Immunofluorescence staining of skin sections 

Skin samples were fixed in 4% PFA for 2-3 hours, and then dehydrated and embedded in 

paraffin. For immunostaining, 4µm sections were cut, deparaffinized and rehydrated. For 

antigen retrieval, sections were boiled for 25 minutes in Tris-EDTA (pH 9.0), and 

subsequently blocked in blocking buffer (1% serum / 2% BSA / 0.05% Tween) for 1 hour at 

room temperature. Primary antibodies were diluted in blocking buffer, and sections were 

incubated with primary antibodies at 4°C overnight. The sections were washed 3 times with 

PBS and incubated with secondary antibodies diluted in blocking buffer for 1 hour at room 

temperature. They were then washed and stained with DAPI, and again washed and mounted. 

The staining was observed under Zeiss AxioPlan (20X objective). Primary antibodies were as 

follows: rabbit anti-MART-1 (De Maziere et al., 2002; Kawakami et al., 1997) (provided by 

D. Rimoldi), rabbit anti-Tyrosinase (αPep7) (Jimenez et al., 1991), rabbit anti-Tyrp1 (αPep1) 

(Jimenez et al., 1988), rabbit anti-Dct (αPep8) (Tsukamoto et al., 1992) (all provided by V. 

Hearing), mouse anti-HMB45 (Santa Cruz Biotechnology), rabbit anti-Pmel17 (αPep13h, 

provided by M.S. Marks (Berson et al., 2001)), rat anti-LAMP2 (Developmental Studies 

Hybridoma Bank). 

Immunofluorescence staining of cultured mouse melanocytes 

For immunostaining, cells were grown for two days in FlexiPerm chambers (Sigma) mounted 

on glass slides coated with 0.0001% fibronectin. For the staining, the protocol used by 

Giordano et al. was followed (Giordano et al., 2009). Cells were washed with PBS at 37°C, 

and all the following steps were performed at room temperature. Cells were fixed with 4% 

PFA for 10 minutes, washed with PBS and quenched for 10 minutes with 50mM glycine and 
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then saturated with blocking buffer (BB, 1mg/ml BSA in PBS) for 5 minutes. Then cells were 

permeabilized in incubation buffer (IB, 0.05% saponin, 1mg/ml BSA in PBS) for 30-60 

minutes, and then incubated with primary antibodies diluted in IB for 45-60 minutes. Cells 

were washed 3 times with IB. They were incubated with secondary antibody diluted in IB for 

45-60 minutes, then washed once with IB and stained with DAPI, and washed twice with IB 

and once with BB, and then mounted. Samples were examined with Zeiss LSM 700 confocal 

laser scanning microscope. 

Measurement of hair and skin melanin content 

Hair samples were collected from 4 week-old MART-1+/+ and MART-1-/- mice. Melanin was 

extracted from 1mg of hair by alkali treatment in 1ml 1M NaOH at 85°C for 4 hours. The 

optical density of the samples was measured at a wavelength of 475nm. The measurements 

were performed in duplicates. 

The skin samples from 1 month-old MART-1+/+ (n=2) and MART-1-/- mice (n=2) were frozen 

in liquid nitrogen in small buckets of a micro-dismembrator and powdered by shaking the 

small buckets in three sessions. Eumelanin measurements were performed as originally 

described by Ito and Fujita (Ito and Fujita, 1985) with modifications (Alaluf et al., 2001). The 

samples were treated in a total reaction volume of 1 ml 0.86 M KCO3 by the addition of 40 µl 

9% H2O2. Then the tubes were heated in a Dri-Block for 20 min at 100°C. After cooling the 

samples the reaction was stopped by addition of 20 µl 10% Na2SO3. The samples were then 

extracted on a 1cc Oasis WAX cartridge (Waters, MA, USA) according to the instructions of 

the manufacturer. Briefly, the column was washed with 1 ml methanol, 1 ml dH2O. Then 1 

ml sample was applied (0.5 ml sample mixed with 0.5 ml 4% phosphoric acid), washed once 

with 1 ml 2% formic acid and once with 1 ml methanol. The samples were then eluted with 

1.5 ml 5% NH4OH in acetonitril:isopropanol (40:60) and dried under N2 (gas) flow at 40°C. 
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100 µl of the elution buffer was added to the dried sample and the sample was injected to the 

HPLC system.  

