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Abstract

Significance: The transcription factor NRF2 (NF-E2-related factor 2) plays an important role as a master
regulator of the cellular defense system by activating transcriptional programs of NRF2 target genes encoding
multiple enzymes related to cellular redox balance and xenobiotic detoxication. Comprehensive transcriptional
analyses continue to reveal an ever-broadening range of NRF2 target genes, demonstrating the sophistication
and diversification of NRF2 biological signatures beyond its canonical cytoprotective roles.
Recent Advances: Accumulating evidence indicates that NRF2 has a strong association with the regulation of
cell fates by influencing key processes of cellular transitions in the three major phases of the life cycle of the
cell (i.e., cell birth, cell differentiation, and cell death). The molecular integration of NRF2 signaling into this
regulatory program occurs through a wide range of NRF2 target genes encompassing canonical functions and
those manipulating cell fate pathways.
Critical Issues: A singular focus on NRF2 signaling for dissecting its actions limits in-depth understanding of
its intersection with the molecular machinery of cell fate determinations. Compensatory responses of down-
stream pathways governed by NRF2 executed by a variety of transcription factors and multifactorial signaling
crosstalk require further exploration.
Future Directions: Further investigations using optimized in vivo models and active engagement of over-
arching approaches to probe the interplay of widespread pathways are needed to study the properties and
capabilities of NRF2 signaling as a part of a large network within the cell fate regulatory domain. Antioxid.
Redox Signal. 38, 684–708.
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Introduction

The transcription factor, NRF2 (NF-E2-related factor
2) belongs to the cap’n’collar (CNC)-basic leucine zip-

per (bZIP) family, assembling a complex with its hetero-
dimeric partners, small MAF (sMAF) proteins, and binds to
antioxidant response element(s) (ARE) to activate or repress
a battery of NRF2-target genes (Fig. 1). In 1997, Nrf2 null
mice were first established, showing diminished expression
of detoxifying enzymes, along with enhanced sensitivity to
toxic xenobiotics (Chan et al, 2001; Itoh et al, 1997).

KEAP1 (kelch-like ECH-associated protein 1), a repressor
facilitating the proteasomal degradation of NRF2, was de-
scribed shortly thereafter as a critical factor affecting NRF2
fate and magnitude of cytoprotective responses (Itoh et al,
1999; Kobayashi et al, 2004). Based on these fundamental
findings, NRF2 research accelerated the field of molecular
toxicology to define its role as a critical defensive player
against electrophiles and reactive oxygen species (ROS)
(Kensler et al, 2007). The key components underlying the
robust advancement of NFR2 research were (1) the genera-
tion and widespread dissemination of sophisticated genetic
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tools for modulating the structure and function of NRF2 and
KEAP1 (and other accessory proteins) for studies in vitro and
in vivo, and (2) the application of systematic transcriptomic
and genomic sequencing methodologies.

Especially, comprehensive and high-throughput tran-
scriptome profiling have continued to reveal an ever-
broadening range of NRF2-target genes, including the many
cytoprotective genes categorized as ‘‘canonical’’ NRF2 tar-
get genes, and some more recently characterized NRF2 tar-
get genes, such as cell proliferation-/differentiation-related
genes and genes contributing to cell death pathways (Fig. 1).
By now, over 300 potential direct NRF2-target genes have
been reported, indicating the complexity of the biological
functions of NRF2 in multiple biological settings (Malhotra
et al, 2010; Yamamoto et al, 2018).

In this review article, we place a particular focus on the
functions of NRF2 that affect cell fate determinations. Im-
portantly, NRF2 target genes are tightly associated with the
regulation of cell fate. In this regard, contributions to cell fate
commitment are one of the key biological signatures of
NRF2, which requires comprehensive and progressive under-
standing as we enter the new era of NRF2 research. We likened
the cell life span to the human life course, which reminded us
of the three goddesses (Moirai) in Greek mythology, who
inescapably controlled the thread of life of individuals.

Given this inspiration, three phases of the cell life cycle,
that is, cell birth, cell differentiation, and cell death, are
compared with the Three Fates: Clotho, Lachesis, and Atro-
pos (Fig. 2), where we summarize interactions between
NRF2 signaling and regulatory mechanisms of cell fate de-
terminations throughout their life cycle.

CLOTHO: Cell Birth (Stem Cells)

Embryonic stem cells (pluripotent stem cells)

Embryonic stem cells (ESCs) are found in the inner cell
mass of a blastocyst after *5 days of development. They are
pluripotent cells with indefinite self-renewal abilities and
differentiation properties contributing to the three primary
germ layers: ectoderm, endoderm, and mesoderm. In em-

bryogenesis, the fertilized egg harbors totipotency, which is
maintained in the zygote up to the eight-cell stage of the
morula. Cell differentiation leads to a blastocyst composed of
outer trophoblast cells and an undifferentiated inner cell
mass. Although the inner cell mass loses totipotency, it re-
tains the ability to develop into all cell types of the embryo,
which is referred to as pluripotency. These cells are defined as
ESCs (Wobus and Boheler, 2005).

The establishment of ESC lines derived from mouse em-
bryos in the early 1980s, and that of human embryos a decade
later are fundamental breakthroughs in the field of develop-
mental biology. The role of NRF2 in ESCs has been inves-
tigated mainly in vitro using human and mouse ESC lines.

FIG. 1. NRF2 regulated genes affect multiple cell functions. NRF2 is a transcription factor that translocates into the
nucleus, heterodimerizes with sMAF proteins, and binds to ARE in upstream regulatory regions to activate or repress the
transcription of a wide range of genes. Canonical NRF2 target genes encode enzymes related to redox regulation, xenobiotic
and drug detoxication, drug transporters, intermediary metabolism, as well as anti-inflammatory factors. NRF2 target genes
also include genes where direct transcriptional regulation by NRF2 leads to determination and/or fine-tuning of cell fates.
ARE, antioxidant response element; Nrf2, NF-E2-related factor 2; sMaf, small Maf.

FIG. 2. Three Fates in the life cycle of a cell: Clotho,
Lachesis, Atropos. The major elements of the life cycle of a
cell: (1) cell birth (stem cells), (2) cell differentiation and
survival, and (3) cell death, are precisely regulated to direct
the fate of individual cells. These phases can be compared
with the Three Fates—the three Moirai (m-EE-r-eh) in
Greek mythology who determine human destiny: the
youthful Clotho spins the thread of life, the aged Atropos
cuts it off—despite Clotho’s attempts to prevent this—and
Lachesis reads the allotment of each individual in the Book
of Destiny. (Photo description: Grabmal des Prinzen Alex-
ander von der Mark; Alte Nationalgalerie Berlin. Photo by
Andreas Praefcke, Public Domain, https://commons.wikimedia
.org/w/index.php?curid=2122291).
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The nuclear accumulation of NRF2 has been observed from
the two-cell stage up to the blastocyst stage in the culture of
harvested mouse zygotes (Lin et al, 2018). NRF2 expression
is high in human embryonic stem cells (hESCs) and dra-
matically decreases on differentiation ( Jang et al, 2014).
These descriptive observations suggest a role of NRF2 in the
earliest stages of embryogenesis and ESC fate determination.

Cell culture conditions (e.g., passage number, oxygen
tension) may confound interpretations of redox mechanisms
in ESC fate. Lower-oxygen concentrations (*1%–5%) than
typical cell culture conditions (20% oxygen) have been re-
ported to maintain ESC pluripotency, and reduce their dif-
ferentiation in mouse and hESCs (Barbosa et al, 2012; Ezashi
et al, 2005; Westfall et al, 2008). Excessive intracellular ROS
and higher oxygen tension can be a trigger for ESCs to exit
into a differentiation state (Yanes et al, 2010).

There is a fundamental importance of the physiologi-
cal levels of ROS in cellular processes throughout the cell
life cycle. The contribution of NRF2 signaling, a master
regulator of the redox system, is beyond question. However,
particularly in ESCs, the role of NRF2-mediated redox reg-
ulatory mechanisms in cell fate determination and cellu-
lar process has been investigated in only a few studies.
Future studies should employ optimization of ROS stimu-
lation and in vivo animal models, possibly through genetic
engineering.

With these concerns in mind, the neurogenic effect of ROS
in stem cells was examined using hESCs treated with para-
quat. Elevated ROS levels resulted in acceleration of neu-
ronal differentiation, which was enhanced by knockdown of
NRF2 (Hu et al, 2018). Another study demonstrated that mild
oxidative stress provoked by exposure to glucose oxidase
enhanced osteogenic differentiation and mineralization in
mouse ESCs, which was inhibited by Nrf2 knockdown (Sim
et al, 2016). It was reported that silencing of FTH1, which
encodes a major iron storage protein, activated NRF2 sig-
naling and induced expression of metabolism-related NRF2
target genes, G6PD and PGD in hESCs (Scaramuzzino et al,
2021). Considering NRF2 as a transcription factor that
modulates Fth1 and also ferritin light chain (Ftl) transcription
(Kwak et al, 2001; Thimmulappa et al, 2002), it could be
assumed that the FTH1-NRF2 axis might contribute to iron
homeostasis in hESCs, leading to metabolic changes.

Several signaling pathways and their underlying tran-
scription factors are involved in the survival, maintenance,
proliferation, and differentiation of ESCs as shown in Figure 3.
NRF2 directly regulates proteasome activity at least par-
tially through POMP, an essential molecular chaperon for
proteasome assembly ( Jang et al, 2014). NRF2-mediated
high proteasome activity in hESCs seems to be important to
regulate self-renewal and pluripotency of hESCs. A chro-
matin immunoprecipitation (ChIP)–seq study performed by
Chorley et al (2012) suggested the potential transcriptional
regulation of the POMP gene by NRF2.

Jang et al (2016) also demonstrated that NRF2 transcrip-
tionally regulates the expression of core pluripotency-related
genes. Under defined differentiation conditions, pluripotent
hESCs are directed toward a mesendoderm or neuroectoderm
fate, which is the first ultimate choice between the two cell
fate commitments. Importantly, they showed that NRF2
binds directly to upstream regions of OCT4 and NANOG to
promote their expression. Together with other pluripotency-

related factors, such as SOX2, the expression level of OCT4
and NANOG regulated by NRF2 is suggested to suppress
early cell fate commitment of pluripotent hESCs.

Si et al (2019) studied the effect of hyperglycemia on self-
renewal ability of neural progenitor cells during embryonic
development using a gestational diabetes mouse model. They
showed that ciliary neurotrophic factor (CNTF), a key neu-
ropoietic cytokine, regulates the imbalance between neuro-
genesis and gliogenesis caused by hyperglycemia. Moreover,
it was shown that CNTF and NRF2 coordinately regulate
neural development through pSTAT3, suggesting a potential
role of signaling crosstalk between NRF2 and other canonical
factors in the homeostasis of ESCs.

The signaling pathways, such as Janus kinase (JAK)
pathway and bone morphogenetic protein (BMP), which have
been reported to have direct- or indirect-crosstalk with NRF2
signaling in other cell types (Gong et al, 2020; Jiang et al,
2015b; Turei et al, 2013), are important players in the sig-
naling network of ESC fate determination (Fig. 3). Hence,
it could be hypothesized that NRF2 signaling may affect
multiple signaling networks during the process of ESC fate
determinations.

