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Abstract

Colorectal cancer (CRC) is a frequently lethal disease with heterogeneous outcomes and drug 

responses. To resolve inconsistencies among the reported gene expression–based CRC 

classifications and facilitate clinical translation, we formed an international consortium dedicated 

to large-scale data sharing and analytics across expert groups. We show marked interconnectivity 

between six independent classification systems coalescing into four consensus molecular subtypes 

(CMS) with distinguishing features: CMS1 (MSI Immune, 14%), hypermutated, microsatellite 

unstable, strong immune activation; CMS2 (Canonical, 37%), epithelial, chromosomally unstable, 

marked WNT and MYC signaling activation; CMS3 (Metabolic, 13%), epithelial, evident 

metabolic dysregulation; and CMS4 (Mesenchymal, 23%), prominent transforming growth factor 

β activation, stromal invasion, and angiogenesis. Samples with mixed features (13%) possibly 

represent a transition phenotype or intra-tumoral heterogeneity. We consider the CMS groups the 

most robust classification system currently available for CRC – with clear biological 

interpretability – and the basis for future clinical stratification and subtype–based targeted 

interventions.

Introduction

Gene expression-based subtyping is widely accepted as a relevant source of disease 

stratification1. Despite the widespread use, its translational and clinical utility is hampered 

by discrepant results, likely related to differences in data processing and algorithms applied 

to diverse patient cohorts, sample preparation methods, and gene expression platforms. In 

the absence of a clear methodological gold standard to perform such analyses, a more 

general framework that integrates and compares multiple strategies is needed to define 

common disease patterns in a principled, unbiased manner. Here, we describe such a 

framework and its application to elucidate the intrinsic subtypes of colorectal cancer (CRC).

Inspection of the published gene expression-based CRC classifications2–9 revealed only 

superficial similarities. For example, all groups identified one tumor subtype enriched for 

microsatellite instability (MSI) and one subtype characterized by high expression of 

mesenchymal genes, but failed to achieve full consistency among the other subtypes. We 

envisioned that a comprehensive cross-comparison of subtype assignments obtained by the 

various approaches on a common set of samples could resolve inconsistencies in both the 

number and interpretation of CRC subtypes. The CRC Subtyping Consortium (CRCSC) was 

formed to assess the presence or absence of core subtype patterns among existing gene 

expression-based CRC subtyping algorithms. Recognizing that transcriptomics represents 

the level of high-throughput molecular data that is most intimately linked to cellular/tumor 

phenotype and clinical behavior, we also wanted to characterize the key biological features 

of the core subtypes, integrate and confront all other available data sources (mutation, copy 

number, methylation, microRNA, proteomics), and assess whether the subtype assignment 
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correlated with patient outcome. Furthermore, our aim was to establish an important 

paradigm for collaborative, community-based cancer subtyping that will facilitate the 

translation of molecular subtypes into the clinic, not only for CRC but other malignancies as 

well.

Results

Comparison of published molecular subtyping platforms

We evaluated the results of six CRC subtyping algorithms3–8, each developed independently 

utilizing different gene expression data sets and analytical approaches (Supplementary 

Tables 1 and 2). Figure 1 summarizes the workflow of our analysis. Eighteen CRC data sets 

(n = 4,151 patients), both public (GSE42284, GSE33113, GSE39582, GSE35896, 

GSE13067, GSE13294, GSE14333, GSE17536, GSE20916, GSE2109, GSE2109, TCGA) 

and proprietary3,10 (Supplementary Table 3), consisting of multiple gene expression 

platforms (Affymetrix, Agilent, and RNA-sequencing), sample types (fresh-frozen and 

formalin-fixed paraffin-embedded [FFPE]), and study designs (retrospective and prospective 

series, and one clinical trial10) were uniformly pre-processed and normalized from raw 

formats to reduce technical variation. The six expert groups applied their subtyping 

classification algorithm to each of the data sets separately to ensure correct method 

utilization and interpretation of results. The output of this workflow was six different 

subtype labels per sample.

We developed a network-based approach to study the association among the six CRC 

classification systems, each consisting of three to six subtypes and collectively numbering 

27 unique subtype labels. In this association network, nodes corresponded to the union of all 

group subtypes (n = 27), and weighted edges encoded the Jaccard similarity coefficients 

between nodes. We then applied a Markov Cluster (MCL) algorithm11,12 to this network to 

detect the presence of robust network substructures that would indicate recurring subtype 

patterns. During network clustering using MCL, network granularity is controlled by 

inflation factor f, which is associated with the number of clusters11,12. For varying inflation 

factors, we compared the corresponding clustering performances using weighted silhouette 

width (Online Methods). Using the optimal inflation factor (Supplementary Fig. 1), we 

identified four robust consensus molecular subtypes (CMS) with significant 

interconnectivity (P <0.001, hypergeometric test) among the six independent classification 

systems (Fig. 2a,b). The network-based approach revealed a set of core consensus samples, 

i.e., tumors representative of each CMS (3,104 of 3,962 samples [78%]) with a high 

concordance in subtype labels among the groups (P <0.05, hypergeometric test). The 

remaining unlabeled (non-consensus) samples, which did not have a consistent pattern of 

subtype label association, represented a substantial proportion of primary tumors (n = 858 

[22%]) (Fig. 2b). Importantly, these samples were distributed across all data sets 

(Supplementary Fig. 2). In addition, visualization of the global patient network revealed that 

non-consensus samples remained scattered between the four large primary modules (Fig. 

2c).
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Consensus molecular subtype classification

Using the CMS labels of the core consensus samples as a ‘gold standard’, we developed a 

novel classification framework for predicting CMS subtypes using aggregated gene 

expression data from all cohorts (Online Methods). CMS labeled samples were split into 

two equal partitions for training and validation, and a Random Forest classifier was 

generated from 500 balanced bootstraps of the training data. When applied to the validation 

data, the classifier demonstrated robust performance across gene expression platforms 

(Affymetrix, Agilent, and RNA-sequencing) and sample collections (FFPE, fresh-frozen) 

with a >90% balanced accuracy across all subtypes (Supplementary Table 4, Supplementary 

Fig. 3). This corroborates both the portability of the classifier as well as the evident subtype-

specific signals across datasets.

The CMS classifier allowed characterization of the originally unlabeled samples from 

network analysis (n = 858). Using a conservative posterior probability threshold with high 

specificity (Online Methods), we were able to assign 40% of these samples (n = 339) to a 

single subtype (Supplementary Fig. 4) and the remaining unclassified samples (n = 519 

[13% of the overall population]) had heterogeneous patterns of CMS mixtures 

(Supplementary Fig. 5). We confirmed that ‘mixed’ samples were not outliers and did not 

represent a fifth independent subtype (Supplementary Fig. 5), although the quality of gene 

expression data could have affected a small subset of samples (Online Methods). The final 

distribution of the CMS groups is shown in Fig. 2d, including ‘mixed’ or indeterminate 

samples.

Biological characterization of the consensus molecular subtypes

We studied additional molecular data that was available for a subset of the samples in our 

cohort (Supplementary Table 3) to delineate the biological characteristics of each CMS 

group. With respect to genomic aberrations, CMS1 samples were hypermutated and had low 

prevalence of somatic copy number alterations (SCNAs) (Fig. 3a–c and e, Supplementary 

Tables 5 and 6). CMS1 encompassed the majority of MSI tumors and had overexpression of 

proteins involved in DNA damage repair in reverse phase protein array (RPPA) analysis, 

consistent with defective DNA mismatch repair (Supplementary Table 7). As expected, 

analysis of methylation profiles in TCGA showed that CMS1 tumors display a widespread 

hypermethylation status (Fig. 3f, Supplementary Fig. 6). Conversely, CMS2-4 displayed 

higher chromosomal instability (CIN) as measured by SCNA counts (Fig. 3b, 

Supplementary Table 5). We detected more frequent copy number gains in oncogenes and 

losses in tumor suppressor genes in CMS2 than in the other subtypes (Supplementary Table 

6). Notably, CMS3 samples had a distinctive global genomic and epigenomic profile as 

compared with other CIN tumors: (i) consistently fewer SCNAs (Fig. 3b,c and e, 

Supplementary Table 5), an association not explained by differences in tumor purity 

(Supplementary Fig. 7, Supplementary Table 5); (ii) nearly 30% were hypermutated (Fig. 

3c, Supplementary Table 5), which overlapped with MSI status (Supplementary Fig. 7); and 

(iii) higher prevalence of CpG Island Methylator Phenotype (CIMP) low cluster in TCGA 

samples (Fig. 3c, Supplementary Table 5), with intermediate levels of gene 

hypermethylation (Fig. 3f).

