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Abstract—Building a personalized model to describe the drug
concentration inside the human body for each patient is highly
important to the clinical practice and demanding to the modeling
tools. Instead of using traditional explicit methods, in this paper
we propose a machine learning approach to describe the relation
between the drug concentration and patients’ features. Machine
learning has been largely applied to analyze data in various
domains, but it is still new to personalized medicine, especially
dose individualization. We focus mainly on the prediction of the
drug concentrations as well as the analysis of different features’
influence. Models are built based on Support Vector Machine and
the prediction results are compared with the traditional analytical
models.

I. INTRODUCTION

Current clinical pharmacology practice relies mostly upon
the basis of clinical monitoring of patients to choose the
adequate dosage of medicines. In such clinical cases, the
dosage of medicines are decided based on doctors’ experiences
or on symptoms scales, which are not suitable to all kinds of
drug. There is a small group of medicines whose effective
therapeutic concentration range is quite narrow and therefore
there is a very high risk to under- or over-dose a patient.
Under-dosing will lead to an ineffective treatment, while over-
dosing will expose the patient to a risk of toxicity. Thus the
mission is to learn a therapeutic range of a drug to support
the clinical monitoring properly. This domain is known as
population pharmacokinetics (PK).

Hence it is critical to provide a methodology that can
aid clinicians to decide the drug dosage amount in a fast,
less costly, less invasive way and that is dedicated to per-
sonalized modeling for each patient. In literature, there are
two main approaches applied to data analysis in the field
of pharmacokinetics [1]. One of them uses mathematically
understandable techniques to compute an overview of a drug
disposition, usually by getting a simple AUC (Area Under
Curve of plasma concentration time). This method is usually
applied to analysis when few patients data are available.
However, in reality, such AUC could not be accurate if the data
cannot support a modeling approach. The other kind of method
extracts pharmacokinetic information from a sample of the
populations by using highly-sophisticated techniques, in which
some model structures may be ignored due to insufficient
data, e.g. the absorption process after an oral dosage. But
most of the applications are for a mass evaluation instead of
individualization.

Fig. 1. The Procedure of Therapeutic Drug Monitoring

Structural modeling approach is widely used in many well-
designed studies [2] and new statistical approaches have also
been introduced to pharmacokinetic analysis, such as Bayesian
approaches [3]. However those methods mostly process only
variables with real values, while binary-valued variables, such
as gender, create strong discontinuities in the models and are
in general not supported by the methods. Moreover, due to
the explicit analytical model, it is often difficult to add or
remove a parameter. Thus in our approach, we emphasize on
building the personalized model of drug concentration for each
patient by applying Support Vector Machine technique. This
paper differs significantly from our previous contribution [4]
in the scope and type of result obtained with our work. Here
we mainly explore the potentiality of applying Support Vector
Machine to personalized modeling of the drug concentration,
in order to give an easy visual support for our clinicians.

We give a brief review of four representative machine
learning algorithms in Section 2. Section 3 discusses the prin-
ciples of methodologies, including the introduction of general
PK model and applying SVM to predict drug concentration.
Section 4 shows the analyzations and comparisons of the
influences after using different features and parameters. We
also demonstrate the quality of our algorithm experimentally
in the second part of Section 4 while Section 5 concludes this
study.

II. OVERVIEW OF MACHINE LEARNING TECHNIQUES

The main purpose of Machine Learning, a field evolved
from the broad field of Artificial Intelligence, is to mimic intel-
ligent abilities of humans by machines. It has been applied in
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the domain of classification problems in computer vision and
pattern recognition in the past few decades [5]. It also enables
the computer to evolve the responses based on the input data,
with a certain capability of noise handling schemes. However,
till now very little literature could be found on the utilization
of machine learning to achieve the dose individualization of
personalized medicine.

Out of all the machine learning techniques, there are four
important and representative ones, Decision Trees (DT), Neu-
ral Networks (NN), Boosting or Adaptive Boosting and Sup-
port Vector Machine (SVM). After being extended to solving
the regression problems, these techniques became popular
in various other domains such as image superresolution [6],
object tracking [7], etc.. Among the four, Decision Trees is
the simplest in understanding and thus the fastest approach,
but it does not predict as precise as the other three, especially
for regression where we need to give a prediction on contin-
uous numbers [8]. Neural Networks is the oldest technique
of the four and is inspired by neurobiological knowledge,
but it is often regarded as a black box due to its model’s
high complexity [9]. Boosting Algorithm is a meta-algorithm
used in conjunction with weak classifiers, and is sensitive to
outliers or noisy data [10]. Support Vector Machine utilizes
a hyperplane in a high- or infinite-dimensional space to do
classification or regression[11]. It is convenient due to both
its clear mathematic understanding and its control of the
overfitting problem.

