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A B S T R A C T

HIV-1 infection cannot be cured due to the presence of the latent reservoir (LR). Novel cure or treatment
strategies, such as “shock and kill” or therapeutic vaccination, aim to reduce or eradicate the LR. Cure strategies
utilise robust DNA quantification assays to measure the change in the LR in low copy scenarios. No standard
assay exists, which impedes the reliable comparison of results from different therapy and vaccine trials and HIV-
1 total DNA quantification methods have not been previously compared. The HIV-1 long terminal repeat (LTR)
has been shown to be the best target for DNA quantification. We have analysed two HIV-1 quantification assays,
both able to differentiate between the variant HIV-1 DNA forms via the use of pre-amplification and primers
targeting LTR. We identify a strong correlation (r=0.9759, P< 0.0001) between assays which is conserved in
low copy samples (r=0.8220, P< 0.0001) indicating that these assays may be used interchangeably. The RvS
assay performed significantly (P=0.0021) better than the CV assay when quantifying HIV-1 total DNA in patient
CD4+ T lymphocytes. Sequence analysis demonstrated that viral diversity can limit DNA quantification,
however in silico analysis of the primers indicated that within the target region nucleotide miss-matches appear
infrequently. Further in silico analysis using up to-date sequence information led to the improvement of primers
and enabled us to establish a more broadly specific assay with significantly higher HIV-1 DNA quantification
capacity in patient samples (p=0.0057, n=17).

1. Introduction

The development of antiretroviral therapy (ART) has been a major
breakthrough in the treatment of human immunodeficiency virus type 1
(HIV-1) infection, effectively preventing the progression to acquired
immunodeficiency syndrome (AIDS) (Brechtl et al., 2001). Despite this,
ART cannot completely eradicate the virus due to the presence of a
replication competent latent reservoir (LR) in different cell populations
including long-lived resting CD4+T cells that harbour pro-viral DNA
integrated into the genome (Chun et al., 1997a; Finzi et al., 1997). Such
infected cells can produce replication competent HIV-1, supporting
rapid viral rebound following ART interruption (Davey et al., 1999;
Joos et al., 2008; Rothenberger et al., 2015). Research is therefore fo-
cused on the development of novel approaches to reduce or eliminate
the LR, with the aim of developing a functional cure for HIV-1 infection.

Therapeutic vaccination, administered during ART mediated virus

suppression aims to stimulate the production of broad and effective
immune responses, inducing sustained immune control of HIV-1 in the
absence of therapy. A number of studies have explored the therapeutic
potential of vaccination in both simian immunodeficiency virus (SIV)
models (De Rose et al., 2008; Fuller et al., 2012, 2006; Hel et al., 2002,
2000; Lu et al., 2003) and in human trials (Barouch et al., 2013; Garcia
et al., 2013; Lévy et al., 2014; Lu et al., 2004) with vaccine agents
including DNA based vaccines expressing antigen, viral vectors ex-
pressing antigen, passive transfer immunotherapy, dendritic cells (DC)
primed for HIV-1 antigen presentation or combinations of these
(Mylvaganam et al., 2015). Generally, these studies have demonstrated
that therapeutic vaccination can achieve reduced viral loads, increased
time to viral rebound, reduction in size of the LR and in inducing
stronger and more sustained immune response against HIV-1
(Mylvaganam et al., 2015). Alternatively, strategies which aim to
completely eradicate the HIV-1 LR are popular in current research and
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clinical trials (Kim et al., 2018). These “shock and kill” approaches
utilise latency reversing agents (LRAs) to induce activation of latently
infected cells in the presence of ART, rendering those cells susceptible
to cytolysis or immune clearance whilst limiting the chance of sub-
sequent rounds of infection (Archin et al., 2017, 2012; Elliott et al.,
2015; Margolis et al., 2016). Adding to this, recent approaches have
explored the potential of a “lock in and apoptosis” strategy that when
combined with the LRAs, utilises a novel compound to antagonise the
viral gag protein and prevent virus budding whilst still inducing virus
apoptosis (Tateishi et al., 2017).