Guinney et al. Page 4

Nat Med. Author manuscript; available in PMC 2016 May 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Next, we sought to identify mutations that specifically associate with the CMS groups. 

Although we found clear enrichment of certain mutations within subtypes (Fig. 3d, 

Supplementary Tables 5 and 8), e.g. BRAF mutations frequently occurring in CMS1 – in line 

with the known association of this event with MSI tumors2 – and KRAS mutations 

overrepresented in CMS3, none of the subtypes is defined by an individual event, nor is any 

genetic aberration limited to a subtype. Similarly, we detected no unique and recurrent 

SCNA that strongly associated with a subtype, albeit amplifications of the transcription 

factor HNF4A were enriched in CMS2 (Supplementary Tables 5 and 6). Since single 

genomic aberrations do not clearly delineate the CMS groups, we performed an integrative 

analysis of mutations and copy number events using TCGA data to find signal transduction 

cascades that might underlie the biology of the various subtypes. Apart from the nearly 

universal genetic activation of the receptor tyrosine kinase (RTK) and mitogen activated 

protein kinase (MAPK) pathways in CMS1 and CMS3, no specific associations were 

identified (Supplementary Fig. 7, Supplementary Table 5). This supports the notion that 

tumors harboring commonly assumed driver events in CRC still vary significantly in their 

biology and highlights the very poor genotype-phenotype correlations in this disease.

We then focused on the gene expression data and performed gene set enrichment analysis 

using previously described signatures of pathway activity and well-characterized cellular 

processes. These analyses provided substantial insight into the biological understanding of 

the CMS groups (Fig. 3i, Supplementary Table 9). CMS1 is characterized by increased 

expression of genes associated with a diffuse immune infiltrate, mainly composed of TH1 

and cytotoxic T cells, along with strong activation of immune evasion pathways, an 

emerging feature of MSI CRC13 (Fig. 3i, Supplementary Table 9). CMS2 tumors displayed 

epithelial differentiation and strong upregulation of WNT and MYC downstream targets, 

classically implicated in CRC carcinogenesis (Fig. 2i, Supplementary Table 9). In contrast, 

enrichment for multiple metabolism signatures was pronounced in CMS3 epithelial CRCs, 

in line with the occurrence of KRAS activating mutations described as inducing prominent 

metabolic adaptation14–17 (Fig. 3i, Supplementary Table 9). Interestingly, CMS3 tumors 

displayed similarities with a ‘metabolic’, genomically stable subtype recently described in 

gastric cancer18,19. Finally, CMS4 tumors showed clear upregulation of genes implicated in 

epithelial mesenchymal transition (EMT) and signatures associated with the activation of 

transforming growth factor β (TGF β) signaling, angiogenesis, matrix remodeling pathways 

and complement inflammatory system (Fig. 3i, Supplementary Table 9). In addition, CMS4 

samples exhibited a gene expression profile compatible with stromal infiltration (Fig. 3i, 

Supplementary Table 9), overexpression of extracellular matrix proteins on RPPA analysis 

(Supplementary Table 7), and higher admixture with non–cancer cells, as measured by the 

ABSOLUTE algorithm20 (Supplementary Fig. 7, Supplementary Table 5).

To assess whether gene expression–based subtypes are recapitulated at the protein level, we 

compared our CMS groups with the recently characterized proteomic clusters in TCGA 

samples (n = 81)21. We observed a partial concordance between the two classification 

systems and could describe an approximate mapping between the subtype groups 

(Supplementary Table 10). In a supervised analysis (Fig. 3g), CMS1 tumors showed 

upregulation of proteins involved in immune response pathways, while CMS4 samples had 
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significant overexpression of proteins implicated in stromal invasion, mesenchymal 

activation, and complement pathways (Fig. 3j, Supplementary Table 11).

In addition, to interrogate posttranscriptional regulation of gene expression across CMS 

groups, we performed supervised microRNA (miR) analysis, identifying significant subtype 

specific miR regulation changes (Fig. 3h, Supplementary Fig. 8, Supplementary Table 12). 

Of particular note, CMS2 tumors showed upregulation of the miR-17-92 cluster, a direct 

transcriptional target of MYC22; CMS3 samples had low expression of the let-7 miR family, 

which is accompanied by high KRAS expression levels, whereas the miR-200 family, 

previously implicated in regulation of EMT, showed clear downregulation in CMS423,24.

Finally, we also compared gene expression patterns of CRC tumors with: (a) adjacent 

normal colon tissue from patients with colon cancer, (n = 19); and (b) left colon tissue from 

non-cancer individuals (n = 64) (Online Methods). Global PCA analysis revealed that 

normal samples were clearly differentiated from tumor samples in both cohorts 

(Supplementary Fig. 9). Although CMS3 tumors appeared more ‘normal’-like at the gene 

expression level (Supplementary Fig. 9), we did not find greater normal tissue 

contamination in CMS3 group after pathological review of a subset of samples from 

PETACC-3 clinical trial10, as well as ABSOLUTE tumor purity scores in TCGA data 

(Supplementary Fig. 7, Supplementary Table 5).

Clinical and prognostic associations of the consensus molecular subtypes

We also found important associations between CMS groups and clinical variables (Fig. 4, 

Supplementary Table 5). CMS1 tumors were frequently diagnosed in females with right-

sided lesions (Fig. 4a,b, Supplementary Fig. 10 and Supplementary Table 5) and presented 

with higher histopathological grade (Fig. 4d, Supplementary Table 5). Conversely, CMS2 

tumors were mainly left-sided (Fig. 4b, Supplementary Fig. 10 and Supplementary Table 5). 

CMS4 tumors tended to be diagnosed at more advanced stages (III and IV) (Fig. 4c, 

Supplementary Table 5). To determine whether the CMS groups differed in outcome, we 

performed a Cox Proportional Hazards analysis on the combined data sets and separately in 

the subset of patients enrolled in a clinical trial with uniform follow-up (PETACC-3 clinical 

trial10) (Supplementary Table 13, Supplementary Fig. 11). Irrespective of patient cohort, 

CMS4 tumors displayed worse overall survival (Fig. 4e) and relapse-free survival (Fig. 4f) 

in both univariate and multivariate analyses, after adjustment for clinicopathological 

features, MSI status, and BRAF and KRAS mutations (Supplementary Table 13). We also 

found superior survival after relapse in CMS2 patients (Fig. 4g), with a larger proportion of 

long-term survivors in this subset. Interestingly, the CMS1 population had very poor 

survival after relapse (Fig. 4g), in agreement with recent studies showing worse prognosis of 

patients with MSI and BRAF-mutated CRC that recur25–27. These differences in prognosis 

with unsupervised gene expression signatures confirm the clinical relevance of the intrinsic 

biological processes implicated in each CMS.

Discussion

This report is a unique example of a discovery effort performed by a community of experts 

to identify a consensus gene expression–based subtyping of CRC. Thanks to collaborative 
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bioinformatics work on the largest collection of CRC cohorts with molecular annotation to 

date, and building upon previous efforts by the independent researchers, the consortium 

resulted in a consensus molecular classification system that allows the categorization of 

most tumors into one of four robust subtypes. Marked differences in the intrinsic biological 

underpinnings of each subtype support the new taxonomy of this disease (Fig. 5) that will 

facilitate future research in this field and should be adopted by the community for CRC 

stratification: CMS1 (MSI Immune), CMS2 (Canonical), CMS3 (Metabolic), and CMS4 

(Mesenchymal). From a biological perspective, we were able to refine the number and 

interpretation of the ‘non-MSI’ subtypes, which represent nearly 85% of the primary CRC 

samples. We also describe strong molecular associations where previous work was 

fragmented and inconsistent, particularly in samples lacking a mesenchymal phenotype. 

From a clinical perspective, in CRC as for many cancer types, it remains unclear what 

features will provide the most relevant subclassification tool. Gene expression subtypes have 

been extensively investigated in breast cancer, gene mutations and fusions in lung cancer, 

chromosomal alterations in hematological malignancies and histological features in 

sarcomas, but whether combinations of these features is needed for accurate prediction of 

prognosis or drug responses is still unknown. In CRC, few biomarkers have been translated 

to patient care, including RAS, BRAF mutations, MSI and CIMP status. It is important to 

emphasize that even though the CMS groups are enriched for some genomic and epigenomic 

markers, their associations described here are weak and do not allow categorization of gene 

expression subtypes, reinforcing the notion that transcriptional signatures allow refinement 

of disease subclassification beyond what can be achieved by currently validated 

biomarkers28. For example, RAS wild type tumors are considered a homogenous entity for 

therapeutic decisions in the advanced setting, despite being found across distinct CMS 

groups with profound biological differences, which are expected to translate into 

heterogeneous drug responses.