Stem cell reprogramming

In general, mammalian cells undergo development to be-
come more committed to their specific lineages. However,
the generation of induced pluripotent stem cells (iPSCs) from
somatic cells is often described as ‘‘a rewinding of the de-
velopmental clock.’’ An association of the NRF2 signaling
pathway with somatic reprogramming might be inferred, but
it is solidly unproven. The metabolic shift from oxidative to

FIG. 3. Signaling networks in human embryonic stem
cells. Self-renewal and differentiation of embryonic stem
cells are precisely regulated by complex signaling networks,
which include the SMAD and JAK/STAT3 signaling path-
ways and pluripotency factors. NRF2 transcriptionally reg-
ulates core pluripotency factors, OCT4 and NANOG, in
human pluripotent stem cells, thereby contributing to their
maintenance. BMP, bone morphogenetic protein; ID, in-
hibitor of DNA-binding proteins; JAK, Janus kinase; LIF,
leukemia inhibitory factor; LIFR, LIF-receptor; NANOG,
Nanog homeobox protein; OCT4, POU class 5 homeobox 1;
SMAD, suppressor of mothers against decapentaplegic;
STAT3, signal transducer and activator of transcription 3.
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glycolytic energy production is a key molecular event during
iPSC reprogramming. Hawkins et al (2016) studied the real-
time activity of transcription factors during iPSC repro-
graming using a lentiviral reporter system that revealed a
peak in NRF2 activity at day 8 of reprogramming.

This timeline corresponded with elevated ROS generation
during the early stages of iPSC reprogramming, leading to the
metabolic switch from oxidative phosphorylation toward
glycolytic energy production. This metabolic switch seems to
be supported by NRF2-mediated activation of hypoxia-
inducible factor (HIF)1a as inhibition of NRF2 by KEAP1
overexpression in human iPSCs compromised metabolic re-
programming and resulted in reduced efficiency of iPSC
colony formation. Jang et al (2016) used eight well-
characterized iPSC lines, including human and chimpanzee
lines, and examined the correlation between NRF2 signaling
activity and differentiation bias of iPSCs (i.e., a mesendo-
derm fate or neuroectoderm fate). It was demonstrated that
iPSCs with lower NRF2 activity were more neurogenic rather
than being directed toward a mesendoderm fate.

Multipotent stem cells

Multipotent stem cells (MSCs), also called adult tissue
stem cells, have been discovered in small numbers in most
adult tissues, such as bone marrow, intestinal crypts, or adi-
pose tissue. Although MSCs have a more limited potential to
differentiate into various cells of the body compared with
pluripotent ESCs, MSCs stand as key cells for implemen-
tation of biological events such as tissue development, re-
generation, and repair. Studies of both loss and gain of
function of NRF2 signaling provide insights into roles of
NRF2 in MSC.

NRF2 signaling toward its canonical cytoprotective target
genes is important to maintain integrity and survival of MSC.
Accordingly, Nrf2 null mice exhibit a shortened lifespan
compared with littermate controls fed under ad libitum con-
ditions in well-controlled vivariums (Pomatto et al, 2020)
(Fig. 4A). The MSC in Nrf2 null mice, which are consider-
ably more fragile than in wild-type mice, may influence in-
dividual animal survival (Dodson et al, 2021). It is not clear
that MSC in each tissue produce transit-amplifying progen-
itor cells (TA) as occurs in the intestinal crypt, where NRF2
engages in fine tuning of cell lineages (Yagishita et al, 2021).

Moreover, due to the proliferative role of TA, NRF2-
signaling may play a significant role for other cells to proceed
toward normal differentiation and to avoid impaired differ-
entiation, including cancer stem cell production. The fact that
NRF2 in cancer cells can acquire point mutations at multiple
sites for gain of stability in its functional domains (e.g., in-
terfaces to KEAP1 or b-TRCP), such gain of function by
mutated NRF2 contributes to the survival of abnormal cells
and finally, tumor/cancer following input from additional
oncogenic pressures. Since cancer stem cells, which mimic
MSCs, utilize NRF2 signaling to survive, the fine-tuning of
NRF2 function might be important for the maintenance of a
healthy MSC niche.

Because Nrf2 null mice survive after birth with the func-
tional establishment of each tissue, the absence of NRF2
signaling in such MSCs may be compensated by other tran-
scription factors, at least to some degree. Canonical NRF2
target genes utilize AREs (Liu et al, 2019) shared with other

CNC factors (especially, NRF1, NRF3, or NFE2p45 in ery-
throid cells). A reverse compensation can also happen. In-
deed, Nrf1 null mice die at embryonic day (ED) 13.5 due to
hepatocyte dysfunction and impairment of early hematopoi-
etic development (Chan et al, 1998).

In contrast to this late embryonic lethality in Nrf1-deficient
mice, compound Nrf1 and Nrf2 knockout mice die at ED 9.5
exhibiting extensive apoptosis (Leung et al, 2003). Although
this phenotype emerges earlier in embryonic development, it
is notable that NRF2 functioned on the NRF1 dominant-ARE
gene expression machinery to prolong animal longevity by
4 days. Interestingly, complete knockout mice of sMafs,
which are heterodimeric partner molecules of both NRF1 and
NRF2, also die at ED 13.5 (Yamazaki et al, 2012), as do
knockout mice of Jun proto-oncogene (c-Jun), which possi-
bly binds to AREs (Eferl et al, 1999).

Knockouts of Trx2, Gss, TrxR1, Notch1, and Gclc, which
are ARE-containing genes regulated by NRF2 and NRF1,
show embryonic lethality as well (Bondareva et al, 2007;
Dalton et al, 2000; Nonn et al, 2003; Swiatek et al, 1994;
Winkler et al, 2011). Although Nqo1 knockout mice do not
show a lethal phenotype (Diaz-Ruiz et al, 2019), several types
of loss-of-function mice with NRF2 target genes experience
mortality earlier than Nrf1 null mice. Therefore, NRF2 might
compensate for the loss of expression of these genes until ED
13.5 in the Nrf1 null mice (Fig. 4A). In some cases, ARE
sequences include TPA (12-O-Tetradecanoylphorbol-13-
Acetate)-responsive element (TRE) or cAMP (cyclic aden-
osine monophosphate) response elements (CRE) sites, which
are recognition sequences for transcription factor AP-1 ( Jun
proto-oncogene [JUN] and Fos proto-oncogene [FOS] fam-
ily) ( Jochum et al, 2001) or the CREB/ATF (cAMP-
responsive element binding protein/activating transcription
factor) family (Hai and Hartman, 2001), respectively (Fig. 4B).

This overlap might account for a lack of embryo lethality
in Nrf2 null mice. However, many toxicological studies have
shown that the Nrf2 null condition in whole body or in cell-
specific constructs exhibit increased acute sensitivity to
toxins and altered susceptibility to tumorigenesis. They do
not develop spontaneous tumors. However, these compen-
satory factors do not provide a full fail-safe mechanism for
specific ARE gene expression driven by NRF2-sMAF for
maintenance of long-term development and survival.

Given that therapeutic approaches directed at stem cells
are developing recently, along with the characterization of
stem cells that are in perpetual self-renewal or able to dif-
ferentiate into specialized somatic cell types, the identifica-
tion and classification of ARE genes regulated by each CNC
or related transcription factor in both MSC and niche somatic
cells should be delineated at the in vivo level. Also, eluci-
dation of the details by which cell-specific cases, conditions,
and timing affect the contributions of NRF2 are needed.

LACHESIS: Cell Differentiation and Proliferation

Cell differentiation

Nrf2 null mice are viable, fertile and exhibit an outwardly
normal phenotype, indicating that NRF2 is dispensable for
development. However, recent studies suggest that subtle
changes in phenotype reveal effects on tissue development,
including cellular differentiation, some of which are medi-
ated by disturbed crosstalk between NRF2 and other
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transcription factors (Fig. 5). Key observations from these mice
are summarized later, beginning with epithelial tissue devel-
opment and cell differentiation (vasculogenesis/angiogenesis,
enterogenesis, liver and lung, and amelogenesis).

Vasculogenesis/angiogenesis. A congenital intrahepatic
shunt, not seen in wild-type mice, was observed in Nrf2-
deficient mice with a high prevalence (*66%). This shunt
directly connected the portal vein to the inferior vena cava
and displayed characteristics of a patent ductus venosus

(Skoko et al, 2014). A similar phenotype was expressed in
both aryl hydrocarbon receptor (Ahr) and aryl hydrocarbon
receptor nuclear translocator (Arnt) deficient mice in all
animals (Lahvis et al, 2000; Walisser et al, 2004). A reciprocal
NRF2-AhR gene expression system driven by AREs/XREs
on each gene’s functional promoter region might reflect sig-
naling crosstalk (Miao et al, 2005; Shin et al, 2007), revealing
a common phenotype. In neural tissues, such as retina or
cerebrum, reduced NRF2 function leads to impaired vascular
formation (Li et al, 2016; Uno et al, 2010; Wei et al, 2013).

FIG. 4. Functional and molecular interplay between NRF2 and other CNC transcription factors in embryogenesis.
(A) During embryogenesis, diverse types of cells are generated from the fertilized egg, ultimately constituting each tissue
and organ. The role of cis-element related transcription factors during embryogenesis has been investigated using loss-of-
function strategies. Specifically, the observed lethal phenotypes highlight the biological significance of these transcription
factors in embryonic development. The schema indicates the survival time of embryos for each loss-of-function model
mouse of cis-element related transcription factors, as well as for selected NRF2-target genes. (B) The enhancer function of
the cis-element ‘‘ARE’’ can be partially mimicked by TRE, CRE, and MARE elements and some nuclear receptor
recognition elements. The lower boxes indicate the response element binding proteins, and the upper boxes indicate their
corresponding binding sites. The core sequences in common with ARE and other factor recognition elements are indicated in
red. ARE, antioxidant response element; ATF, activating transcription factors; BACH, BTB and CNC homology basic leucine
zipper transcription factor; cJUN/JUN, Jun proto-oncogene; CNC, cap’n’collar; CRE, cAMP (cyclic adenosine monopho-
sphate) response elements; CREB, cAMP-responsive element binding protein; CREM, cAMP response element modulator;
ED, embryonic day; FOS, Fos proto-oncogene; FRA, Fos-related antigen; Gclc, glutamate-cysteine ligase, catalytic subunit;
Gss, glutathione synthetase; MARE, Maf homodimer specific binding sites; Nqo1, NAD(P)H dehydrogenase, quinone 1; NRL,
neural retina-specific leucine zipper protein; P, postnatal day; PPAR, peroxisome proliferator-activated receptor; Rar, retinoic
acid receptor; RARE, retinoic acid response element; RXR, retinoid X receptor; Thyroid RE, thyroid hormone response
element; TR, thyroid hormone receptor; TRE, TPA (12-O-tetradecanoylphorbol-13-acetate)-responsive element; Trx2,
thioredoxin-2; TrxR1, thioredoxin reductase-1; VDR, vitamin D3 receptor; VDRE, vitamin D response element.
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However, in a mouse model of pregnancy-associated hy-
pertension, Nrf2 deficiency decreased the rate of perinatal
morbidity (Nezu et al, 2017). The HIFs target genes are
regulated by hypoxia response elements (HREs). The con-
tribution of HIFs in vasculogenesis through VEGF signaling
has been noted (Li et al, 2016). The HIFs (HIF1a and HIF2a)
and their heterodimeric partner ARNT (HIF1b), which is
also an AhR heterodimeric molecule, could regulate Vegf
and heme oxygenase-1 (Hmox1) gene expression. Expression
of these genes is also controlled by NRF2-ARE machin-
ery. It might be that NRF2-HIF crosstalk contributes to
vasculogenesis/angiogenesis through ARE/HRE signaling.

