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θ 7→R(θ) Relationship linking the model parameters to the quantity of interest

pR|Y (r |y) Posterior probability density function of the quantity of interest

R(θ) ≥ T Rare event / hazard

P(R(θ) ≥ T ) Rare event probability

P(R(θ) ≥ T |y) Rare event probability in inversion setting

General

Random variables are represented by uppercase letters, and their corresponding realizations
are denoted by lowercase letters. When working with functions, we typically use lowercase
letters.
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Summary

In the geosciences, inversion problems emerge from the need to estimate environmental
variables from indirect measurements. This thesis concentrates on the inference of geo-
physical or hydrogeological properties using geophysical or hydrological measurements. To
enable uncertainty quantification, we employ a probabilistic inversion approach within a
Bayesian framework, focusing on the posterior probability density function of the model
parameters given the observed data. We address the following two research questions: (1)
How can we efficiently solve Bayesian inverse problems involving intractable likelihood
functions? (2) How can the combination of inversion and risk assessment methods enhance
the accuracy of rare event probability estimation? The likelihood function is intractable in
latent variable models, where the relationship between target model parameters and mea-
surements is obscured by an intermediate (latent) variable. We consider cases involving
uncertain petrophysical relationships and hyperparameter estimation, respectively. While
the former is concerned with estimating hydrogeological parameters from geophysical data
by treating the intermediate geophysical properties as latent variables, the latter targets
hyperparameters (such as mean, standard deviation and integral scales) by considering
the local properties of the field as latent variables. Performing inversion in both situations
necessitates the estimation of an intractable likelihood function. To address this challenge,
we employ two methods: the correlated pseudo-marginal method, which involves Monte
Carlo averaging over samples of the latent variable, and a Gaussian approximation based on
local linearization of the geophysical forward operator. In the context of petrophysical uncer-
tainty, we find that the correlated pseudo-marginal method allows for accurate estimation,
even in scenarios with high petrophysical uncertainty. In contrast, the less computationally
intensive linearized Gaussian approach becomes gradually less accurate as the uncertainty
in the petrophysical relationship increases. In the realm of hyperparameter estimation, we
concentrate on the correlated pseudo-marginal method, showcasing its capacity to enhance
the accuracy of hyperparameter estimation. Our second research question focuses on rare
event estimation, for which the main objective is not to determine the posterior distribution
of model parameters, but to characterize the distribution of a quantity of interest depending
on these parameters through a non-linear relationship. Specifically, we aim to calculate the
probability of this quantity assuming critical values, representing a rare event. To handle
the associated challenges of rare event estimation, we employ two approaches: Sequential
Monte Carlo combined with subset sampling and an energy-based model approach utilizing
a bias potential. We evaluate the performance of the proposed methods using problems
related to groundwater hazards and illustrative examples from the engineering literature.
Encouragingly, both approaches demonstrate the ability to accurately estimate rare event
probabilities smaller than one in a million. In summary, this thesis presents methodological
advances to improve the computational efficiency and realism of probabilistic Bayesian
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inversion approaches for targeted estimation of properties and attributes of environmental
systems.

Keywords Bayesian inversion, geophysics, hydrology, hydrogeophysics, Markov chain
Monte Carlo, Sequential Monte Carlo, latent variable model, likelihood estimation, impor-
tance sampling, rare events, energy-based models

xiv



Résumé

Dans le domaine des géosciences, les problèmes inverses émergent de la nécessité d’estimer
des variables environnementales à partir de mesures indirectes. Cette thèse se concentre
sur l’inférence de propriétés géophysiques ou hydrogéologiques à partir de mesures géo-
physiques ou hydrologiques. Pour permettre une quantification des incertitudes associées
nous employons une approche d’inversion probabiliste dans un cadre bayésien, en nous
concentrant sur la distribution a posteriori des paramètres du modèle compte tenu des
données observées. Nous abordons les deux questions de recherche suivantes: (1) Comment
adapter efficacement des méthodes d’inversion bayésiennes en présence de variables la-
tentes? (2) Comment combiner les approches d’inversion et d’évaluation des risques pour
améliorer l’ exactitude dans l’estimation de probabilités d’événements rares? La fonction
de vraisemblance est difficile à cerner dans les modèles à variables latentes, où la relation
entre les paramètres du modèle cible et les mesures est opacifiée par les incertitudes résidu-
elles sur lesdites variables latentes. Nous examinons des cas impliquant respectivement
des relations pétrophysiques incertaines et l’estimation d’hyperparamètres. Alors que le
premier cas concerne l’estimation de paramètres hydrogéologiques à partir de données
géophysiques en traitant les propriétés géophysiques intermédiaires comme des variables
latentes, le second cas cible des hyperparamètres (tels que la moyenne, l’écart-type et les
échelles d’intégrales) en considérant cette fois les propriétés locales du champ comme des
variables latentes. L’inversion nécessite dans les deux situations l’estimation d’une fonction
de vraisemblance complexe. Pour relever ce défi, nous utilisons deux méthodes: la méthode
pseudo-marginale corrélée, qui implique une moyenne de Monte Carlo sur des échantillons
de la variable latente, et une approximation gaussienne basée sur la linéarisation locale de
la réponse géophysique ciblée. Dans le contexte de l’inversions en présence de relations
pétrophysiques incertaines, nous constatons que la méthode pseudo-marginale corrélée
permet une estimation précise, même dans des scénarios à forte incertitude pétrophysique.
En revanche, l’approche gaussienne linéarisée, moins gourmande en ressources compu-
tationnelles, perd progressivement en précision à mesure que l’incertitude de la relation
pétrophysique augmente. Dans le cas de l’estimation des hyperparamètres, nous nous con-
centrons sur la méthode pseudo-marginale corrélée et constatons qu’elle peut permettre
d’améliorer l’estimation des hyperparamètres. Notre deuxième question de recherche porte
sur l’estimation d’événements rares, pour laquelle l’objectif principal n’est pas de déterminer
la distribution postérieure des paramètres du modèle, mais plutôt de caractériser la distri-
bution d’une quantité d’intérêt dépendant de manière non linéaire de ces paramètres. Plus
précisément, nous cherchons à calculer la probabilité que cette quantité prenne une valeur
critique, qui représente un événement rare. Pour relever les défis associés à l’estimation des
événements rares, nous utilisons deux approches : d’une part, une méthode de Monte Carlo
séquentielle combinée à un sous-échantillonnage et, d’autre part, une approche fondée sur
des modèles génératifs reposant sur le concept d’énergie libre (Energy-based models; EBM)
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et utilisant un potentiel de biais. Nous évaluons les performances des méthodes proposées
en utilisant des problèmes simplifiés liés aux risques de contamination des eaux souterraines
et des exemples tirés de la littérature de l’estimation de probabilité d’évènements rares en
ingénierie. Il est encourageant de constater que les deux approches permettent d’estimer
avec précision des probabilités d’événements rares d’occurence inférieure à un sur un million.
En résumé, cette thèse présente des avancées méthodologiques visant à améliorer l’efficacité
computationnelle et le réalisme des approches d’inversion probabiliste bayésienne pour
l’estimation ciblée de propriétés et attributs des systèmes environnementaux.
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Résumé grand public

Les études géoscientifiques impliquent souvent la résolution de problème dits “inverses”,
dans lesquels des paramètres et propriétés environnementaux sont estimés sur la base de
mesures disponibles et d’hypothèses de départ sur les phénomènes étudiés. Cette thèse
se concentre sur l’utilisation de données géophysiques et hydrogéologiques pour déduire
les caractéristiques géophysiques (par exemple, la conductivité électrique), géologiques
(par exemple, la teneur en argile) ou hydrogéologiques (par exemple, la saturation en eau)
dans la subsurface. Lors de la résolution de problèmes inverses, il est important d’avoir
conscience qu’il existe toujours une incertitude inhérente aux résultats obtenus. Pour y
remédier, nous utilisons une approche d’inversion probabiliste qui fournit une gamme
de solutions possibles (dite distribution postérieure bayésienne). Dans ce contexte, cette
thèse se concentre sur deux questions de recherche principales: (1) Comment résoudre
efficacement les problèmes d’inversion si les paramètres d’intérêt ne sont pas directement
liés aux mesures? (2) Comment combiner les approches d’inversion et d’évaluation des
risques pour prédire la probabilité d’occurrence des événements dangereux? L’inversion
probabiliste repose sur une fonction de vraisemblance, qui quantifie la probabilité qu’un
ensemble spécifique de valeurs des paramètres du modèle soit à l’origine des données
observées. Dans certains modèles, il est difficile d’évaluer la fonction de vraisemblance en
raison de la présence d’une variable latente intermédiaire, qui brouille la relation directe
entre les paramètres du modèle et les mesures. Nous considérons d’abord un scénario
dans lequel les variables hydrogéologiques d’intérêt ne sont qu’indirectement liées aux
mesures géophysiques par l’intermédiaire de propriétés géophysiques latentes. Dans un
second scénario d’intérêt, nous nous intéressons à l’estimation d’ hyperparamètres tels que
la moyenne et la structure de corrélation du domaine cible lorsque les mesures ne sont
qu’indirectement liées à ces hyperparamètres par le biais de propriétés locales du domaine.
Le calcul direct de la fonction de vraisemblance n’est possible dans aucun de ces deux
scénarios. Pour surmonter cette difficulté, nous investiguons deux méthodes : la méthode
pseudo-marginale corrélée et une approximation gaussienne linéarisée. Alors que la méthode
pseudo-marginale corrélée implique un échantillonnage et un calcul de moyenne sur les
variables latentes, l’approximation gaussienne linéarisée repose sur une approximation locale.
Dans nos cas d’essai, la méthode pseudo-marginale corrélée apparaît comme une approche
généralement applicable et précise. En revanche, l’approximation gaussienne linéarisée
est plus efficace sur le plan du calcul, mais au prix d’une perte de précision. Dans notre
deuxième question de recherche, nous nous concentrons sur l’estimation d’ événements
rares, où l’objectif principal n’est pas d’estimer les paramètres du modèle eux-mêmes, mais
évaluer un risque qui dépend de ces paramètres. Un exemple d’évènement dangereux étudié
en hydrogéologie est la contamination d’un aquifère, un processus qui est influencé par
les propriétés hydrauliques entre la source de contamination et l’aquifère. Lorsqu’il s’agit
d’événements rares, il est nécessaire de recourir à des approches spécialisées pour parvenir à
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une estimation précise de la probabilité d’occurrence. Tout d’abord, nous considérons une
méthode de Monte Carlo séquentielle combinée à un échantillonnage par sous-ensembles.
Dans cette approche, nous générons des échantillons de manière itérative et les rapprochons
progressivement de la région critique associée à l’événement rare en question. Par la suite,
nous introduisons une approche basée sur le concept d’énergie libre (Energy-based models;
EBM) en utilisant un potentiel de biais pour forcer l’échantillonnage dans une région qui est
pertinente pour la quantité d’intérêt. De manière prometteuse, les deux approches montrent
de bonnes performances dans l’estimation précise des probabilités d’événements rares,
même lorsqu’ils se produisent à un taux inférieur à un sur un million. En résumé, cette thèse
présente des avancées méthodologiques visant à améliorer l’efficacité computationnelle et
le réalisme des approches d’inversion probabiliste pour l’estimation ciblée de propriétés et
attributs des systèmes environnementaux.
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Chapter 1

Introduction

1.1 Preface

Geoscience is a comprehensive research field dedicated to the study of our planet. Its pri-
mary focus is to understand the processes and interactions that shape the Earth, its natural
resources and its environment. The geosciences are vital in addressing important issues such
as climate change, assessing and minimizing hazards, managing resources, and promoting
sustainable development. Through explorations of the past, analyses of the present, and
predictions about the future of our planet, geoscientific research plays an essential role in
enhancing our collective comprehension of the Earth. Furthermore, it helps to ensure the
long-term sustainability of our planet, benefiting future generations.

While geosciences also encompass the study of surface and atmospheric processes, an im-
portant research domain focuses on the subsurface environment. The subsurface, hidden
beneath our feet, plays a very important role in different geological, hydrological and eco-
logical processes. One important characteristic of the subsurface is its critical role as a
reservoir for groundwater, which serves as a vital source of drinking water, irrigation, and
ensures the proper functioning of ecosystems (Gorelick and Zheng 2015). According to a
study conducted by UNICEF in 2021, more than 1.42 billion people worldwide live in areas
with high or extremely high water insecurity, including 450 million children (UNICEF 2023).
These concerning numbers underline the immediate need for proactive measures to address
the water crisis. By exploring the subsurface, we gain important knowledge about aquifer
characteristics, water availability and the sustainable handling of water resources (Ajami
et al. 2008). Moreover, a thorough investigation of the subsurface provides scientists and
policymakers with the necessary understanding and tools to address issues related to water
pollution. Another important aspect of the subsurface is its role in energy exploration and
extraction (McCartney et al. 2016). The subsurface contains reserves of fossil fuels, such
as coal, oil and natural gas, as well as mineral resources. Understanding the geology and
properties of the subsurface is essential for locating and extracting these valuable energy and
mineral resources, which are still vital for various industries. When it comes to sustainable
energy solutions, the subsurface plays a fundamental role in the field of geothermal energy
(Barbier 2002). Geothermal power systems utilize the heat stored within the Earth to generate
electricity or provide heating and cooling. Understanding geothermal reservoirs and their
characteristics is essential for effectively utilizing this renewable energy source. Furthermore,
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the subsurface also plays a crucial role in the storage of waste and hazardous materials
(Krauskopf 2013). Deep geological repositories are designed to safely store nuclear waste
and other hazardous substances, minimizing their potential impact on the environment and
human health. Studying the subsurface helps identifying suitable locations and assessing the
long-term safety and stability of such repositories.

The subsurface environment exhibits significant heterogeneity and hosts complex and inter-
connected processes across various spatial and temporal scales. While valuable information
about subsurface structures and processes can be derived from data sources such as borehole
measurements, outcrops, laboratory analysis of field samples, geophysical data and hydroge-
ological experiments, it is important to acknowledge that information is incomplete (Linde
et al. 2017). It is critical to recognize and properly account for uncertainties in order to ensure
accurate and reliable interpretations of subsurface data and enable robust decision-making
processes. When studying subsurface systems, inversion is commonly used to formulate
and solve problems (Tarantola 2005). Inverse theory envelops a collection of mathematical
methodologies used to gain insights about system properties and states from observations
(Menke 2018). The practice of inferring parameter values based on observations has a long
history in quantitative science, however, the first formal approaches emerged in the period
between 1760 and 1810 (Stigler 1986). During that period, significant advancements were
made in addressing two fundamental problems: estimating the Earth’s shape using geode-
tic data and determining planetary and comet orbits based on astronomical observations
(Tarantola 2006).

1.2 Inversion problems in the geosciences

In the geosciences, inversion problems arise out of the need to estimate unknown proper-
ties or parameters describing environmental systems. While inversion problems occur in
a variety of subfields within the geosciences, this thesis mainly focuses on applications in
geophysics (e.g., Parker 1994; Tarantola 2005, Menke 2018), hydrogeology (e.g., McLaughlin
and Townley 1996; Carrera et al. 2005) and hydrogeophysics (e.g., Rubin and Hubbard 2005;
Linde and Doetsch 2016). We are concerned with inversion problems defined for estimating
geophysical, geological or hydrogeological properties and state variables using geophysical
or hydrological measurements.

Geophysical inversion benefits from geophysical data being sensitive to the physical prop-
erties (e.g., electrical resistivity) of subsurface materials and allows us to enhance our un-
derstanding of geological processes and testing scientific hypotheses (Linde et al. 2015). In
the field of applied geophysics, Reynolds (2011) identifies key families of geophysical meth-
ods, including potential field methods, seismology, electrical methods, and electromagnetic
methods. Figure 1.1 illustrates two examples of geophysical data: cross-borehole ground
penetrating radar (GPR) and electrical resistivity tomography (ERT). Similarly, hydraulic
data provides information about flow of fluids and transport of matter within the subsur-
face. Hydraulic testing initially focused on pumping tests, which were primarily designed
for permeable formations in the context of water supply assessments. However, with in-
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creasing concerns regarding waste migration and the need to understand flow dynamics in
low-permeability formations, interest has expanded to include testing procedures suitable for
such conditions (Domenico and Schwartz 1997). One example is slug tests, where a discrete
volume of water is rapidly added or removed from a well, and the subsequent hydraulic head
response is measured.

The starting point to solve an inverse problem is to parameterize the natural system of
interest using parameters or state variables θ = (θ1, ...,θL). One exemplary way to accomplish
this is by employing a discretization approach, where the model domain is divided into a
finite number of cells. Each cell represents the value of the property of interest within that
specific region. Subsequently, all relevant prior information regarding the natural system is
gathered and compiled. This includes for instance expert knowledge providing insights into
the characteristics of the system. The next step is concerned with the relationship between
the target model parameters θ and the observations y = (y1, ..., yT ). It is commonly expressed
using a forward solver G :RL →RT which numerically approximates physical laws. Deriving
accurate forward solvers assuming specific conditions is the concern of numerical modeling,
establishing mathematical models and algorithms that accurately predict the behavior and
outcomes of a system based on given inputs and assumptions (Menke 2018). Under the
assumption that the measurements include observational noise εO but no model errors, we
write,

Y =G (θ)+εO . (1.1)

In this thesis, we refer to random variables and random vectors with upper-case letters and
to realizations thereof with lower-case letters. When solving the inverse problem, the goal is
to identify parameter values θ that best match the measured data y and any prior or regular-
ization constraints.