Future steps and resources

Qualitative and clinically relevant disease subtyping takes time and multiple resources. Our 

effort of CRC subclassification is a stepwise process aiming to involve a large number of 

relevant researchers from the CRC research community at first, and then subsequently 

cooperative groups, pharmaceutical companies and regulatory agencies. We postulate that 

the identification of molecularly homogeneous subsets of CRC tumors – and the 

characterization of potential driver events in these samples – will advance effective drug 

development strategies. Recently, MSI status was found to predict benefit of immune 

checkpoint blockade in advanced CRC, corroborating the value of integrating knowledge on 

the underlying biology with drug development strategies29. While admittedly speculative at 

this point, oncogene amplifications found in CMS2 samples and the prominent metabolic 

activation of CMS3 tumors have strong potential for novel targeted therapy development in 

CRC, and yield a well-defined and reasonably sized group in which to test these hypotheses.

Subclassification per se, even when built on what are believed to be relevant features of 

cancer cells such as expression of cancer pathway components or driver gene mutations, 

may still not be predictive of differential drug responses. This can be due to the drugs 

themselves, with promiscuous mechanisms of action that may not track well with single 
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pathway descriptors, or our inability to properly define pathway engagement or cross-talk 

using static omics data. Reanalysis of relevant clinical trials using semi-supervised 

approaches based on pre-defined patient subgroups and allowing for further discovery based 

on observed outcomes may be the best alternative for the research community. Our current 

work, providing the consensual best description of CRC heterogeneity available today, aims 

at providing exactly that tool for systematic interrogation in different clinical settings. It will 

also accelerate the application of gene classifications to cell lines, organoids and patient-

derived xenograft models with drug sensitivity data.

To enable retrospective and prospective stratified explorations, we are releasing a set of 

CMS classifiers to be used by the community as research tools (R package available for 

download, see Online Methods), either in the context of population studies (original 

Random Forest classifier described above, which requires data normalization) or for use in a 

single sample setting (alternative Pearson-based predictor, optimized to be less dependent on 

pre-processing of gene expression data). Importantly, samples that do not fall within the four 

CMS groups should be considered separately as indeterminate subtypes, yet of unknown 

biological and clinical behavior.

To conclude, we believe that the framework presented here provides a common foundation 

of CRC subtyping, to be further refined in the future as other sources of ‘omics’ data are 

integrated and clinical outcomes under specific drug interventions become available. We 

hope that this model of expert collaboration and data sharing among independent groups 

with strong clinical and preclinical expertise will be emulated by other disease areas to 

accelerate our understanding of tumor biology.

Online Methods

1. Overall design

The design and workflow of this project is described in Figure 1. There were six 

participating groups, each who had previously developed and published a methodology for 

classifying CRC samples using gene expression data (described below). An additional group 

was designated as an “evaluation group” (Sage Bionetworks) to run an unbiased 

comparative analysis. All public and proprietary data sets (Supplementary Table 1) were 

uploaded into a common data repository (www.synapse.org)31. This project focused on the 

secondary analysis of existing de-identified genomic and clinical data. No readily 

identifiable information was included in these data sets and all patients had previously given 

informed consent for use of the data in future CRC research at time of specimen collection. 

Gene expression data was accessible to all groups, and non-expression data (i.e. clinical, 

molecular annotations) were accessible only to the evaluation group. Each data set was 

processed and normalized once, using a single protocol per platform (see section on “Gene 

expression processing and normalization”). While this decision precluded an analysis of the 

impact of gene expression normalization on subtyping, it significantly reduced the number 

of cross-group comparisons, and allowed this study to focus on biological interpretations of 

the different subtypes rather than on bioinformatic procedures. Each group then applied their 

subtyping classifier to the data sets in the common repository. Of note, the distribution of 

subtypes labels from each group as reported in corresponding subtyping publications was 
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maintained in the collection of data sets form the consortium (Supplementary Fig. 12). All 

results were deposited in Synapse, allowing for an automated evaluation of all results.

2. Colorectal cancer subtyping platforms

A summary of the six subtyping platforms is provided in Supplementary Tables 1 and 2. 

This includes enumeration of the methodologies and data used to define CRC subtypes, and 

molecular characterization of each of these subtypes.

2.1. Group A—Budinska, et al, 20134: Based on a discovery data set consisting of 1,113 

CRC samples and 3,025 genes with variance exceeding a given threshold, we applied 

hierarchical clustering to the genes, followed by dynamic tree cut to produce 54 gene 

modules containing in total 658 genes, as described by Budinska et al. For each sample we 

then computed a vector of meta-gene scores by taking the median of the expression values 

for the genes in each module. On the resulting meta-gene expression matrix we applied 

hierarchical clustering using a consensus distance, followed by dendrogram pruning, which 

identified five distinct subtypes. A subset of the samples, which were reliably assigned to a 

subtype (so called core samples), was used to define a classifier. To build the classifier, we 

first converted the expression values for each gene to z-scores by subtracting the mean and 

dividing by the standard deviation across the core samples. Then, we computed meta-gene 

scores by taking the median of the expression values for each sample across the genes in 

each of the previously defined modules. The resulting meta-gene expression matrix was 

used as the input to train a linear discriminant analysis (LDA) classifier for the five 

subtypes. To subtype the samples of an independent data set, we first computed z-scores for 

each gene across all samples, followed by meta-gene score computation as described above. 

After this preparation, the independent data set was submitted to the pre-trained LDA. For 

each sample, this returns the probability of belonging to each of the subtypes. In cases where 

a non-probabilistic partition of the samples into groups is sought, each sample is assigned to 

the subtype with the highest probability.

2.2. Group B—Marisa, et al, 20138: A multicenter series of 556 fresh frozen tumor 

samples of patients with stage I to IV colon cancer, mainly retrospectively collected, was 

used (GSE39582, Affymetrix U133plus2 platform). All the expression profiles were 

normalized together using the RMA method. The ComBat method32 was then used to 

correct technical batch effects. The resulting matrix was row-mean-centered. Our series was 

then split into a training set (n = 433) and a validation set (n = 123). CRC subtypes were 

derived from the training set, by applying consensus hierarchical clustering (consensus 

cluster plus procedure) to the expression profiles reduced to the most variant probe sets (n = 

1,459). The consensus was calculated across 1,000 resampling iterations of the hierarchical 

clustering (linkage: Ward; inter-individual distance: 1 - Pearson correlation coefficient), 

each iteration being based on a random selection of 90% of the samples and 90% of the 

probe sets. To predict subtypes in independent data sets, we developed a centroid-based 

predictor using the most discriminative genes (57 genes). A tumor was assigned to the 

subtype of the closest centroid using diagonal LDA distance for Affymetrix data set and (1-

Pearson correlation) for non-Affymetrix data sets. The confidence call of the prediction 
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(posterior probability approach) was determined using the distribution of the difference 

between the two nearest centroids on the training set.

2.3. Group C—Roepman, et al, 20143: Using Agilent microarray based full genome 

expression data of 188 stage I–IV CRC patients, an unsupervised clustering revealed three 

major subtypes (A-, B-, C-type). A single sample molecular subtype classifier (Pearson 

correlation based nearest centroid model) was developed and validated in 543 stage II and 

III patients. In this consensus effort, additional CRC sample that were hybridized onto the 

same Agilent platform were analyzed using the exact same method as described in detail in 

Roepman et al, 2014. CRC samples analyzed on the Agilent platform were preprocessed by 

median centering within each of the Agilent data set. Following median centering, subtype 

similarity scores for A-type, B-type and C-type were processed similarly as the Agilent 

derived data.

2.4. Group D—De Sousa E Melo, et al, 20137: A colon cancer subtype (CCS) classifier 

was derived from unsupervised classification of the core data set AMC-AJCCII-90, 

consisting of 90 stage II colon cancer patients (GSE33113). The microarray data were first 

normalized using the frozen robust multiarray analysis (fRMA)33, with gene expression 

presence and absence called using the barcode algorithm34. After filtering out genes not 

present in at least one sample, 7,846 probe sets of top variability (median absolute deviation 

>0.5) were kept and median centered. Based on consensus clustering (1000 iterations, 0.98 

subsampling ratio) and GAP statistics, we identified three robust clusters. Eighty-five 

samples with positive silhouette width were considered as the most representative samples 

and retained for following analysis. In order to allow cross-platform classification, we 

mapped probe sets to unique genes: for each gene we kept its corresponding probe set with 

highest overall expression. Significance analysis of microarrays (SAM)35 and AUC (area 

under ROC curve) scores were employed to identify the most discriminative genes. 