Enterogenesis. The small intestine has relatively high
levels of Nrf2-expression (https://www.ncbi.nlm.nih.gov/
gene/18024) where canonical NRF2 signaling contributes
to host defense from exogenous toxicants and microbiota
products. The small intestine is one of the fastest self-
renewing tissues in the body. The proliferation of MSCs
produces TA that turn into specialized epithelial cell types
of absorptive (enterocyte) and secretory (goblet, Paneth
and enteroendocrine) functions. NOTCH and its down-
stream effectors are pivotal for the maintenance of stem cells,
guiding the proliferation of progenitor cells and the balance
of differentiation toward different cell lineages.

Genetic (and pharmacologic) activation of NRF2 has been
shown to perturb the dialog of the NOTCH cascade through

negative regulation of Math1 in progenitor cells, leading to
enhanced enterogenesis (Yagishita et al, 2021). Keap1F/F::
Villin-Cre mice, which exhibit enhanced NRF2 activation
in the small intestinal epithelium, showed longer intestines
and taller villus heights. The phenotype was cancelled in
Keap1F/F::Nrf2F/F::Villin-Cre mice. Multiple ARE sequences
lie on the Math1 promoter/enhancer region, which can also
function with other CNC transcription factors such as NRF1,
NRF3, and BTB and CNC homology basic leucine zipper
transcription factor (BACH)1. Thus, NRF2 can affect the
differentiation plasticity of the intestinal epithelium.

Liver and lung. The association between hepatic epithe-
liogenesis and NRF2 has been demonstrated using mouse
models. Bellanti et al (2021) demonstrated that inhibition of
NRF2 stimulates differentiation of liver stem and progenitor
cells (hepatoblasts) to hepatocytes/cholangiocytes. They
employed a xenograft model that underwent transplantation
of hepatic progenitor-like cells treated by the chemical
compound ARE expression modulator 1 (AEM1), which is
reported to inhibit the NRF2 downstream effect without al-
tering Nrf2 expression. Nrf2 suppression accelerated recov-
ery after liver injury, where it was observed that the damaged
parenchyma was replaced with Nrf2-suppressed transplanted
cells that harbor distinctive differentiated cells. Cholangio-
cytes are one of the hepatic epithelial cells that line the in-
trahepatic and extrahepatic bile ducts. It was shown that liver-

FIG. 5. NRF2 in multipotent stem cells and niche cells influence cell differentiation in multiple types of tissues. The
niche is the specific microenvironment surrounding stem cells that sustains them. NRF2 signaling expressed in the stem-niche
unit, including multipotent stem cells (tissue-specific stem cells) and niche somatic cells, may facilitate maintenance of stem
cells, self-renewal, and transition of stem cell fate (differentiation) in multiple types of tissues. A potential underlying
molecular mechanism is the modification of physiological ROS signaling by NRF2-mediated redox regulation in stem/
niche cells. Further, specific target genes that are uniquely expressed in the stem/niche unit in each tissue may be regulated
by the NRF2-ARE machinery, resulting in the facilitation of cell differentiation processes. ROS, reactive oxygen species.
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specific activation of Nrf2 in Pten (phosphatase and tensin
homolog deleted from chromosome 10) knockout back-
ground mice displayed severe hepatomegaly. The livers in
this model mouse showed abnormal expansion of ductal
structures consisting of cholangiocytes (Taguchi et al, 2014).
Since the functional loss of PTEN increases AKT phos-
phorylation, which promotes cell growth and proliferation,
the crosstalk between NRF2 and PTEN was suggested as an
associated molecular mechanism.

Cell differentiation of alveolar epithelial type II cells is
developmentally induced in the fetal lung along with upre-
gulated synthesis of an immune modulator, surfactant protein
A (SP-A), that protects the alveolar epithelium from exposure
to high O2 tension and inhaled pathogens after birth. Mishra
et al (2021) reported that NRF2 transcriptionally regulates
SP-A and other immune modulator genes during the cell
differentiation process of human fetal lung epithelial cells. In
mouse fetal lung, the expression of NRF2 and SP-A was
elevated from 14.5 to 18.5 days post-coitum, suggesting that
transcriptional regulation of SP-A by NRF2 may underlie the
protective function of epithelium in fetal lung.

Amelogenesis. The incisors of rodents contain an iron-
rich enamel that grows throughout life. There is one obvious
phenotype in adult Nrf2 null mice: The maxillary incisors are
decolorized and become grayish white. There is less iron on
the surface of Nrf2 null incisors due to aberrant deposition of
iron into the papillary layers during the late maturation stage
of ameloblasts. Consequently, ameloblasts proceed to de-
generative atrophy. Reduced ferritin gene expression (under
the regulation of NRF2/ARE) likely influences the observed
iron transport defect in the enamel of Nrf2 null mice (Ya-
nagawa et al, 2004).

Recently, mice with autophagy-related genes Atg7, Atg5,
or Sqstm1 ( p62) deleted specifically in ameloblasts were
reported; deletion of Atg5 and Atg7 (but not p62) leads to
aberrantly decolorized incisors (Sukseree et al, 2020). Al-
though NRF2 regulates the expression of these genes (Pajares
et al, 2016), the basis for the partial association between
NRF2 and autophagy in ameloblast development in enamel is
unclear.

Folliculogenesis/oogenesis/placentation. Oxidative stress
is associated with normal ovarian aging (Hamatani et al,
2004; Lim and Luderer, 2011; Tarin, 1996) and deletion of
Gclm, an NRF2 target gene and subunit of the rate-limiting
enzyme in glutathione (GSH) synthesis, causes accelerated
ovarian aging (Lim et al, 2015a). Comparison of the numbers
of ovarian follicles in wild-type and Nrf2 null mice shows no
difference at 35 days of age. However, by 10–12 months of
age, the remaining primordial follicle pool is significantly
smaller in Nrf2 null mice along with a reduction of ovarian
GSH levels (Lim et al, 2015b).

NRF2 is detected in oocytes and granulosa cells, but
its expression is reduced in aged mice. Nrf2 knockdown
by injection of Nrf2 small interfering RNA (siRNA) into
fully grown oocytes showed that NRF2 contributed to
the formation/stability of the meiotic spindle and the reg-
ulation of meiotic progression; Nrf2 knockdown was
associated with interference of CyclinB1/Cdk 1 expres-
sion, thereby implicating a role for NRF2 in meiotic

division. NRF2 overexpression ameliorated maternal
age-associated oocyte meiotic defects (Ma et al, 2018).

The establishment of a placenta is critical for embryonic
development and a successful pregnancy outcome. On ED
18.5 the fetal weight of the Nrf2 null mouse was significantly
reduced versus wild-type, indicating a decrease in placental
efficiency (birth weight: placental weight). Reductions in
both total and labyrinth-volume in the placenta of Nrf2 null
mice were observed (Kweider et al, 2017).

Interestingly, NRF2 transcripts were upregulated during
syncytiotrophoblast differentiation from cytiotrophoblasts,
and they dramatically reduced by hypoxia in the human pre-
eclampic placenta. Moreover, NRF2 knockdown experi-
ments in cytotrophoblasts showed an inhibitory effect for
induction of one microRNA (miRNA), miR-1246, whose
direct targets include GSK3b and AXIN2 (Chai et al, 2016),
CYP19A1 (P450 Aromatase) as well as CEBPb and peroxi-
some proliferator-activated receptor c (PPARc), all impli-
cated as key factors for placental differentiation (Barak et al,
1999; Toda et al, 1996) and as direct NRF2 target genes (Hou
et al, 2012; Kim et al, 2018a). Both miR-1246 and the
CYP19A1 promoter/enhancer bear functional AREs (Mur-
alimanoharan et al, 2018), raising the possibility of NRF2-
ARE signaling between maternal tissues and the embryo in
embryogenesis. The role of NRF2 in placentation should be
elucidated in in vivo studies.

Spermatogenesis. Spermatozoa are one of the most
susceptible cells to oxidative damage due to large amount of
polyunsaturated fatty acids in their cell membranes, which
can be oxidized by ROS. Low levels of ROS are necessary for
sperm capacitation, the process by which sperm become ca-
pable of fertilizing an oocyte, and for the acrosome reaction,
which enables the sperm to penetrate the zona pellucida of the
oocyte and fuse with its membrane (de Lamirande et al,
1997). In a rodent model, the decline in male fertility with
aging is associated with increasing oxidative damage and
decreased antioxidant capacity in the male reproductive
system (Weir and Robaire, 2007).

Indeed, vacuolization of seminiferous tubules, decreased
testicular weights, decreased testicular and epididymal sperm
counts, and decreased sperm motility were observed with
decreased testicular and epididymal antioxidant capacity in
aged-Nrf2 null mice from 2- to 4-month-old (Nakamura et al,
2010). In humans, a strong association between functional
polymorphisms in the NRF2 promoter and seminal plasma
superoxide dismutase (SOD) activity with the risk of oli-
goasthenoospermia (reduced sperm motility and count) has
been described (Chen et al, 2012a; Yu et al, 2012). A re-
duction of NRF2 promoter activity might affect direct target
gene expression.

Osteogenesis. Bone tissue receives many inputs from
the endocrine, nervous, and immune systems, and it responds
with calcium metabolism, mechanotransduction, and hema-
topoiesis (Harada and Rodan, 2003). Nrf2 null mice have a
lower bone mass featuring lower bone mineral density. The
bone strength of femurs and vertebral bodies were observed
to be significantly lower in comparison to wild-type controls
(Ibanez et al, 2014; Kim et al, 2014; Park et al, 2014; Sun
et al, 2015). These data demonstrated that NRF2 plays an
important role in bone homeostasis and mechanotransduction.
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ATF4 is a transcription factor that regulates differentiation
of osteoblast and bone mass by possibly activating AREs.
Interestingly, a similar but more severe phenotype was ob-
served in Atf4 null mice, which exhibit low viability, with
delayed bone formation during embryonic development and
low bone mass throughout postnatal life (Yang et al, 2004).
Further, Atf4 null mice exhibited a reduction in oxidative
stress-induced gene expression, resistance to oxidative death,
and decreased consumption of GSH. The direct heterodimer
formation between ATF4 and NRF2 was observed at the
cellular level on the Hmox1 enhancer (He et al, 2001) and
recently, NRF2-ATF4 crosstalk has been considered for
maintenance of mitochondrial quality (Kasai et al, 2019).
Both factors might be able to sense and react to stress in the
cells comprising bone tissue.

There are two major cells for maintaining bone metabo-
lism and development: osteoblasts derived from mesen-
chymal stem cells and osteocytes along with osteoclasts
derived from the monocyte/macrophage hematopoietic line-
age. Osteoblasts and osteocytes work together to remove old
bone and add new bone. NRF2-overexpressing osteoblastic
MC3T3-E1 cells are blocked from ongoing differentiation
toward maturation without affecting either cell survival or
gene expression of several master regulators required for
differentiation in cultured osteoblastic cells.

A likely mechanism considers interference with RUNX2-
dependent transcriptional activation by direct interaction
between NRF2 and RUNX2, a master gene of osteoblasto-
genesis (Hinoi et al, 2006). With osteoclastogenesis it was
reported that activation of canonical NRF2-signaling seemed
to suppress RANKL induced osteoclast differentiation via
intracellular ROS attenuation in a cell culture differentiation
system (Hyeon et al, 2013; Xue et al, 2019).