Inverse problems are widely recognized as being ill-posed, meaning that they lack unique so-
lutions and can be highly sensitive to small changes in the input data (Backus 1970; Tikhonov
and Arsenin 1977). In underdetermined problems with insufficient information in the data y
to determine all the unknowns of the system, there is an infinite number of solutions that
fit the data even in the absence of data noise. In overdetermined data-rich settings, mea-
surement errors, simplified numerical forward models and assumptions about conceptual
models introduce inherent uncertainty into the inversion problem. Furthermore, not all
geoscientific relationships are unique (Tarantola and Valette 1982a). The latter for instance is
the case with gravitational data as an infinity of different density models lead to identical grav-
itational fields. It is common to distinguish between two sources of parameter uncertainties
(Tartakovsky 2013): epistemic and aleatory. Epistemic uncertainty arises from incomplete
knowledge or understanding of the underlying system or phenomenon and can be reduced
through the collection of additional data or improvement of the model itself. The latter
involves refining the assumptions, equations and parameters used in the model to better
align with the real-world system. On the other hand, aleatory uncertainty refers to inherent
randomness that arises from natural variability in space, time, or individual behavior. This
distinction between epistemic and aleatory uncertainty is also reflected in other works, such
as Helton (1994), which differentiates between stochastic and subjective uncertainty, and
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Hoffman and Hammonds (1994), which classifies uncertainty as Type A (aleatory) and Type B
(epistemic).

Inversion problems are commonly tackled using either of two fundamental approaches: de-
terministic and probabilistic inversion. In the deterministic approach, solving the inversion
problem is approached as an optimization task, where gradients typically play a crucial role in
guiding the optimization procedure. Conventional deterministic inversion methods typically
enable a unique solution of the inversion problem by relying on regularization constraints
(Constable et al. 1987). Although they are popular due to their simplicity and computational
efficiency, they generally rely on constraints lacking geological justification (Ellis and Old-
enburg 1994). Furthermore, deterministic approaches do not offer a reliable evaluation of
uncertainty (Linde et al. 2017). Probabilistic inversion, in contrast, offers a range of possible
solutions. For geophysical problems, it gained significant prominence with Tarantola and
Valette (1982a) and Tarantola and Valette (1982b) introducing the very general concept of
states of information. Within probabilistic methods, the model parameters are treated as
random variables and the aim is to determine their distribution (Menke 2018). Thereby, accu-
rate estimation of errors and uncertainty quantification are ensured (Jackson and Matsu’Ura
1985). We rely on probabilistic inversion based on a classical Bayesian framework, which has
been widely applied to inversion problems in the geosciences.

(a) (b)

Figure 1.1: Illustrations of exemplary geophysical data: (a) Cross-borehole ground penetrating
radar (GPR) employing a configuration of five transmitters and receivers, resulting in a
total of 25 first-arrival travel times providing integrative measurements along the ray paths.
(b) Electrical resistivity tomography (ERT) involving the utilization of two electrodes to
inject electrical currents into the ground and the resulting potential differences for the
electrodes located in-between being measured. While GPR data are sensitive to both electrical
conductivity and permittivity, ERT data are only sensitive to electrical conductivity. The
physics underlying these methods is non-linear, implying that the ray-paths and the current
patterns depend on the subsurface structure.
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1.2.1 Bayesian inference

In the Bayesian approach, we begin by specifying a prior probability density function (PDF)
θ 7→ p(θ), which captures all the prior knowledge and assumptions about the parameters θ.
This prior distribution represents our initial beliefs or uncertainties about the parameter
values. We consider a finite-dimensional parameter space and a prior PDF, which is absolutely
continuous with respect to the Lebesgue measure. To incorporate the available data y , we
utilize the likelihood function θ 7→ p(y |θ), which quantifies the probability of obtaining the
observed data given specific parameter values. To combine the prior distribution and the
likelihood function, we apply Bayes’ theorem to derive the posterior PDF,

p(θ|y) = p(θ)p(y |θ)

p(y)
. (1.2)

The denominator p(y) is given by the so-called model evidence, which is assumed to be
positive. The posterior PDF provides a probabilistic description of the parameter uncer-
tainties, accounting for the compatibility between the model predictions and the observed
data. Bayes’ theorem is named after the Reverend Thomas Bayes, who was a statistician, a
philosopher and a theologian. During the 1740s, Bayes made a significant statement related
to probability theory, which laid the foundation for what is now known as Bayes’ theorem.
However, it was only after his death that the theorem was published in 1763, in a work titled
"An Essay towards solving a Problem in the Doctrine of Chances" (Bayes 1763).

Bayesian inversion can handle complex and nonlinear forward models, it naturally accounts
for parameter dependencies encompassing in particular covariance structures and ensures
uncertainty quantification for the estimates. Furthermore, it enables the incorporation of
complex prior knowledge. While the possibility to work with realistic priors is advantageous,
the choice of the prior distribution is also challenging (Malinverno and Briggs 2004) as
it has a strong influence on the estimation (Scales and Tenorio 2001). Its selection often
includes uncertainty, as do the assumptions about the forward model and the data error in the
likelihood function. To account for these uncertainties, “empirical Bayes” and “hierarchical
Bayes” approaches are applied (Malinverno and Briggs 2004). Furthermore, Bayesian model
selection utilizes the model evidence to choose between different conceptual prior models
(e.g., Linde 2014; Hoege et al. 2019). While these research topics are fascinating and have
significant implications in the field, they go beyond the scope of this thesis.

1.2.2 Petrophysical relationships

In the classical Bayesian inversion problem, the data y are related to the model parame-
ters θ through a forward model θ 7→ G (θ). However, in geophysical inversion problems,
such relationships often only exist between geophysical properties and geophysical data.
Yet, the interest of most geophysical investigations extend beyond the sole inference of
geophysical property models, for instance, to provide valuable insights and constraints on
(hydro)geological parameters and state variables (Fig. 1.2a). These parameters include essen-
tial characteristics such as clay fraction, mineral composition, water saturation or salinity.
Even if the interpretation of such properties or state variables of interest remains the primary
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objective, geophysical inverse theory has traditionally focused on evaluating the accuracy
and uncertainty associated with the inferred geophysical properties (e.g., Parker 1994; Menke
2018; Tarantola 2005; Aster et al. 2018). To infer (hydro)geological properties and variables,
crucial aspects involve the petrophysical (rock physics) relationships. These relationships
establish the connection between geophysical properties and the desired (hydro)geological
targets (e.g., Hinnell et al. 2010; Kowalsky et al. 2005).

Hydrogeophysics, drawing upon geophysical data, offers valuable insights into hydrological
processes and the underlying subsurface structures that govern them (Rubin and Hubbard
2005). Defining an appropriate petrophysical relationship is a significant challenge in hydro-
geophysics (Binley et al. 2015), as parameter values and analytical forms of the relationship
can vary significantly among different lithologies (Hubbard and Rubin 2005). Consequently,
petrophysical relationships are often inherently uncertain (e.g., Mavko et al. 2020). Nev-
ertheless, in many hydrogeophysical inversion studies, the petrophysical relationship is
assumed to be perfect provided that the right parameter values are used (e.g., Lochbühler
et al. 2014; Kowalsky et al. 2005). The assumption of a perfect petrophysical relationship can
introduce bias, too narrow uncertainty bounds and excessively variable parameter estimates
(Brunetti and Linde 2018). Brunetti and Linde (2018) identify three sources of uncertainty in
the petrophysical relationship: model uncertainty, parameter uncertainty, and prediction
uncertainty (Fig. 1.2b). While model and parameter uncertainties result from the selection of
the petrophysical model and its parameter values, prediction uncertainty arises from scatter
and bias around the calibrated petrophysical model. Within the scope of this thesis, we are
primarily addressing petrophysical prediction uncertainty.

Most studies accounting for petrophysical prediction uncertainty are relying on a two-step
approach: first, geophysical properties are estimated using deterministic gradient-based
inversions and second, the parameters of interest are derived using uncertain petrophysical
relationships (e.g., Chen et al. 2001; Mukerji et al. 2001; González et al. 2008; Grana and
Della Rossa 2010; Shahraeeni and Curtis 2011). The resulting estimates can be misleading
if the difference in resolution of the inversion results and the petrophysical relationships is
ignored (Day-Lewis et al. 2005). Furthermore, the two-step approach prevents the method
from accounting for prior constraints on the (hydro)geological target variable (Ferré et al.
2009) and for physical constraints such as conservation of mass, continuity and momentum.

An alternative to the two-step approach is the use of coupled inversions, where hydrogeologi-
cal properties are directly targeted through the inversion of geophysical data (e.g., Hinnell
et al. 2010; Kowalsky et al. 2005). This approach encounters challenges, however, as the
intermediate geophysical property is unobservable (latent), leading to what is known as a
latent variable model. The likelihood of observing the geophysical data given the proposed
hydrogeological parameters in such a latent variable model is often intractable. To overcome
this difficulty, one strategy is to infer the joint posterior distribution of the hydrogeological
and geophysical parameters. The concept of lithological tomography, as pioneered by Bosch
(1999), introduced an approach to estimate the joint posterior by incorporating geophysical
data, geological prior knowledge and uncertain petrophysical relationships. The original
formulation of lithological tomography suffers, unfortunately, from inefficiency when dealing
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with large geophysical datasets with high signal-to-noise ratios and significant petrophysical
uncertainty. Brunetti and Linde (2018) suggested an alternative method inferring the petro-
physical prediction error alongside the target parameters. This approach offers significant
efficiency improvements compared to Bosch’s original formulation. Nevertheless, it faces
challenges due to its high dimensional parameter space and the strong posterior correlation
between the target variable and the petrophysical prediction error. To circumvent these
challenges, we consider two methods to estimate the intractable likelihood function of the
geophysical data given the (hydro)geological parameters: the correlated pseudo-marginal
method and a linearized Gaussian approximation (Section 1.4, Chapters 2 and 3). With
an accurate estimation of the likelihood, we can directly infer the (hydro)geological model
parameters of interest from the geophysical data.

(a) (b)

Figure 1.2: Illustration of (hydro)geophysical inversion: (a) The model parameters θ cannot
directly be related to the geophysical measurements y , but only via the geophysical prop-
erties X which are related to θ via a petrophysical relationship. The latter may encompass
various sources of uncertainty, as indicated in (b).
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1.2.3 Hyperparameters

Geological and physical heterogeneity exist across various scales. When it comes to numerical
forward solvers, a commonly employed approach is nonetheless to assume a “Representative
Elementary Volume” (REV; Hill 1963). The REV represents a scale at which smaller-scale
heterogeneity is averaged out and, assuming a unique upscaled value to it, offers a practical
yet imperfect representation of reality, potentially resulting in misleading predictions of
subsurface properties (Day-Lewis et al. 2017; Jougnot et al. 2018; Shakas and Linde 2015).
The impact of a limited resolution in numerical simulations depends greatly on the specific
physics involved. For certain applications, such as predicting gravimetric measurements or
groundwater levels, different resolutions may not significantly alter the accuracy of the results.
However, for simulations that incorporate more complex processes, such as, full-waveform
modeling or tracer transport, the limitations imposed by a limited resolution can have a
significant impact on the reliability and accuracy of the predictions (Linde et al. 2017).

In the context of Bayesian inversion problems, we are interested in estimating geostatistical
hyperparameters for random fields representing hydrogeological or geophysical properties
of the model domain. These hyperparameters include important statistical quantities as the
mean, standard deviation and integral scales, that are crucial for describing the underlying
random field. More specifically, we aim to estimate the posterior PDF of the hyperparame-
ters using hydrogeological or geophysical measurements performed on the model domain.
Although the geostatistical literature presents many studies concerning the estimation of
hyperparameters using direct data, there has been notably less research on addressing the
problem using indirect data. Inferring hyperparameters becomes particularly challenging
in the so-called non-ergodic setting, where data averaging is performed over a scale that
is smaller or similar to the scale of heterogeneity. In such cases, the data not only depend
on the hyperparameters but also on the random field realization on which measurements
are performed. This means that variations in the magnitudes and locations of high and low
property values result in distinct data responses. In the context of geostatistics, a non-ergodic
setting implies that there exists no analytical relationships linking the data to the upscaled
hyperparameters (Fig. 1.3).

One way around this problem is to focus on the inference of both the hyperparameters and
the local properties of the field (e.g. Kitanidis 1995; Hansen et al. 2012; Hansen et al. 2013a
Hansen et al. 2013b; Zhao and Luo 2021; Wang et al. 2022), rather than solely focusing on
inferring the hyperparameters. However, if the focus mainly lies in the estimation of the
hyperparameters, a full inversion along with the local properties of the field (typically in-
volving many thousands of unknowns) brings unnecessary computational demands. On the
other hand, making simplified assumptions about the field (e.g., ergodicity or homogeneity)
leads to errors in the estimates of the hyperparameters (e.g., Visentini et al. 2020; Shakas
et al. 2018). To address these challenges, we treat the local property field as latent variables.
This means that we solely target the hyperparameters while considering the underlying local
variations as unobservable variables. Once again, this approach necessitates estimating the
intractable likelihood function of the data given the hyperparameters. To accomplish this, we
employ the correlated pseudo-marginal method (Section 1.4, Chapter 4).
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Figure 1.3: Illustration of hyperparameter estimation: In the non-ergodic setting, the hy-
perparameters θ cannot directly be related to the measurements y , but only via the local
properties of the field X .

1.2.4 Risk assessment

When making decisions involving the geosciences, but also in other domains such as finance
or engineering, it is common to identify and minimize risks by acknowledging potential
hazards. Although risk assessment also considers the consequences of a hazard, the primary
focus of this thesis is on estimating the probability of the hazard occurrence. Often, hazards
tend to manifest as infrequent or rare events. In engineering, the evaluation of rare events is
frequently associated with reliability analysis, which is concerned with the failure of systems
that are designed to be highly reliable (Beck and Zuev 2015). In the domain of hydrogeology,
risk assessment plays a critical role in the context of groundwater management. For instance,
by determining the probability of hazardous contaminants reaching a groundwater well, we
contribute in assessing the potential risk of groundwater contamination (e.g, Winter and
Tartakovsky 2008, Fig. 1.4). For such real life applications, rare event estimation cannot rely
on analytical formulas and specialized estimation approaches are required.

A considerable amount of research has been devoted to rare event estimation, including
asymptotic approximation techniques such as first-order reliability methods (e.g., Hasofer
and Lind 1974), extreme value theory (e.g., Brodin and Klüppelberg 2008), failure analysis
techniques (e.g., Tartakovsky 2007) and stochastic sampling approaches. In the context of
rare event estimation, conventional Monte Carlo simulation methods are often computation-
ally inefficient (Lahkim and Garcia 1999), making them unsuitable for accurate estimation.
As a result, more efficient sampling methods are required to overcome these limitations
and obtain reliable estimates of rare event probabilities. These methods aim to reduce the
computational burden by selectively sampling regions or scenarios where rare events are
more likely to occur. By focusing computational efforts on these critical regions, the effi-
ciency of the estimation process can be significantly enhanced. There are several reviews and
books available that provide coverage of rare event simulation and associated Monte Carlo
techniques (e.g., Bucklew 2004; Rubino and Tuffin 2009).
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In this thesis, we are interested in rare event estimation in the context of an inversion prob-
lem. Instead of being interested in the posterior of the model parameters itself, we target the
distribution of a quantity of interest depending on the field through a non-linear relationship
θ 7→ R(θ). More specifically, we want to calculate the probability of exceeding a critical
threshold for this quantity, denoted as P(R(θ) ≥ T |y), which is potentially a rare event. In
the scenario depicted in Figure 1.4, our objective could be to estimate the probability of
a contaminant reaching the groundwater well on the right within a specified critical time
frame with the transport time being determined by the hydrological characteristics θ of the
subsurface. However, our knowledge of these hydrological properties is limited and we rely on
indirect information obtained from geophysical and hydrological measurements. In the field
of structural reliability engineering, similar problems have been addressed by utilizing data
to update the parameter knowledge and subsequently applying these updated distributions
to predict rare events (e.g., Jensen et al. 2013; Sundar and Manohar 2013; Hadjidoukas et al.
2015).