Prediction analysis for microarrays (PAM)36 was subsequently performed with tenfold 

cross-validation over a range of centroid shrinkage thresholds for 1000 iterations. Finally, a 

PAM classifier of 146 unique genes was built with the optimal threshold for centroid 

shrinkage selected based on a trade-off between classification performance (error rate <2%) 

and the size of gene signature. To use the CCS classifier, expression profiles obtained after 

normalization were median centered across cancer samples. For microarray data generated 

based on platforms other than Affymetrix Human Genome U133 Plus 2.0, probe sets were 

mapped to gene symbols. Signature genes without annotation were substituted by genes with 

highest correlation as calculated from our core data set. Median centered expression profiles 

of signature genes were subjected to CCS classifier for subtype prediction, which returns the 

posterior probability that a cancer sample belongs to each subtype. Each cancer sample is 

subsequently classified to the subtype with the highest probability.

2.5. Group E—Sadanandam, et al, 20136: The five CRCassigner subtypes were defined 

using non-negative matrix factorization (NMF)-based consensus37 clustering of two publicly 

available gene expression profile data sets (GSE13294 and GSE14333) merged using the 

distance weighted discrimination method38. Statistical analysis of microarrays (SAM)35 was 

then used to identify the most significant differentially expressed genes between subtypes. 
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The prediction analysis for microarrays (PAM)-based shrunken centroid method36 (with ten-

fold cross validation) was used to define a 786-gene classifier (CRCassigner-786; PAM 

centroids) to assign individual CRC samples to one of five CRCassigner subtypes6. Here we 

classified the samples into five subtypes using the PAM centroids for CRCassigner-786 

genes and Pearson correlations, which is different from our original publication. This 

method was chosen to unambiguously assign each sample to one of the five subtype labels 

based on correlations and to ensure consistency between the methodologies used by the 

groups in this consortium. Before subtyping, probe sets were mapped to their corresponding 

HUGO gene nomenclature committee (HGNC)-based official gene symbols. We also: (i) 

removed probes that did not map to any known gene symbol; (ii) removed duplicate genes 

by selecting probes with highest variability; and (iii) performed row (across samples) 

median centering for each data set. Finally, the CRCassigner-786 genes were selected from 

the data sets. Pearson correlations between median-centered CRCassigner-786 gene 

expression data for each sample and the PAM centroids were estimated for a given data set.

2.6. Group F—Schlicker, et al, 20125: We derived CRC subtypes by applying iterative 

non-negative matrix factorization (iNMF) to data set GSE35896. Raw gene expression data 

were first normalized using the RMA procedure and subsequently mean-centered. Probes 

that were not expressed in any tumor sample were removed from the data set. Briefly, iNMF 

proceeds in the following steps. First, we applied non-negative matrix factorization (NMF) 

to 100 randomly selected groups of probe sets. Second, we hierarchically clustered samples 

based on how often they co-clustered in the 100 NMF runs and selected core clusters 

consisting of frequently co-clustering samples. Third, probe sets that were differentially 

expressed between the core clusters were selected as subtype signatures and all samples 

were assigned to subtypes by hierarchical clustering. Iteratively applying this procedure 

resulted in identification of five CRC subtypes. Independent data sets are subtyped by 

hierarchically clustering the samples using the expression signatures. In order to derive a 

probability value for a subtype assignment, we performed the hierarchical clustering on 

10000 randomly selected bootstraps. The subtype probability is then defined as relative 

frequency with which a sample has been assigned to each subtype.

3. Gene expression data processing and normalization

The publicly available data sets with CRC tumor samples from the Gene Expression 

Omnibus (Supplementary Table 3) were normalized using the robust multi-array average 

(RMA) method as implemented in the affy package39. Overlapping samples in GSE14333 

and GSE17536 were excluded from GSE14333. For consensus network analysis and 

training a consensus subtype classifier, all private and public Affymetrix data sets were 

renormalized using the single-sample frozen RMA method33 as implemented in the frma 

package for R/Bioconductor.

Several of the CRC tumor sets were analysed on full genome Agilent microarrays (Agilent, 

Santa Clara). Samples were hybridized against a common CRC reference pool, and full 

genome data was normalized using loess and local background subtraction (limma package). 

Details about sample processing and microarray analysis can be found in Roepman et al.3.
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Level 3 TCGA RNA-seq data for colon and rectal was downloaded from the TCGA data 

portal (January 2014). RSEM normalized data40 was further log transformed, and non-tumor 

samples were removed. Principal component analysis (PCA) revealed no clear differences 

between rectal and colon samples (data not shown) and samples were combined without 

adjustment. PCA showed a strong separation between GA and HiSeq samples, and corrected 

using the ComBat method32.

We additionally performed outlier sample detection within each data set using 2 methods: a 

method based on PCA, and the arrayQualityMetrics R package41. For the PCA approach, 

we took into account the first two principal components and marked all samples with a 

distance greater than 2.5 as potential outliers. We next employed arrayQualityMetrics to 

flag outliers based on pairwise sample distances, gene expression value distributions and 

MA plots (MA plots were not investigated for Agilent-based expression data sets). Overall, 

a sample was classified as outlier if it was flagged based on the distribution of gene 

expression values and either pairwise distances to other samples or the PCA criterion. 

Outliers were removed from further analysis.

4. Network analysis of subtype association

To study the association between the six CRC classification systems (A to F, each consisting 

of 3, 5 or 6 subtypes and totaling 27) we employed a network-based approach. The network 

encodes on nodes the information of subtype prevalence and on edges their association 

calculated based on Jaccard similarity coefficient, which is defined by the size of the 

intersection between two sample sets over the size of their union. To quantify the statistical 

significance of subtype associations, we performed hypergeometric tests for 

overrepresentation of samples classified to one subtype in another. The resulting P values 

were adjusted for multiple hypotheses testing using the Benjamini–Hochberg (BH) method. 

Using this approach, we built a network consisting of the total 27 subtypes defined in the six 

different subtyping systems, interconnected by 96 significant (BH-corrected P value <0.001) 

edges.

4.1. Identification of consensus subtypes—To identify consensus groups from the 

network of subtype association, we used a consensus clustering approach involving the 

following steps:

a. Network construction. Using the approach described above, 80% patient samples 

are randomly selected to generate a network of subtype association.

b. Network clustering. The network generated is partitioned into clusters using MCL 

(Markov cluster algorithm)11,12, which is a scalable and efficient unsupervised 

cluster algorithm for networks.

c. Cluster evaluation. Steps (1) and (2) are repeated for n = 1000 times. From all 

clustering results, we calculated a 27 × 27 consensus matrix, defined by the 

frequency that each pair of subtypes is partitioned into the same cluster. Based on 

the consensus matrix, we assessed the robustness of each subtype with a stability 

score, which is the average frequency that its within-cluster association with other 

subtypes is the same as predicted by MCL on the network generated with all 
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samples. For evaluation of clustering performance, we employed weighted 

Silhouette width (R package WeightedCluster), which extends Silhouette width by 

giving more weights to subtypes that are more representative of their assigned 

clusters. Here, we used stability scores as weights to calculate weighted Silhouette 

width and took the median over all subtypes as a measure of clustering 

performance, which was used to evaluate the optimal number of clusters.

It should be noted that during network clustering, network granularity is controlled by 

inflation factor f in MCL, which is associated with the number of clusters k. No network 

substructure is recognized by MCL with f <1.6, while f >10 MCL does not provide any 

conceivable clustering. Therefore, we enumerated f from 1.6 to 10 and performed the three 

steps described above to compare their clustering performances. We selected as the optimal f 

= 3.8, which gives the highest median weighted Silhouette width (Supplementary Fig. 1), 

and generated four consensus molecular subtypes (CMS) using MCL. Representative 

consensus matrices illustrating robustness of clustering based on f = 1.6, 3.8 and 10, resulted 

in 3, 4 and 5 clusters, respectively, are shown in heatmaps ordered by identified CMS 

groups (Supplementary Fig. 1).

4.2. Identification of core consensus samples—For each CRC sample (n = 3,962), 

we performed a hypergeometric test for overrepresentation of assigned subtypes in the set of 

subtypes associated with each CMS. The CRC sample is assigned to a CMS if 

corresponding overrepresentation test is significant (P value <0.05). Using this strategy, 

78% of the samples are identified to be highly representative of that particular consensus 

subtype and are considered core consensus samples. These samples have been taken to train 

a classifier using a Random Forest algorithm to apply the consensus classification to the 

non-consensus samples (details in “6. Classification” section). The distribution of unlabeled 

samples per dataset is shown in Supplementary Figure 2.