Electron microscopy 

Mice were anesthesized and fixation was carried out by cardiac perfusion of the fixative (2% 

paraformaldehyde/2.5% glutaraldehyde in 0.1M phosphate buffer pH 7.4) for 1 hour at room 

temperature. Skin samples were embedded in 5% agarose and 140µm sections were cut and 

fixed for 1 hour. After this fixation the samples were washed 3 times (5 minutes) in 0.1M 

cacodylate buffer, followed by an incubation in 1% osmium tetroxide for 40 minutes, and 

washed in ddH2O. The samples were stained in 1% uranyl acetate, dehydrated in a graded 

alcohol series, and embedded in Durcupan. 50 nm sections were taken on coated grids, which 

were contrasted in 1% uranyl for 10 minutes and 0.3% lead citrate for 5 minutes. The grids 

were imaged under Philips CM-10 transmission electron microscope. 
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Figure Legends 

Figure 1. Generation of constitutive and conditional MART-1 knockout alleles 

(A) Structure of the mouse MART-1 gene locus, the targeting vector (NEO, neomycin 

resistance cassette, TK, thymidine kinase), the predicted targeted allele (lox-neo), the floxed 

allele and the knockout allele (null) (not drawn to scale). Coding exons (black boxes) 2 and 3 

are located between the loxP sites, whereas exons 4 and 5 are on the targeting vector, but 

outside the loxP site. B, BamHI. Clones that are positive for recombination on both ends were 

detected by PCR. The 5' external probe (probe) was used to confirm the recombined allele 

following BamHI digestion of ES cell DNA (Figure 1B). Expected fragments of the 

recombined (9.5 kb) and wildtype allele (13.9 kb) are indicated. PCR primers used to 

distinguish the different alleles are indicated (see Materials and Methods).  

(B) Southern blot analysis of double resistant ES cell clones following electroporation with 

the targeting vector. ES cell DNA was digested with BamHI and hybridized with the 5' probe. 

Blots were rehybridzed with a probe recognizing the neomycin resistance cassette. 

(C) DNA-based PCR strategy of mice to distinguish the floxed, null and wildtype alleles.  

(D) Reverse transcription-PCR (RT-PCR) analysis of RNA isolated from newborn skin 

demonstrates absence of MART-1 transcripts from homozygous MART-1-/- mice whereas 

expression of tyrosinase and Dct seems not to be affected. Please note that the primers only 

cover the deleted region. NIH3T3, negative control, B16 mouse melanoma cells, positive 

control. GAPDH was used to control for integrity of RNA sample. 

(E) Western blot of extracts from melanocytes in culture shows the absence of MART-1 

protein (18 kDa) in homozgyous MART-1 knockout mice. α-tubulin was used to control 

equal loading. 
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(F) MART-1 expression was detected by immunostaining against MART-1 on wildtype 

melanocytes but not detected in MART-1 knockout melanocytes. Scale bar: 10 µm 

(G) MART-1-/- mice show a coat color phenotype. MART-1-/- mice are lighter than their 

MART-1+/- and MART-1+/+ littermates. 

 

Figure 2. Melanin is reduced in MART-1-/- mice.  

Melanin content of 4 week-old hair (A) and eumelanin content in skin (B) samples was 

measured by spectrophotometry and HPLC, respectively. Hair melanin content of 19 MART-

1+/+ and 12 MART-1-/- samples was measured by the OD at 475nm for 1 mg hair / 1ml 

NaOH (*** p<0.0001). Two skin samples (measurements were done in doubles) from each 

genotype were analyzed for eumelanin content by HPLC detection of the degradation 

products pyrole 2, 3, 5 tricarboxylic acid (PTCA) and pyrole 2, 3 dicarboxylic acid (PDCA). 