In practical applications, it is common for the estimated posterior distribution to be available
only in the form of a sample. Subset sampling is a method that allows for rare event estimation
with a sample approximation as starting point (Straub et al. 2016). This method is based on
the concept that the probability of a rare event can be expressed as the product of higher
conditional probabilities, employing intermediate failure events referred to as subsets. Subset
sampling has been employed in an inversion context for engineering problems to estimate
the "updated robust failure probability" by Jensen et al. (2013) and Hadjidoukas et al. (2015).
Also in the engineering literature, Straub (2011) introduced Bayesian Updating with Structural
reliability methods for posterior inference (BUS; e.g. Straub and Papaioannou 2015). BUS can
be viewed as an extension of the Monte Carlo simulation technique called rejection sampling,
addressing its inefficiency by specifically targeting the acceptance event as a rare event
through the application of structural reliability methods. Another approach that combines
inversion and risk assessment is Bayesian Evidential Learning (BEL; Hermans et al. 2016).
BEL is designed to establish the relationship between measurements and the quantity of
interest by prior sampling of the model parameters (e.g., Thibaut et al. 2021). Within this
thesis, we rely on a Sequential Monte Carlo approach based on subset sampling (Section 1.5.1
and Chapter 5) and a novel energy-based model approach (Section 1.5.2 and Chapter 6) to
address rare event estimation within an inversion framework.
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Figure 1.4: Illustration of risk assessment in a scenario concerned with potential groundwater
contamination due to a hazardous substance reaching a groundwater well.

1.3 Posterior sampling approaches

In practice, the posterior PDF (as defined in Eq. 1.2) typically does not have an analytical
form. Consequently, Monte Carlo sampling techniques are employed to approximate the
posterior (Mosegaard and Tarantola 1995). The resulting computational cost of the Bayesian
approach is widely acknowledged, particularly in scenarios involving large datasets, complex
models and a high number of parameters to be estimated. Early applications of Monte
Carlo sampling for geophysical inversion problems can be found in the work of Press (1968).
The simplest sampling approach involves an exhaustive search of the model parameter
space, evaluating the samples using a likelihood function to assess their agreement with the
available measurements. A method based on this principle is rejection sampling (Ripley
2009a), applied in various instances including the work by Dorn et al. (2013). While such a
brute-force approach may be feasible for a low-dimensional parameter space, it becomes
computationally infeasible in a setting with thousands of model parameters (Mosegaard and
Tarantola 1995). One strategy around this is to guide the sampling process using a random
walk through the model space.

1.3.1 Markov chain Monte Carlo

Markov chain Monte Carlo (MCMC) is a computational method used to sample from the
posterior distribution in Bayesian analysis. In MCMC, a Markov chain is constructed to
iteratively generate samples from the model parameter space. As the number of samples
increases, the distribution gradually converges towards the posterior distribution (e.g., Robert
et al. 1999). The principle of MCMC is illustrated in Figure 1.5a. One foundational MCMC
algorithm is Metropolis–Hastings (MH; Metropolis et al. 1953; Hastings 1970). This algorithm
operates by iteratively proposing new sets of model parameters. The acceptance or rejection
of proposed states is guided by a criterion called the acceptance ratio. This ratio is calculated
by dividing the likelihood and prior values of the proposed state by the likelihood and prior
values of the current state. It also incorporates a term representing the proposal distribution
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(a) (b)

Figure 1.5: Illustrations of (a) the Markov chain Monte Carlo method and (b) the Sequential
Monte Carlo method for posterior sampling.

used to generate the new state. If the acceptance ratio is high, it is likely that the proposed
state is accepted and the Markov chain moves to this new state. However, if the ratio is low,
the probability of rejecting the proposed parameters and remaining in the current state is
high (e.g., Tarantola 2005).

The proposal scheme used in the MH algorithm is crucial as it must carefully balance the
trade-off between exploration, which ensures a thorough search of the parameter space, and
exploitation, which allows the algorithm to make use of promising regions while also avoid
getting trapped in local optima (e.g., Tarantola 2005). To deal with this challenge, researchers
have proposed various approaches based on adaptive proposal schemes. Generally, these
approaches can be categorized into single-chain and multiple-chain methods (Vrugt 2016).
One of the most commonly used single-chain methods is adaptive Metropolis operating by
continuously adapting the covariance matrix of a Gaussian proposal distribution using the
accepted samples of the chain (Haario et al. 2001). The use of a multivariate normal proposal
distribution with an adaptive covariance matrix is effective for Gaussian-shaped target distri-
butions. However, its exploration capabilities may be limited for multi-modal distributions
(Vrugt 2016). When using a single-chain method, it can be particularly challenging to de-
termine when convergence has been achieved. Thereby, single-chain methods face similar
problems as local optimizers, as they cannot guarantee that the full parameter space has been
adequately explored (Gelman and Shirley 2011). On the other hand, multiple-chain methods
involve running different trajectories in parallel to explore the posterior target distribution.
Using multiple chains provides protection against declaring convergence too early, and it
also allows for the application of a variety of statistical tests to determine if the chains have
reached convergence to a stationary distribution (Gelman and Rubin 1992). Braak (2006)
introduced an adaptive Random Walk Metropolis algorithm known as Differential Evolution
Markov Chain (DE-MC). It relies on multivariate proposals automatically adapting their scale
and the orientation along the way to the stationary distribution. A refined version of DE-MC
has been proposed with the adaptive multi-chain algorithm DREAM (DiffeRential Evolution
Adaptive Metropolis; Vrugt et al. 2008). It improves the efficiency of DE-MC by incorporating
subspace sampling, where only randomly selected dimensions of the model parameter are
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updated during each iteration. Additionally, outlier chain correction techniques are em-
ployed to address potential issues with chains that deviate significantly from the rest.

The curse of dimensionality is a general problem for MCMC algorithms, as the time needed
for convergence increases as the number of target parameters grows (e.g., Robert et al. 2018).
This can be counteracted by various approaches, the most common is to reduce the parame-
ter space by employing dimensionality reduction techniques (Hastie et al. 2009). Generally,
reducing the dimension of the model improves the computational efficiency of the inversion
algorithm (Laloy et al. 2015). However, the diminished dimensionality of the problem also
causes a loss of information, which can lead to an inaccurate estimation of the uncertainty
(Grana et al. 2019). If for this reason dimensionality reduction techniques are omitted, it is
well-advised to use model proposal schemes that preserve the prior PDF (such as precondi-
tioned Crank–Nicolson, pCN, proposals; e.g. Cotter et al. 2013). They make the algorithm
robust to the choice of discretization and enable to maintain a reasonable step size when in-
ferring thousands of unknowns. Inversion with prior-preserving model proposals are known
as extended Metropolis algorithms in geophysics (Mosegaard and Tarantola 1995).

In this thesis, we explore and evaluate several model proposal schemes. It is important to note
that neither the proposal schemes we discuss, nor those presented above are exhaustive. In
Chapters 2 and 3 targeting very high-dimensional parameter spaces (thousands of unknowns),
we employ prior-sampling DREAM(Z S), a version of DREAM relying on an archive of past
states (Laloy and Vrugt 2012) that is combined with a prior-preserving modification. In
Chapter 4, when inferring only a limited number of hyperparameters, we employ the adaptive
Metropolis algorithm introduced by Haario et al. (2001). Finally, in Chapters 5 and 6, we use
standard Gaussian and pCN poposals (Cotter et al. 2013).

1.3.2 Sequential Monte Carlo

MCMC encounters challenges when employed to solve high-dimensional problems and
these issues become more pronounced as the non-linearity of the forward problem increases.
These difficulties can lead to insufficient exploration of the posterior distribution, manifested
by Markov chains becoming trapped in local minima or being unable to transition between
modes of high posterior probability (e.g., Amaya et al. 2022). Particle methods such as the
Sequential Monte Carlo method offer one way around those problems.

Tempering consists in introducing a temperature variable that modifies the likelihood func-
tion (Eq. 1.2). The posterior PDFs that arise from the tempering approach are referred to as
power posteriors, whereby the exponent of the likelihood corresponds to the inverse temper-
ature. Increasing the temperature has the effect of flattening the likelihood function, which
simplifies the exploration of the posterior by reducing the probability of getting trapped in
local minima and facilitating the sampling of different modes. One well-known approach
relying on tempering is so-called parallel tempering (Earl and Deem 2005). It involves run-
ning multiple Markov chains in parallel, each associated with a different temperature. The
chains are allowed to exchange states at specific intervals, with higher temperature chains
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exploring a broader space and lower temperature chains emphasizing the region of high
likelihoods. While parallel tempering utilizes different temperatures for different chains,
Annealed Importance Sampling (Neal 2001) gradually transforms the prior distribution to
the target distribution by incrementally decreasing the temperature within one chain. In An-
nealed Importance Sampling, the particle approximation of the posterior is obtained through
a series of importance sampling steps conducted between each pair of consecutive power
posteriors. The quality of the importance sampling estimator is strongly influenced by the
variance of the particle weights (Neal 2001). In Annealed Importance Sampling, this variance
can grow exponentially, resulting in poor approximations of the posterior. The Sequential
Monte Carlo method (SMC; Doucet et al. 2001) is a particle method also relying on sequential
importance sampling. However, SMC methods go a step further by incorporating resampling
steps, in which the states of the particles are resampled according to their current normal-
ized importance weights (Del Moral et al. 2007). This resampling step helps to mitigate the
growing variance in the weights and ensures a more balanced representation of the posterior
among the particles.

Although the SMC method (illustrated in Figure 1.5b) is commonly employed in various
fields of science and engineering, its application in geosciences has been limited (Linde
et al. 2017). Recently, adaptive SMC methods have shown promising results in addressing
inversion problems in geophysics (Amaya et al. 2021, Davies et al. 2023) and hydrogeology
(Amaya et al. 2022). Following these studies, we apply SMC for a one-dimensional flow and
a two-dimensional transport problem in Chapter 5. Thereby, we use its sequential nature
not only to approximate the posterior, but also to address a rare event probability estimation
problem.

1.4 Likelihood estimation

In the setups introduced in Sections 1.2.2 (petrophysical uncertainty) and 1.2.3 (hyperparam-
eter estimation), we are concerned with a latent variable model (also referred to as random
effects model) and a resulting intractable likelihood function. In this section, we introduce the
corresponding notation and present the two approaches we employ to tackle the challenges
associated with it.

1.4.1 Latent variable model

We consider the latent variable model (Deligiannidis et al. 2018),

X ∼ fθ(·) Y |X ∼ gθ(·|X ), (1.3)

with X denoting the latent variables and Y the observations. This represents a setup, where
the model parameters θ are only indirectly related to the measurements Y via the variables X .
This notation from Deligiannidis et al. (2018) with subscripts indicates that the distributions
are conditioned on the random variable θ being equal to the instance θ, whereby we do not
distinguish between instance and random variable. For the sake of simplicity, we follow the
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convention of Deligiannidis et al. (2018) and do not further specify the conditioning on θ in
the notation above. While we use this formulation with subscripts in Chapter 4, we denote
fθ(x) by p(x |θ) and gθ(y |x) by p(y |x ,θ) in Chapters 2 and 3.

In a latent variable model, the likelihood function of the observed data y given the target
model parameters θ is defined as,

θ 7→ p(y |θ) =
∫

gθ(y |x) fθ(x)d x , (1.4)

and this integral is generally intractable. That is, the integral has an unknown or non-existing
analytical form, which makes the direct implementation of posterior sampling algorithms
impossible.

In latent variable problems concerned with petrophysical uncertainty (Section 1.2.2, Chapters
2 and 3), the target properties θ are the (hydro)geological parameters and X are the geophys-
ical properties F (θ)+εP derived with the petrophysical relationship θ 7→F (θ) including
the (unobservable) petrophysical prediction error εP . For hyperparameter estimation (Sec-
tion 1.2.3 and Chapter 4), we utilize θ representing the target hyperparameters and X the
local properties of the model domain. Thereby, X ∼ fθ(·) is a (discretized) random field with
its geostatistical distribution fθ(·) depending on the hyperparameters θ.

1.4.2 Correlated pseudo-marginal method

The correlated pseudo-marginal method is one approach to approximate the intractable
likelihood function of latent variable models (Eq. 1.4). It is based on the pseudo-marginal
approach introduced by Beaumont (2003) and studied by Andrieu and Roberts (2009). In a
nutshell, it replaces the likelihood with a non-negative unbiased estimator based on Monte
Carlo averaging over samples of the latent variable,

p̂N (y |θ) = 1

N

N∑
n=1

gθ(y |X n), X n
i .i .d∼ fθ(·). (1.5)

The replacement of the likelihood by such an estimator results in a MH algorithm sampling
the same posterior distribution as when the true likelihood is used (Beaumont 2003). The
efficiency of the pseudo-marginal method depends on the variance of the log-likelihood
estimator (Doucet et al. 2015). If it is too high, the algorithm will encounter an unreasonably
low acceptance rate. The variance of the estimator can be regulated by adjusting the number
of latent variable samples N . However, this comes at the expense of higher computational
costs as for each sample, a forward simulation is required to calculate gθ(y |X n). Therefore,
and especially when dealing with high-dimensional problems that involve large data sets ex-
hibiting high signal-to-noise ratios, the utilization of importance sampling (Owen and Zhou
2000) becomes crucial when drawing samples of latent variables X n . To reduce the required
number of samples while ensuring a low variance, Deligiannidis et al. (2018) introduced the
correlated pseudo-marginal (CPM) correlating the draws of consecutive latent variables. The
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underlying concept here is that the variance of a ratio of estimators (here the acceptance ratio
of the MH) is lower when the denominator and numerator are positively correlated (Koop
1972).

In Friedli et al. (2022) (Chapter 2), we introduce and adapt the CPM method to a geophys-
ical inversion problem involving petrophysical uncertainty. Subsequently in Friedli and
Linde (2023) (Chapter 3), we compare the CPM method’s performance against a linearized
Gaussian approximation approach. Finally, in Friedli et al. (2023) (Chapter 4), we assess the
performance of the CPM method in a setting targeting hyperparameters. In Figures 1.6a
and 1.6b, illustrations of Equation (1.5) are depicted for inversion problems concerned with
petrophysical uncertainty and hyperparameter estimation, respectively.

(a)

(b)

Figure 1.6: Illustration of the pseudo-marginal method for inversion problems concerned
with (a) petrophysical prediction errors (PPE) and (b) hyperparameter estimation.
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1.4.3 Linearized Gaussian approximation

Apart from the CPM method, we apply a novel approach to estimate the intractable likelihood
function (Eq. 1.4), which is based on a Gaussian approximation and local linearization. It
relies on the assumption that the latent variable follows a Gaussian distribution X ∼ fθ(x) =
ϕ(x ;µx ,Σx ), such that we can write X = µx +Σx

1/2Z, with Z denoting a random vector
consisting of i .i .d . standard normal distributed variables (same dimension as X ). Then, a
first-order Taylor expansion of x 7→G (x) around µx is employed,

Y =G (µx +Σx
1/2Z)+εO ≈G (µx )+ Jµx

Σx
1/2Z+εO , (1.6)

with Jµx
denoting the Jacobian (sensitivity) matrix of the forward solver corresponding to µx .

Under Gaussian assumptions for the observational noise p(εO ) =ϕ(εO ;0,ΣY ), the likelihood
function can subsequently be approximated by,

p̂(y |θ) =ϕ(y ;µY ,Σ̃Y ) with µY =G (µx ) and Σ̃Y = JT
µx
Σx Jµx

+ΣY . (1.7)

As the linearization is made around µx and not around µx +Σx
1/2Z, errors arise when the

resulting Jacobians differ. For a linear geophysical problem, there are no such approximation
errors.

This novel approach initially proposed by Linde et al. (2017), which shares similarities with
the delta method (Van der Vaart 2000), was first implemented in Friedli and Linde (2023)
for a comparative analysis with the CPM method (Chapter 3). In this setting concerned
with Gaussian petrophysical prediction errors, the approximation works well for moderate
non-linearity in the physical forward solver and a low degree of petrophysical prediction
uncertainty. For the latent variable model in a hyperparameter estimation setting (Chapter 4),
the approach could be adapted if the local properties of X are described by a Gaussian random
field. However, the disparity between the two Jacobians can be substantial, particularly in
non-ergodic settings. This happens as all the heterogeneity of the latent variable is included
in the random part Σx

1/2Z, while the mean µx is a constant field. Due to this limitation, we
did not test the linearized Gaussian approach in the context of hyperparameter inference.

1.5 Rare event estimation

In the scenario considered in Section 1.2.4, we are not primarily interested in the model pa-
rameters’ posterior distribution, but in a resulting quantity of interest θ 7→R(θ), particularly
in the rare event that this quantity exceeds a critical threshold, P(R(θ) ≥ T |y). To tackle the
inefficiency of traditional Monte Carlo sampling in estimating low probabilities, we explore
two alternative approaches: the Sequential Monte Carlo method (Section 1.5.1, Chapter 5)
and an energy-based model approach (Section 1.5.2, Chapter 6).
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1.5.1 Sequential Monte Carlo

As other approaches targeting rare events, Sequential Monte Carlo is relying on the principle
of subset sampling (Au and Beck 2001). The underlying idea of subset sampling is to express
a small probability as a product of not so small conditional probabilities,

P(R(θ) ≥ T |y) =
K∏

k=1
P(R(θ) ≥ Tk |R(θ) ≥ Tk−1|y), (1.8)

with the increasing sequence of thresholds {T0, ...,TK } where T0 = −∞ and TK = T (Cérou
et al. 2012). When applying the SMC method within an inversion setting, we start the rare
event probability estimation process with a particle approximation of the posterior, which
is then transferred towards the critical value of R(θ). In each step of the process, the parti-
cles exhibiting the lowest R(θ) are filtered out, while the remaining particles are resampled
and subsequently propagated within the posterior, with the additional requirement that
R(θ) ≥ Tk . This procedure ensures that only particles meeting the threshold condition con-
tinue to contribute to the subsequent iterations. An illustration of this process is provided in
Figure 1.7.