5. Data aggregation

In order to construct the classifier described in the main article, the private (shared amongst 

the consortium members) and public gene expression data sets had to be aggregated into a 

single matrix. These data sets were generated on different platforms, in different labs and at 

different time points, and thus we expect strong batch effects that, if not addressed, prevent 

efficient merging. Moreover, not all genes are measured on all platforms, and those that are 

may be represented by different probes, which can give rise to inconsistent or even 

contradictory measurements and thus further highlights the need for careful data 

preprocessing before the merge. We devised an algorithm suited for this aggregation, which 

is explained step by step below. The complete workflow is illustrated in Supplementary 

Figure 13.

Detailed strategy:

a. Remove outlier samples from each data set separately (see section “3. Gene 

expression data processing and normalization” for details)

b. Create a collection of reference genes (GREF): 5,000 genes with largest median 

absolute deviation (MAD) were selected among those that were measured by at 

Guinney et al. Page 13

Nat Med. Author manuscript; available in PMC 2016 May 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



least one probeset in all data sets. Each of these genes was represented by the 

corresponding probeset with the largest MAD.

c. Select a reference data set (referred onwards as DREF). In our case we chose the 

largest Affymetrix data set8. In this data set, each gene in GREF was represented by 

the probeset with the largest MAD.

d. For each of the other data sets, we used a consistency criterion to select the 

probeset to represent each gene. First, for each probeset, we calculated the 

correlation between the expression of the probeset and the reference genes in the 

same data set. This gives, for each probeset, a correlation vector C of length |GREF|.

e. To select the probeset that was used to represent a gene g in data set D, we 

computed the correlation (c) between the correlation vector C for each of the 

corresponding probesets and the correlation vector for gene g in DREF.

f. To select the probeset that represented gene g in the reference data set DREF, we 

chose the probeset with the highest correlation with most of the other data sets. 

Therefore, for each data set D, we selected the probeset in DREF, which has the 

largest “correlation of correlations” value from “V” with the probesets in D. The 

probeset selected is the one chosen to represent g in DREF.

g. For each other data set D, the probeset with the highest value of the “correlation of 

correlations” with the chosen probeset in DREF was selected to represent g.

h. At this stage we had, for each data set an expression matrix with a number of rows 

equal to the number of genes that are measured in all data sets. We then merged all 

these matrices to form a new expression matrix containing all the samples.

i. We used ComBat32 to remove the per data set “(batch) effect”, adding MSI status 

as a covariate. For data that did not have MSI status, we imputed MSI status using 

the MSI signature score42.

j. We filtered the aggregated data set further based on the quantile range and the 

correlations calculated in step “e”. We kept genes for which the difference between 

the 0.95 and 0.05 expression quantiles exceeded 0.75 in all data sets, and when the 

correlation c exceeded 0.5 in all data sets.

6. Consensus Molecular Subtype Classifier (Random Forest)

Using the aggregated gene expression data set, we developed a multi-class classifier to 

predict CMS subtypes in new samples. To train and validate our classifier, we used the core 

consensus samples (n = 3,104), i.e. those samples that are strongly representative of each of 

the CMS subtypes. We trained and validated our models using the aggregated data set (see 

“5. Data aggregation” section), which includes 5,972 genes that were observed to have gene 

level consistency as measured by correlation and variance across the multiple data sets in 

this study.

To train the classifier(s), we used the Random Forest (RF) algorithm43, a widely used 

machine learning method that operates by generating multiple bootstrapped versions of the 

training data, and fitting a decision tree to each of these bootstraps. The final classifier is 
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then an ensemble of each of these decision trees. The RF algorithm has been well studied in 

the context of gene expression classifiers as it performs well with highly correlated, high-

dimensional data, and is less prone to overfitting due to the averaging effect across many 

models44. Although the CMS subtypes do not occur with equal proportions, we trained our 

classifier using a balanced model approach, i.e. our model does not make a priori based 

assumptions about the frequency of each subtype. Therefore, for each iteration of the RF 

bootstrap, we randomly sample from each subtype in equal proportions. We parameterized 

the forest to have 500 trees with an average of 70 nodes per tree.

6.1. Global classifier—To assess feasibility of developing a CMS classifier, we randomly 

split our aggregated gene expression data matrix into ⅔ training and ⅓ validation using the 

core consensus samples from all data sets. After model training, we applied the classifier to 

the validation samples and computed performance metrics (sensitivity, specificity, and 

balanced accuracy) for each CMS (Supplementary Table 4) and per data set. While overall 

performance was robust (Supplementary Fig. 3a), we observed that the 4 data sets utilizing 

the Agilent platform had significantly lower performance metrics (Supplementary Fig. 3b).

6.2. Affymetrix (and RNAseq) classifier—We repeated the above procedure using 

only the core consensus samples profiled on the Affymetrix and RNAseq platforms (n = 

2,688). Overall performance metrics improved compared to the global classifier 

(Supplementary Fig. 3c,d).

6.3. Agilent classifier—We repeated the above procedure using core consensus samples 

profiled on the Agilent platform (n = 416). Performance metrics were improved relative to 

the Agilent metrics from the global classifier. However, overall performance was below the 

Affymetrix/RNAseq classifier (Supplementary Fig. 3e,f). Given the smaller number of 

samples available to train this model, the lower performance is not unexpected.

6.4. Data set splits—The previous classifiers were developed by randomly sampling 

from all data sets, and partitioning into training and validation sets. To evaluate classifier 

performance across data sets (i.e. training in one set of data sets, and validating in an 

independent set of data sets), we performed two independent experiments. The first 

experiment utilized the GSE39582 (Affymetrix, fresh-frozen, n = 466), the TCGA (RNAseq, 

n = 459), and GSE17536 (Affymetrix, n = 147) data sets for model validation. Results are 

shown in Supplementary Figure 3g. In this experiment, no RNAseq data was used in 

training of the classifier and yet we observed that balanced accuracy in all CMS groups was 

>0.9 and comparable to the Affymetrix data sets. Overall, we observed robust performance 

metrics in these validation data sets.

Our second data split experiment was to separate the PETACC3 (n = 526) data set for 

validation, composed of Formalin Fixed Paraffin Embedded (FFPE) samples. This 

experiment allowed performance assessment of a fresh-frozen model applied to FFPE 

samples. Results are shown in Supplementary Figure 3h. In general, performance metrics 

were robust with the exception of CMS3. Notably, sensitivity/specificity for CMS3 was 

0.70/.98. The high type II error rate in CMS3 suggests some biological differences between 
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FFPE and fresh-frozen samples, and underscores the importance of utilizing FFPE samples 

for training a classifier in this context.

6.5. Classification of non-consensus samples—We developed final classifiers 

separately for the Agilent and the Affymetrix/RNAseq data sets using all core consensus 

samples for model training. We then applied the classifiers on the unlabeled (non-consensus) 

samples. Recognizing that the samples may not be robustly classifiable, we set a minimum 

threshold of a 0.5 posterior probability (output from the Random Forest model) to assign a 

sample to a CMS group (specificity analysis revealed this threshold choice to be 

conservative with few false positives, as seen in Supplementary Figure 4). Using this 

criterion, we were able to assign 279 samples (39% of the unlabeled Affymetrix/RNAseq 

samples) and 60 samples (40% of the unlabeled Agilent samples) to a single subtype.

A comparison of the major clinicopathological and molecular traits between the classified 

samples (combination of core consensus samples plus non-consensus samples with CMS 

label after Random Forest classifier) versus unclassified samples revealed no significant 

differences between these two groups (Supplementary Table 14). In addition, an intra-

subtype comparison confirmed that the clinicopathological and molecular associations of the 

core consensus samples are recapitulated in the newly classified samples (Supplementary 

Table 15).

For the remaining unclassified samples (n = 519), we examined the presence of any pattern 

in the subtype probability scoring that would indicate which subtype pairs present a 

challenge for disambiguating. We observed a strong negative correlation between CMS1 

and CMS2 (R=−0.60, P <1e–16) and CMS3 and CMS4 (R=−0.76, P < 1e–16) indicating 

that these pairs are more easily separable. Conversely, the near-zero correlation between 

CMS2 and CMS3 (R=−0.06) suggests that this pair may be the most challenging to 

disambiguate.

Using the aggregated gene expression data, we further examined the unclassified samples 

with PCA and sparse Bayesian factor analysis (sBFA). A plot of the first four PCs confirms 

that unclassified samples are not outliers, but are instead heavily concentrated in the regions 

between the CMS distributed samples (Supplementary Fig. 5a), corroborating the 

distribution of the non-consensus samples in Figure 2c. Next, we selected the most variable 

genes across samples using a standard deviation cut-off of one and fitted the factor analysis 

model to this dataset using Bayesian framework. By introducing sparsity in the feature space 

through priors, the sBFA improves clustering of samples and allows identification of a latent 

or “hidden” variable that may discriminate unclassified samples from the CMS samples45,46. 