Research focused on the reduction or elimination of the LR must
utilise robust assays that can reliably and reproducibly measure the
effect that the treatment or vaccine strategy has on the size of the LR.
The quantification of HIV-1 DNA from peripheral blood mononuclear
cells (PBMC) of patients via polymerase chain reaction (PCR) provides a
useful tool to monitor the size of the viral reservoir and distinguish
between different viral life-cycle stages. The initial assays were based
around quantitative PCR measurements and adapted to be able to dis-
tinguish between single and 2-LTR circular forms (Kostrikis et al., 2002;
Sharkey et al., 2000). These assays have subsequently been adapted,
targeting different regions of the HIV-1 genome including gag, pol and
the long terminal repeat (LTR) (Beloukas et al., 2009; Kabamba-Mukadi
et al., 2005; Rouzioux and Avettand-Fenoël, 2018; van der Sluis et al.,
2013; Vandergeeten et al., 2014; Yun et al., 2002). The strength of these
assays is the rapid turn-around from sample collection to DNA quanti-
fication and the possibility to identify different HIV-1 DNA forms, such
as integrated DNA, unintegrated linear DNA forms and 2-LTR circular
DNA (De Spiegelaere et al., 2014; Kostrikis et al., 2002; Sharkey et al.,
2000; van der Sluis et al., 2013; Vandergeeten et al., 2014). These
different HIV-1 DNA forms have been used as markers of HIV-1 per-
sistence in a number of different studies, reviewed here (Ruggiero et al.,
2017). 2-LTR circular DNA is a product of abortive integration, and
while some studies have suggested they are stable in CD4+ cells (Pace
et al., 2013), they are considered markers of recent infection and on-
going replication notwithstanding therapy (Chun et al., 1997b; Koelsch
et al., 2008; Murray et al., 2012; Sharkey et al., 2011; Zhu et al., 2011).
Only assays targeting the viral LTR allow for the discrimination of
different HIV-1 forms in addition to the fact that the LTR contains some
of the most conserved regions of the viral genome (van der Sluis et al.,
2013).

We have comprehensively analysed two HIV-1 DNA quantification
assays, herein referred to as Vandergeetan, (CV) (Vandergeeten et al.,
2014) and van der Sluis (RvS) (van der Sluis et al., 2013), both of which
target highly conserved regions in the LTR region of the virus genome
(van der Sluis et al., 2013; Vandergeeten et al., 2014) (Fig. 1). Both
assays utilise a PCR pre-amplification step with primers designed to
amplify all forms of HIV-1 DNA (total HIV-1 DNA) that have been fully
reverse transcribed, including linear integrated, linear unintegrated and
circular DNA forms, while excluding the short abortive transcripts.
However, both assays are able to distinguish between total HIV-1 DNA
and 2-LTR circular DNA with the use of alternative primer sets in the
pre-amplification step. The CV assay is also able to distinguish in-
tegrated HIV-1 DNA via the use of primers targeting human Alu se-
quences, randomly dispersed in the human genome (Ruggiero et al.,

2017; Vandergeeten et al., 2014). A prominent HIV-1 LTR based DNA
assay, herein referred to as Rouzioux (CRx), was excluded from this
comparison because this assay does not distinguish between different
DNA types (Rouzioux et al., 2014). Furthermore, we have evaluated
several calibration cell-lines, aiming to establish a stable and re-
producible source of HIV-1 DNA for use as a standard curve. Ad-
ditionally, we have analysed the primer sequences and used this in-
formation to establish an assay that would predict a broader specificity
and increased sensitivity.