In this paper we use the SVM technique to model our system
because of its appropriate complexity, efficiency and strength
in data regularization [12]. We focus on analyze the influ-
ence of the clinical features to the drug concentrations. The
experimental results show that drug concentration predicted
by SVM-based approach is similar to the measured values as
the results predicted by the PK model, depending on the input
features that the algorithm used. Furthermore it is able to build
a personalized model for each patient.

III. METHODOLOGY

As has been concluded in our previous work [4], the
current practice in the clinical settings is mostly applying
General Pharmacokinetic Model or Population Pharmacoki-
netic Model. In this session, we will briefly describe these
two models and give the introduction to the model which is
based on Least Square Support Vector Machine.

A. General Pharmacokinetic Model

Drugs that bind with a high affinity to the clinical PK
features tend to behave differently due to its sensitivity of a
slight variation in the modeling. In the simplest situation, the
drug concentration after a single intravenous (IV) bolus dose is
considered. This procedure has an immediate and concentrated
drug effect. In a one-compartment model, the human body is
considered as one unique chemical and biological system and
the drug’s concentration is computed by a first-order linear

differential equation as shown in (1).

dC

dt
= −kel · C (1)

where C = dose
V · e−kel·t, V is the volume of distribution and

kel is the elimination rate of the drug inside a body. [1]
In the case of oral dosage, one more component is con-

sidered to be i.e. the mechanism of absorption from the
gastrointestinal (GI) tract to the arteriovenous system. In
this way, the concentration of the drug for a single dose is
calculated by (2):

C =
F · dose · ka
V · (ka − kel)

· {e−kel·t − e−ka·t} (2)

where ka is the absorption rate and F is an extent factor called
bioavailability.

B. Population Pharmacokinetic Model

In the real clinical scenarios, clinicians are more interested
by the multiple dose regimens. After m dosages, the general
equation for the drug concentration could be written as:

C =
F · dose · ka
V · (ka − kel)

· {[ 1− e
−m·kel·τ

1− e−kel·τ
] · e−kel·t

−[ 1− e
−m·ka·τ

1− e−ka·τ
] · e−ka·t}

(3)

where τ stands for the dosage interval and t for the time when
the drug concentration is measured. [1]

In the practical clinical settings, even though a pharmacoki-
netic model may require many parameters, only one or two
data points may be available. In such cases, we perform a
nonlinear regression trough the whole samples of the available
patient population, using approach such as NONMEM [13].
This approach could be compared to a Bayesian analysis
performed to obtain estimations of the patient pharmacokinetic
parameter values by minimizing:

N1∑
i=1

(Cobsi
− Ccalci

)2

variancei
+

N2∑
j=1

(Ppop
j
− Pcalcj

)2

variancej
(4)

where C is drug concentration, P is used to indicate some
other parameters, N1 and N2 are the number of data points
and parameters respectively[14].

C. Least Square Support Vector Machine (LS-SVM)

Support Vector Machine has been shown to be very power-
ful at separating highly intertwined data. In SVM Classifica-
tion, a mapping is from the input data X onto a binary output
y = ±1, while SVM Regression extends to allow a mapping
f to a real value output which suits the case in our study:

f : X → R
x→ y = f(x)

(5)

Least Square SVM (LS-SVM) is selected here, because instead
of solving a convex quadratic programming problem (QP),
the LS-SVM classifier manages to give a solution simply by
solving a set of linear equations [15]. Processing the same
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patient data as in [4], we assume N patients, each having
been examined ni times. Every sample takes into account d
features. Hence the training data are given as:

{(x1, y1), (x2, y2), · · · , (xN, yN)}

where N =
∑N
i=0 ni, y is the drug concentration and x the

space of input patterns Rd. The target is to find a linear func-
tion f(x) = w ·φ(x)+ b, which approximates the relationship
between the points in the data set and can be used to estimate
the output y with respect to a new input patient data. Here,
we use a quadratic loss function L(y, f(x)) = (y− f(x))2 to
describe the training errors.