In vivo evidence is provided by NEKO mice in which
NRF2 signaling is highly activated throughout the body due to
Keap1 gene disruption, except for upper digestive tract
(esophagus) and skin in which Nrf2 is selectively deleted
(Yoshida et al, 2018). In NEKO mice, hypoplasia of bone
mass was observed along with nephrogenic diabetes in-
sipidus. Further, differentiation of both osteoclasts and oste-
oblasts was attenuated in in vitro differentiation experiments
using primary cells derived from Keap1-null mice, suggesting
association between constitutive activation of NRF2 and its
impact on osteogenesis. Interestingly, in humans, inborn de
novo mutations of NRF2 have been identified leading to
NRF2 accumulation and producing multisystem disorders,
including mild developmental delays, short stature, and de-
layed bone age (Huppke et al, 2017). The mimicked pheno-
types in mouse and human further imply that NRF2-signaling
contributes to maintenance of bone homeostasis.

In summary, accumulating evidence, including in vivo,
in vitro, and clinical observations, indicates association
between NRF2 signaling and osteogenesis. NRF2 signaling
might be a therapeutic target for bone metabolism-related
diseases, such as osteoporosis. However, since bone metab-
olism involves multiple factors, including mechanical stimuli
that activate bone remodeling, age, and sex, further studies
involving dynamics of bone biology are required.

Chondrogenesis. Nrf2 transcripts in tibia were detected
at ED 15.5 in both proliferating and pre-hypertrophic chon-
drocytes and expressed in all chondrocytes by postnatal day 1.

Forced expression of NRF2 markedly inhibited in vitro
chondrogenesis in mouse pre-chondrogenic ATDC5 cells
(Hinoi et al, 2007). In human T/C28a2 chondrocytic cells,
lower NRF2 signaling leads to their apoptosis under shear
stress (Healy et al, 2005). It seemed that NRF2 signaling
contributed to cartilage formation in T/C28a2 cells. Chon-
drogenesis could be controlled by both overexpression and
downregulation of NRF2 signaling, a paradox possibly ex-
plained by taking into consideration the concept that appro-
priate expression of NRF2 signaling is required for normal
chondrogenesis.

Myogenesis. Impaired skeletal muscle regeneration in
Nrf2 null mice using an ischemia injury model was observed
wherein it was noted that NRF2 regulated the expression of
myogenic regulatory factors. The 5¢-proximal promoter re-
gion of the transcription factors, myogenic differentiation 1
(Myod1) and Myogenin (Myog), contains highly conserved
functional ARE sequences among various animals from fish
to human (Al-Sawaf et al, 2014). Using skeletal muscle-
specific stem cells or C2C12 myoblast cells, it was concluded
that Myod1 is a direct NRF2 target gene in postnatal satellite
cells, whereas for Myog promoter activity, NRF2 acts as a
suppressor (Rudnicki et al, 2008; Zammit, 2017).

NRF2 contributes to satellite cell proliferation by upre-
gulation of Myod1 gene and concurrently suppresses their
differentiation to myotubes by downregulation of Myog ex-
pression. However, a contrasting view was also reported in
which Nrf2 null mice did not show any defect in skeletal
muscle regeneration in an acute muscle damage model us-
ing cardiotoxin. NRF2 inhibited Myod1 and Myog expression
in proliferating myoblasts (Yamaguchi et al, 2015). Ka-
geyama et al (2007) confirmed an existing NOTCH-NRF2
axis through HES expression. This interaction is mechanis-
tically conceivable through possible negative regulation of
their downstream expression due to nonfunctional hetero-
dimer formation (HES factor with MYOD1/MYOG bHLH-
transcription factor). It has also been reported that excess
NRF2 signaling evoked reductive conditions that hampered
differentiation of muscle satellite cells (Rajasekaran et al,
2020). Although further studies are necessary to reveal the
complete regulation of myogenic genes by NRF2, many
data already provide evidence that the function of NRF2 is
strongly dependent on the state of cell differentiation and
mode and magnitude of injury.

Hematopoiesis. Many studies have revealed that high
levels of ROS influence stem cell function. Although post-
natal hematopoietic stem/progenitor cells (HSPCs) are sus-
ceptible to oxidative stress, the basal ROS levels of HSPC in
Nrf2 null mice are not elevated. Thus, homeostatic ROS is not
always deleterious to HSPC survival. Instead of dysfunctional
ROS metabolism by impaired NRF2 signaling, global defects
of cytokine signaling were posited as the main reason for
abnormal HSPCs in Nrf2 null mice (Merchant et al, 2011).

Although NRF2 has been previously reported to be dis-
pensable for erythropoiesis and megakaryocyte differen-
tiation (Chan et al, 1996; Kuroha et al, 1998; Motohashi
et al, 2010), Tsai et al (2013) conducted cell-lineage sorting
for Nrf2 null mice. They reported that loss of functional
NRF2 leads to expansion of the hematopoietic progenitor
pool (at short-term HSPC and continued through multipotent
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progenitor stage) but spared the most primitive long-term
HSPCs. Moreover, through a transplant experiment, it was
suggested that NRF2 regulates proliferation and differentia-
tion of HSPC in a cell-intrinsic manner.

These results imply that NRF2 has a critical role in main-
taining HSPC function through quiescence and self-renewal
and by extension, differentiation. It was also recognized from
Nrf2 loss-of-function mice that NRF2 does not control lineage
specification in hematopoiesis unlike other CNC family genes
such as Nfe2p45 (Kuroha et al, 1998; Motohashi et al, 2010) or
Bach2 (Muto et al, 1998).

It was reported that Keap1 deficiency in HSPC enhances
granulocyte-monocyte differentiation. It seemed that NRF2
activation in HSPC promoted the differential preference for
this lineage due to elimination of this phenotype when Nrf2
was deleted from Keap1 null HSPC (Murakami et al, 2014).
However, Nrf2 null HSPC did not show an altered preference
for cell lineage commitment. Maybe this phenotype arises
from combined disturbance of NRF2 crosstalk with other
proteins interacting with the KEAP1 degron, such as IKKB
(Bottero et al, 2006; Kim et al, 2010; Lee et al, 2009).
Nonetheless, NRF2 signaling influences cell fate determi-
nation in hematopoiesis.

In aged Nrf2 null mice, abnormal red cell morphologies
such as Howell–Jolly bodies, schistocytes, and acantocytes
indicative of hemolytic anemia were observed. However,
young mice are not anemic. Other factors such as NFE2p45,
NRF1, NRF3, and cJUN could compensate for ARE gene
expression or another pathway could counterbalance within
the Nrf2 null milieu. Consequently, disruption of Nrf2 causes
regenerative immune-mediated hemolytic anemia associated
with splenomegaly by age-dependent increases of oxidative
damage (Lee et al, 2004).

A similar disturbance might be observed in mega-
karyopoiesis, due to the diverse functional roles of the ARE/
MARE (MAF homodimer specific binding sites) with NF-
E2p45 (Motohashi et al, 2010). The hidden phenotype from
loss of function of NRF2 signaling seems to be dependent on
stress intensity/amount of ROS.

The association between NRF2 activity and lymphocyte
differentiation and maturation has also been studied. T-cell-
specific NRF2 activation mice demonstrated an increased
number of CD25+Foxp3+ regulatory T cells (Tregs) and a
decreased number of CD11b+CD11c+F4/80+ macrophages in
kidneys, indicating a direct association between NRF2 and
lymphocyte differentiation (Noel et al, 2015). The altered cell
composition of lymphocytes provoked by NRF2 activation
appears to underlie notable tissue protection observed in
acute kidney injury model mice.

In another line of study, it was reported that sulforaphane, a
potent inducer of NRF2, significantly reduced the differen-
tiation of lipopolysaccharide-stimulated murine splenocytes
into plasma B cells and germinal-center B cells (Moon et al,
2021). Due to the broad range of targeted pathways by sul-
foraphane, the dependency of NRF2 underlying the reported
observation is not clear. However, inhibition of B-cell dif-
ferentiation evoked by sulforaphane may explain the anti-
arthritic effect found in the collagen-induced arthritis model
mice treated with sulforaphane.

Neurogenesis. Due to its high content of unsaturated
fatty acids and transition metals and high utilization of oxy-

gen, the brain is known to generate large amounts of ROS. A
global brain ischemia model employing both Nrf2 null and
control mice demonstrated that NRF2 contributed to endog-
enous neurogenesis, especially in the proliferative stage of
neural stem/progenitor cells (NPCs). Forced expression of
NRF2 restored NPC proliferation, differentiation, and via-
bility that was impeded by amyloid b (Ab), a toxic peptide
believed to cause synaptic dysfunction and neuronal loss in
Alzheimer’s Disease, the major dementia disorder (Kark-
kainen et al, 2014).

Moreover, Ab reduced differentiation of neurons from
Nrf2-deficient NPCs. Interestingly, B-site amyloid precursor
protein cleaving enzyme 1 (BACE1), which is a rate-limiting
enzyme for producing Ab, was reported as an NRF2 regu-
lated gene in both mice and humans (Bahn et al, 2019). The
fact that NRF2 is protective against neurodegeneration is
well established both in cell cultures of primary postmitotic
neurons and in animal models (Kanninen et al, 2008; La Rosa
et al, 2019; Shih et al, 2003). The conclusion is supported by a
study using NPC isolated from the subgranular zone in the
brains of postnatal or 3-month-old Nrf2 null and control mice,
and by knockdown of Nrf2 expression in wild-type NPC
(Robledinos-Anton et al, 2017).

Adipogenesis. Adipogenesis is a highly regulated pro-
cess at the transcriptional level (Lee et al, 2019), and the
potential crosstalk of NRF2 with major adipogenesis tran-
scription factors (PPARc, CCAAT/enhancer-binding protein-b
[CEBPb]) has been studied. Several in vitro studies have shown
that the NRF2 pathway affects adipogenesis. Nrf2 knockout
mice have lower amounts of adipose tissue and smaller adi-
pocytes, and in vitro differentiation of Nrf2-deficient MEF
showed impaired adipogenesis (Pi et al, 2010). Silencing of
Nrf2 in 3T3L1 preadipocytes partially impaired their potential
to differentiate into mature adipocytes, whereas the activation
of the NRF2 pathway by knocking down Keap1 led to im-
proved adipocyte differentiation.

Activation of the Pparc promoter by NRF2 has been
shown in these cells by ChIP and luciferase experiments (Pi
et al, 2010). Similarly, the deletion of Nrf2 in adipocytes in
mice of the ob/ob background driven by Fabp4/aP2 promoter
led to lower adipose tissue mass (Xue et al, 2013). However,
adipocyte-specific deletion of Nrf2 driven by the Adipoq
promoter did not lead to a significant difference in fat mass or
in adipocyte size in mice exposed to high-fat diet (Char-
toumpekis et al, 2018); discrepancies were possibly attrib-
uted to the different knockout strategies of Nrf2.

Deletion of Nrf2 in all tissues may lead to differences in
adipocytes that are dependent on neighboring tissues or in
other secreted factors (hormones, growth factors) that remain
to be elucidated. The adipocyte-specific deletion of Nrf2 is
the most appropriate strategy to investigate the effect of NRF2 in
adipogenesis in vivo. The use of Fabp4/aP2 promoter, histori-
cally the most popular strategy to generate adipocyte-specific
knockout mice, has been shown to target brain, muscle, and
macrophages as well, whereas Adipoq appears to be a more
adipocyte-specific promoter (Mullican et al, 2013).