2. Materials and methods

2.1. Cell lines and calibration standards

HIV-1 quantification standards were produced from cell lines in-
cluding 8E5 (CFAR 95), ACH-2 (CFAR 349) and J-Lat 10.6 (CFAR
9849), obtained from the NIH AIDS reagent program. Additionally, we
utilised SupT1-14, a previously characterised cell line containing 14
HIV-1 copies per cell in comparing the assays (van der Sluis et al.,
2013). Standards for the quantification of cell input were produced
from dilutions of DNA derived from HEK293 T cells (ATCC CRL-3216).
ACH-2, 8E5 and J-Lat 10.6 were maintained in RPMI-1640 medium
(Fisher, 11875093) supplemented with 10% heat inactivated FBS
(Sigma, non-US origin, F7524) and 1% pen-strep (Fisher, 15140122) at
37 °C with 5% CO2. HEK293 T cells were maintained under the same
conditions with advanced DMEM (Fisher, 12491015) used for cul-
turing. Cells were passaged to a maximum of 10 cycles prior to DNA
extraction using QIAamp DNA Blood Mini Kit, according to the man-
ufacturer’s instructions (Qiagen, 51104). DNA concentration and purity
was assessed by Nanodrop analysis (Thermo Scientific, ND-200). The
total number of cells and HIV-1 copy numbers were quantified using the
CD3 and LTR quantification assays, respectively, and as previously
described (van der Sluis et al., 2013; Vandergeeten et al., 2014).
Standards were produced via a dilution series over a range of 5 logs.
HIV-1 DNA standards were spiked with uninfected human genomic
DNA to equalise DNA input in lower copy numbers.

2.2. Study population clinical sample preparation

The present study was approved by the Institutional Review Board
of the Centre Hospitalier Universitaire Vaudois and all subjects pro-
vided written informed consent. CD4+ cells were isolated from PBMCs
by negative selection using paramagnetic beads (StemCell
Technologies) according to supplier’s protocol. Purified CD4+ cells
were digested via incubation with 0.1mg/ml recombinant proteinase K
(Roche, RPROTK-RO) in 10 nM Tris (pH 8.3) for 2 h at 56 °C. Lysate was
centrifuged and supernatant recovered and used as input in the HIV-1
quantification assays. Proteinase K lysates were stored at −80 °C until
use.

2.3. HIV-1 DNA quantification assays

Total HIV-1 DNA was quantified using both CV (Vandergeeten et al.,
2014) and RvS (van der Sluis et al., 2013) LTR based HIV-1 DNA as well

Fig. 1. HIV-1 LTR region: Locations of primers and probes for the CV, RvS and CRx assays. The numbers indicate the position on the HXB2 genome. For CV assay
forward quantification primer anneals to Lambda T heel sequence on the forward pre-amplification primer.
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as CD3 cell quantification assays. Primers and probes used in HIV-1 and
CD3 DNA quantification are as described previously (van der Sluis
et al., 2013; Vandergeeten et al., 2014). Additionally, a commercial cell
quantification kit targeting the β-actin gene was used (ABI Applied
Biosystems TaqMan β-actin Detection Reagent, 401,846). Pre-amplifi-
cations were performed in 25 μl reactions using Taq polymerase (In-
vitrogen, 10,342,020), as previously described (van der Sluis et al.,
2013; Vandergeeten et al., 2014). Quantifications were performed in
20 μl reactions using Supermix-UDG (Invitrogen, 11,730,025) with the
Qiagen Rotor Gene RotorQ, as described previously (van der Sluis et al.,
2013; Vandergeeten et al., 2014). β-actin quantifications were per-
formed according to the manufacturer’s instructions. Reagent mixes for
the quantification and pre-amplification PCR steps were adapted to the
volumes used in this study, though the final concentrations remained
the same as previously described (van der Sluis et al., 2013;
Vandergeeten et al., 2014).

2.4. Sanger DNA sequencing

To sequence the primer and probe binding regions of both assays
primers were designed in house to amplify the LTR region of patient
samples (Table 1). Nested PCR was performed under the following
conditions: 2 min (95 °C) followed by 35 cycles of 30 s (95 °C), 30 s
(55 °C) and 1min (72 ◦C) with a final elongation of 10min (75 °C). The
product of PCR 1 was diluted 1/10 in molecular grade water and this
dilution was subsequently used as input for PCR 2. Amplification was
analysed using gel electrophoresis and further purified using a Qiagen
PCR Purification Kit (28104) prior to sequencing (GATC Biotech and
Source Bioscience). Patient sequences were then aligned to primer and
probe sequences using BioEdit software to identify mismatches. Fol-
lowing this, new primers were selected to exactly match the patient
sample LTR region and used to quantify the total HIV-1 DNA using both
assays, as described above (Table 1).