In order to find the optimal solution, the loss function has
to be minimized. In the same time, overfitting problem is also
taken into consideration by keeping the norm ‖w‖2 small.
Thus the regression problem can be rewritten as optimizing
the following objective function:

min
w,b

1

2
‖w‖2 + C0

N∑
i=1

[yi − w · φ(xi)− b]2 (6)

where the constant C0 determines the tradeoff between the
overfitting and the amount of the training error. It is always a
question to decide which C0 best balances the two factors, so
here we simply adopt a cross-validation method. The optimal
w can be decided by w =

∑N
i=1 αiφ(xi), where α and b are

found by solving the linear system:[
K+ 1

C0
I 1

1T 0

] [
α
b

]
=

[
y
0

]
(7)

in which Kij = φ(xi)
Tφ(xj) is called kernel matrix. [15] The

use of the kernel matrix greatly helps reduce the computational
complexity without explicitly computing φ(x), making use
of the fact that the SVM algorithm depends only on dot
products between sample patterns [16]. Hence, after defining
the kernel function, the least-square optimization problem
could be solved simply by inverting the first term in the left-
hand side of (7). And the output could be estimated via the
following prediction function:

f(x) =

N∑
i=1

αiK(xi, x) + b (8)

In the comparison with traditional PK model, we will see
how each feature affects the the prediction results. Further-
more, in the personalized modeling section, we choose a
random sample from a random patient in the testing set, and
the model is built via generated features, such as dosage
amount, age, etc..

IV. EXPERIMENTS AND COMPARISONS

Our approaches have been evaluated on a set of data related
to the anticancer drug imatinib, which was designed to treat
chronic myeloid leukemia and gastrointestinal stromal tumors
[17]. The training data set consists of 54 patients and 252
samples (obtained at time of a previous clinical trial [17]). In
Subsection A, the test patient data is randomly selected from

Fig. 2. Drug Concentration Modeling on One Sample Patient over Time
and Dosages, x-axis: Time [h], y-axis: Dosage [mg], z-axis: Drug Concen-
tration[mcg/L]

Fig. 3. Drug Concentration Modeling over Time and Gender after Taking
600mg Oral Dosage (0 indicates female), x-axis: Time [h], y-axis: Gender,
z-axis: Drug Concentration[mcg/L]

the testing sets and generated with interpolations, while the
whole testing library is used in Subsection B including 65
patients and 209 samples (patients followed latter on a routine
basis, in the context of an amendment of the initial trial), and
we compare the prediction results of LS-SVM system to the
ones using a general population pharmacokinetic model.

A. Personalized Modeling

We consider 5 personalized parameters here: {Time, Dosage
Amount, Gender, Age, Body Weight}. ‘Time’ parameter de-
notes the measuring time after the previous dosage has been
taken, which is usually less than 24 hours, and ‘Dosage
Amount’ is defined to be a single oral dose varying from 0 to
1000mg. ‘Gender’, ‘Age’ and ‘Body Weight’ are personalized
parameters and will be used to analyze the drug concentration
over time given the other parameters remain unchanged.



                                                                                                                                          1526

Fig. 4. Drug Concentration Modeling over Time and Ages from 0 to 100
after Taking 600mg Oral Dosage, x-axis: Time [h], y-axis: Age [year], z-axis:
Drug Concentration[mcg/L]

Fig. 5. Drug Concentration Modeling over Time and Body Weight from
40kg to 100kg after Taking 600mg Oral Dosage, x-axis: Time [h], y-axis:
Body Weight [kg], z-axis: Drug Concentration[mcg/L]

From Figure 2 to Figure 5, the z-axis is always the
predicted drug concentration values. Figure 2 plots the drug
concentration predictions over different time and dosages for
an individual patient. From this figure we could see that the
larger the drug amount is, the earlier the concentration will
reach a peak and the longer it takes the concentration to drop.
However, after a certain amount, i.e. 600mg in this patient, the
arrival time of the concentration peak does not vary too much,
but the peak concentration will reach the global maximum.
This figure aims to process the case of a single oral dosage.
But we could see some of the curve along the time axis has
more than one extreme value, which is because of a short
interval in between two oral dosages in the training data.

Figure 3 shows the drug concentrations’ being affected by

the gender information. The dosage is chosen to be 600mg
based on the observation of Figure 2. On ‘Gender’ axis, 0
indicates female patient and 1 male patient, while all the other
parameters are unchanged. Given a same dosage, a female
patient can get a higher drug concentration value earlier than
a male patient, but the value also drops faster than a male.

Figure 4 describes how the age of one patient influences
the drug concentration after taking a 600mg. Although the
age varies from 0 to 100, but the training set is lack of the
data less than 20 or more than 80 years old. But with 20
to 80 years old, we could observe 2 maximum values in the
concentration, one around 65 and the other around 30.