The projected data in the three-dimensional latent space shows that the unclassified samples 

in red are not separate from the CMS classified samples in black (Supplementary Fig. 5b). 

These analyses suggest that many of these unclassified or mixed samples are not necessarily 

technical outliers or new (and yet undetected) subtypes but instead potential mixtures or 

indeterminate CMS subtypes.

We next clustered the posterior probabilities of these unclassified samples to examine any 

potential pattern of subtype mixtures. We observed distinctive patterns including two or 

Guinney et al. Page 16

Nat Med. Author manuscript; available in PMC 2016 May 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



more subtypes (Supplementary Fig. 5c), with CMS2-CMS4 comprising over 23% of the 

unclassified samples, followed by CMS2–CMS3 mixed with 17% (Supplementary Fig. 5d).

7. Clinical and molecular correlative analyses

Samples and data sets with clinical and molecular annotation are described in 

Supplementary Table 3. The distribution of clinical and molecular data by the four 

consensus subtypes is shown in Supplementary Table 5. Data was generated by each 

independent group or TCGA and aggregated with standardization as described below. We 

performed non-parametric tests for comparisons of continuous values (Kruskal-Wallis) and 

discrete counts (Fisher’s exact test). Samples from each CMS were compared with the 

remaining samples, after confirming similar variance of the groups been compared. P values 

were adjusted for multiple comparisons as detailed in each section. All correlative analyses 

were carried out using R statistical software version 3.1.1.

7.1. Mutation profile

• KRAS, BRAF, PIK3CA, PTEN, APC, TP53 mutation detection: for sequencing 

platform details refer to individual groups publications. In summary, in data sets 

other than TCGA, targeted sequencing was performed (codons or specific variants 

in oncogenes - KRAS, BRAF, PIK3CA - and most frequently mutated exons in 

tumor suppressors - PTEN, APC, TP53). For TCGA samples, somatic mutations 

and indels called from exome sequencing of matched tumor and normal genome 

pairs were aggregated using mutation annotation format (MAF) files from Synapse 

TCGA Live data portal (doi:10.7303/syn300013; September 2014). Silent 

mutations were excluded.

• Other genes (exome level): available in TCGA data set, as described above.

• Hypermutation class: available in TCGA data set, defined based on whole exome 

mutation count distribution using the same threshold as in the original publication 

(>180 events per exome as hypermutated sample)2.

• Mutation in cancer driver genes analysis: In TCGA samples, we identified non-

silent somatic mutations and indels in a selected list of significantly mutated cancer 

drivers47. We performed a supervised analysis of mutations in these genes and 

consensus subtypes. A Fisher’s exact test comparing prevalence of mutation events 

in all samples from each CMS and the remaining samples was conducted and the 

resulting P values were adjusted for multiple comparisons using Benjamini-

Hochberg method. Results can be found in Supplementary Table 8. A clear pattern 

of over-enrichment of mutations in cancer drivers is seen in CMS1, with the 

exception of APC and TP53. APC mutations are significantly enriched in CMS2, as 

are KRAS mutations in CMS3.

7.2. Copy number events profile

• Arm level copy number changes were visualized by using the GISTIC scores and 

CMS labels with the UCSC cancer genome browser. Focal (gene-level) copy 

differences were compared between subtypes by first mapping the genomic 
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coordinates of the segmented means to single genes using the GenomicRanges 

Bioconductor package. For a selected list of significantly altered oncogenes or 

tumor suppressors according to TCGA, we performed a supervised analysis of copy 

number counts and consensus subtypes (n = 485). A Student’s t-test between the 

copy mean of all samples within a CMS and the copy mean of the remaining 

samples was conducted and the resulting P values were adjusted for multiple 

comparisons using Benjamini-Hochberg method. Results can be found in 

Supplementary Table 6. In CMS2 samples, copy number counts were consistently 

higher in oncogenes and lower in tumor suppressors. The opposite trend is seen in 

CMS1 samples while CMS4 tumors displayed no significant enrichments for copy 

number events in candidate driver genes.

• Somatic copy number alterations (SCNA) count and class: available in TCGA data 

set. Whole genome copy number GISTIC scores were downloaded from the 

Firehose Broad website (http://gdac.broadinstitute.org/; Sept 2014). We counted 

GISTIC scores −2/−1/+1/+2 as events for SCNA estimation (<Q1 was considered 

low and ≥Q1 was considered high).

• High-level amplifications and homozygous deletions: for a targeted list of 

significantly altered oncogenes or tumor suppressors according to TCGA2 (MYC, 

HNF4A, CDK8, FGFR1, ERBB2, IGF2, PTEN, SMAD4, APC, TCF7L2), high level 

amplification was defined as GISTIC scores +2 and homozygous deletion as 

GISTIC scores −2.

7.3. Microsatellite status—Microsatellite status was determined using either using a 

panel of five microsatellite loci from the Bethesda reference panel48 or 

immunohistochemistry markers49. For consistency, only samples with high-level 

microsatellite instability were considered instable (MSI).

7.4. Methylation data analysis—For characterization of the four CMS groups with 

DNA methylation data, we used TCGA defined four DNA-methylation subgroups (CIMP-

H, CIMP-L, cluster3 and cluster4) in their 27K subseries by unsupervised analysis (see 

Supplementary Table 1 in TCGA CRC2) and extended this analysis with an additional 450K 

data set as detailed below.

We downloaded Level3 β-values based on Illumina Infinium HumanMethylation450 Array 

platform. The data set consists of in total 301 tumors and 38 normal samples. We employed 

hierarchical clustering and PCA to assess if there is any potential non-biological batch effect 

with respect to tissue source site (TSS) and batch variables. The hierarchical clustering was 

performed based on the Ward’s linkage algorithm, with dissimilarity scores calculated from 

1-Pearson correlation coefficients. As shown in Supplementary Figure 6a, samples are well 

mixed among various tissue source sites and batches.

To determine CpG Island Methylator Phenotype (CIMP) status, we first reduced data to the 

probes present in the 27K version beadchip (n = 25,978 probes). We then applied the same 

filters (removing probes with any NA values and probes designed on X and Y 

chromosomes) and performed recursively partitioned mixture model (RPMM) clustering 
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approach on the 10% most variant probes across tumors based on standard deviations (n = 

1,486; SD >0.18) using RPMM R/Bioconductor package (http://CRAN.R-project.org/

package=RPMM) with default parameters. RPMM returned, as for the 27K subseries, four 

clusters. We then drew the heatmap of β-values as in the original article (using R packages 

heatmap.plus and seriation, Supplementary Fig. 6b). Considering the methylome patterns of 

the four subgroups from the 27K subseries, we could assign the cluster 1 to CIMP-H, the 

cluster 2 to CIMP-L and the other 2 clusters to cluster3/cluster4.

For differential methylation analysis, we used 187 tumor samples that have classification 

labels based on classification of the TCGA gene expression data. We first calculated the 

methylation level for each gene by taking the median β-value over all corresponding 

annotated probes. Next, we performed differential methylation analyses based on two 

sample t-tests, comparing each CMS with the other CMS groups. Out of the total 21,231 

genes, we identified 1664 genes differentially methylated (Benjamini–Hochberg-corrected P 

value < .05 and |log2 fold change| >0.5) between at least one CMS and the others (heatmap 

shown in Supplementary Fig. 6c). As expected, most of the differentially methylated genes 

(n = 1,262) have significant higher methylation in CMS1 tumors, which is consistent with 

their CIMP-H status. Nonetheless, we also observed genes specifically hyper- or hypo-

methylated in the other three CMS groups, suggesting subtype-specific epigenetic regulation 

of the identified four CMS groups (data not shown).

We also performed a combined CIMP status analysis with TCGA results added to the panel 

of five markers as previously described50 available in other data sets (Supplementary Table 

3). For consistency, in the combined analysis only samples with high level methylation were 

considered CIMP-high and the remaining were classified as CIMP negative. Results are 

described in Supplementary Table 5, with enrichment for CIMP-high in CMS1.

7.5. Integrative analysis—We performed integrative analysis in TCGA data set only, 

using the same strategy as described in the original TCGA publication2 with regards to 

mutation, copy number and gene expression changes in targeted genes and pathways 

(Supplementary Fig. 7c). To summarize, for mutations only non-silent events were 

considered activating/inactivating alterations. For copy number events, only high-level 

amplifications or homozygous deletions were defined as alterations. In some cases, up- or 

down-regulation of gene expression was also considered a pathway alteration: IGF2, 

FZD10, SMAD4 genes.