3. Results

3.1. Validation of assay quantification standards

Our aim was to examine the performance of the two assays CV and
RvS and using the vast amount of sequence information available to
date develop a new assay that will perform most optimally with the
highest specificity and sensitivity. The incentive for this consideration
was that both HIV-1 DNA quantification assays target the LTR of the
HIV-1 genome, well established as the most conserved region of the
genome, and furthermore both utilise a pre-amplification step allowing
for the separate quantification of different viral life-cycle stages. In

order to do so we initially aimed to define the cell quantification
standard using a human genomic DNA input based on 293 T cells. We
quantified the cell number using two methods; a commercial assay with
primers targeting the human β-actin gene and a previously described
assay targeting the human CD3 gene (Vandergeeten et al., 2014). We
tested a 5 log standard range (105 to 101 cell equivalents) using both
assays and found that they were within the optimum range of ampli-
fication efficiency (90–110%) and that there was no significant differ-
ence between either over 3 runs (P= 0.8538) (Fig. 2A and B). Based on
this result we selected the CD3 quantification assay because it includes
a pre-amplification step consistent with the HIV-1 DNA assays.

Further, we ran the two HIV-1 quantifications assays, RvS (van der
Sluis et al., 2013) and CV (Vandergeeten et al., 2014), using 5-log serial
dilutions (105 to 101 HIV-1 copies per input) of the J-Lat 10.6, 8E5,
SupT-14 and ACH2 cell lines. We found no significant difference be-
tween qPCR efficiency of both assays over 6 runs (P=0.0552). We next
compared the HIV-1 DNA content in these cell lines, aiming to de-
termine the most appropriate cell line for use as a quantification stan-
dard.

3.2. Evaluation of calibration cell lines

We evaluated HIV-1 integration model cell lines including ACH2,
8E5 and J-Lat as well as in ‘in house’ cell line, SupT-14, for their use as
calibration standards. Cell lines were grown to 10 passages and the total
HIV-1 per 106 cells was quantified following DNA extraction. Consistent
with recent publications, we showed that HIV-1 copies per cell de-
creased in 8E5 cells from 1 to 0.2 copies (Fig. 3). Additionally, HIV-1
copies in ACH2 cells were found to increase from 1 to 4 copies per cell.
On the contrary, HIV-1 DNA content was stable in both J-Lat 10.6 and
SupT1-14, which contain 1 copy per cell consistent with recent studies
(Sunshine et al., 2016) and 14 copies per cell as demonstrated pre-
viously (van der Sluis et al., 2013), respectively (Fig. 3). Based on these
findings we used the J-Lat 10.6 to quantify patient samples in this
study.

3.3. HIV-1 quantification in patient samples

We then compared the two HIV-1 DNA quantification assays using
patient samples. Overall, a strong correlation was found between the
results produced with the RvS and CV assays (r=0.9759, P < 0.0001)
(Fig. 4C). Nonetheless, the mean quantification of patient samples was
significantly higher when using the RvS (3.385 Log10 HIV-1 copies/106
cells) HIV-1 assay compared to the CV assay (3.203 Log10 HIV-1 co-
pies/106) (P=0.0021) suggesting a slight advantage of RvS over CV
when testing patient material (Fig. 4B). A possible explanation would

Table 1
Primers used for the amplification of patient sample LTRs and primers matched to patient sequences. For tailored and redesigned primers nucleotide positions that
vary from the universal assay primer are underlined.