Employing a more adipocyte-specific promoter for Nrf2
deletion does not seem to affect adipocyte differentiation or
mass. The in vitro observations that NRF2 induces Pparc
promoter directly (Pi et al, 2010) or represses Pparc through
activation of AhR (Shin et al, 2007), and can induce Cebpb
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(Hou et al, 2012) provide evidence for molecular interactions
that appear not to be translated into a phenotype in in vivo
models. Likely, the impact of abrogated NRF2 signaling
in vivo is well compensated.

The whole-body Nrf2 deletion appeared to partially pro-
tect from high-fat diet-induced obesity in mice and led to a
more insulin-sensitive phenotype whereas adipocyte-specific
deletion of Nrf2 led to worse glucose tolerance without af-
fecting body mass. The increased energy expenditure in
whole body Nrf2 knockout mice (Meakin et al, 2014;
Schneider et al, 2016; Sun et al, 2020) is one of the mecha-
nisms for amelioration of the metabolic phenotype, whereas
adipocyte-specific deletion has no effect on energy con-
sumption (Chartoumpekis et al, 2018).

Direct transcriptional regulation of adipogenesis factors by
NRF2 provide important findings to understand the biologi-
cal significance of NRF2 in adipogenesis. To decipher not
only the role of NRF2 in adipogenesis that is regulated by
transcriptional regulation in adipocytes, but also a neigh-
boring microenvironment that includes endothelial cells,
immune cells, and mural cells, cell heterogeneity and func-
tional diversity of adipose tissue must be taken into consid-
eration, where more precise approaches including a single-
cell level of studies may be required.

Cell proliferation

Most normal cells in adult animals are at least transiently
arrested in the G0 state of the cell cycle, proliferating as
needed to replace cells that have been lost by tissue injury
and/or cell death. On the other hand, cancer cells actively
proliferate. Consequently, the role of NRF2 signaling and cell
proliferation has been studied principally using tissue dam-
age or cancer models.

ROS-dependent mechanism and NRF2. One of the first
studies to describe an ROS-dependent mechanism for NRF2
in proliferation in non-cancer cells was performed in mice
undergoing partial hepatectomy. Mice lacking Nrf2 showed
delayed proliferation of hepatocytes in the regenerating liver,
an effect attributed to increased oxidative stress, leading to
impaired Insulin/IGF1 signaling (Beyer et al, 2008). In an-
other study using primary alveolar type II cells from the lungs
of wild-type and Nrf2 knockout mice, it was shown that
proliferation was significantly slower in the Nrf2-disrupted
cells (Reddy et al, 2007). Nrf2 knockout cells also exhibited
increased ROS levels and decreased GSH levels. Treating
these cells with N-acetyl cysteine reduced ROS levels but did
not restore cellular proliferation completely, whereas treat-
ment with GSH reduced ROS and rescued cell proliferation to
wild-type levels. A similar observation has been made in
human glioblastoma cell lines, where the silencing of NRF2
resulted in decreased proliferation that was rescued only with
GSH supplementation and not N-acetyl cysteine despite the
fact that both treatments reduced ROS levels ( Jia et al, 2017).
A mechanism involving ROS elimination by oncogene-
induced NRF2 expression has been shown to affect cell
proliferation.

The MEFs endogenously expressing the oncogene Kras
showed decreased ROS levels and increased NRF2 signaling
dependent on the RAF-MEK-ERK-JUN pathway. This was
also verified in mouse models of pancreatic and lung cancer

that expressed these oncogenes and exhibited increased Nqo1
expression (a prototypical NRF2 target gene) and reduced
oxidative stress, as evidenced by low 7,8-Dihydro-8-oxo-2¢-
deoxyguanosine (8-oxo-dGuo) levels (DeNicola et al, 2011).
Loss of Nrf2 led to less proliferation of cells in vivo and
in vitro; this proliferation defect was rescued by treatment
with N-acetyl cysteine, indicating that ROS levels were the
driving factor in this model.

In esophageal cancer patients, NRF2 expression and
downstream signaling has been found to be elevated com-
pared with non-cancer tissue from the same subject and as-
sociated with worse clinical outcomes (Kitano et al, 2018).
By employing esophageal cancer cell lines in the same study,
NRF2 deletion was shown to decrease cell proliferation and
increase ROS levels, which led to increased p38 MAPK
signaling and decreased expression of CYCLIND1. However,
no rescue experiment was performed by treating NRF2-
disrupted cells with N-acetyl cysteine so as to assess possible
dependency on ROS.

Treatment of pancreatic carcinoma cell lines with media
from pancreatic stellate cells enhanced cell proliferation in an
NRF2-dependent manner; ROS levels were decreased in the
treated cells. However, no rescue experiment by, for instance,
increasing ROS was performed and it is possible that other
NRF2-dependent mechanisms may affect cell proliferation
such as changes in metabolic program (Wu et al, 2016).

Signaling crosstalk-dependent mechanism and NRF2. Cross-
talk between NRF2 and NOTCH1 was one of the first direct
interactions of NRF2 with other factors to be described that
affects the proliferation of cells. Notch1 is an NRF2 target
gene possessing AREs in its regulatory region. Disruption of
Nrf2 leads to decreased expression of NOTCH1 and its target
genes in MEFs and in the liver. Nrf2 knockout mice show
dampened proliferation of hepatocytes after partial hepatec-
tomy, which is rescued by genetic overexpression of the
NOTCH1 intracellular domain (Wakabayashi et al, 2010).

This NRF2-NOTCH axis has been shown to affect cell
proliferation in breast cancer cell lines (Zhang et al, 2019);
NRF2 overexpression induced NOTCH signaling and cell
proliferation whereas inhibition of NOTCH signaling by a c-
secretase inhibitor (DAPT) abrogated this phenotype. NRF2
pathway activation or disruption has been shown to increase
or decrease NOTCH signaling and cell proliferation, re-
spectively, in both oral squamous cell carcinoma cell lines
and in normal murine tongue (Fan et al, 2017).

From a different perspective, NRF2 signaling mediated
hepatocyte proliferation was reported (Shirasaki et al, 2014).
Shirasaki et al tested the contribution of NRF2 signaling to
compensatory hypertrophy using a portal vein branch ligation
technique. In the non-ligated liver lobes, NRF2 activation
and Nrf2 knockout accelerated and diminished compensatory
hypertrophy. These observations were supported by corre-
sponding measures of cell proliferation. The underlining
molecular mechanism is likely to be related to long-lasting
GSK3 phosphorylation, which is reported to enhance the
nuclear accumulation of NRF2, as observed in the non-
ligated liver lobes of NRF2 activation mice.

The interaction of p63 and NRF2 in the nucleus augments
transcriptional activation and has been shown to enhance
keratinocyte proliferation as it induces the cell cycle gene
CDK12 using in vitro and in vivo models (Kurinna et al,
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2021). This interaction is conserved in humans and mice and
the induction of CDK12 it promotes is important, as treat-
ment with the CDK12 inhibitor THZ531 reduced prolifera-
tion. This novel p63-NRF2 interaction is also important,
because p63 is necessary for epithelial stratification (Koster
et al, 2004) and is overexpressed in cancers (Graziano and De
Laurenzi, 2011).

The crosstalk of NRF2 with Myod is another interesting
example of how direct interaction of NRF2 with another
pathway can have an effect on cell proliferation. Nrf2
knockout mice showed delayed muscle regeneration after
hind limb injury and reduced Myod expression, a major
regulator of muscle regeneration (Al-Sawaf et al, 2014).
Myod was found to be a direct target of NRF2 with a func-
tional ARE in its regulatory region. Enhanced NRF2 signaling
through silencing of Keap1 led to increased proliferation of
C2C12 myoblasts along with increased expression of Myod.

PTGR1, an oxidoreductase that is involved in the metab-
olism of eicosanoids and lipid peroxidation, is overexpressed
in the early stages of hepatocarcinogenesis and regulated by
NRF2 (Sanchez-Rodriguez et al, 2017). It is not completely
clear how PTGR1 affects cell proliferation, but it appears to
affect cancer cell proliferation in various cancers (Wang et al,
2021). An approach to unravel mechanisms underlying the
NRF2-mediated cell proliferation in non-small-cell lung
cancers was performed using three distinct cell lines: A549
that has a point mutation of KEAP1 and a wild-type epider-

mal growth factor receptor (EGFR), PC-9 cells that have no
mutation of KEAP1 but an activating deletion in EGFR, and
NCI-H292 cells that possess wild-type KEAP1 and EGFR
(Yamadori et al, 2012).

EGFR signaling was found to activate the NRF2 pathway
through MAPK/ERK kinase-ERK signaling pathways and to
increase cell proliferation. In these cells, use of PI3K inhib-
itors did not affect cell proliferation whereas tyrosine kinase
inhibitors for EGFR and MEK1/2 did indicate that the latter
pathways should mediate the induction of proliferation. The
mechanisms underlying the interaction of NRF2 with these
pathways are not yet well established.

Metabolic pathway and NRF2 in cancer cell prolifera-
tion. As a hallmark of cancer, metabolic reprograming is
one of the major molecular events observed in cancer cells.
Alteration of metabolism is required to support the increased
energy required for continuous growth and rapid cell prolif-
eration. Accumulating evidence shows an association be-
tween metabolic reprograming and aberrant activation of
NRF2 in cancer cells (Fig. 6).

It has been shown that NRF2 regulates the expression of
serine/glycine biosynthesis genes (PHGDH, PSAT1, SHMT2)
via ATF4 in non-small-cell lung cancer cell lines and thus
can support the proliferation of cancer cells (DeNicola et al,
2015). This finding is of clinical relevance as patients with
lung tumors who showed high NRF2 expression also showed

FIG. 6. NRF2 signaling affects cell proliferation in NRF2-addicted cancer cells via modification of cellular me-
tabolism. Many human cancer cells show persistent activation of NRF2 driven by dysregulating mechanisms, which
partially contributes to the acceleration of cancer cell proliferation. One underlying mechanism is metabolic reprogramming
directly or indirectly regulated by NRF2. The illustration was created with BioRender.com G6PD, glucose-6-phosphate
dehydrogenase; GCL, glutamate cysteine ligase; GSH, glutathione; GSS, glutathione synthase; HDAC4, histone deacetylase
inhibitor 4; IDH1, isocitrate dehydrogenase 1; ME1, malic enzyme 1; MTHFD2, methylenetetrahydrofolate dehydrogenase
2; PGD, 6-phosphogluconate dehydrogenase; PHGDH, phosphoglycerate dehydrogenase; PPAT, phosphoribosyl pyro-
phosphate amidotransferase; PSAT1, phosphoserine aminotransferase 1; SHMT2, serine hydroxymethyltransferase 2;
TALDO1, transaldolase 1; TKT, transketolase; TRXR1, thioredoxin reductase 1; TXN, thioredoxin; xCT, cystine/glutamate
antiporter (SLC7A11).
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high ATF4 and serine/glycine biosynthesis gene expression
and had decreased median survival (DeNicola et al, 2015).