 

Figure 3. Pigment cell-specific proteins are expressed in MART-1-/- bulb melanocytes 

Skin sections of 1 month-old MART-1+/+ (A-E) and MART-1-/- (F-J) mice were stained 

against tyrosinase (A, F), Tyrp1 (B, G), Dct (C, H), and Pmel17 (with αPep13h antibody – D, 

I and with HMB45 antibody – E, J). The images show the bulb region of the anagen hair 

follicles where the mature melanocytes reside. No difference was observed in distribution of 

pigment cell-specific proteins upon MART-1 loss. Scale bar: 10 µm 

 

Figure 4. Pmel17 processing in mouse melanocytes is not affected upon MART-1 loss 
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Pmel17 processing was tested by Western blot analysis. Protein extracts from MART-1+/+ 

melanocyte cell line and three different MART-1-/- melanocyte cell lines were analyzed. 

melan-a cell line (mouse melanocyte) was used as a positive control and NIH3T3 cell line 

(mouse fibroblasts) was used as negative control. Antibody against α-tubulin was used to 

control equal loading. Arrows indicate the corresponding fragments. Size of the protein 

ladder is indicated on the left. 

(A) Pmel17 processing was visualized by Western blot analysis using the αPep13h antibody. 

αPep13h recognizes the immature P1 form and the cleavage product Mβ. 

(B) HMB45 antibody recognizes the Mα and MαC fragments of Pmel17. Western blot 

against Pmel17 using HMB45 antibody showed that MαC fragments were produced in 

MART-1-/- melanocytes.  

(C) The MαC fragments are mostly insoluble in detergents. The production of mature fibrils 

was detected in the insoluble protein fraction using HMB45 antibody. 

(D) Pmel17 protein is processed during melanosome biogenesis. The unprocessed form is the 

P1 form. Arrowheads represent the proteolytic cleavage sites. The recognition sites of 

αPep13h and HMB45 antibodies are marked, adapted from Kummer et al (Kummer et al., 

2009). 

 

Figure 5. Ultrastructure of skin sections of wildtype and knockout mice reveals 

abnormal melanosomes 

Ultrastructure of skin samples from MART-1+/+ (A) and MART-1-/- mice (B) revealed that 

melanosomes of hair bulb melanocytes in knockout mice were morphologically deformed. 

(C-G) Higher magnification micrographs of melanosomes of MART-1 knockout mice show 
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examples of blebbing of the limiting membrane and presence of presumable autophagic 

vesicles. (H, I) In mice carrying the classical albino mutation (Tyrc), melanosomes only reach 

immature stages I (arrows) and II (arrowheads). Ultrastructure analysis revealed no 

abnormalites and differences when comparing MART-1-/- and MART+/+ mice on an albino 

(Tyrc) background. Scale bar: 40 µm. 
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Supplementary Figure legends 

 
 

Figure S1.  Distribution of Tyrp1 and Pmel17 in wildtype and knockout 
melanocytes 
 

Melanocytes extracted from MART-1+/+ (A-B) and MART-1-/- (C-D) mice were 

cultured and stained against, Tyrp1 (A, C), and Pmel17 (B, D). In addition, the cells 

were co-stained against LAMP2 (a lysosomal marker). The images did not reveal any 

difference in subcellular distribution of Tyrp1 and Pmel17 upon MART-1 loss. In 

addition to these stainings, HMB45 and Pmel-N antibodies were also used to 

observe the distribution on Pmel17 protein in different stages of melanogenesis (not 
shown), and no differences were observed upon MART-1 loss. Scale bar: 10 μm 

 

Figure S2. Ultrastructure of RPE layer of wildtype and knockout mice 

Ultrastructure of eye samples from MART-1+/+ (A) and MART-1-/- mice (B) showed 

that the melanosomes in the RPE cells were not affected by loss of MART-1. Scale 
bar: 1 μm. 
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