Name Stage Function Sequence Position on HXB2

Seqout-F Sequencing PCR 1 Forward CACACACAAGGCTACTTCCCTGATTAGCAGAACT 57–90
Seqout-R Sequencing PCR1 Reverse CTTAATACTGACGCTCTCGCACCCATCTCTCT 815–784
Seqin-F Sequencing PCR2 Forward GGGACTTTCCGCTGGGGACTTTCC 350–373
Seqin-R Sequencing PCR2 Reverse TCTCTCTCCTTCTAGCCTCCGCTAGTCA 790–763
RvS-preF_132 Pre-amplification Forward CAACCTTCAGAAGCTGCATAWAAGCAGCYGCT 409–440
RvS -preR_132 Pre-amplification Reverse AGCAAGCCGAGTCCTCGCGTC 688–707
RvS -preF_108 Pre-amplification Forward GAGCCCGTGGATGCTGCATAWAAGCAGCYGCT 409–440
RvS -preR_108 Pre-amplification Reverse AGCACAGCCGAGTCCTGCGTC 688–707
RvS –qF_ 124 qPCR Forward GGGCGCCACTGCTAGAGAA 625–643
CV-preF_124 Pre-amplification Forward ATGCCACGTAAGCGAAACTCTGGGTCTCTCTDGCTGGAC 452–471
CV -preR_124 Pre-amplification Reverse CCATCTCTCTCCCTTCTAGC 775–793
CV -preF_132 Pre-amplification Forward ATGCCACGTAAGCGAAACTCTGGGTCTCTCTDGCTAGAC 452–471
CV –preF_108 Pre-amplification Forward ATGCCACGTAAGCGAAACTCTGGGTCTCTCTDGTCAGA 452–471
RvS-preF-A Pre-amplification Forward ARCCCTCAGAHGCTGCATAWAAGCAGCYGCT 410–440
RvS-preF-B Pre-amplification Forward ARCCCTCAGAHGCTGCATAWAAGCAGCYGC 410–439
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that the CV amplified product is longer than the RvS thus affecting the
amplification efficiency. Furthermore, the implementation of software
(http://unafold.rna.albany.edu) revealing folded structures indicated
that more complex folded structures of the CV amplicon could also
account for lower amplification efficiency. (Fig. 5) Of note, in 4/38
(10.52%) of patients we observed significant differences in quantifica-
tion between the two assays (114: P= 0.00101, 72: P > 0.0001, 23:
P > 0.0001, 111: P=0.0003) (Fig. 4A).

We next aimed to test the performance of the two assays when HIV-
1 copy input was diluted to 10 copies. We found that in low copies,
correlation was skewed towards the CV assay (r=0.8220,
P < 0.0001) and that in 9/25 (36%) of samples quantification was
significantly different between the assays (Fig. 4D and F). However,
there was no significant difference between the mean quantification of
low copy patient samples (P=0.1456) (Fig. 4E).

3.4. HIV-1 quantification using patient tailored primers

We showed that both assays performed comparably; however, there
was discrepancy in quantification observed with some patient samples.
We aimed to elucidate the cause of this discrepancy by sequencing the
LTR of patient samples. Two forward and reverse primers were selected
for nested LTR amplification based on identity with sequences of the
Los Alamos database (Table 1). The LTR of patient samples was sub-
sequently sequenced with the Sanger platform. Patient sequences were
analysed using BioEdit and sequences were manually aligned to primer
and probes used in both assays (data not shown). Based on this align-
ment, we selected primers tailored to patient samples (Table 1). Patient
samples were quantified simultaneously with the universal and the
patient tailored primers. For each patient sample tested, the quantifi-
cation with patient tailored primers was significantly higher than when
the universal primer was used (RvS 132 p=0.0056, RvS 108
p=0.0083, RvS 124 p=0.0010, CV 132 p=0.0004, CV 124
p=0.0008, CV 132 p= 0.0077) (Fig. 6A and B). Together, this is a
131.9% and 141.6% average increase for RvS and CV assays, respec-
tively, when patient tailored primers were utilised, demonstrating that
sequence diversity can occasionally impair the accuracy of the assay.

We subsequently interrogated the sequence information available
‘to date’ at the Los Alamos HIV-1 database. Our in silico analysis re-
vealed that the oligonucleotide with the higher propensity for mis-
matches was the RvS forward pre-amplification primer, at the 5′ end

Fig. 2. Comparison of standards and assay performance: A) 5 log serial dilution of human genomic DNA quantified using CD3 and β-actin qPCR. B) Average
amplification efficiency of CD3 and β-actin assays (n= 3). C) 5 log serial dilution of J-Lat clone 10.6 cells using CV and RvS. D) Average amplification efficiency of
CV and RvS assays.