The performance of the SMC method for rare event estimation purposes is influenced by
the choice of intermediate thresholds. If the thresholds increase slowly, the conditional
probabilities tend to be large, requiring fewer particles for their estimation. Conversely,
if the thresholds increase rapidly, more particles are needed to achieve accurate results.
Consequently, a well-working trade-off between the conditional probabilities and the number
of particles has to be found (Au and Beck 2001). To address this challenge, Cérou et al.
(2012) propose the use of an adaptive sequence of thresholds based on quantiles. However,
employing adaptive thresholds comes at a slight cost of accuracy, as it introduces a small
positive bias in the rare event probability estimate (Cérou et al. 2012). A possible solution
to address this issue is to re-run the algorithm using the optimized sequence that has been
identified.

Figure 1.7: Illustration of the SMC method for rare events. We depict the first three thresholds
for an example with four particles and four steps to propagate the particles within the subsets.
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1.5.2 Energy-based models

As a second approach to address rare event estimation, we consider energy-based models
(EBM; e.g., Lelièvre et al. 2010) and write the marginal posterior distribution of the quantity
of interest R =R(θ) as an energy density function with free energy r 7→ F (r ),

pR|Y (r |y) ∝ exp(−F (r )). (1.9)

To estimate F (r ) and pR|Y (r |y), one approach is to utilize transformed posterior samples.
However, since this follows a typical Monte Carlo approach, it would require an impractically
large number of samples to accurately cover the low probability regions of interest. To address
this issue and enhance sampling in the region of interest r ≥ T , we aim to sample according
to a predefined distribution pref(r ) that assigns most of its mass to this specific region. The
achieve this, we introduce the bias potential r 7→V (r ) and the corresponding PDF r 7→ pV (r ),

pV (r ) = exp(−(F (r )+V (r )))∫
exp(−(F (s)+V (s)))d s

. (1.10)

Our approach relies on optimizing the potential V (r ) such that pV (r ) is equal to pref(r ). It is
straightforward that if we find Vopt(r ), we can obtain F (r ) =− log(pref(r ))−Vopt(r ), and hence
the marginal posterior distribution of the quantity of interest.

This approach illustrated in Figure 1.8 draws upon the variational method proposed by
Valsson and Parrinello (2014) in metadynamics. However, although we adopt the fundamental
concepts of their method, we present our approach using a distinct formulation and apply it
to a novel context targeting rare events. In practice, the main challenges of the EBM approach
are the parameterization of the bias potential V (r ), the choice of pref(r ) and the optimization
method used to estimate Vopt(r ).

Figure 1.8: Illustration of the energy-based model approach.
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1.6 Objectives

The constant progress in sensor technologies, field approaches, and numerical modeling
has resulted in significant breakthroughs in addressing inversion challenges within the field
of geosciences (Linde et al. 2017). However, the outcomes and predictions still contain
uncertainties that need to be addressed. This thesis presents a selection of methodologi-
cal advancements and their pioneering applications in the field of geoscientific inversion.
Thereby, we address the following two broad research questions:

• How can statistical estimation and approximation approaches be used to obtain effi-
cient and accurate probabilistic inversion methods in scenarios that involve intractable
likelihood functions? Or more specifically, how can they handle the challenges of petro-
physical uncertainty and hyperparameter estimation in non-linear inversion problems?
(Chapters 2, 3 and 4)

• How can modern statistical methods be utilized to integrate inversion and risk assess-
ment in order to address problems where the primary focus is on the probability of a
rare event of interest, rather than the posterior distribution? (Chapters 5 and 6)

The implementation of the MH and most other MCMC algorithms relies on the computation
of the likelihood function p(y |θ). In a latent variable model, where no direct relationship
between the model parameters θ and the measurements y exists, this likelihood function is
typically intractable (Section 1.4.1). In this context, we present two methods addressing the
estimation of the likelihood function: the correlated pseudo-marginal method (Section 1.4.2)
and a linearized Gaussian approach (Section 1.4.3). We are concerned with latent variable
models in two contexts: petrophysical uncertainty (Section 1.2.2) and hyperparameter esti-
mation (Section 1.2.3).

Effective decision making in geosciences heavily relies on the assessment of potential risks.
When confronted with uncertain systems, it becomes crucial to adequately propagate the
quantification of uncertainty into the risk assessment (Section 1.2.4). This enables a compre-
hensive understanding of the potential consequences and guides decision makers towards
making informed choices. Rare events pose challenges in risk assessment and traditional
statistical approaches often fail to capture tails of the uncertainty distributions. To address
this, specialized modeling techniques for rare event simulation are employed. Within this
context, we present two approaches addressing rare event estimation under posterior uncer-
tainty: The PostRisk-SMC method (Section 1.5.1) and a novel energy-based model approach
(Section 1.5.2).
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1.7 Outline

This thesis is divided into two main parts with each focusing on different aspects of inverse
problem settings: likelihood estimation (Chapters 2, 3 and 4) and risk assessment (Chapters 5
and 6). Thereby, this thesis includes work that has been published in peer-reviewed journals
(Chapters 2, 3 and 4) or manuscripts that will soon be submitted for publication (Chapters 5
and 6). I took main responsibility for the entire process of each paper, encompassing the
development of the methodology, code implementation and authorship of the initial drafts.

Chapter 2 (Friedli et al. 2022) investigates lithological tomography, which involves inferring
(hydro)geological parameters from geophysical data by treating intermediate geophysical
properties as latent variables. We employ the correlated pseudo-marginal method to esti-
mate the resulting intractable likelihood function. As test cases, we consider the inference
of porosity fields using crosshole ground-penetrating radar first-arrival travel times in a
high-dimensional parameter space. The correlated pseudo-marginal method, combined
with importance sampling and a prior-preserving proposal scheme, is found to outperform
current state-of-the-art methods by greatly enhancing posterior exploration in both linear
and non-linear settings.

Chapter 3 (Friedli and Linde 2023) is a natural extension of Chapter 2 and compares the cor-
related pseudo-marginal method against a new approximate likelihood estimation method.
This new approach utilizes a Gaussian probability density function based on local lineariza-
tion of the geophysical forward operator. First, the performances of both methods are tested
on the same non-linear test case as in Chapter 2. In this specific case, both methods produce
nearly identical estimates as the petrophysical uncertainty is relatively low. Based on the
findings of a subsequent sensitivity analysis, it is indicated that the linearized Gaussian
approach, despite its computational advantages, suffers from a decrease in accuracy if the
scatter in the petrophysical relationship grows. In contrast, the computationally more expen-
sive correlated pseudo-marginal method produces accurate estimates even for settings with
high petrophysical uncertainty.

Chapter 4 (Friedli et al. 2023) focuses on the application of the correlated pseudo-marginal
method to another setting involving latent variables. Here, the addressed problem involves
estimating the geostatistical hyperparameters of a random field of interest. This problem is
particularly interesting in a non-ergodic setting, where the absence of analytical relationships
between the data and the hyperparameters makes it necessary to consider the local proper-
ties of the field. In our approach, we treat the random field as latent variables and estimate
the intractable likelihood of observing the data given the hyperparameters using the corre-
lated pseudo-marginal method. We evaluate its performance in two representative inversion
problems: The first data-poor problem involves inferring the hyperparameters of hydraulic
conductivity fields using equivalent hydraulic conductivity data. The second data-rich prob-
lem focuses on estimating fracture aperture fields using borehole ground-penetrating radar
reflection data. We find that in comparison to simplified model assumptions, the correlated
pseudo-marginal method enables accurate hyperparameter estimation.

21



In Chapter 5, the focus shifts to risk assessment and rare events, where the primary interest
lies in a critical quantity that depends on the unknown model parameters θ. First, we switch
the posterior sampling method from MCMC to SMC. However, relying only on a particle
approximation of the posterior PDF is unsuitable when determining rare event probabili-
ties. To address this, we apply the SMC method a second time to perform subset sampling.
The resulting PostRisk-SMC method is tested in both a one-dimensional flow and a two-
dimensional transport example. Through the one-dimensional example, it becomes evident
that the PostRisk-SMC method allows us to estimate rare event probabilities as low as one
in a billion. The two-dimensional example showcases the method’s capability for rare event
probability estimation in a more realistic and complex setting. Both examples display how
the PostRisk-SMC approach enables an accurate assessment and simulation of very rare
events while also providing a particle-based approximation of the posterior distribution.

Also Chapter 6 is concerned with rare event estimation. In this study, we use an energy density
function to represent the quantity of interest’s posterior distribution, characterized by a free
energy function. To enable efficient estimation of the free energy, we employ concepts from
energy-based models and introduce and estimate a bias potential. Through three illustrative
test examples, we demonstrate that the EBM approach, when properly configured, provides
stable rare event probability estimates even in scenarios where the probability of occurrence
is less than one in a million. Furthermore, we demonstrate that the EBM approach is appli-
cable for both rare event estimation scenarios involving the prior or the posterior distribution.

Finally, Chapter 7 summarizes the conclusions drawn from this thesis and provides an
overview of potential future research directions based on the discoveries made.
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Abstract

We consider lithological tomography in which the posterior distribution of (hydro)geological
parameters of interest is inferred from geophysical data by treating the intermediate geophys-
ical properties as latent variables. In such a latent variable model, one needs to estimate the
intractable likelihood of the (hydro)geological parameters given the geophysical data. The
pseudo-marginal method is an adaptation of the Metropolis–Hastings algorithm in which
an unbiased approximation of this likelihood is obtained by Monte Carlo averaging over
samples from, in this setting, the noisy petrophysical relationship linking (hydro)geological
and geophysical properties. To make the method practical in data-rich geophysical settings
with low noise levels, we demonstrate that the Monte Carlo sampling must rely on importance
sampling distributions that well approximate the posterior distribution of petrophysical scat-
ter around the sampled (hydro)geological parameter field. To achieve a suitable acceptance
rate, we rely both on (1) the correlated pseudo-marginal method, which correlates the sam-
ples used in the proposed and current states of the Markov chain, and (2) a model proposal
scheme that preserves the prior distribution. As a synthetic test example, we infer porosity
fields using crosshole ground-penetrating radar (GPR) first-arrival travel times. We use a
(50 × 50)-dimensional pixel-based parameterization of the multi-Gaussian porosity field with
known statistical parameters, resulting in a parameter space of high dimension. We demon-
strate that the correlated pseudo-marginal method with our proposed importance sampling
and prior-preserving proposal scheme outperforms current state-of-the-art methods in both
linear and non-linear settings by greatly enhancing the posterior exploration.

2.1 Introduction

Geophysical investigations are rarely performed with the sole aim of inferring distributed
subsurface models of geophysical properties. Rather, the underlying motivation is often
to gain knowledge and constraints on other properties (e.g., permeability, clay fraction or
mineral composition) and state variables (e.g., water saturation, salinity, temperature) of
interest. Geophysical inverse theory has traditionally focused on assessing the resolution and
uncertainty of inferred geophysical properties (e.g., Parker 1994; Menke 2018; Tarantola 2005;
Aster et al. 2018), while interpretation procedures in terms of properties or state variables of
interest have received less attention. This is changing in hydrogeophysics (Binley et al. 2015),
for instance, where it is now well-established that dedicated inversion approaches are needed
when using geophysical data to gain knowledge about hydrogeological properties and state
variables (e.g., Kowalsky et al. 2005). For example, when inferring hydraulic conductivity
by observing geophysical observables sensitive to water content or salinity during a tracer
test experiment (Linde and Doetsch 2016). However, these considerations have general
validity and relevance for exploration and more fundamental geophysical studies. In a mantle
context, for instance, one example concerns the inference of thermo-chemical constraints
from seismological observations as reviewed by Zunino et al. (2016).
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Multiple inversion frameworks have been proposed that combine hydrogeological and geo-
physical data in order to build predictive hydrogeological models (e.g., Ferré et al. 2009;
Linde and Doetsch 2016). A critical aspect of such frameworks relates to how geophysical
properties (sensed by geophysical data) are linked to hydrogeological target properties and
variables of interest through petrophysical (rock physics) relationships. Brunetti and Linde
(2018) distinguish between three sources of uncertainty related to petrophysical relationships:
model uncertainty, parameter uncertainty and prediction uncertainty. While the first two
refer to uncertainty in the choice of the appropriate petrophysical model and its parameter
values, the latter is related to scatter and bias around the calibrated petrophysical model. In
hydrogeophysical inversion studies targeting hydrogeological properties or state variables of
interest, we note that the petrophysical relationship is often assumed to be perfect (determin-
istic) with known or unknown parameter values (e.g., Lochbühler et al. 2014; Kowalsky et al.
2005). However, ignoring petrophysical prediction uncertainty and its spatial correlation
patterns results in bias, too narrow uncertainty bounds and overly variable hydrogeological
parameter estimates (Brunetti and Linde 2018). Unfortunately, analytical solutions to such
inverse problems are available only when considering linear forward models and petrophys-
ical relationships under the assumption of Gaussian distributions (Tarantola 2005; Bosch
2004). Geophysical applications, however, often involve non-linear physics and non-linear
petrophysical relationships (e.g., Mavko et al. 2020).

Inversion approaches that account for petrophysical prediction uncertainty are often based
on a two-step procedure: geophysical properties are first estimated using deterministic
gradient-based inversions and then converted into parameters of interest using uncertain
petrophysical relationships (e.g., Chen et al. 2001; Mukerji et al. 2001; González et al. 2008;
Grana and Della Rossa 2010; Shahraeeni and Curtis 2011). The results of such a two-step
approach can be misleading if neglecting the spatially-varying and typically much lower
resolution of smoothness-constrained geophysical inversion models compared with the scale
at which petrophysical relationships are developed (core or borehole logging scale) (Day-
Lewis et al. 2005). Furthermore, with such an approach it is next to impossible to ensure that
the geophysical inversion accounts for the prior constraints on the (hydro)geological target
variable (Ferré et al. 2009) and physical constraints such as conservation of mass, continuity
and momentum. Moreover, for a deterministic inversion setting, Bosch (2004) showed that
with a non-linear petrophysical relation, the two-step approach is an inherent approximation.

As an alternative to the two-step approach, coupled inversions directly target hydrogeological
properties by inversion of geophysical data (e.g., Hinnell et al. 2010; Kowalsky et al. 2005).
They are often formulated within a Bayesian framework whereby one seeks to characterize
the posterior probability density function (PDF) of hydrogeological parameters θ given geo-
physical data y . Since it is often impossible to sample directly from the posterior PDF p(θ|y)
of interest, Markov chain Monte Carlo (MCMC) methods, such as the Metropolis–Hastings
method (MH; Hastings 1970; Metropolis et al. 1953), are used. Since the intermediate variable,
the geophysical property X , connecting observations and target variables is unobservable
(latent), one speaks of a latent variable model. In this study, we consider a setup where
the latent geophysical property is given by X =F (θ)+εP , with θ 7→F (θ) representing the
deterministic component of a petrophysical relationship and εP the petrophysical prediction
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error. Assuming an integrable and centered petrophysical prediction error εP , F (θ) stands
for the expected value of the latent variable X . The geophysical data is given by Y =G (X )+εO

with x 7→G (x) denoting the geophysical forward solver and εO describing the observational
noise.

For a latent variable model as the one described above, the likelihood of observing the geo-
physical data given the proposed hydrogeological parameters, p(y |θ) = ∫

p(y , x |θ)d x , is
often intractable. In the present context, this implies that the integral has an unknown or
non-existing analytical form, which makes the direct implementation of the MH and related
algorithms impossible. One way to circumvent this difficulty is to instead infer the joint
posterior PDF (θ, x) 7→ p(θ, x |y) of the hydrogeological and geophysical parameters from
which p(θ|y) is readily obtained by marginalization. Lithological tomography as introduced
by Bosch (1999) pioneered such an approach to estimate the joint posterior by combining geo-
physical data, geological prior knowledge and uncertain petrophysical relationships. Within
lithological tomography, pairs of the target and latent variables are proposed using marginal
sampling of θ and conditional sampling of X . Then, these pairs are accepted or rejected
with p(y |θ, x), used in the acceptance ratio of the MH algorithm (where p(y |θ, x) = p(y |x)
is valid for our latent variable model). In Bosch (1999), the conditional PDF p(x |θ) to sam-
ple X is given by a multivariate Gaussian distribution based on a suitable petrophysical
relationship. In practice, this is achieved by adding brute force Monte Carlo realizations of
the petrophysical prediction error εP to the output of F (θ) at each iteration of the MCMC
chain (i.e., Bosch et al. 2007). Linde et al. (2017) suggest that such an implementation is
inefficient when considering large geophysical datasets with high signal-to-noise ratios and
significant petrophysical uncertainty. The reason is that brute force Monte Carlo sampling of
the petrophysical prediction error using p(x |θ) induces high variability in the values taken by
the likelihood function p(y |θ, x), even for the same θ, which could lead to prohibitively low
acceptance rates even in the limiting case when the MCMC model proposal scale for θ goes
to zero.