Figure 5 reveals the relationship between the drug concen-
trations and the values of body weight in one patient. The
maximum concentration value is reached when the patient is
about 70kg. A double-peak is observed at the body weight
being around 50kg, 15 hours after the single dosage. This is
because the measurement of the training data has been taken
within a short interval between two dosages.

Hence, the LS-SVM method could build a full model for
each individual patient so as to aid the clinicians to monitor
their patients in a fast, less invasive, less costly way. However,
the quality of the training data set is critical in the modeling.

B. Comparisons of Drug Concentration Predictions

As shown in equations (6) and (8),we need to determine
several parameters both for LS-SVM method as follows:

1) K: the kernel function decides the effectiveness of
the SVM method.Here we choose to use the Gaussian
Kernel which has a single parameter σ that has to be
estimated.

2) C0: after we select the kernel, the choice of the kernel
parameters and the margin factor C0 determines the per-
formance of SVM. The best combination of C0 is found
via 10-fold cross validation. In our experiments, we
use C0 ∈ {10−2, 10−1, · · · , 103, 104} and we randomly
separate the original training data into 10 subsample
groups.

3) σ: we need to decide the parameter σ in our Gaussian
kernel. In the personalized modeling part, we set the σ
to be the mean pairwise distance of the features, while
in the comparison part, σ is set similarly as C0 using
10-fold cross validation. The value of σ is also highly
related to the shape of the curve in the Figure 2 to 5.

One disadvantage of using traditional PK model is that it is
often unable to consider binary-valued inputs. Neither could it
be modified easily to address the importance of each feature.
The Support Vector Machine approach could deal with such
problems and provids a similar prediction result. As analyzed
in our previous work [4], in Table I, the mean absolute
difference has been compared between the measured drug
concentration and the predicted ones using LS-SVM. Features
’dosage’ (Feature A) and ’measuring time after one dose’
(Feature B) are thought to be the key features to the results and
hence we do not exclude them in any prediction. Using the PK
model, the mean value of the differences between the predicted
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TABLE I
MEAN ABSOLUTE DIFFERENCES BETWEEN DRUG CONCENTRATION

PREDICTED AND MEASURED BASED ON LS-SVM (FEATURES:
A-DOSAGE, B-MEASURING TIME, C-GENDER, D-AGE, E-BODY

WEIGHT) [UNIT: MCG / L]

M% 100% 70% 50% 30% 10%

A+B 822.3 850.4 858.2 857.0 971.9
A+B+C 835.3 848.0 893.5 856.7 982.1

A+B+C+D 846.5 867.1 834.6 951.4 980.6
A+B+D 853.0 878.2 890.1 904.0 973.4
A+B+E 853.8 837.5 882.2 880.5 995.8

A+B+D+E 868.1 880.6 882.1 860.7 979.0
A+B+C+D+E 903.6 882.7 867.8 855.5 984.2

A+B+C+E 849.1 865.6 854.0 926.4 975.9

concentrations and the real values is 842.1 and the LS-SVM
based method can obtain the concentration predictions with
similar accuracy.

Moreover, [4] also reveals that the best (lowest) differences
for each subset are the ones predicted only by knowing the
feature A and the feature B given 100% of the data. Therefore,
when applying the SVM method to build a model for a new
patient with 100% of the library, knowing only the dosage and
the measuring time is often sufficient to obtain comparable
results, while the PK model depends on analyzing all the pa-
rameters needed in Equation (1), (2) or (3). In addition, not all
the features are useful in drug concentration prediction given
sufficient training data. However, with a reduced number in
the data, some features which does not improve the prediction
with 100% of the data turn out to be more important.

V. CONCLUSIONS

Applying Support Vector Machine in drug concentration
analysis has been proved to obtain some comparable results
as the traditional pharmacokinetic model. It can build person-
alized model for each patient in drug concentration analysis
in order to help give the guidance to the doctors in the dosage
prescription. Despite its advantages cited above, the limitation
of this approach is that it highly depends on the results to the
quality of the initial data obtained from patients, the library.
Indeed, no assumption on the theoretical disposition of the
drug in the body, according to the classical pharmacokinetic
behavior of drugs, is made. This is probably the reason of the
unfamiliar shapes of some of the curves observed. With the
future work on including a prior of the theoretical distribution
over the parameters, we expect an improving results. Under
certain conditions, it, however, improves the predictions using
fewer input features. This approach however deserves formal
clinical validation with more data sets from various drugs
undergoing therapeutic drug monitoring.
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