7.6. Pathway analysis—Genesets of interest were identified by the consortium and 

separated in five main groups, as detailed in Supplementary Table 9 and below:

a. ESTIMATE algorithm: method that uses gene expression signatures to infer the 

fraction of stromal and immune cells in tumor samples30;

b. Curated signatures: upper and lower normal colon crypt compartments51, epithelial 

and mesenchymal markers7, WNT52 and MYC downstream target53, epithelial-

mesenchymal transition core genes and TGFβ pathway54, intestinal stem cells55, 

matrix remodeling (REACTOME) and wound-response (GO BP);
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c. Canonical genesets: MAPK and PI3K (GO BP), SRC, JAK-STAT, caspases 

(BIOCARTA), proteosome (KEGG), Notch, cell cycle, translation and ribosome, 

integrin beta3, VEGF/VEGFR interactions (REACTOME);

d. Immune activation: immune response (GO BP), PD1 activation (REACTOME), 

infiltration with T cytotoxic cells (CD8)56 and T helper cells (TH1) in cancer 

samples57,58, infiltration with Natural Killer (NK) cells59 and follicular helper T 

(TFH) cells60 in cancer samples, activation of T helper 17 (TH17) cells61, 

regulatory T cells (Treg)62 or myeloid-derived suppressor cells (MDSC)63;

e. Metabolic activation: sugar, amino acid, nucleotide, glucose, pentose, fructose, 

mannose, starch, sucrose, galactose, glutathione, nitrogen, tyrosine, 

glycerophospholipid, fatty acid, arachnoid acid, linoleic acid (KEGG), glutamine 

(GO BP), lysophospholipid (PID).

Gene symbols were mapped to Entrez IDs to determine overlap in each individual data set 

that was evaluated for geneset enrichment. Geneset enrichment was tested for each subtype 

as compared to all other subtypes using the GSA64 method and was performed for each 

geneset by data set combination using two-class unpaired tests with 10,000 permutations. A 

single P value per geneset was computed - consolidated across data sets - using Fisher’s 

combined probability test.

7.7. Proteomic analysis—For reverse-phase protein array (RPPA), normalized 

measurements of 187 proteins were downloaded from TCPA website (http://

app1.bioinformatics.mdanderson.org/tcpa/, Sept 2014). We performed a supervised analysis 

of RPPA levels and consensus subtypes (n = 382). A Kruskal-Wallis test comparing median 

protein expression values in all samples from each CMS and the remaining samples was 

conducted and the resulting P values were adjusted for multiple comparisons using 

Benjamini-Hochberg method. Results can be found in Supplementary Table 7. We identified 

145 protein features that were significantly associated (P value <0.05) with consensus 

subtypes. Of note, CMS1 samples had elevated expression of proteins involved in apoptosis 

(Caspase 7, Rad51), cell cycle (Cyclins D1, E1, E2) and DNA damage repair (Chk1), while 

CMS4 samples were mainly enriched for microenvironment proteins (Collagen, 

Fibronectin).

We also obtained liquid chromatography-tandem mass spectrometry (LC-MS/MS)-based 

shotgun proteomic quantile-normalized and log-transformed data for 95 TCGA tumor 

samples21. Heatmap of top differentially expressed proteins in TCGA colored with a 

gradient from blue (low expression) to yellow (high expression) is shown in Figure 3g. 

Overall, 81 samples were assigned to one of the four CMS identified here. Geneset 

enrichment was tested for each subtype as compared to all other subtypes using the GSA64 

method, as described above. Results are summarized in Supplementary Table 10.

7.8. MicroRNA data analysis—For miRNA characterization of the four CMS groups, 

we used two independent data sets obtained from TCGA. Data set 1 includes Illumina GA 

sequencing data for 255 primary colorectal tumors, whereas data set 2 consists of Illumina 

HiSeq sequencing data for 241 primary colorectal tumors. For both data sets, we obtained 
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Level 3 RPM (reads per million miRNA mapped) data from the TCGA data portal. The 

RPM data were log2-transformed after adding 1 pseudocount for the following analyses.

It has been confirmed previously that data set 1 has no serious batch effect2. For data set 2, 

we examined potential non-biological batch effects with respect to tissue source site (TSS) 

and batch variables. For hierarchical clustering, the Ward’s linkage algorithm was 

performed with dissimilarity scores calculated from 1-Pearson correlation coefficients. 

Overall, the hierarchical clustering results show that samples are well mixed among various 

tissue source sites and batches (Supplementary Fig. 8a).

For differential expression analysis, we first filtered out samples that do not have a CMS 

assigned due to lack of mRNA expression data availability. The filtering step resulted in 197 

samples for data set 1 and 200 samples for data set 2. For each data set, we performed 

differential expression analyses based on two sample t-tests, comparing each CMS with the 

other CMS groups. A high Pearson correlation coefficient was observed in the log2 fold 

change between data set 1 and 2 for each CMS (Supplementary Fig. 8b), suggesting a high 

concordance between the two independent data sets. In both data sets 110 miRNAs are 

differentially expressed (Benjamini–Hochberg-corrected P value < 0.05 and |log2 fold 

change| > 0.5) between at least one CMS and the others.

Differentially expressed miRNAs between CMSs were illustrated in a heatmap 

(Supplementary Fig. 8c). CMS2 can be characterized by the up-regulated mir-17-92 cluster, 

which is known to be bound and regulated by MYC22. The upregulation of the mir-17-92 

cluster is consistent with the fact that MYC signaling is promoted in CMS2. Out of the total 

six miRNAs down-regulated in CMS3, hsa-mir-143 and four miRNAs belonging to the let-7 

family are known to bind and regulate the expression of RAS65,66. The five miRNAs can be 

used for characterizing CMS3, which is featured with more activated RAS and MAPK 

signaling. CMS4 is enriched for downregulated miRNAs (e.g., hsa-mir-148a, the miR-192 

and miR-200 families) that are known for tumor suppression. The miR-200 and miR-192 

families regulate epithelial mesencgymal transition (EMT) pathway by targeting ZEB1 

and/or ZEB223,67, whereas hsa-mir-148a is predicted by TargetScan68 to regulate MMP13 

and TGFB2, which are important for matrix remodeling and TGFβ pathways. Taken 

together, the downregulation of miRNAs associated with suppression of the EMT, MR and 

TGFβ associated signatures could explain why CMS4 is more aggressive and metastatic than 

the other CMSs.

7.9. Clinical and pathological variables—Data from different data sets was 

standardized as described below:

• Site: right colon (cecum, ascending, hepatic flexure and transverse colon); left 

(splenic flexure, descending and sigmoid colon); and rectum (Supplementary Fig. 

10)

• Stage: assignments were defined using the latest edition of AJCC Cancer Staging 

Manual available at the time of diagnosis (3rd – 6th). For consistency, we only 

investigated the major stage (I, II, III or IV), whose definition does not change in 

these different staging systems.
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• Grade: 1 (well differentiated), 2 (moderately differentiated), 3 (poorly 

differentiated) carcinomas, according to pathology review performed by each 

independent institution.

7.10. Tumor purity analysis—We obtained the tumor purity estimation of CRC samples 

in TCGA data set as defined by the ABSOLUTE algorithm20 (doi:10.7303/syn1710466.2). 

As seen in Supplementary Figure 7d and Supplementary Table 14, classified and 

unclassified samples did not have significant differences in tumor purity. We did observe 

reduced proportion of cancer cells (less tumor purity) in CMS4 samples, as shown in 

Supplementary Figure 7e and Supplementary Table 5. This finding is in line with the higher 

stromal and immune infiltration scores in CMS4 samples as per ESTIMATE algorithm27 

(Fig. 3i).

7.11 Tumor vs normal analysis—We assessed the distribution of normal samples 

obtained from the GSE39582 (n = 19 normal) and PETACC-3 (n = 64 normal) data sets. 

The gene expression data from each cohort was re-normalized (see previous description of 

data normalization) including normal samples. PCA was then applied to each data set, and 

expectedly, tumor samples were clearly differentiable from normal samples using the top 

two PCs (Supplementary Fig. 9a,c). We next interrogated which of the CMS groups were 

more ‘normal’-like. We trained a Support Vector Machine to find the optimal hyperplane 

separating tumor vs normal, and then computed the distance from all tumor samples to the 

hyperplane. Overall distance distributions by CMS groups are depicted in Supplementary 

Figure 9b,c.