Brunetti and Linde (2018) proposed an alternative approach to sample from the joint pos-
terior PDF p(θ, x |y). In their method referred to herein as full inversion, the petrophysical
prediction error εP is parameterized and treated as the other unknowns within the MH
algorithm. That is, the MH proposal mechanism draws new realizations of both the target
variable θ and the petrophysical prediction error εP , which combined also lead to a realiza-
tion of the latent variable X used to calculate the likelihood function p(y |θ, x). Brunetti and
Linde (2018) presented a convincing performance of the full inversion approach with clear
improvements in efficiency compared with the original formulation of lithological tomogra-
phy by Bosch (1999). Nonetheless, the full inversion method suffers from high dimensionality,
and the strong (posterior) correlation between εP and θ makes standard MCMC inversions
inefficient (e.g., Deligiannidis et al. 2018).

In this study, we evaluate an inversion method targeting directly the marginal posterior p(θ|y)
by approximating the intractable likelihood p(y |θ) = ∫

p(y |θ, x)p(x |θ)d x . In the pseudo-
marginal (PM) method introduced by Beaumont (2003) and studied by Andrieu and Roberts
(2009), the true likelihood is replaced with a non-negative unbiased estimator resulting in a
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MH algorithm sampling the same target distribution as when using the true likelihood. In
their work, Beaumont (2003) and Andrieu and Roberts (2009) use an unbiased likelihood esti-
mator based on Monte Carlo averaging over samples of the latent variable. In our setting with
the latent variable X =F (θ)+εP , we note that the original lithological tomography approach
of Bosch (1999) is closely related to the pseudo-marginal method. In the original lithological
tomography method targeting the joint posterior PDF p(θ, x |y), the MCMC chains store the
conditional draws of the latent variables together with the target variables, and the target
posterior PDF p(θ|y) is obtained by marginalization. The PM method applied with one draw
of the latent variable leads to equivalent results in terms of the marginal posterior PDF. In the
PM method, the draws of the latent variable are not stored but only used to estimate the like-
lihood p(y |θ). Using only one sample of the latent variable in the PM method typically leads
to impractically-low acceptance rates due to the high variability of the ratio of log-likelihood
estimators. To achieve an efficient algorithm, the standard deviation of the log-likelihood
estimator needs to be around 1.2-1.5 (Doucet et al. 2015), which is ensured by increasing
the number of samples and applying importance sampling schemes. In the context of state-
space models, the number of Monte Carlo samples used in the likelihood estimator needs to
increase linearly with the number of observations, which becomes impractical in data-rich
applications (Deligiannidis et al. 2018). To obtain low-variance log-likelihood ratio approxi-
mations with a smaller number of Monte Carlo samples, Deligiannidis et al. (2018) introduced
the correlated pseudo-marginal (CPM) method by which the draws of latent variables used in
the denominator and numerator in the likelihood ratio are correlated. Both the PM and CPM
methods are general in that they allow for non-linear and non-Gaussian assumptions, but
their implementation and applicability in data-rich high-dimensional geophysical settings
remain untested.

Inferring hundreds or thousands of parameters with a MH algorithm is challenging as the
number of iterations needed for convergence grows with the number of target parameters
(e.g., Robert et al. 2018). To ensure adequate performance in such settings, it is crucial
to equip the algorithm with a well-working proposal scheme. In the context of Gaussian
random fields with high dimension, Cotter et al. (2013) demonstrated that standard random
walk MCMC algorithms leads to strong dependence on the discretization of the target field
and highly inefficient algorithms. Their proposed solution lies in preserving the prior PDF
within the proposal scheme such that the acceptance probability of model proposals only
depends on the likelihood ratio. This type of proposal schemes was explored in geophysics
by Mosegaard and Tarantola (1995), in what is often referred to as the extended Metropo-
lis algorithm. In a high-dimensional target space, the extended Metropolis approach still
needs an efficient model proposal scheme (Ruggeri et al. 2015). Following Brunetti and
Linde (2018), we use the adaptive multi-chain algorithm DREAM(Z S) (DiffeRential Evolution
Adaptive Metropolis using an archive of past states) by Laloy and Vrugt (2012), which is widely
used in various geophysical inversion studies (e.g., Bikowski et al. 2012; Rosas-Carbajal
et al. 2014; Hunziker et al. 2017). We adapt herein the DREAM(Z S)’s formulation in order to
accommodate prior-preserving model proposals.

As an exemplary problem, we consider inference of high-dimensional multi-Gaussian poros-
ity fields using crosshole ground-penetrating radar (GPR) first-arrival travel times. We con-
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sider both a linear straight-ray solver, to enable comparisons with analytical solutions, and a
more physically-based non-linear eikonal solver. We compare the results obtained by our
prior-sampling-based proposal and importance-sampling-based implementation of the (cor-
related) pseudo-marginal method with standard model proposals and without importance
sampling. Furthermore, we compare against the original lithological tomography formula-
tion, full inversion and MCMC inversions that simply ignore the presence of petrophysical
prediction uncertainty. With these examples, we will demonstrate that our implementation
of the CPM method is outperforming the other inversion methods by greatly enhancing the
posterior exploration.

This paper is structured as follows. Section 2.2 introduces the methodology by discussing
Bayesian inference in the context of high-dimensional settings, presenting the inversion
approaches considered and the tools employed for performance assessment. Section 2.3
presents the two test examples with linear and non-linear physics. The results and wider
implications are discussed in Section 2.4, followed by conclusions in Section 2.5.

2.2 Methodology

The methodology section starts by introducing the considered latent variable model (Sec-
tion 2.2.1), followed by general considerations concerning Bayesian inference and MCMC
in high-dimensional settings (Section 2.2.2). The correlated pseudo-marginal method and
our IS procedure are introduced in Section 2.2.3 and baseline methods used for comparative
purposes are presented in Section 2.2.4. Finally, Section 2.2.5 presents the performance
assessment metrics used to evaluate the results.

2.2.1 Latent variable model

We consider a latent variable model where the unobservable variable X = (X1, X2, ..., XL) is
related to the d target parameters θ = (θ1,θ2, ...θd ) and the T measurements y = (y1, y2, ..., yT ).
We write

Y =G (X )+εO =G (F (θ)+εP )+εO , (2.1)

for G :RL →RT and F :Rd →RL with errors εO and εP . In our setting, x 7→G (x) describes the
physical forward solver with εO denoting the observational noise andθ 7→F (θ) represents the
petrophysical relationship with εP denoting the petrophysical prediction error (PPE). We as-
sume both errors to be Gaussian such that the distribution of X |θ can be represented with the
PDF p(x |θ) =ϕL(x ;F (θ),ΣP ) and the one of Y |θ, X with the PDF p(y |θ, x) =ϕT (y ;G (x),ΣY ),
with the notationϕM (·;µ,Σ) denoting the PDF of a M-variate Normal distribution with mean
µ and covariance matrix Σ.
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2.2.2 Bayesian Inference with Markov Chain Monte Carlo

In Bayes’ theorem, the posterior probability density function (PDF) p(θ|y) of the model
parameters θ given the measurements y is specified by

p(θ|y) = p(θ)p(y |θ)

p(y)
, (2.2)

with the prior PDF p(θ) of the model parameters, the likelihood function p(y |θ) and the
evidence p(y). Generally, there is no analytical form of the posterior PDF.

If the posterior PDF can be evaluated pointwise up to a normalizing constant, MCMC meth-
ods can be used to generate posterior samples. The basic idea of MCMC algorithms is to
construct a Markov chain with the posterior PDF of interest as its stationary distribution (see
e.g., Robert et al. 1999). MCMC algorithms iteratively propose new values for the states of the
Markov chain that are accepted or rejected with a prescribed probability. One foundational
MCMC algorithm is Metropolis–Hastings (MH; Metropolis et al. 1953; Hastings 1970). It
proceeds as follows at iteration j : First, using the model proposal density q(·|θ( j−1)), a new
set of states θ( j ) is proposed. Then, the acceptance probability,

αM H

(
θ( j−1),θ( j )

)
= min

{
1,

q(θ( j−1)|θ( j ))p(θ( j )|y)

q(θ( j )|θ( j−1))p(θ( j−1)|y)

}
(2.3)

= min

{
1,

q(θ( j−1)|θ( j ))p(θ( j ))p(y |θ( j ))

q(θ( j )|θ( j−1))p(θ( j−1))p(y |θ( j−1))

}
, (2.4)

is calculated and the proposed θ( j ) is accepted (if αM H (θ( j−1),θ( j )) ≥ V ) or rejected
(if αM H (θ( j−1),θ( j )) < V ) on the basis of a draw of a uniformly distributed random vari-
able V ∼Uni f ([0,1]). If the proposed θ( j ) is rejected, the old state of the chain is kept and
θ( j ) = θ( j−1).

Within the MH algorithm, we need to evaluate the likelihood function θ 7→ p(y |θ) in order
to compute the acceptance probability. In our latent variable model (see Section 2.2.1), the
likelihood is given by,

p(y |θ) =
∫

p(y |θ, x)p(x |θ)d x , (2.5)

and the integral has generally no analytical form. In Sections 2.2.3 and 2.2.4, we present three
methods to circumvent the difficulties of an intractable likelihood function.
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Model parameterization and proposal scheme

We consider test examples targeting a Gaussian random field GRF (µθ(·),Cθ(·, ·)) with known
mean µθ(·) and covariance function Cθ(·, ·). We parameterize the target field θ using a regular
2D grid of size D × D (such that d = D2 for the notation introduced in Section 2.2.1) with
positions B = {b1,b2, ...,bD2 }:

θ ∼ND2 (µθ,Σθ), with µθ = (µθ(gi ))1≤i≤D2 and Σθ = (Cθ(gi , g j ))1≤i , j≤D2 , (2.6)

with ND2 (µ,Σ) denoting the D2-variate normal distribution with mean µ and covariance
matrix Σ. We use a high-dimensional pixel-based parameterization of the target field,
θ = µθ + Σθ1/2 Z , where Z is a D2-dimensional random vector consisting of i .i .d . standard-
normal distributed variables. To infer the target field, we need to estimate the Z -variables.
Similar to Ruggeri et al. (2015), we do not apply any further dimensionality reduction of
the parameter space beyond the discretization (in contrast with, for instance, Brunetti and
Linde (2018) who used the dimensionality reduction approach of Laloy et al. (2015)). This is
done to avoid distorted posterior PDF estimates that may arise in response to a reduction
of the parameter space. Furthermore, we seek to evaluate performance in a challenging
high-dimensional setting with thousands of unknowns.

When inferring model parameters with the MH algorithm, it is crucial to choose the model
proposal scale well. If the model proposal steps are too large, the acceptance rate is low and
the Markov chain needs many iterations until convergence. If the step-width is too small,
the exploration of the parameter space is very slow and the Markov chain will similarly need
many iterations until convergence (see Section 2.2.5 for the assessment of convergence).
To deal with this challenge of tuning the proposal scale of each model parameter, we use
the adaptive multi-chain algorithm DREAM(Z S) (DiffeRential Evolution Adaptive Metropolis
using an archive of past states) by Laloy and Vrugt (2012) for which details can be found in
Appendix 2.6.1.

MCMC algorithms generally suffer from the curse of dimensionality as the number of itera-
tions needed for convergence increases with the number of target parameters (e.g., Robert
et al. 2018). In the context of Gaussian random fields, Cotter et al. (2013) show that MCMC
methods based on standard random walk proposals lead to strong dependencies on the
discretization of the target field and to inefficient algorithms when employed in high di-
mensions. For a given proposal scale, refining the grid representing the random field leads
to a decreasing acceptance rate with zero as the limiting value for an infinite number of
unknowns. To make MCMC algorithms robust to discretization and maintain a reasonable
stepsize when inferring thousands of unknowns, they propose model proposal schemes
such as the pCN (preconditioned Crank-Nicholson) that preserve the prior PDF. For a target
variable Z with a Standard-Normal prior, the proposal of a standard random walk method
is given by Z ( j ) = Z ( j−1) +γζ, with γ being the step size and ζ ∼ N (0,1), respectively. In-
stead, the pCN proposal scheme uses Z ( j ) =√

1−γ2Z ( j−1) +γζ, ensuring that Z ( j ) remains
standard-normally distributed. Cotter et al. (2013) show that proposal schemes preserving
the prior PDF lead to (1) algorithms that mix more rapidly and (2) the convergence being
insensitive to the discretization of the target field.
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We note that the idea of defining a model proposal scheme preserving the prior distribution
was proposed more than 25 years ago in geophysics by Mosegaard and Tarantola (1995). This
approach is often referred to as the extended Metropolis algorithm and has mainly been
explored in the context of inversion with complex geostatistical prior models (a detailed
description of the method can be found in Hansen et al. (2012)). Defining a proposal density
q(·|θ( j−1)) such that the MCMC algorithm samples the prior PDF in the absence of data

implies that q(θ( j−1)|θ( j ))

q(θ( j )|θ( j−1))
= p(θ( j−1))

p(θ( j ))
holds true, with the implication that the MH acceptance-

ratio of Equation (2.3) is reduced to the likelihood ratio,

αM H

(
θ( j−1),θ( j )

)
= min

{
1,

p
(

y |θ( j ))
p

(
y |θ( j−1))

}
. (2.7)

The extended Metropolis approach still needs an efficient model proposal scheme (Ruggeri
et al. 2015), which is why we use DREAM(Z S) in this work. In the case of a Gaussian-distributed
prior, the standard DREAM(Z S) proposal scheme does not generate samples that preserve the
prior distribution. In order to adapt extended Metropolis to DREAM(Z S), we rely on a transfor-
mation of the variables to the Uniform space (details in Appendix 2.6.1). This transformation
makes it possible to create a proposal mechanism which unites (1) the efficiency of the
DREAM(Z S) proposals with (2) the robustness of the prior-preserving proposals. In what fol-
lows, our proposal scheme using the uniform transform will be referred to as prior-sampling
DREAM(Z S) proposals, while the the standard proposal scheme of DREAM(Z S) will be referred
to as standard DREAM(Z S) proposals. We stress that both prior-sampling DREAM(Z S) and
standard DREAM(Z S) target the same posterior PDF, but the former is expected to be more
efficient.

2.2.3 (Correlated) pseudo-marginal method

Pseudo-marginal method

Beaumont (2003) shows that a MH algorithm using a non-negative unbiased estimator of
the likelihood samples the same target distribution as when using the true likelihood. He
exploits this property by estimating the likelihood in Equation (2.5) on the basis of Monte
Carlo averaging over samples of the latent variable X . Andrieu and Roberts (2009) adopt this
approach in their pseudo-marginal (PM) method and provide a theoretical analysis of the
scheme. When one brute force Monte Carlo sample of the latent variable is drawn in each
MCMC iteration without importance sampling (c.f., the original lithological tomography
by Bosch (1999); see Section 2.2.4), the algorithm is likely to suffer from a low acceptance
rate due to the high variability of the log-likelihood estimator. This is due to the fact that a
likelihood estimator given by p(y |θ, X ) takes very different values depending on the draw of
the latent variable X , even for the same θ. This occurs as the scatter (εP ) has a strong effect
on the data response, and hence, the likelihood. To improve the efficiency, Beaumont (2003)
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and Andrieu and Roberts (2009) use many samples drawn by importance sampling (IS; e.g.
Owen and Zhou 2000). Consequently, they propose the following unbiased estimator of the
likelihood p(y |θ),

p̂N (y |θ) = 1

N

N∑
n=1

w(y |θ, X n), with w(y |θ, X n) = p(y |θ, X n)p(X n |θ)

m(X n |θ)
, (2.8)

where X n
i .i .d∼ m(·|θ) for n = 1,2, ..., N with m(·|θ) being the importance density function.

More details about the importance sampling procedure will follow below.

Correlated pseudo-marginal method

For the PM method to be efficient, the number of samples N used in the likelihood estima-
tor (Eq. 2.8) should be selected such that the variance of the log-likelihood ratio estimator is
low enough (Doucet et al. 2015). If it is too high, the algorithm will suffer from an impracti-
cally low acceptance rate. In the state-space model context, this implies that N needs to scale
linearly with T leading to a computational cost of order T 2 at every MCMC iteration, which
can be prohibitively expensive for large T (Deligiannidis et al. 2018). To reduce the compu-
tational cost, Deligiannidis et al. (2018) introduced the correlated pseudo-marginal (CPM)
method by which the draws of latent variables used in the denominator and numerator of
the likelihood ratio estimators are correlated. The underlying idea is that the variance of a
ratio of estimators is lower if they are positively correlated (Koop 1972). Assuming that the
latent variable X is standard-normal distributed, the CPM method proposes (in iteration j ) a
realization of the n-th latent variable draw by means of pre-conditioned Crank-Nicholson
proposals,

X ( j )
n = ρX ( j−1)

n +
√

1−ρ2ϵ, with ρ ∈ (0,1) and ϵ= (ϵ1,ϵ2, ...,ϵL),ϵi
i .i .d .∼ N (0,1). (2.9)

The assumption that the latent variable has a standard-normal distribution hardly limits
the general applicability of the CPM method, since there exist transformations from numer-
ous distributions that will allow proposals to act on Gaussian distributions (e.g. Chen et al.

2018). We stress that if the proposed θ( j ) with X ( j )
n is rejected by the CPM algorithm, we keep

X ( j )
n = X ( j−1)

n as for θ( j ) = θ( j−1).