Fig. 3. Quantification using different cell lines: Quantification of three cell lines
containing 1 HIV-1 copy per cell (8E5, J-Lat) and 14 HIV-1 copies per cell
(SupT1-14). A five log dilution series for each cell line was performed and used
as input for the assay. Quantification of each dilution was pooled and stan-
dardised to determine the average HIV-1 copies per cell.
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Fig. 4. Quantification of patient samples: A) Pellets of PBMCs or CD4+ cells extracted using proteinase K digestion or Qiagen DNA extraction. Total HIV-1 was
quantified using RvS and CV assays and cells were quantified using the CD3 assay. Statistical significance determined using the multiple t-test, Holm-Sidak method,
with alpha= 5.000%. B, E) Dot plot showing differences in mean quantification for undiluted and low copy quantification. Significance determined by paired t-test.
D) Samples were diluted to 10 copies per reaction and quantified using both assays. Statistical significance determined using the multiple T test, Holm-Sidak method,
with alpha= 5.000%. C, F) Correlation of all samples and correlation of diluted, low copy samples, respectively. Solid red line represents linear regression and green
dashed line represents perfect correlation.

Fig. 5. The probable secondary structure of single stranded HIV-1 DNA produced using the The mfold Web Server (http://unafold.rna.albany.edu): A) Depicts the
152 nt CV amplicon (HxB2: 522→643) and B) Depicts the 122 nt RvS amplicon (HxB2: 452→603).
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(Fig. 7E), when compared to the other assay primers (Fig. 7A–D). We
therefore redesigned this primer in two different versions (RvS-A and
RvS-B, Table 1) (Fig. 7F), to compensate the sequence diversity and
circumvent 5′ end mismatches that would be the most deleterious.
These two primer versions were used at equal ratio for the pre-ampli-
fication step. Our results indicate that the new primers, RvS-A and RvS-
B used in equal ratio, yield a significantly higher quantification than the
existing primer, and this represents an improvement on the assay
(P= 0.0057) (Fig. 8). Though this difference is small, our analysis

suggests this primer combination will reduce the risk of mismatching in
the 5′ end of the primer and increase the overall coverage and accuracy
of the assay. As it stands the in silico analysis showed that the overall
primer diversity ranged between 0.04% and 0.07% as estimated using
the neighbour-joining method and the Kimura-2-parameter model (data
not shown) suggesting that the RvS-A and B primer combination will
rarely underestimate the total DNA load.

Fig. 6. Quantification with sequence matched primers: Primers designed to match sequences were compared with assay primers: A) Comparison of CV primers to
sequence matched primers. B) Comparison of RvS primers to sequence matched primers. Statistical significance determined using the multiple t-test, Holm-Sidak
method, with alpha= 5.000%.

Fig. 7. Analysis of primer and probe sequence identity to published HIV-1 sequences: A) RvS probe sequence B) RvS pre-amplification reverse primer C) RvS qPCR
reverse primer D) Region targeted by both VC Probe and RvS qPCR forward primer E) RvS pre-amplification forward primer F) Modified assay primer encompassing
both primer A and B, where one has a nucleotide removed (Table 1) n= the number of sequences analysed per oligonucleotide.
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4. Discussion

Clinical trials assessing the efficacy of therapeutic vaccination or
HIV-1 eradication strategies must utilise robust and reproducible HIV-1
DNA quantification assays. The lack of a standard quantification assay
to measure total HIV-1 DNA has led to the development of a number of
‘in-house’ assays targeting different genomic regions for quantification,
but this variation may render the results of different clinical trials in-
comparable. We selected two HIV-1 quantification assays, CV
(Vandergeeten et al., 2014) and RvS (van der Sluis et al., 2013), for
comprehensive evaluation to determine if results obtained were com-
parable and the assays could therefore be used interchangeably. These
assays were selected for the ability to distinguish different HIV-1 DNA
forms, including 2-LTR circular DNA, which can serve as a marker of
recent infection and therefore be used to determine the success of
treatment. The differential quantification of different DNA markers is
facilitated by the use of a pre-amplification step and primers targeting
the conserved regions of the LTR of the viral genome.