Again, in lung cancer cell lines, NRF2 has been shown to
accelerate proliferation by upregulating the expression of
genes involved in the pentose phosphate pathway (G6PD,
PGD, TKT, TALDO1, ME1, IDH1) through conserved AREs
in their regulatory regions and in de novo nucleotide syn-
thesis (PPAT, MTHFD2) (Mitsuishi et al, 2012). This leads to
increased NADPH and nucleotide production and enhances
the proliferation of cancer cells. It is important to note that
the induction of these metabolic genes by NRF2 is also
present in non-cancerous tissues such as in MEFs, fore-
stomach, and intestine of mice that express lower KEAP1
levels (one Keap1 allele knockout and one hypomorphic).
Deletion of Nrf2 in these mice abrogated these phenotypic
changes. This proliferative effect of NRF2 in cancer and non-
cancer cells requires the presence of active PI3K/AKT sig-
naling, where it seems that activation of the PI3K/AKT path-
way increases NRF2 pathway activation and vice versa,
constituting positive feedback (Mitsuishi et al, 2012). The
induction of pentose phosphate pathway genes and con-
comitant cell proliferation by NRF2 has also been described
in A549 lung adenocarcinoma cell line via repression of
miR-1 and miR-206 through histone deacetylase inhibitor 4
(HDAC4) (Singh et al, 2013).

NRF2 pathway hyperactivation in cancers has also been
found to lead to increased accumulation of intracellular
cysteine, thereby resulting in a glutamate-deficient state
(Torrente and DeNicola, 2022). Specifically, NRF2 directly
upregulates the expression of cystine/glutamate antiporter
(xCT or SLC7A11) system (Sasaki et al, 2002). The in-
creased intracellular cystine is converted to cysteine by the
NRF2-dependent genes TXN and TRXR1 by consuming
NADPH. Two other NRF2 target genes GCL and GSS di-
rect cysteine to the generation of GSH, which offer a survival
and proliferation advantage to the cancer cells (Kang et al,
2019).

For this effect to take place, it is necessary for cysteine
dioxygenase 1 (CDO1), an enzyme that catalyzes the irre-
versible conversion of cysteine to cysteine sulfinic acid, to be
silenced, as it happens in human non-small-cell lung cancers
that harbor mutations in KEAP1. This was shown by the use of
primary MEFs from mice that harbor the Keap1R554Q mu-
tation that leads to aberrant NRF2 pathway activation (Kang
et al, 2019). The resulting glutamate-deficient state in lung
cancers that bear KEAP1 mutations was also highlighted
in another study that employed a KRAS-driven lung cancer
model. Loss of Keap1 in these mice resulted in higher tumor
burden with a higher proliferation rate that, in turn, was de-
pendent on the conversion of glutamine to glutamate (Romero
et al, 2017).

ATROPOS: Cellular Senescence and Death

Cells in a terminal state undergo one of two additional
fates: senescence or cell death, which are often triggered by
similar biological signals. The molecular mechanisms un-
derlying these alternative cell fate determinations are not
fully understood. Excessive ROS concentrations can drive
cells to the terminal stage of cell life, which highlights the
role of NRF2 as an important player during the processes of
cellular senescence and cell death via its redox regulatory

actions. In addition to redox-dependent relevance, the inter-
face between several signaling pathways in cellular senes-
cence and cell death and NRF2 signaling has been verified.

Cellular senescence

After undergoing a finite number of divisions, cells can
enter into a permanent cell cycle arrest, termed cellular se-
nescence. Senescent cells maintain their cell functions with
phenotypic alterations, including alteration of metabolic ac-
tivity and dramatic changes of gene expression (Herranz and
Gil, 2018; Kumari and Jat, 2021). A wealth of data has
demonstrated that cellular senescence and the process of
aging and aging-related diseases have a tight association.

Studies using Caenorhabditis elegans and flies show that
NRF2 influences their lifespans (Blackwell et al, 2015;
Tsakiri et al, 2019). Moreover, livers of longer-lived ro-
dent species, such as the naked mole-rat, show markedly
higher levels of NRF2 signaling activity than shorter-lived
rodents, which appears to be related to expression levels
of KEAP1 and b-TCRP that target NRF2 for degrada-
tion (Lewis et al, 2015). Enhanced NRF2 signaling in a
variety of slower aging animal models, such as genetic
models (Snell dwarf mice), caloric restriction models, a
rapamycin-mediated longevity model in C. elegans, was
observed (Bruns et al, 2015).

A potential association between aging-mediated phenotypes
and NRF2 activity is also demonstrated using Nrf2 knockout
mice (Hoshino et al, 2011). In addition, senescence limits the
characteristics and functions of stem cells, which fundamentally
affects age-related pathologies. For example, Anandhan et al
(2021) demonstrated that NRF2 overexpression in neural stem
progenitor cells in the subventricular zone of aging rats (11-
month-old) exhibited improved behavioral function in com-
parison to control animals through improvements in neural stem
progenitor cell proliferation, self-renewal, and neurogenesis.
Although the detailed molecular mechanisms have been largely
unexplored, these studies demonstrate that changes in NRF2
regulatory mechanisms with aging have an impact on age-
related pathologies at a systemic level, as well as a cellular level.

Increasing ROS levels and accumulation of oxidative
damage are major characteristics of aging, potentially leading
to age-related pathologies. At low to modest doses, ROS are
considered to be an essential biological cue for the regulation
of normal physiological functions. Excessive levels of ROS,
however, result in accumulated cell damage, which can lead
to an acceleration of cell aging and cell death processes.

Thus, antioxidant networks to scavenge excessively pro-
duced ROS are critical to balance the production and scav-
enging of ROS to maintain cell homeostasis, a process
wherein NRF2 plays a central role. It is interesting to note
that an aging-mediated diminution of antioxidant enzymes is
likely associated with declining NRF2 signaling (Zhang et al,
2015). In the aged Nrf2 knockout mice (21- to 24-month-old),
serum testosterone levels and testosterone production in
Leydig cells were reduced significantly along with increased
ROS levels in the testis compared with wild-type mice (Chen
et al, 2015). The skin of Nrf2 knockout mice showed accel-
erated photoaging phenotypes caused by ultraviolet B, which
was related to elevated cutaneous oxidative stress levels and a
significant decrease in cutaneous GSH levels (Hirota et al,
2011).
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Bone marrow endothelial progenitor cells (EPCs) derived
from young and aged mice demonstrated that the biological
function of EPCs decreased with aging, wherein the expres-
sion levels of NRF2 and its target genes declined corre-
spondingly (Wang et al, 2019). Further, Nrf2 silencing
impaired the function of EPCs and induced oxidative stress in
EPCs from young mice, whereas NRF2 activation in EPCs
from aged mice protected these cells against oxidative stress
and ameliorated their biological dysfunction.

Collectively, the evidence suggests potential intercon-
nections between NRF2-mediated redox regulation and the
molecular physiology of cellular senescence. Beneficial ef-
fects by NRF2 activation for cell senescence have been
suggested by many studies; however, it was also paradoxi-
cally demonstrated that NRF2 activation promotes senes-
cence in fibroblasts. Hiebert et al (2018) showed that the skin
fibroblasts derived from a genetic Nrf2 activation mouse
model as well as human skin fibroblasts treated with an NRF2
inducer showed senescence-associated phenotypes. It seems
that increased ROS levels and subsequent DNA damage were
not responsible for NRF2-mediated senescence, suggesting
an existence of an alternative pathway.

The potential contributions of NRF2 in cellular senescence
have been also examined with particular focus on signaling-
mediated mechanisms. Chen et al demonstrated that mice
with knockout of the 25-hydroxyvitamin D 1a-hydroxylase
[1a(OH)ase] enzyme that generates an active form of vitamin
D (1,25-dihydroxyvitamin D3) showed aging phenotypes,
such as a shortened lifespan, an elevation of oxidative stress,
and induced cell senescence. These phenotypes were rescued
by supplementation with exogenous 1,25-dihydroxyvitamin
D3 which binds to the vitamin D3 receptor (VDR) leading to a
downstream pathway. Using MEFs, they demonstrated
that the promoter region of the NRF2 gene contains the
predicted VDR binding site, which was activated by 1,25-
dihydroxyvitamin D3 to induce NRF2 expression. Their ob-
servations suggest an involvement of a transcriptional axis
between VDR and NRF2 to facilitate vitamin D mediated
anti-aging and anti-cell senescence (Chen et al, 2019).
Hutchinson-Gilford progeria syndrome (HGPS) is a rare fatal
premature aging disorder, caused by a point mutation in the
lamin A gene that produces a truncated mutant protein named
progerin. Kubben et al (2016) reported that NRF2-ARE
transcriptional activity was impaired in skin fibroblasts of
HGPS patients. Further, they observed a PROGERIN-NRF2
direct interaction, which, in turn, caused mis-localization of
NRF2 leading to impaired NRF2 transcriptional activity fol-
lowed by elevated levels of oxidative stress and the progerin-
induced aging phenotype. Recent studies reported a potential
association between age-dependent alteration of miRNAs,
such as miR-34a and miR-93, and NRF2 signaling in animal
models (Csiszar et al, 2014; Li et al, 2011). Considering that
some miRNAs regulate the NRF2 pathway by directly tar-
geting NRF2, further study is encouraged to understand the
new roles of NRF2 in aging processes involving miRNAs.

Sirtuin1 (SIRT1) has been reported to be involved in the
regulation of cellular senescence and aging (Chen et al,
2020a), wherein the crosstalk between NRF2 and SIRT1 has
also been studied by being linked to aging processes. A lower
level of NRF2 protein was reported in oocytes from aged mice
(Ma et al, 2018). Sirt1 depletion reduced NRF2 expression
in mouse oocytes, indicating the existence of a SIRT-NRF2

signaling crosstalk that can be associated with suppressed
CYCLIN B1 expression and disrupted oocyte maturation.

Although several studies indicate an interaction between
NRF2 and SIRT1-mediated cellular senescence using po-
tential NRF2 inducers (Chen et al, 2020b; Kim et al, 2018b),
further investigations employing genetic modification of
Nrf2 are required to dissect the direct contribution of NRF2 to
SIRT1-mediated biological events that lead to cellular se-
nescence.

Cell death

The regulation of the balance between cell division and
cell death is crucial for the development of organisms and the
maintenance of biological homeostasis. Cells die from acci-
dental cell death or regulated cell death. Regulated cell death
includes several processes, such as apoptotic cell death, ne-
croptosis, pyroptosis, ferroptosis, entotic cell death, necrotic
cell death, parthanatosis, lysosome-dependent cell death,
authophagy-dependent cell death, alkaliptosis, and oxeiptosis
(Tang et al, 2019). A large body of evidence over the past
decades has linked NRF2 signaling with multiple forms of
regulated cell death. The strongest correlations are between
NRF2 signaling and (1) apoptotic cell death, (2) autophagic
cell death, and (3) ferroptosis (Fig. 7).

Apoptotic cell death

The most commonly observed pathway of regulated cell
death utilizes a caspase-dependent process, known as apo-
ptosis. There are two types of apoptosis: physiologic apo-
ptosis and pathologic apoptosis. Physiologic apoptosis is a
critical molecular event in various circumstances, such as
normal cell turnover, embryonic development, and wound-
healing processes. Pathologic apoptosis, especially accel-
erated apoptosis, is often observed in immunodeficiency,
neurodegenerative disease, and following ischemic damage,
whereas inhibited apoptosis is found in cancers and auto-
immunity. Here, giving most attention to pathologic apo-
ptosis, potential associations between NRF2 signaling are
summarized.

ROS is a central player in the regulation of the main
pathways of apoptosis mediated by death receptors, the en-
doplasmic reticulum, and mitochondria. The tight association
between NRF2-mediated redox regulation and apoptosis has
been widely observed through loss-of-function approaches.
In a streptozotocin-induced diabetes model, Nrf2 knockout
mice exhibited more severe diabetes than wild-type mice, and
evoked severe cardiomyopathy along with increased apo-
ptosis, accelerated inflammatory responses, and heightened
oxidative stress in hearts (He and Ma, 2012).