Compared to standard MCMC algorithms, the CPM method requires two additional parame-
ters: the latent variable sample size N and the correlation parameter ρ. To achieve optimal
performance, the parameters should be chosen such that the variance of the log-likelihood
ratio estimator for a fixed target variable θ,

R = log
(
p̂( j )

N (y |θ)
)
− log

(
p̂( j−1)

N (y |θ)
)

, (2.10)

takes values between 1.0 and 2.0 in regions with high probability mass (Deligiannidis et al.

2018). Here, p̂( j )
N (y |θ) and p̂( j−1)

N (y |θ) refer to the likelihood estimators (Eq. 2.8) obtained with
the accepted latent variable of iteration j −1 and the proposed (and not necessarily accepted)
latent variable of iteration j , that is, the likelihood estimators used in the acceptance ratio
of the MH algorithm. In order to choose the parameter values, we first fix the number of
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samples N at a value that is smaller than the number of available parallel processors. Then,
we evaluate different ρ and estimate corresponding values of Var(R) for a fixed θ in a region
with high posterior probability mass (e.g., chosen based on initial MCMC runs).

Importance sampling procedure

For high-dimensional problems with large data sets exhibiting high signal-to-noise ratios,
it is necessary to use importance sampling when drawing samples of latent variables to
be used within the likelihood-estimator (Eq. 2.8). This is a consequence of the integrand
p(y |θ, x) in Equation (2.5) having a peak in a region of X having small probability under
p(x |θ). Importance sampling proceeds by sampling from a so-called importance distribution
given by the PDF x 7→ m(x |θ) that preferentially generates samples with high p(y |θ, x)p(x |θ).
Furthermore, the support of the importance distribution must include all values x , for which
p(y |θ, x)p(x |θ) > 0 (Owen and Zhou 2000). It holds,∫

p(y |θ, x)p(x |θ)d x =
∫

p(y |θ, x)p(x |θ)

m(x |θ)
m(x |θ)d x , (2.11)

leading to the unbiased importance sampling estimate of the likelihood given in Equa-
tion (2.8). To ensure minimal variance of the estimator, we seek x 7→ m(x |θ) to be nearly
proportional to x 7→ p(y |θ, x)p(x |θ) as recalled in Owen and Zhou (2000) referring to the
results of Kahn and Marshall (1953). Since p(x |θ, y) ∝ p(y |θ, x)p(x |θ), it is sensible to base
the importance density on x 7→ p(x |θ, y).

Within a latent variable model with a non-linear physical forward solver (Section 2.2.1), we
can not derive the exact expression for p(x |θ, y). Here, we derive local approximations of this
posterior by relying on linearization. To do so, we use a linearization of the map x 7→G (x)
around x lin =F (θlin)+εP lin based on a first-order expansion,

G (x) =G (x lin +x −x lin) ≈G (x lin)+ J x lin (x −x lin), (2.12)

with J x lin being the Jacobian matrix of the forward solver corresponding to x lin. Ideally,
x lin should be given by a realization of the latent variable similar to the one the algorithm
is currently exploring. By approximating p(y |θ, x) with p̃(y |θ, x) =ϕT (y ;G (x lin)+ J x lin(x −
x lin),ΣY ) and, applying p(x |θ) =ϕL(x ;F (θ),ΣP ) and the relationships between marginal and
conditional Gaussians out of Bishop and Nasrabadi (2006) given in Appendix 2.6.2, we get,

p̃(x |θ, y) =ϕL(x ;µI S ,ΣI S ), with (2.13)

µI S =ΣI S
(

J T
x lin
ΣY

−1 (
y − (G (x lin)− J x lin x lin)

)+ΣP
−1F (θ)

)
,

ΣI S = (ΣP
−1 + J T

x lin
ΣY

−1 J x lin )−1,

for an approximation of p(x |θ, y). To incorporate importance sampling within the CPM
method, we need to correlate the draws of latent variables. To achieve this, we rely on the
fact that a realization of the latent variable X can be generated with µI S +ΣI S

1/2ZP , where
ZP is standard Gaussian distributed in RL. Using this representation, we can correlate the
(standard-normal distributed) ZP -variables using Equation (2.9).
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2.2.4 Baseline inversion methods

We present now the inversion approaches used for comparison with the CPM method. These
include a method ignoring the petrophysical prediction errors and two approaches (original
formulation of lithological tomography without importance sampling and full inversion)
accounting for the PPEs by inferring the joint posterior PDF p(θ, x |y) of the target and latent
variables. An overview of all inversion methods (including CPM) is given in Table 2.1.

Table 2.1: Overview of the inversion methods applied on the latent variable model introduced
in Section 2.2.1; a box around a letter indicates that this parameter is saved as a target variable
of the MH algorithm. For the proposal scheme we use both standard and prior-sampling
DREAM(Z S) proposals for all methods.

Method
Proposal

scheme
Latent variable(s) Likelihood p̂(y |θ)

No PPE:

Ignore PPE
θ( j ) X ( j ) =F (θ( j )) ϕT (y ;G (X ( j )),ΣY )

Full inversion:

Infer PPE
θ( j ),εP

( j ) X ( j ) =F (θ( j ))+εP
( j ) ϕT (y ;G (X ( j )),ΣY )

LithTom:

Infer PPE
θ( j ) X ( j ) ∼ϕL(·;F (θ( j )),ΣP ) ϕT (y ;G (X ( j )),ΣY )

LithTom IS:

Infer PPE
θ( j ) X ( j ) ∼ϕL(·;µI S ,ΣI S )

ϕT (y ;G (X ( j )),ΣY )ϕL (X ( j );F (θ( j )),ΣP )
ϕL (X ( j );µI S ,ΣI S )

(C)PM no IS:

Sample out PPE
θ( j )

X ( j ) = (X ( j )
1 , ..., X ( j )

N )

X ( j )
n

i .i .d∼ ϕL(·;F (θ( j )),ΣP )

CPM: Correlation X ( j−1)
n

1
N

N∑
n=1

ϕT (y ;G (X ( j )
n ),ΣY )

(C)PM IS:

Sample out PPE
θ( j )

X ( j ) = (X ( j )
1 , ..., X ( j )

N )

X ( j )
n

i .i .d∼ ϕL(·;µI S ,ΣI S )

CPM: Correlation X ( j−1)
n

1
N

N∑
n=1

ϕT (y ;G (X ( j )
n ),ΣY )ϕL (X ( j )

n ;F (θ( j )),ΣP )

ϕL (X ( j )
n ;µI S ,ΣI S )
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Ignore petrophysical prediction errors

This inversion method (no PPE) ignores the presence of petrophysical prediction errors in
the MH algorithm. For the latent variable model introduced in Section 2.2.1, this results in an
approximation of the likelihood function with the Gaussian PDF p̂(y |θ) =ϕT (y ;G (F (θ)),ΣY ),
where the forward response G (F (θ)) is simulated without accounting for PPEs. The method
is included in the comparison as it is commonly used in practice as discussed by Brunetti
and Linde (2018).

Lithological Tomography

One way to consider PPEs while circumventing the difficulty of an intractable likelihood
function is to infer the joint posterior PDF (θ, x) 7→ p(θ, x |y) of the hydrogeological and
geophysical parameters. Lithological tomography (Bosch 1999) pursues this strategy and
uses a factorization of the joint posterior PDF as p(θ, x |y) ∝ p(θ)p(x |θ)p(y |θ, x), where
p(y |θ, x) = p(y |x) is valid for our setting. To sample from this posterior PDF, Bosch (1999)
proceeds as follows: First, realizations from the joint prior of θ and X are created by marginal
sampling of θ and conditional sampling of X . Then, the pairs of model proposals are ac-
cepted or rejected with p(y |x), used in the acceptance ratio of the MH algorithm. In practice,
this means that brute force Monte Carlo realizations (no importance sampling) of the petro-
physical prediction error εP are added to the output of the petrophysical relationship F (θ).
For our latent variable model, this results in an approximation of the likelihood function with
p̂(y |θ) =ϕT (y ;G (x),ΣY ), where the latent variable X =F (θ)+εP is obtained with a draw of
εP from the multivariate Gaussian with PDF ϕL(·;0,ΣP ).

Full Inversion

The full inversion approach infers the joint posterior PDF by treating the latent variables
analogously to the other unknowns. In the context of our latent variable model (Section 2.2.1),
this means that in iteration j of the MH, not only a new θ( j ) but also a new εP

( j ) is proposed
by the algorithm’s proposal scheme. Then the likelihood function p(y |θ, x) =ϕT (y ;G (x),ΣY )
is calculated using X ( j ) = F (θ( j ))+εP

( j ). Brunetti and Linde (2018) applied full inversion
to infer porosity fields by inversion of crosshole GPR first-arrival travel times, that is, to a
setting similar to ours. For the parametrization of the porosity field of interest, they used
a spectral representation combined with the dimensionality reduction approach of Laloy
et al. (2015). Brunetti and Linde (2018) achieved convincing results and improvements
compared to standard lithological tomography without importance sampling. Nevertheless,
full inversion is expected to suffer from high dimensionality and strong correlation among
the latent and target variables as the two sets of variables are treated as being independent
within the proposal scheme (e.g., Deligiannidis et al. 2018).

37



2.2.5 Performance assessment

To assess the performance of the different inversion approaches, we primarily focus on the
exploration of the posterior PDF. The reason for this will become clear in the results section
(Section 2.3). To declare convergence, we use the R̂-statistic of Gelman and Rubin (1992) that
compares the within-chain variance with the between-chain variance for the second half of
the MCMC chains. The general convention is that convergence is declared once this statistic
is smaller or equal to 1.2 for all model parameters. Since we deal with a high-dimensional
parameter space with thousands of unknowns, we relax this condition slightly and declare
convergence if 99 % of the parameters satisfy this criterion. When an algorithm is considered
convergent, we compare the resulting posterior samples with those of the other approaches.

For the test case with linear physics in Section 2.3.2, we compare the results with the analytical
solution of the posterior PDF p(θ|y). For these comparisons, we use histograms and the
Kullback–Leibler divergence (KL - divergence; Kullback and Leibler 1951). The KL - divergence
between two PDFs p1(·) and p2(·) is defined as,

KL(p1||p2) =
∫

p1(x) log

(
p1(x)

p2(x)

)
d x. (2.14)

To obtain the PDF of the estimated posterior, we can use the MCMC samples to either (1)
make a kernel density estimate or to (2) estimate the mean and variance for a Gaussian
approximation (Krüger et al. 2021). Here we use the second option since the posterior is
Gaussian. If the PDFs p1(·) and p2(·) are Gaussians with p1 =N (µ1,σ2

1) and p2 =N (µ2,σ2
2),

the expression of the KL-divergence reduces to,

KL(p1||p2) = log

(
σ2

σ1

)
+ σ2

1 + (µ1 −µ2)2

2σ2
2

− 1

2
. (2.15)

A KL-divergence of zero indicates that the two PDFs are equal and it increases as the distribu-
tions diverge from each other.

For the test example with non-linear physics in Section 2.3.3, there is no analytical solution
to compare with. Hence, we compare the estimated posterior distribution with a single
value (the known true porosity at each pixel). We achieve this by applying so-called scoring
rules (Gneiting and Raftery 2007) assessing the accuracy of a predictive PDF θ 7→ p̂(θ) with
respect to a true value θ. Scoring rules are functions that assign a numerical score for each
prediction-observation pair (p̂,θ), with a smaller score indicating a better prediction. They
assess both the statistical consistency between predictions and observations (calibration) and
the sharpness of the prediction. We use the logarithmic score (logS; Good 1952) defined by
logS(p̂,θ) =− log p̂(θ) that is related to the Kullback–Leibler divergence (Gneiting and Raftery
2007). As for the linear case, we use the MCMC samples to obtain a Gaussian approximation
of the estimated posterior PDF. The logarithmic score favours predictive PDFs under which
the true value has high probability. We supplement this measure with two simpler ones: the
number of pixels in which the true porosity value was in the range of the posterior samples
and the standard deviation of the estimated posterior PDF.

38



We also consider the acceptance rates (AR) and the integrated autocorrelation time (IACT).
We aim for an acceptance rate of 15% - 30% as proposed by Vrugt (2016). The IACT of

the chain {θ( j ); j = 1,2, ...} is defined as 1+2
∞∑

l=0
Corr(θ(1),θ(1+l )). In practice, the estimated

autocorrelation for large values of l is noisy such that we need to truncate the sum. Following
Gelman et al. (2013), we truncate the sum when two successive autocorrelation estimates are
negative. We renounce from discussing the CPU time as it depends strongly on the chosen
forward model and discretization as well as on other parameters pertaining to the computing
equipment.

2.3 Results

We consider the problem of inferring the porosity distribution using crosshole GPR first-
arrival travel times. We first address a test case with linear physics (straight-rays) to allow for
comparison with analytical solutions and then one with non-linear physics (eikonal solver)
to address a more challenging and physically-based setup. Our examples are synthetic and
the water-saturated porosity field is described by a multi-Gaussian random field.

2.3.1 Data and inversion setting

Synthetic data generation

Our considered subsurface domain is 7.2 m × 7.2 m and we use 25 equidistant GPR transmit-
ters located on the left side and 25 receivers on the right side of the model domain, resulting
in 625 first-arrival travel times. The transmitter-receiver layout is depicted in Figure 2.1c.
As introduced in Section 2.2.2, we assume the porosity field to be a Gaussian random field
GRF (µθ(·),Cθ(·, ·)). We use µθ(·) = 0.39 and an exponential covariance function Cθ(·, ·). For
the latter, we use a sill of 2e−4 and geometric anisotropy where the main, horizontal direc-
tion has an integral scale of 4.5 m and the integral scale ratio between the horizontal and
vertical direction is 0.13. We use a (50 × 50)-dimensional pixel-based parameterization of
the porosity field; the true synthetically generated field is shown in Figure 2.1a. Note that
porosity is a positive quantity bounded between zero and one while a Gaussian prior distri-
bution has a full support. The Gaussian prior is used here to ensure an analytical solution
in the linear physics case. Given the presented mean and the sill, it is extremely unlikely
that a porosity value outside the physical boundaries is generated. In other settings, one
could use a transform of the porosity (e.g., as in Bosch 2004) or choose a bounded distribution.
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To predict the dielectric constant κ, we use the complex refractive index model (CRIM; Roth
et al. 1990),

p
κ=p

κs + (
p
κw −p

κs)θ, (2.16)

where κw and κs are the dielectric constants of water [81] and mineral grains [5], respectively.
The resulting slowness field (which in our case is the latent variable X ) depicted in Figure 2.1c
is given by,

x =
√

c−2κ+εP = 1

c

(p
κs + (

p
κw −p

κs)θ
)+εP , (2.17)

where c is the speed of light in vacuum [0.3 m/ns]. This specifies the petrophysical relation-
ship to be linear with θ 7→F (θ) = 1

c

(p
κs + (

p
κw −p

κs)θ
)
. We add a petrophysical prediction

error (PPE) εP that is a realization of a centred GRF over a regular 2D grid of size 50 × 50.
We are assuming that the PPE field (depicted in Figure 2.1b) has an exponential covariance
function CP (·, ·) with a sill of 2.1e−2 and the same correlation structure as the porosity field.
The dependency of the slowness on the value of the porosity and the PPE is indicated in
Figure 2.1d. Finally, the resulting 625 GPR first - arrival travel times are calculated with (i) a
linear (straight-ray) forward solver referred to as Gs and (ii) a non-linear (eikonal) forward
solver referred to as Ge (the time2D solver of Podvin and Lecomte (1991)), such that,

y =G (x)+εO , (2.18)

with i .i .d . centered normal observational noise εO with standard deviation of 1 ns. The two
sets of travel times are depicted in Figure 2.1e.

Inversion settings and prior assumptions

All considered inversion methods (Sections 2.2.3 and 2.2.4) are implemented with prior-
sampling and standard DREAM(Z S) proposals using the same parameter settings of the
DREAM(Z S) algorithm with four MCMC chains running in parallel. For the prior on porosity,
we use the Gaussian PDF p(θ) = ϕ2500(θ;µθ,Σθ) assuming the mean µθ and covariance
structure Σθ to be known (the same values as for the data generation). Using a pixel-based
parameterization of the field, we infer the 2500-dimensional vector Z defining the porosity by
θ =µθ+Σθ1/2Z , with Z having a multivariate standard-normal prior PDF. The full inversion
has to estimate another 2500 ZP -variables for the PPE field leading to a total of 5000 inferred
parameters. For the PPE εP we also use a Gaussian prior PDF p(εP ) =ϕ2500(θ;0,ΣP ) with
known covariance structure ΣP , leading to a Gaussian prior PDF for the slowness field
(for fixed porosity) given by p(x |θ) = ϕ2500(x ;F (θ),ΣP ). For the likelihood function, we
assume that the 625-dimensional vector describing the observational noise εO has a Gaussian
distribution with zero mean and diagonal covariance matrix ΣY ; the standard deviation is
assumed to be 1 ns as in the data generation process.
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(a) (b) (c)

(d) (e)

Figure 2.1: (a) Porosity field θ, (b) PPE field εP , (c) slowness field x with transmitter-receiver
layout, (d) dependency of slowness on porosity obtained without (line) and with (scatter)
PPE and (e) noise-contaminated first-arrival travel times y for the linear and the non-linear
forward solver corresponding to the true synthetic model.