7.12. Survival analyses—Overall survival (OS) and relapse-free survival (RFS) times 

were calculated based on dates of cancer diagnosis or time of surgery, death due to any 

cause and disease relapse. For RFS analysis, patients that died without a relapse event were 

censored at the time of death. Relapse event was defined as clinical or radiological evidence 

of disease recurrence. Survival after relapse (SAR) was defined as time from relapse until 

death due to any cause. Data were censored based upon last known clinical follow-up and 

patients with less than 1 month of follow-up were excluded from all survival analyses. 

Supplementary Table 13 summarizes follow-up time, number of events, number of patients 

at risk and survival estimates for the entire population and patients assigned each CMS.

We performed Cox Proportional Hazards modeling in the aggregated data sets after 

confirming proportionality of hazards across patient cohorts. OS models included all stage 

I–IV patients while both RFS and SAR analyses were limited to patients with stage I, II or 

III at diagnosis. Both univariate and multivariate models were stratified by data set. We also 

performed univariate survival modeling separately in the subset of patients enrolled in the 

PETACC-3 study10, as one can expect closer follow-up for relapse and death events in a 

clinical trial (Supplementary Fig. 11a). Detailed description of survival models can be found 

in Supplementary Table 13.

In order to evaluate the performance of survival models, we split the data sets into ⅔ and ⅓ 

for training and validation and computed the time-dependent area under the curve (tAUC), 

which measures the ability to distinguish the individuals who will experience a relapse or 
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death event. Results are summarized in Supplementary Table 13 and Supplementary Figure 

11b. Indeed, when the CMS classification was added to multivariate clinico-molecular 

survival models, we still observe a significant discriminative contribution by the CMS 

subtypes in predicting outcome.

All survival analyses were carried out using survival and survAUC packages for R statistical 

software version 3.1.169. We calculated log-rank P values in survival models and compared 

multivariate models with and without CMS classification by performing ANOVA. Paired 

Student’s t-test was used to compare tAUCs estimates.

8. Data, code sharing, and CMSclassifier R package (Random Forest and Single Sample 
Predictor)

As a resource for the community, for all public data sets used in the consortium we have 

provided normalized gene expression data, CMS subtyping calls, and sample annotation for 

download through the Synapse platform (doi:10.7303/syn2623706). Additionally, scripts 

and code for the Random Forest CMS classifier are available for download: (https://

github.com/Sage-Bionetworks/crcsc).

We also provide a downloadable R package (CMSclassifier) which includes the Random 

Forest classifier described previously, as well as a “Single Sample Predictor” (SSP) 

classifier. By definition a SSP makes possible to predict a unique sample, and its output 

considering any given sample has to remain constant whether it is predicted alone or within 

a series of samples. A typical requirement of SSP is that they cannot be based on (intra-

series) row-centered data, because row-centering is impacted by the composition of the 

series. Here the proposed SSP is multi-platform (RNA seq / single color microarray / two 

colors microarray) and as such doesn’t include any normalization procedure (such 

procedures are platform dependent), meaning that the user has to provide normalized data, 

with a normalization procedure respecting the Single Sample ‘spirit’ (such as single sample 

frozen RMA for Affymetrix microarrays, for example). Of note, the SSP reported here can 

be used on row-centered data with satisfactory results in most situations, however in such a 

case it cannot be any more seen as a Single Sample Predictor.

The SSP is implemented in the CMSclassifier R package. It is based on a similarity-to-

centroid approach, with Pearson coefficient as similarity measure. It uses centroids of the 

CMS calculated for 693 discriminant genes (Entrez Ids), which were selected using the 

GSE39582 series based on AUC and fold change criterion. The CMS centroids were 

obtained for five series (TCGA COAD ‘RNASeq V2 GA’, TCGA COAD ‘RNASeq V2 

HiSeq’, TCGA COAD ‘Agilent’, GSE39582, EMTAB990), yielding 20 centroids Ci,j (i: 

CMS 1..4; j: series 1..5). To classify a given CRC sample, the SSP first calculates the 

similarity Si,j of the CRC sample expression profile (for the 693 discriminant genes) to the 

20 centroids. The minimal similarity Si to each CMS in the 5 series is then reported (Si = 

Minj=1‥5 Si,j). Then the nearest CMS i* is reported (Si*= Maxi=1‥4 Si). The similarity 

difference D between the two nearest CMS is also reported (D = Si* − Si’, with i’ being the 

second nearest CMS). Then if both Si* is above 0.15 and D is above 0.06 the sample is 

classified in CMS i*, otherwise its label is said undetermined.
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The performance metrics of Random Forest and SSP classifiers using the consensus network 

class as “gold-standard” (n = 3,104 samples) is summarized in Supplementary Table 16.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. Analytical workflow of the Colorectal Cancer Subtyping Consortium
(a) Subtype classification on 18 shared data sets across six groups. (b) Concordance analysis 

of the six subtyping platforms, and application of a network analytical method to identify 

consensus subtype cluster. (c) Development of a consensus subtype classifier from an 

aggregated gene expression data set and the consensus subtype labels. (d) Biological and 

clinical characterization of the consensus subtypes.
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Figure 2. Identification of the consensus subtypes of colorectal cancer and application of 
classification framework in non-consensus samples
(a) Network of CRC subtypes across six classification systems: each node corresponds to a 

single subtype (colored according to group) and edge width corresponds to Jaccard 

similarity coefficient. The four primary clusters – identified from the Markov cluster 

algorithm – are highlighted and correspond to the four CMS groups. (b) Per sample 

distribution of each of the six CRC subtyping systems (A–F), grouped by the four consensus 

subtyping clusters (n = 3,104), and the unlabeled non-consensus set of samples (n = 858). 

Colors within each row represent a different subtype. (c) Patient network: each node 

represents a single patient sample (n = 3,962). Network edges correspond to highly 

concordant (5/6 of 6) subtyping calls between samples. Nodes are colored according to their 

CMS, with non-consensus samples gray. (d) Final distribution of the CMS1–4 groups (solid 

colors), ‘mixed’ samples (gradient colors) or indeterminate samples (gray color) as per 

classification framework.
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Figure 3. Molecular associations of consensus molecular subtype groups
(a) Distribution of non–synonymous somatic mutation events; and (b) somatic copy-number 

alterations (SCNAs), defined as non-zero GISTIC scores in TCGA data set, across 

consensus subtype samples (median, lower [Q1] and upper [Q3] quartiles, horizontal lines 

define minimum and maximum, dots define outliers). (c) Key genomic and epigenomic 

markers, with darker brown representing positivity for SCNA high (≥Q1 for non–zero 

GISTIC score events), hypermutation (≥180 events in exome sequencing), microsatellite 

instability (MSI) high or CpG Island Methylator Phenotype (CIMP) cluster high. (d) 

Mutation profile, with darker gray representing positivity for KRAS, BRAF, APC and TP53 

mutations. (e) Heatmap of copy number changes of the 22 autosomes, with shades of red for 

gains and blue for losses. CMS1 samples have fewer SCNAs and an intermediate pattern is 

seen in CMS3. (f) Heatmap representation of DNA methylation beta-values of most variable 

probes with yellow denoting high DNA methylation and blue low methylation. CMS1 

samples show a distinguished hypermethylation profile and an intermediate pattern is seen 

in CMS3. (g) Heatmap of top differentially expressed proteins in TCGA colored with a 

gradient from blue (low expression) to yellow (high expression). (h) Heatmap of top 

differentially expressed microRNAs in TCGA with shades of blue for downregulation and 
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orange for upregulation. (i) Gene set mRNA enrichment analysis: signatures of special 

interest in CRC, ESTIMATE algorithm30 to infer immune and stromal cell admixture in 

tumor samples, canonical pathways, immune signatures and metabolic pathways. (j) Gene 

set enrichment analysis of proteomic TCGA data. Detailed statistics in Supplementary 

Tables 5, 8, 9 and 11.
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Figure 4. Clinicopathological and prognostic associations of consensus molecular subtype groups
(a) Distribution of gender; (b) Tumor site location; (c) Stage at diagnosis; and (d) 

Histopathological grade across consensus subtype samples. Prognostic value of CMS groups 

with Kaplan-Meier survival analysis in the aggregated cohort for (e) overall survival, (f) 
relapse-free survival and (g) survival after relapse with hazard ratios (HR) and 95% 

Confidence Interval (CI) for significant pairwise comparisons in univariate analyses (log-

rank test). Numbers below the x axes represent patients at risk at selected time points. 

Detailed statistics in Supplementary Tables 5 and 13.
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Figure 5. Proposed taxonomy of colorectal cancer reflecting significant biological differences in 
the gene expression-based molecular subtypes
CIMP, CpG Island Methylator Phenotype; MSI, microsatellite instability; SCNA, somatic 

copy number alterations; TGF, transforming growth factor.
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