Nrf2 knockout mice exposed to cigarette smoke showed
more extensive emphysema compared with wild-type mice
along with increased oxidative stress, increased apoptosis,
and pronounced inflammation. These observations were
likely associated with nearly 50 NRF2-dependent antioxidant
and cytoprotective genes whose expression in the lungs of
Nrf2 knockout mice were significantly lower than that of
wild-type mice (Rangasamy et al, 2004).

Nrf2 knockout mice used in a traumatic brain injury model
displayed exacerbated brain injury as shown by increased
oxidative stress markers, pro-inflammatory cytokines, and
apoptosis markers (Bhowmick et al, 2019). The protective
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effects of NRF2 activation against pathophysiological apo-
ptosis have been reported using several types of disease
models, such as osteoarthritis, ischemia-reperfusion, and di-
abetic skin ulcers (Khan et al, 2018; Long et al, 2016; Meng
et al, 2017), where neutralizing excess ROS levels by NRF2
mediated redox regulation seems to be one of the potential
mechanisms.

Mitochondria are key organelles for the regulation of
cellular homeostasis. Since the main sources of ROS and the
related reactive nitrogen species (RNS) within living cells
are mitochondria, dysfunctional mitochondria promote cell
death by producing excessive fluxes of free radicals. Ac-
cumulating evidence shows that NRF2 signaling affects
mitochondrial biogenesis via multiple mechanisms, such as
controlling mitochondrial membrane potential and ATP
synthesis, mitochondrial fatty acid oxidation, and the
structural and functional integrity of the mitochondria
(Dinkova-Kostova and Abramov, 2015).

Although direct evidence has not been demonstrated
conclusively, several studies indicate that NRF2 activation
contributes to the amelioration of mitochondrial dysfunction,
particularly under conditions of oxidative stress, leading to
suppression of accelerated cell apoptosis (Kang et al, 2020;
Xiao et al, 2017; Yang et al, 2018).

In 1999, it was reported using a modified yeast two-hybrid
system that NRF2 is a novel caspase substrate (Ohtsubo et al,
1999). Activation of caspases is the core machinery of apo-
ptosis. Although the biological significance of this signaling
crosstalk has not been followed by studies in vivo, this finding
suggested possible interactions between NRF2 and critical
factors regulating cell apoptosis early in the history of NRF2
research. Association between NRF2 and cyclin-dependent
kinase inhibitor 1 (p21) pathways in cell apoptosis has been
suggested in several studies. p21 is a cyclin-dependent kinase
inhibitor that regulates many cellular processes, such as cell
cycle, DNA replication and repair, cell differentiation, se-
nescence, and apoptosis.

Direct molecular interaction between NRF2 and p21 was
described (Chen et al, 2009), and several follow-up studies
have been published (Han et al, 2019; Han et al, 2018; Li et al,
2018; Villeneuve et al, 2009). Limited in vitro evidence indi-
cates that the downstream action of the NRF2-p21 axis af-
fecting cell apoptosis likely occurs through regulation of redox

homeostasis. Further studies using in vivo models are required
to elucidate the physiological significance of this crosstalk.

Transformation related protein 53 (p53) is a transcription
factor activated by DNA damage, leading to cell cycle arrest
allowing for repair of DNA damage. When DNA damage
remains unrepaired, p53 plays a critical role in the induction
of apoptosis. Faraonio et al (2006) reported that p53 suppresses
the NRF2-dependent transcription of ARE-containing pro-
moters of antioxidant genes. Further, Chen et al (2012b)
showed that the p53 signaling pathway can induce or inhibit
the NRF2 pathway depending on intracellular ROS levels.
Although both studies hypothesized that crosstalk between
NRF2 and p53 may coordinate cell survival and p53-
dependent apoptosis, direct evidence has not yet been dem-
onstrated in non-cancer models.

Crosstalk between NRF2 and AhR has been studied, which
is at least partially associated with cell death (Esakky et al,
2015). Joo et al (2013) demonstrated that miR-125b is tran-
scriptionally regulated by NRF2, and it serves as an inhibitor of
the AhR repressor (AhRR), which, in turn, regulates AhR and
p53 signaling. In Nrf2 knockout mice, an adaptive elevation of
miR-125b by cisplatin treatment was suppressed, causing ag-
gravated kidney toxicity and elevated tubular cell apoptosis.

In cancer cells, apoptotic cell death has a unique signa-
ture, and its association with NRF2 is also different from that
in normal cells. The common hallmarks of cancer cells are
uncontrolled growth, angiogenesis, and evasion of apoptosis.
Thus, apoptosis-inducing therapies are one of the effective
non-surgical cancer treatment strategies. In many types of
cancer cells, NRF2 acquires a stable overexpression pheno-
type, leading to dysregulated cell proliferation and resistance
to anti-cancer drugs (Homma et al, 2009), as well as an ac-
celerated evasion to apoptosis ( Jiang et al, 2020).

NRF2 knockdown in non-small cell lung cancer cell lines
promoted radiation-induced cell apoptosis, where interestingly,
NOTCH1 expression under radiation exposure was decreased
significantly by depletion of NRF2, implying that NOTCH-
NRF2 signaling crosstalk might be correlated with apoptosis
resistance in cancer cells (Zhao et al, 2016). p62 plays a key
role in the regulation of cell proliferation and survival, and it
has been identified as a tumor suppressor. Jiang et al (2020)
reported that p62 promotes cell proliferation, apoptosis resis-
tance, and invasion of prostate cancer cells along with elevated

FIG. 7. Interaction be-
tween NRF2 signaling and
regulated cell death. Nrf2
regulates three types of reg-
ulated cell death: apoptosis,
ferroptosis, and autophagy-
mediated cell death via
redox-mediated and signaling
pathway-mediated mecha-
nisms. AhR, aryl hydrocar-
bon receptor; p21, cyclin-
dependent kinase inhibitor 1;
p53, transformation related
protein 53; p62, sequesto-
some 1.
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NRF2 activity in a prostate cancer cell line. Niture and Jaiswal
(2012) demonstrated direct transcriptional regulation of Bcl2
by NRF2 in mice and human hepatoma cell lines. Further, it
was observed that NRF2-mediated upregulation of BCL2 sup-
pressed chemotherapy- and radiation-induced DNA fragmen-
tation and apoptosis.

In addition, some novel NRF2 inhibitors have been re-
ported to induce apoptosis in cancer cells (Zhang et al, 2017).
Since drug resistance is a major obstacle for chemotherapy,
apoptosis targeted therapy—especially targeting NRF2 to
inhibit its dysregulated activation—has attracted attention.
However, the specificity of current NRF2 inhibitors is lim-
ited. Thus, there is a long way for a clinical application of
NRF2 inhibitors to cancer treatment.

Autophagic cell death

Autophagy is the process that delivers cytoplasmic mate-
rial of endogenous or exogenous origin to the lysosome for
degradation (Galluzzi et al, 2017). In general, autophagy is
considered as a pro-survival process contributing to cellular
homeostasis in response to several types of cellular stresses
by eliminating aged proteins and damaged organelles. In
addition to the typical understanding of autophagy as an
adaptive process, increasing evidence links its association to
cell death processes during development and pathogenesis in
a manner distinct from apoptosis (Denton and Kumar, 2019).

Crosstalk between the NRF2 and autophagic pathways has
been well recognized. p62 is an autophagy substrate, serving
as cargo receptors involved in selective autophagy. p62
dampens NRF2 signaling activity via a direct, interfering
interaction with KEAP1 (Komatsu et al, 2010; Lau et al,
2010). Nrf2 also promotes the ARE-dependent expression of
p62 ( Jain et al, 2010). The biological significance of the
NRF2-autophagy axis has been studied widely, suggesting
important roles, such as maintenance of the hepatic redox
system (Taguchi et al, 2012) and the cytoprotective effects
from the distinct types of damage in hepatocytes, cardio-
myocytes, neural cells, and among other cell types (Lv et al,
2019; Wu et al, 2021; Zhang et al, 2021).

Interestingly, a recent study has shown that crosstalk be-
tween autophagy and NRF2 signaling is likely to be critical in
mammalian survival. Atg7-deficient mice are born develop-
mentally normal but fail to survive whereas co-deletion of
p53 and Atg7 remarkably extended their life span. By con-
trast, Nrf2 and Atg7 double-knockout mice died rapidly due
to small intestine damage, which was not rescued by p53
co-deletion. These observations indicate the contribution
of autophagy to mouse survival and its functional inter-
dependencies on p53 and NRF2 (Yang et al, 2020).

Cigarette smoke has been reported to induce autophagy in
airway epithelial cells. Autophagic cell death seems to be a
central pathogenic process in chronic obstructive pulmonary
disease. Cigarette smoke extract induces expression of both
LC3B-I and LC3B-II as well as autophagosomes in airway
epithelial cell lines, which was suppressed by genetic acti-
vation of NRF2 (Zhu et al, 2013). Elevated cellular GSH
levels likely underlie NRF2-mediated inhibition of acceler-
ated autophagy by cigarette smoke.

The therapeutic effects of urolithin B (UB), a gut micro-
biota metabolite, were studied using in vivo and in vitro
myocardial ischemia/reperfusion models. It was demon-

strated that UB ameliorated cardiac damage by inhibiting
autophagy, leading to suppression of caspase3-dependent cell
apoptosis. The protective effects by UB also involved NRF2
activation, which was likely through the p62-KEAP1 axis
(Zheng et al, 2020).

In cancer cells, modulation of autophagy plays dual roles,
that is, suppression and promotion of cancers depending on
cellular context. Specifically, a pro-death function of autop-
hagy in the setting of cancer cell treatment has been attracting
attention as an alternative treatment strategy for apoptosis-
resistant cancer cells. Temozolomide is a cytotoxic drug that
induces significant autophagic cell death in glioblastoma
multiforme cells. NRF2-knockdown enhanced the basal level
of autophagy in this cell line. Further, temozolomide treat-
ment of NRF2-knockdown cells showed lower viability along
with elevated autophagy (Zhou et al, 2013). NRF2 suppres-
sion may increase sensitivity of glioma cells to temozolomide
via autophagy. Park et al (2012) demonstrated that human
lung carcinoma A549 cells treated with selenium displayed
not only caspase-dependent apoptosis, but also an elevation in
autophagic flux as well as NRF2 activation contributing to
cancer cell survival.

Although the association between autophagy, NRF2 sig-
naling, and cancer cell fate was not investigated in this study,
accelerated autophagic flux in cancer cells harboring con-
stitutive NRF2 activation (mediated by a somatic mutation of
the KEAP1 gene and/or epigenetic alteration of KEAP1
promoter) may underlie some chemotherapeutic resistance. It
is also interesting to note that tumor resistance to radiother-
apy is often associated with upregulation of autophagy in
many types of cancer cells (Hu et al, 2016). Chen et al
(2017b) demonstrated that radiation facilitates autophagic
flux in a human osteosarcoma cell line, leading to NRF2
activation, which, in turn, provides a protective role against
apoptosis in irradiated cells. These findings highlight the
complex role of NRF2 and autophagy working in concert in
cancer cells, to facilitate suppression or enhancement of cell
death.