2.3.2 Linear physics

To enable comparisons of the inferred posterior PDFs with the analytical solution for p(θ|y),
we first consider the case of linear physics. Then,

y =Gs(x)+εO = Js x +εO , (2.19)

with Js being the Jacobian (i.e., forward operator) of the linear forward solver. The analytical
posterior PDF can be derived as detailed in Appendix 2.6.2. Figure 2.2a shows the posterior
mean and Figures 2.2b - 2.2d depict three draws from the posterior distribution.

When employing the PM and CPM method in this setting of large datasets with low noise, it is
crucial to use a well-chosen importance sampling for the latent variable. As introduced in
Section 2.2.3, it is sensible to use x 7→ p(x |θ, y) as a basis for the importance density. As long
as we are in the linear Gaussian case, we can derive the analytical expression for this posterior
(Appendix 2.6.2), resulting in a zero-variance importance sampling density (Owen and Zhou
2000). Since it then does not make sense to use multiple importance density samples (the
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(a) (b) (c) (d)

Figure 2.2: (a) Analytical posterior mean of p(θ|y) for the linear test example and (b) - (d)
three realizations of the analytical posterior distribution.

importance weights are constant), we combine in this linear case importance sampling with
PM using N=1 (original lithological tomography algorithm enhanced with importance sam-
pling that we will hereafter refer to as LithTom IS). We note that using the exact formula for
the importance sampling corresponds to having access to the exact likelihood p(θ|y). The
use of larger N is considered in Section 2.3.3 for the case of non-linear physics. This linear
setting for which analytical solutions are available serves mainly (1) to demonstrate the ne-
cessity of a well-working importance sampling distribution, (2) to investigate the exploration
capabilities of MCMC-based inversion approaches that estimate the intractable likelihood
using Monte Carlo samples (lithological tomography, PM and CPM methods) and (3) to com-
pare the performances of the prior-sampling and standard DREAM(Z S) proposal mechanisms.

Figure 2.3 presents the estimated posterior means of the porosity field obtained when ap-
plying the no PPE (Fig. 2.3a), the full inversion (Fig. 2.3b) and the LithTom IS (Fig. 2.3c) with
standard DREAM(Z S) proposals, as well as for LithTom IS with prior-sampling DREAM(Z S) pro-
posals (Fig. 2.3d). These are the cases for which we reached convergence of the chains. The
porosity field obtained with the inversion ignoring PPEs has, as expected (Brunetti and Linde
2018), a higher variance. Visually, all other estimates are very similar in terms of structure
and magnitude with respect to the analytical posterior mean in Figure 2.2a. The estimated
posterior mean of LithTom IS with the prior-sampling DREAM(Z S) proposals has a slightly
lower variance than for standard DREAM(Z S) proposals. The ARs (Table 2.2) for standard
DREAM(Z S) proposals are the highest for LithTom IS, while the method ignoring PPEs and full
inversion have lower ARs. Classical lithological tomography without importance sampling
leads to an AR of less than 0.1 % such that, in practice, it unfeasible to reach convergence.
Applying the CPM method without IS for N =50 and ρ=0.95 also results in an only slightly
larger AR (roughly 0.2 %), thereby, highlighting the need for importance sampling for the
considered problem. Since less than 5 % of the parameters converged after 200’000 iterations,
we renounce from showing further results for the CPM and PM method without IS. The
method ignoring PPEs and the full inversion using prior-sampling DREAM(Z S) proposals
suffer from very low ARs and did not reach convergence after 200’000 iterations. Table 2.2
shows the number of iterations needed for the 99th percentile of the parameters’ R̂-statics
to be below 1.2. It also shows the IACTs of the cell in the very middle of the porosity field
for all inversion approaches reaching convergence within 200’000 MCMC iterations. We
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observe that the iterations needed for convergence and the IACT of the LithTom IS method
with prior-sampling DREAM(Z S) proposals are the lowest.

(a) (b) (c) (d)

(e) (f) (g)

Figure 2.3: Estimated posterior means of the porosity field θ obtained for the linear test
example with standard DREAM(Z S) proposals and (a) the algorithm ignoring PPEs, (b) the
full inversion, (c) the LithTom IS method and with prior-sampling DREAM(Z S) proposals and
(d) the LithTom IS method. (e) Corresponding log-likelihood values, black lines represent
the values of p(y |θ, x) and p(y |θ) for the true porosity field θ (and the true X in the former).
(f) Logarithmically transformed prior probabilities for the posterior samples obtained with
prior-sampling DREAM(Z S) proposals and (g) standard DREAM(Z S) proposals; the black lines
depict the prior probability of the true porosity field.

Figure 2.3e shows the evolving log-likelihood values. When ignoring PPEs or perform-
ing the full inversion, the chains converge to much higher log-likelihoods than for the
LithTom IS method. This is expected as they rely on the likelihood p(y |θ, x) (where X =
F (θ)+εP , with εP = 0 for the algorithm ignoring PPEs), while LithTom IS estimates p(y |θ) =∫

p(y |θ, x)p(x |θ)d x . This example highlights that LithTom IS broadens the likelihood func-
tion. Figures 2.3f and 2.3g show the prior probabilities (logarithmically transformed) for
the posterior samples obtained with the three different inversion approaches using the two
alternative proposal schemes. We observe that the LithTom IS method using prior-sampling
DREAM(Z S) proposals (Fig. 2.3f) is the only approach for which the prior probability of the
true porosity field is sampled. All other methods and proposal scheme combinations sample
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porosity fields with higher prior probabilities than the true field (black solid line). Practically
speaking, this implies for these cases that none of the posterior samples are close to the true
model. Furthermore, the corresponding prior probabilities show a trend of slowly decreasing
values raising doubts about the ergodicity of the MCMC chains.

To compare the posterior PDFs with the analytical solution, we consider first histograms for
an exemplary position in the porosity field and the KL-divergences of the whole field. We only
show the results of the method and proposal-scheme combinations that converged within
the considered 200’000 iterations. The histograms are depicted in Figure 2.4 with samples
from the analytical posterior PDF (light grey) and samples from the respective inversion
method (blue) for the pixel in the very middle of the model domain. The corresponding
KL-divergences for all pixels are shown in Figure 2.5. The histogram and the KL-divergences
of the method ignoring PPEs (with standard DREAM(Z S); Figures 2.4a and 2.5a) indicate that
the approach suffers from biased estimates and an underestimation of the posterior variance.
The posterior samples obtained with the full inversion method (with standard DREAM(Z S)

proposals; Figures 2.4b and 2.5b) better represent the analytical posterior PDF, but there is
still a significant underestimation of the posterior variance. The histogram obtained with the
LithTom IS approach using standard DREAM(Z S) proposals (Figure 2.4c) is very similar to the
one of the analytical posterior. The corresponding six-fold decreases of the KL-divergence
(Figure 2.5c) compared with full inversion confirm the significant improvements of the explo-
ration capabilities of this approach. An even better representation of the analytical posterior
was obtained with the LithTom IS approach when using prior-sampling DREAM(Z S) propos-
als. This is indicated by the histogram in Figure 2.4d and by a further two-fold decrease of the
KL-divergence in Figure 2.5d. An overview of the mean KL-divergences is given in Table 2.2.

(a) (b) (c) (d)

Figure 2.4: Histograms comparing samples from the analytical posterior PDF p(θ|y) (light
grey) for the linear test example and samples from the respective inversion method (blue), the
solid line depicts the true value of the porosity in the very middle of the model domain and
the dashed line indicates the analytical posterior mean (a) no PPE and standard DREAM(Z S)

proposals, (b) full inversion and standard DREAM(Z S) proposals, (c) LithTom IS and standard
DREAM(Z S) proposals and (d) LithTom IS and prior-sampling DREAM(Z S) proposals.
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(a) (b) (c) (d)

Figure 2.5: KL-divergences with respect to the analytical posterior PDF p(θ|y) for the linear
test example (a) no PPE and standard DREAM(Z S) proposals, (b) full inversion and standard
DREAM(Z S) proposals, (c) LithTom IS and standard DREAM(Z S) proposals and (d) LithTom IS
and prior-sampling DREAM(Z S) proposals.

This linear example has been used to show that importance sampling and prior-preserving
proposal schemes are essential to obtain meaningful results in our considered high-dimensional
setting. For this example, one can get accurate results using LithTom IS alone. The next
section dealing with the non-linear case will serve to demonstrate the benefits of the CPM
method in non-linear settings.

2.3.3 Non-linear physics

We now consider a non-linear test case in which the 625 arrival times are generated with the
eikonal 2D traveltime solver time2D of Podvin and Lecomte (1991) such that,

y =Ge (x)+εO . (2.20)

Given the non-linear physics, the likelihood function p(y |θ) is intractable and there is no ana-
lytical expression for the posterior PDF p(θ|y) to compare with. The same applies for the PDF
p(x |y ,θ) that we previously used for the importance sampling of the latent variable X . Hence,
as importance sampling distribution we rely on the approximation of the PDF p(x |y ,θ) in-
troduced in Section 2.2.3. For x lin =F (θlin)+εP lin = 1

c

(p
κs + (

p
κw −p

κs)θlin
)+εP lin, we

use the last state of the porosity field for θlin and the previous importance sampling mean
µI S for εP lin. To decrease computational resources, we only update the linearization every
100 MCMC iterations. Since the expression is approximate, we further inflate the importance
sampling covariance matrix ΣI S by multiplying ΣY with a factor. After initial testing, we
found that 1.2 yielded the best performance.
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Table 2.2: Overview of the results obtained for the linear test example with the different
inversion approaches and proposal mechanisms: The acceptance rates (AR), convergence
(Conv) showing the number of iterations needed for the 99th percentile of the parameters’
R̂-statics to be below 1.2 (or the percentage of parameters with a R̂-statistics below 1.2 if
the the inversion did not converge), the mean KL-divergence (KL-div) and the integrated
autocorrelation time (IACT) for the cell in the very middle of the porosity field θ.

Method Proposal Parameter AR Conv KL-div IACT

No PPE Standard - 10 ↗ 20 % 104’000 1.957 3’850

LithTom Standard N = 1,ρ = 0 < 0.1 % - , 0 % - -

CPM no IS Standard N = 10,ρ = 0.95 0.1 % - , 3 % - -

Standard N = 50,ρ = 0.95 0.2 % - , 4 %

Full inversion Standard - 10 ↗ 20 % 150’000 0.354 6’900

LithTom IS Standard N = 1,ρ = 0 20 ↗ 30 % 78’000 0.063 2’750

no PPE Prior-sampling - 1 - 2 % - , 35 % - -

Full inversion Prior-sampling - 1 - 2 % - , 14 % - -

LithTom IS Prior-sampling N = 1,ρ = 0 13 % 76’000 0.003 1’700

Figure 2.6 depicts the dependence of the variance of the log-likelihood ratio estimator R
(Eq. 2.10) on the correlation parameter ρ for N = 1, N = 10 and N = 50 samples of the latent
variable X (with θ being fixed at a region with high posterior probability mass). Figure 2.6a
depicts estimates when drawing the realizations of the latent variable proportionally to its
prior distribution p(x |θ) and Figure 2.6b for the case where the latent variable is sampled with
importance sampling. The two plots highlight three fundamental aspects of the CPM method
in our geophysical setting. First, it is crucial to use a well chosen importance sampling for the
latent variable draws, since for a correlation of, say, ρ = 0, the variance of the log likelihood
ratio estimator can be reduced from values between 10′000 and 1′000′000 (using sampling
from prior) to values between 3 and 31 (using importance sampling). Second, increasing the
number of draws of latent variables (N ) decreases the variance of the log-likelihood ratio
estimator further and, third, this is also achieved by increasing the amount of correlation (ρ)
used for two subsequent draws of latent variables. The variance for ρ = 1 is equal to zero for
all parameter settings (as we use the same values for X ( j−1) and X ( j )). Without importance
sampling, we could still obtain a variance of the log-likelihood ratio estimator between 1 and
2 as recommended by Deligiannidis et al. (2018), but with the need of a very high N or a ρ
very close to 1. In practice, this would either result in excessively high computational costs or
slow mixing in the draws of the latent variables.
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Due to the high variances displayed in Figure 2.6a and since the pseudo-marginal approaches
without importance sampling have already proven to be highly inefficient in the linear case
(Table 2.2), we now restrict ourselves only to CPM implementations involving IS. In stark
contrast to the linear case, the LithTom IS approach (N = 1,ρ = 0) leads to a highly inefficient
algorithm, as the variance of R around 30 is much higher than the upper recommended
threshold of 2.0. For the CPM method, we set the number of samples to 10 and the cor-
relation to ρ = 0.95 as this values leads to a variance of the log likelihood ratio estimator
in-between 1.0 and 2.0. The autocorrelation of one cell of the latent variable field is given
by Corr(X1, X1+l ) = ρl for lag l with the correlation mechanism of Equation (2.9), such that
for ρ = 0.95 roughly 100 (accepted) iterations are needed to draw an independent realization
of the latent variable. In practice, the decorrelation will be slower as we only move on with
accepted proposals (Section 2.2.3) .

(a) (b)

Figure 2.6: Variance of the log–likelihood ratio estimator R = log
(
p̂( j )

N (y |θ)
)
− log

(
p̂( j−1)

N (y |θ)
)

for the non-linear test example and θ fixed at a region with high posterior probability mass
as a function of ρ (used to correlate the latent variables X ( j ) and X ( j−1) as in Equation (2.9))
for N = 1, N = 10 and N = 50 samples of the latent variable X ; the realizations of the latent
variable are drawn (a) from the prior p(x |θ) and (b) with importance sampling. The black
lines delimit the range between 1.0 and 2.0 recommended by Deligiannidis et al. (2018).
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The results for both DREAM(Z S) proposal schemes are shown in Figure 2.7 and Table 2.3. For
the estimates of the posterior mean of the porosity field (Fig. 2.7a-2.7d), we observe similar
results as in the linear case: Using prior-sampling DREAM(Z S) proposals results in a porosity
field estimate with lower variance and using the method ignoring PPEs (Fig. 2.7a for standard
DREAM(Z S) proposals) leads to higher variance. The highest acceptance rate is obtained
with applying the CPM IS method using standard DREAM(Z S) proposals (Table 2.3) and the
acceptance rates for prior-sampling DREAM(Z S) proposals are lower. The LithTom approach
with IS has an AR of less than 1 % and would, therefore, require far more than 200’000 itera-
tions to converge. Trace plots of the evolving log-likelihood values are shown in Figure 2.7e.
As expected and in agreement with the linear test case (Fig. 2.3e), the methods converge to
different values. As in the linear case, we find that CPM IS with prior-sampling DREAM(Z S)

proposals is the only case providing posterior samples that match the prior probability of the
true porosity field (Fig. 2.7f and 2.7g).

(a) (b) (c) (d)

(e) (f) (g)

Figure 2.7: Estimates of the posterior means of the porosity field θ for the non-linear test
example resulting with standard DREAM(Z S) proposals and (a) the algorithm ignoring PPEs,
(b) the full inversion, (c) the CPM IS (N = 10, ρ = 0.95) method. Results for prior-sampling
DREAM(Z S) proposals and (d) the CPM IS (N = 10, ρ = 0.95) method. (e) Log-likelihood
functions, black line represents the value of p(y |θ, x) for the true porosity and latent variable
field. (f) Prior probabilities (logarithmically transformed) of the posterior samples obtained
with prior-sampling DREAM(Z S) proposals and (g) standard DREAM(Z S) proposals; the black
lines depict the corresponding value for the true porosity field.

48



Table 2.3: Summary of the results obtained for the non-linear test example with the various
inversion approaches and the two proposal mechanisms: The acceptance rates (AR), the
convergence (Conv) showing the number of iterations needed for the 99th percentile of the
parameter’s R̂-statics to be below 1.2 (or the percentage of parameters with a R̂-statistics
below 1.2 if the the algorithm did not converge), the percentage of pixels in which the true
porosity value lies within the range of posterior samples (θtrue), the mean logarithmic score
(logS), posterior standard deviation (Post SD) and the integrated autocorrelation time (IACT)
for the cell in the very middle of the porosity field θ. The CPM IS method was evaluated with
the parameter choice of N = 10 and ρ = 0.95.