Recent data has suggested that 8E5, a commonly used latency model
containing one copy of HIV-1 per cell, is unstable and rapidly loses HIV-
1 copies during passaging (Busby et al., 2017; Wilburn et al., 2016).
Further, a study has shown evidence of ongoing replication within
ACH2 cells during passaging, resulting in an increase in HIV-1 copies
per cell (Sunshine et al., 2016). This study has proposed the use of J-Lat
cells as quantification standards as these contain a non-replication
competent copy of HIV-1 that remains stable after a number of passages
(Sunshine et al., 2016). Consistent with these findings, we have com-
pared a number of well characterised calibration cell lines and dis-
covered that 8E5 and ACH2 cells are unsuitable for use due to the
change in HIV-1 DNA copies during passaging (Busby et al., 2017;
Wilburn et al., 2016). Further, we have demonstrated that J-Lat cells
contain ∼1 copy per cell and would therefore be the most suitable for
use in DNA quantification studies. The universal use of only one cell
line as a calibration standard would reduce variability of different HIV-
1 DNA assays and across different labs, rendering data obtained from
studies and clinical trials more comparable. Further, we demonstrate
that both LTR based assays amplify well-characterised HIV-1 calibra-
tion cell lines with equal efficiency, removing the potential of bias in
quantification of patient samples arising from a bias in the amplifica-
tion of the standard curve.

Our data indicate that both assays perform comparably when
quantifying total HIV-1 DNA in patient samples as well as cell lines and
that these quantifications correlate strongly. Despite this, we have
shown that the RvS assay quantifies the patient set as a whole, 0.2
Log10 HIV-1 copies higher than the CV assay, suggesting that the
quantification of patient samples is more efficient when using this
assay. When these samples were diluted to ∼10 copies per input the

strength of the correlation of the assays was lost. This is due to in-
herently higher variation in the quantification of low copy samples,
owing to the stochastic distribution of template within the sample.
However, the assay was improved when primers were redesigned using
sequences derived from a recent HIV-1 database.

The RvS and CV assays have the ability to only quantify HIV-1 DNA
that has undergone full reverse transcription as both implement a pre-
amplification step that utilises primers strategically placed to bind DNA
only present following first and second strand transfer (Fig. 1). How-
ever, the RvS assay performed slightly better, possibly due to the
smaller amplicon size. Based on that observation we improved the
performance and accuracy of the RvS assay by undergoing an in-silico
analysis of the primer sequences using all available HIV-1 sequences
from the Los Alamos database. The high degree of HIV-1 sequence
heterogeneity means that sequence variation will be encountered even
within the most conserved regions of the genome. Our analysis showed
that the forward pre-amplification primer was most divergent from
published sequences and we therefore redesigned this primer and
suggest that two primers (Table 1) should be used to improve the ac-
curacy and sensitivity of this assay.

HIV-1 DNA quantification is an essential tool for monitoring HIV-1
vaccine and therapy trials due to its low cost, fast turnaround time and
high throughput capacity. Notwithstanding its advantages, DNA based
assays cannot distinguish between replication competent and replica-
tion defective pro-virus, and will therefore overestimate the size of the
replication competent LR (Rouzioux and Avettand-Fenoël, 2018;
Ruggiero et al., 2017). Despite this, recent studies have suggested de-
fective pro-virus contributes to HIV-1 pathogenesis, and so measuring
the size of all pro-virus present in a sample is useful marker of vaccine
or treatment success and projection for disease progression (Rouzioux
and Avettand-Fenoël, 2018; Ruggiero et al., 2017). In any case these
described assays are a cheaper, faster and more practical alternative to
the cell based viral outgrowth assay (VOA) which is able to specifically
quantify only replication competent pro-virus by measuring virus pro-
duction in PBMCs following activation (Rouzioux and Avettand-Fenoël,
2018). Here we demonstrate that whilst two HIV-1 quantification as-
says perform comparably we have improved the RvS assay through
increasing the coverage of the diverse HIV-1 populations that can be
detected with the assay.
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Fig. 8. Comparison of patient sample quantification when using the existing RvS forward primer (red) or a combination of newly designed forward primers, RvS-A
and RvS-B (orange) (Table 1). RvS-A and RvS-B primers were used in equal ratio. Significance determined by paired t-test.
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