Ferroptosis

Ferroptosis is a type of cell death recognized in the early
2000s ( Jiang et al, 2021), which is distinct from apoptosis
and occurs in the absence of any known genetically-encoded
death mechanism. Ferroptosis is an oxidative-stress-induced
form of cell death associated with two biochemical features,
iron accumulation and lipid peroxidation.

Recent studies have implicated the tight association be-
tween ferroptosis and pathophysiological processes of many
diseases, such as organ injuries and degenerative diseases
(i.e., ischemic organ damage, liver and lung fibrosis, neuro-
degeneration) and several types of cancers. Therefore, reg-
ulation of ferroptosis has gained attention with respect to
clinical applications, whereas the physiological role of fer-
roptosis is still largely unknown.

Since NRF2 target genes include several genes related to
ferroptosis, such as genes related to iron regulation (heme
synthesis, hemoglobin catabolism, iron storage, and iron
export), as well as genes for GSH regulation and NADPH
regeneration (Kerins and Ooi, 2018), the association be-
tween NRF2 pathway and ferroptosis has been studied
(Dodson et al, 2019). Ferroptosis drives cardiomyopathy
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induced by chemotherapy (doxorubicin) in the mouse, where
upregulation of Hmox1 seems important (Fang et al, 2019);
this ferroptotic cardiomyopathy was abolished in Nrf2-
deficent mice.

Using a mouse model of acute lung injury induced by
intestinal ischemia/reperfusion, Dong et al (2020) demon-
strated that the pathophysiology of acute lung injury was at
least partially driven by ferroptosis. After intestinal ischemia/
reperfusion, ferroptosis-mediated cellular morphological
hallmarks were observed in the lung tissues of wild-type mice
that were more severe in Nrf2 knockout mice. However, the
acute lung injury in the Nrf2 knockout mice was reduced by
administration of a ferroptosis-specific inhibitor, highlighting
the association between NRF2 and ferroptosis-mediated lung
damage. A link between NRF2 and ferroptosis in neurode-
generative diseases has been hypothesized but not well es-
tablished. Recently, La Rosa et al, (2021) reported that in
fibroblasts obtained from skin biopsies and leukocytes iso-
lated from blood of patients with the neurodegenerative
disease, Friedreich’s Ataxia showed suppressed expression
of NRF2 and its activity. Friedreich’s Ataxia is caused by the
decreased expression of the mitochondrial protein frataxin,
which, in turn, is associated with ferroptosis. In normal cells,
NRF2 seems to upregulate anti-ferroptotic defenses, which
may induce protective effects against ferroptosis-mediated dis-
eases (Abdalkader et al, 2018).

Multiple studies have revealed that numerous cancer-
relevant genes and signaling pathways regulate ferroptosis.
In this setting, the association of ferroptosis with NRF2 sig-
naling has been studied. Artesunate, an anti-malaria drug,
exhibits anti-tumor activity by inducing cell death via ROS-
mediated ferroptosis. Using a head and neck cancer cell line,
the role of NRF2 signaling and resistance of cells to artesu-
nate was examined (Roh et al, 2017). Artesunate activates
NRF2 activity leading to ferroptosis resistance that can be
reversed by NRF2 silencing. Sun et al (2016) used a hepa-
tocellular carcinoma cell line to show that treatment with
ferroptosis-inducing compounds (e.g., erastin, sorafenib, and
buthionine sulfoximine) upregulated NRF2 target genes via
p62- and KEAP1-dependent regulatory pathways, contribut-
ing to ferroptosis resistance. In cancer cell lines, p53 sensi-
tizes cells to ferroptosis by repressing transcription of the xCT
or SLC7A11 gene ( Jiang et al, 2015a).

Chen et al (2017a) demonstrated that ARF, a tumor sup-
pressor protein, directly interacts with NRF2 both in vitro and
in the xenograft tumor model, where loss of ARE induces
NRF2 activation followed by elevation of SLC7A11 expres-
sion and promotion of resistance to ROS-induced ferroptosis
and cancer cell survival in p53 null cells. Hassannia et al
(2018) reported withaferin A as a natural ferroptosis-
inducing agent in neuroblastoma, whose mechanism includes
the canonical ferroptosis induction pathway (inactivation of
glutathione peroxidase 4 [GPX4]) as well as the non-
canonical pathway involving NRF2 signaling.

Withaferin A activates NRF2 through a KEAP1 indepen-
dent mechanism, resulting in increased intracellular labile
Fe(II) on excessive activation of HMOX1, which, in turn, is
sufficient to induce lipid peroxidation and ferroptosis. Fur-
ther, a recent study using three-dimensional spheroids of a
lung cancer cell line demonstrates that NRF2 overexpression
is likely to be necessary for the survival of cancer spheroids
via suppression of ferroptosis (Takahashi et al, 2020). In this

study, Takahashi et al observed that downregulation of NRF2
accelerated lipid peroxidation followed by ferroptosis and
cell death in the inner cells of the spheroid structure. Inter-
estingly, NRF2 downregulation increased the expression of
selenoproteins, including GPX4. However, in the unique
cellular environment observed in NRF2 knockdown spher-
oids, such as high levels of ROS and low GSH content, up-
regulated GPX4 expression seems not to contribute to
alteration of the high vulnerability to ferroptosis.

In summary, accumulating evidence strongly indicates that
NRF2 signaling has multifaceted integration into the process
of ferroptosis in cancer cells depending on the microenvi-
ronment and types and states of cancer cells. Thus, careful
consideration of study models, active employment of in vivo
models, and a multi-layered understanding of molecular
mechanisms must be undertaken in future studies.

Conclusions

� NRF2 signaling interfaces with the processes of cel-
lular transitions and determinations in the three major
phases of the life cycle of the cell.

FIG. 8. NRF2 is integrated into signaling networks that
regulate cell fates and functions. Through direct- and
indirect-signaling, NRF2 forms an expanded network encom-
passing a wide range of pathways to affect cell fate determi-
nation throughout the life cycle of cells. The major pathways
affected by NRF2 within the three stages of the cell life cycle:
cell birth (Clotho), cell differentiation (Lachesis), and cell
death (Atropos) are summarized. Note that the overarching
biological functions of these signaling pathways and their
downstream factors can contribute to multiple aspects of cell
fate outcomes, and they are not fully addressed in this summary
figure. The blue and orange boxes indicate the molecules
playing roles as first and second messengers in a pathway,
respectively. The black arrows indicate positive regulation,
and the red lines negative regulation. Ab, amyloid b; Atg5, 7,
autophagy related 5, 7; Bace1, B-site amyloid precursor pro-
tein cleaving enzyme 1; Bax, Bcl-2 associated X-protein;
Cebpb, CCAAT/enhancer-binding protein-b; Cyp19a1, cyto-
chrome P450 family 19 subfamily a member 1; Fgf21, fibro-
blast growth factor 21; Hes1, hairy and enhancer of split 1;
Hmox 1, heme oxygenase 1; Jag1, jagged canonical Notch
ligand 1; Math1, (Atoh1) atonal bHLH transcription factor 1;
Mdm2, murine double minute 2; MyoD, myogenic differen-
tiation 1; Oct4, POU domain class 5 transcription factor 1;
Pparc, peroxisome proliferator-activated receptor c; Psms,
proteasome subunits; Sqstm1, sequestosome 1.
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CLOTHO: NRF2 influences maintenance, prolifera-
tion (self-renewal), and early transitions of stem cells
(and stem cell niches).
LACHESIS: NRF2 fine-tunes cell differentiation and
proliferation in multiple types of cells and tissues.
ATROPOS: NRF2 suppresses and/or accelerates cell
senescence and programmed cell death processes and
protects against cytotoxic insults.

� Molecular integration of NRF2 into cell fate regula-
tory mechanisms occurs via the canonical NRF2-target
genes regulating cellular redox status, which, in turn,
affects multiple layers of cell fate determination, and
more newly recognized NRF2 target genes that di-
rectly or indirectly affect cell fate outcomes.
� Overlapping responsiveness of ARE(s) to various tran-

scription factors beyond NRF2 results in a multiplicity
of responses in ARE-driven gene expression. This reg-
ulatory compensation of ARE-driven genes under loss of
Nrf2-function implies a supportive role of NRF2 in cell
fate determinations.
� NRF2 signaling engages in extensive crosstalk across a

wide range of transcriptional cascades and signaling
pathways (Fig. 8), providing a multifactorial signaling
network to modify cell fate regulatory processes.
� Since cell fate commitment is a dynamic and intri-

cate series of biological process governed by multiple
components, a singular focus on NRF2 signaling limits
better understandings of the complex underlying mo-
lecular mechanisms. The near full lifespan of Nrf2
knockout mice (in the absence of stressors) likely pre-
cludes a central role of NRF2, but an extensive literature
using in vitro systems supports a facilitative and mod-
ulatory one. Future studies are warranted with the use
of in vivo models optimized to approach the roles of
NRF2 signaling within the complexity of compensa-
tory and crosstalk signaling in cell fate determinations.
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KEAP1¼ kelch-like ECH-associated protein 1
LIF¼ leukemia inhibitory factor

LIFR¼LIF-receptor
MARE¼Maf homodimer specific binding sites

MATH1¼ (Atoh1) atonal bHLH transcription
factor 1

MDM2¼murine double minute 2
ME1¼malic enzyme 1
MEF¼mouse embryo fibroblast

miRNA¼microRNA
MSC¼multipotent stem cell

MTHFD2¼methylenetetrahydrofolate
dehydrogenase 2

MYOD¼myogenic differentiation 1
MYOG¼myogenin

NANOG¼Nanog homeobox protein
NPC¼ neural stem/progenitor cell

NQO1¼NAD(P)H dehydrogenase, quinone 1
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Abbreviations Used (Cont.)

NRF2¼NF-E2-related factor 2
NRL¼ neural retina-specific leucine zipper

protein
OCT4¼POU class 5 homeobox 1

P¼ postnatal day
p21¼ cyclin-dependent kinase inhibitor 1
p53¼ transformation related protein 53
p62¼ sequestosome 1

PGD¼ 6-phosphogluconate dehydrogenase
PHGDH¼ phosphoglycerate dehydrogenase

PPAR¼ peroxisome proliferator-activated
receptor

PPARc¼ peroxisome proliferator-activated
receptor c

PPAT¼ phosphoribosyl pyrophosphate
amidotransferase

PSAT1¼ phosphoserine aminotransferase 1
PSMS¼ proteasome subunits
PTEN¼ phosphatase and tensin homolog deleted

from chromosome 10
RAR¼ retinoic acid receptor

RARE¼ retinoic acid response element
ROS¼ reactive oxygen species
RXR¼ retinoid X receptor

SHMT2¼ serine hydroxymethyltransferase 2

SIRT1¼ sirtuin1

SMAD¼ suppressor of mothers against
decapentaplegic

sMAF¼ small Maf

SP-A¼ surfactant protein A

SQSTM1¼ sequestosome 1

STAT3¼ signal transducer and activator of
transcription 3

TA¼ transit-amplifying progenitor cells

TALDO1¼ transaldolase 1

Thyroid RE¼ thyroid hormone response element

TKT¼ transketolase

TR¼ thyroid hormone receptor

TRE¼TPA (12-O-tetradecanoylphorbol-13-
Acetate)-responsive element

TRX2¼ thioredoxin-2

TRXR1¼ thioredoxin reductase 1

TRXR1¼ thioredoxin reductase-1

TXN¼ thioredoxin

UB¼ urolithin B

VDR¼ vitamin D3 receptor

VDRE¼ vitamin D response element

xCT¼ cystine/glutamate antiporter (SLC7A11)
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