Method Proposal AR Conv θtrue logS Post SD IACT

No PPE Standard 11 ↗ 24 % 92’000 87.2 % 3.36 5.4×10−3 3’800

Full inversion Standard 10 ↗ 23 % 144’000 97.1 % 1.99 6.7×10−3 5’150

LithTom IS Standard < 1 % - , 43 % - - - -

CPM IS Standard 12 ↗ 24 % 90’000 99.6 % 1.56 8.3×10−3 3’250

No PPE Prior-samp 1 - 2 % - , 29 % - - - -

Full inversion Prior-samp 1 - 2 % - , 13 % - - - -

CPM IS Prior-samp 11 % 96’000 100.00 % 1.34 10.4×10−3 3’300

Figure 2.8 depicts the logarithmic scores (see Section 2.2.5) comparing the true porosity
values with the inferred posterior PDFs for all 2500 grid cells. We observe that the method
ignoring PPEs (with standard DREAM(Z S) proposals, Fig. 2.8a) has the highest scores (in-
dicating the lowest accuracy). The values of the full inversion (with standard DREAM(Z S)

proposals, Fig. 2.8b) are lower, but still high. The CPM IS method with standard DREAM(Z S)

proposals (Figs. 2.8c) leads to reduced logarithmic scores that are further improved when this
method is combined with prior-sampling DREAM(Z S) proposals (Figs. 2.8d). The mean values
of the logarithmic scores and other performance metrics are shown in Table 2.3. We find that
the method that ignores PPEs fails to sample a range of values including the true porosity
value in more than 10% of the pixels and has a mean estimated posterior standard deviation
that is up to 50 % smaller than the other methods. The CPM IS method generates posterior
samples with ranges that include, in more than 99 % of the pixels, the true porosity value
with the percentages obtained using prior-sampling DREAM(Z S) proposals being even higher.
Finally, the full inversion does not sample the true porosity value in almost 3% of the pixels
and has a reduced mean estimated posterior standard deviation by up to 40 % compared to
the CPM IS method. We also note that the IACT of the CPM methods are the lowest (Table 2.3).

49



(a) (b) (c) (d)

Figure 2.8: The logarithmic scores for the non-linear test case with (a) no PPE and standard
DREAM(Z S) proposals, (b) full inversion and standard DREAM(Z S) proposals, (c) CPM IS and
standard DREAM(Z S) proposals and (d) CPM IS and prior-sampling DREAM(Z S) proposals.

2.4 Discussion

This study showed clearly that the correlated pseudo-marginal (CPM) method, which ac-
counts for petrophysical prediction uncertainty within the estimate of the likelihood func-
tion p(y |θ), combined with importance sampling (IS) and prior-sampling MCMC proposals
leads to a broader exploration of the target posterior p(θ|y) than the other presented com-
binations of inversion methods and proposal schemes. The CPM method is an exact and
general method, but it needs in the considered high-dimensional setting an efficient impor-
tance sampling and prior-sampling proposals to work well even for the case of linear physics.

In the linear setting (with available analytical solutions for the PDFs), the CPM method using
importance sampling performs well using only one uncorrelated sample of the PPE (LithTom
IS). In absence of importance sampling, even a high number of samples N and correlation ρ
could not prevent the algorithm from being highly inefficient (Table 2.2). We find that the
exploration of the posterior PDF is much improved when using the LithTom IS approach
compared with full inversion (Fig. 2.4 and Fig. 2.5). Although the R̂-statistic of Gelman and
Rubin (1992) suggests that the full inversion algorithm (using standard DREAM(Z S) propos-
als) has converged, we demonstrate a significant underestimation of the posterior standard
deviation and posterior samples with far too high prior probabilities compared with the true
model (Fig. 2.3f and 2.3g). Indeed, the full inversion’s high acceptance rate (for standard
DREAM(Z S) proposals) may be mainly a consequence of local exploration combined with an
adaptive MCMC expanding its archive. This (1) points out that Gelman-Rubin’s R̂-statistics
and the acceptance rate are insufficient metrics to assess the performance of an adaptive
MCMC algorithm such as DREAM(Z S) and (2) highlights issues with over-fitting when using
adaptive MCMC. Indeed, Robert et al. (2018) warn against using adaptive MCMC methods
without due caution as adaptations to the proposal scheme can lead to algorithms relying
too much on previous iterations, thereby, excluding parts of the parameter space that have
not yet been explored.
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The need for a well-chosen importance sampling distribution is also demonstrated for the
non-linear setting by analysing the variances of the log-likelihood ratio estimator (Fig. 2.6).
This analysis also confirmed the strong influence of N and ρ. Since the importance sampling
distribution is no longer exact in the non-linear test case, the number of samples N and the
correlation ρ need to be increased. Consequently, the CPM IS method performs better (in
terms of computational cost) than the PM IS method as fewer samples have to be used. For
the non-linear test case, we conclude that the exploration of the posterior with the CPM IS
method (especially when combined with prior-sampling DREAM(Z S) proposals) is better than
the full inversion by observing that (1) the range of the posterior samples includes more often
the true porosity value while (2) the logarithmic score is lower and (3) the mean estimated
posterior standard deviation is higher (Table 2.3).

We recommend to work in the full parameter space whenever possible such that any distor-
tions in the posterior estimations due to model reductions can be avoided. The presented
adaptive prior-preserving proposal scheme (prior-sampling DREAM(Z S) proposal) is de-
veloped in the spirit of the extended Metropolis algorithm of Mosegaard and Tarantola
(1995) and the pCN proposal of Cotter et al. (2013). It is a simple correction of the standard
DREAM(Z S) proposal that (1) makes the algorithm robust to the choice of the discretization
of the target field and (2) maintains its capabilities to sample efficiently in complex high-
dimensional parameter spaces. We find that the prior-sampling DREAM(Z S) proposals lead
to an enhanced exploration of the posterior PDF and a stable AR (Tables 2.2 and 2.3). Indeed,
the CPM IS approach with prior-sampling proposals is the only one generating samples with
a prior probability comparable to the one of the true porosity field (Figs. 2.3 and 2.7). Due
to dependencies between latent and target variables, the full inversion with prior-sampling
DREAM(Z S) proposals suffers from a very low acceptance rate as the method does not allow
for large proposal steps. This dependency is bypassed by the CPM IS, allowing larger steps for
a given AR. In general, combinations of adaptive Metropolis and pCN-proposals are referred
to as DIAM (dimension independent adaptive Metropolis) proposals and were introduced by
Chen et al. (2016). Another way to increase the efficiency of the pCN proposal was proposed
by Rudolf and Sprungk (2018) with the so-called generalized pCN-proposal (gpCN), in which
the proposal scheme is tuned to have the same covariance as the target posterior distribution.

We emphasize that this study only considers synthetic data. We demonstrate that all but
our method of choice (CPM IS with prior-sampling DREAM(Z S) proposals) have severe prob-
lems in exploring the full posterior distribution even in this well-specified setting. A field
demonstration of CPM IS with prior-sampling DREAM(Z S) proposals is a natural next step.
Furthermore, our entire study remains within Gaussian assumptions for the target field,
petrophysical prediction uncertainty and observational noise. In the presented results, we
deal only with weak non-linearity in our forward operator and assume the petrophysical
relationship to be linear. In the future, it would be useful to consider test cases involving
stronger non-linearity, be it through a higher variance of the slowness field or a non-linear
petrophysical relationship. Stronger non-linearity would affect the accuracy of the first-order
expansion used to derive the importance sampling distribution for the CPM method, imply-
ing that the approximations would become less accurate. This could lead to a decrease of
efficiency that could be counter-acted by using larger N or ρ. An important topic for future

51



research would be to develop and assess importance sampling schemes that do not rely on
Gaussian assumptions. Potential starting points could be efficient importance sampling by
Richard and Zhang (2007) or multiple importance sampling introduced by Veach and Guibas
(1995) and popularised by Owen and Zhou (2000).

In agreement with Brunetti and Linde (2018), we find that ignoring petrophysical prediction
uncertainty leads to biased estimates and too tight uncertainty bounds. While the need for a
method accounting for PPEs grows with increasing integral scale of the target field (Brunetti
and Linde 2018), the ratio of the variances of the PPE, the target variable and the observational
noise also influences the results. The need for a well-working importance sampling for CPM
grows with increasing petrophysical prediction uncertainty and decreasing observational
noise. At the same time, large petrophysical prediction uncertainty leads to a flattened
likelihood function p(y |θ), thereby, decreasing the variance of the likelihood estimators
(assuming a well-working importance sampling) and, therefore, enhancing the efficiency of
the algorithm. Our present work focuses on petrophysical prediction uncertainty for a known
covariance model, but it would be possible to expand this to an unknown covariance model,
an uncertain petrophysical model or uncertain model parameters.

2.5 Conclusions

We consider lithological tomography in which geophysical data are used to infer the posterior
PDF of target (hydro)geological parameters. In such a latent variable model, the geophysical
properties play the role of latent variables that are linked to the properties of interest through
petrophysical relationships exhibiting significant scatter. Compared with the original formu-
lation of lithological tomography that does not consider importance sampling, we make the
approach more applicable to high dimensions (thousands of unknowns) and large data sets
with high signal-to-noise ratios. To account for the intractable likelihood appearing in the
Metropolis–Hastings algorithm in this setting, we explore the correlated pseudo-marginal
(CPM) method using an importance sampling distribution and prior-sampling proposals.
For the latter, we adapt the standard (adaptive) proposal scheme of DREAM(Z S) with a prior-
sampling approach, leading to a further improvement in exploration compared with standard
model proposals when dealing with high-dimensional problems. We find that our imple-
mentation of the CPM method outperforms standard lithological tomography and the full
inversion approach, which parameterizes and infers the posterior petrophysical prediction
uncertainty. For a linear test example, the mean KL-divergence with respect to the analytical
posterior can be reduced by 99 % by our implementation of the CPM method (even without
using correlations) compared with full inversion. In the case of non-linear physics, we reduce
the mean logarithmic score with respect to the true porosity field by up to 33 % compared
with the full inversion method. The CPM method is generally applicable and accurate, but
it requires a well-working importance sampling distribution (presently based on Gaussian
random field theory) to be efficient. Future work with the CPM method could consider field
data applications, more non-linear physics and non-linear petrophysical relationships as
well as relaxing the assumptions of Gaussian random fields. Furthermore, the method’s use
in coupled hydrogeophysical inversions involving hydrogeological flow and transport models
would be of interest.
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2.6 Appendix

2.6.1 DREAM algorithms and prior-sampling proposals

To perform a high-dimensional inversion with the MH algorithm, one needs a well-working
proposal scheme. To deal with this challenge, Braak (2006) introduced an adaptive random
walk MH algorithm named Differential Evolution Markov chain (DE-MC). This method runs
C Markov chains in parallel, where at each iteration j , the C different realizations of the

model parameters define a population {Z ( j )
c ;c = 1,2, ...,C }, which is used to guide new model

proposals. For chain c , two chains (denoted as a and b) are drawn without replacement from
the remaining set of chains. Then, the algorithm proposes a new state for the c-th chain with,

Z ( j )
c = Z ( j−1)

c +γ(Z ( j−1)
a −Z ( j−1)

b )+ζ, c ̸= a ̸= b (2.21)

where γ denotes the jumping rate and ζ is a draw from N (0, s2) with a small standard de-
viation s used to ensure that the resulting Markov chain is irreducible. By accepting or
rejecting the resulting proposals with the MH-ratio of Equation (2.3), a Markov chain with
the posterior PDF as its stationary distribution is obtained (Proof in Vrugt et al. 2009). This
leads to an algorithm which is automatically adapting the scale and the orientation of the
proposal density along the way to the stationary distribution, allowing it to provide efficient
sampling on complex, high-dimensional, and multi-modal target distributions. Based on
the DE-MC, Vrugt et al. (2008) introduced the adaptive multi-chain MCMC algorithm called
DREAM (DiffeRential Evolution Adaptive Metropolis). It enhances the efficiency of DE-MC by
applying subspace sampling (only randomly selected dimensions of the model parameter are
updated) and outlier chain correction. An excellent overview of the theory and application
of the DREAM algorithm is given by Vrugt (2016). For our case study, we use the extended
version DREAM(Z S) introduced by Laloy and Vrugt (2012), as its proposal scheme using an
archive of past states leads to further improved convergence and posterior exploration.

To adapt extended Metropolis to DREAM(Z S), we rely on a transformation of the variables to

the Uniform space. In our case study with Gaussian target variable Z ( j )
c = (Z ( j )

c;1 , Z ( j )
c;2 , ..., Z ( j )

c;D2 )

sampled in chain c and iteration j , we define U ( j )
c;i = Φ(Z ( j )

c;i ), withΦ(·) being the standard-
normal cumulative distribution function (CDF), and apply the proposal mechanism of

DREAM(Z S) on this transform. Assuming that Z ( j )
c;i has a standard-normal distribution, U ( j )

c;i
will be distributed uniformly on [0,1]. The proposal scheme of DREAM(Z S) with so-called

fold boundary handling (i.e., periodic boundary conditions) ensures that the new state U ( j+1)
c;i

is a sample from the Uniform distribution as well. With the subsequent transformation back
to the standard normal, Z ( j+1)

c;i =Φ−1(U ( j+1)
c;i ), we hence force the algorithm to use a proposal

scheme that samples from the prior PDF.
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2.6.2 Analytical posterior PDF and importance density for linear physics

Assuming linear physics and petrophysics, it is possible to derive an analytical expression
for the posterior PDF p(θ|y) of the porosity (or other variable of interest). We consider here
both relationships being linear without intercept (G (X ) = J s X and F (θ) = J pθ), however, an
intercept (as the one used for F (θ) in our test case; Section 2.3.1) is easily included. For the
2D grid of the porosity θ and the latent variable X , we use the following prior PDFs:

p(θ) =ϕD2 (θ;µθ,Σθ), p(x |θ) =ϕL(x ; J pθ,ΣP ). (2.22)

To derive the (in this case) tractable likelihood p(y |θ), we use a standard result about marginal
and conditional Gaussians (Bishop and Nasrabadi 2006):

Lemma 1 Marginal and Conditional Gaussians

Assume a marginal Gaussian distribution for X ∈RL and a conditional Gaussian distribution
for Y ∈RT given X in the form

p(x) =ϕT (x;µ,Λ−1), (2.23)

p(y|x) =ϕT (y;Ax+b,L−1), (2.24)

with ϕT (·;µ,K ) denoting the PDF of the T -variate Normal distribution with mean µ and
covariance matrix K . Then, the marginal distribution of Y and the conditional distribution of
X given Y are given by

p(y) =ϕT (y;Aµ+b,L−1 +AΛ−1AT) (2.25)

p(x|y) =ϕL(x;Σ
(
ATL(y−b)+Λµ)

,Σ) (2.26)

where Σ= (Λ+ATLA)−1.

Using the prior on the latent variable X and the Gaussian likelihood p(y |x ,θ) =ϕ625(y ; J s x ,ΣY ),
we get with Equation (2.25),

p(y |θ) =ϕT (y ; J s J pθ,ΣY + J sΣP J T
s ). (2.27)

Subsequently, the analytical form of the posterior p(θ|y) is derived with Equation (2.26), the
prior on porosity and the expression of the likelihood p(y |θ) from the last equation:

p(θ|y) =ϕD2

(
θ;µθ|Y ,Σθ|Y

)
, (2.28)

µθ|Y =Σθ|Y
(
(J s J p )T (ΣY + J sΣP J T

s )−1 y +Σθ−1 µθ
)

, (2.29)

Σθ|Y = (
Σθ

−1 + (J s J p )T (ΣY + J sΣP J T
s )−1(J s J p )

)−1
(2.30)

For the case with linear physics, the importance density p̃(x |θ, y) =ϕL(x ;µI S ,ΣI S ) introduced
in Section 2.2.3 is an exact expression for p(X |θ, y) and the IS mean and covariance matrix
reduce to:

µI S = ΣI S
(

Js
TΣY

−1 y +ΣP
−1F (θ)

)
, ΣI S = (ΣP

−1 + Js
TΣY

−1 Js )−1. (2.31)
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Abstract

A geophysical Bayesian inversion problem may target the posterior distribution of geological
or hydrogeological parameters given geophysical data. To account for the scatter in the
petrophysical relationship linking the target parameters to the geophysical properties, this
study treats the intermediate geophysical properties as latent (unobservable) variables. To
perform inversion in such a latent variable model, the intractable likelihood function of
the (hydro)geological parameters given the geophysical data needs to be estimated. This
can be achieved by approximation with a Gaussian probability density function based on
local linearization of the geophysical forward operator, thereby, accounting for the noise in
the petrophysical relationship by a corresponding addition to the data covariance matrix.
The new approximate method is compared against the general correlated pseudo-marginal
method, which estimates the likelihood by Monte Carlo averaging over samples of the latent
variable. First, the performances of the two methods are tested on a synthetic test example, in
which a multivariate Gaussian porosity field is inferred using crosshole ground-penetrating
radar first-arrival travel times. For this example with rather small petrophysical uncertainty,
the two methods provide near-identical estimates, while an inversion that ignores petro-
physical uncertainty leads to biased estimates. The results of a sensitivity analysis are then
used to suggest that the linearized Gaussian approach, while attractive due to its relative
computational speed, suffers from a decreasing accuracy with increasing scatter in the petro-
physical relationship. The computationally more expensive correlated pseudo-marginal
method performs very well even for settings with high petrophysical uncertainty.

3.1 Introduction

This work targets a Bayesian inverse problem in which the posterior distribution of target ge-
ological or hydrogeological parameters θ are inferred from geophysical data y . Petrophysical
relationships linking (hydro)geological variables (e.g., permeability, clay fraction, salinity)
to geophysical properties (e.g., dielectric permittivity, electrical conductivity, magnetic sus-
ceptibility) must then be introduced (e.g., Hinnell et al. 2010; Kowalsky et al. 2005). Such
relationships are often inherently uncertain (e.g., Mavko et al. 2020), however, in most hy-
drogeophysical inversion studies targeting hydrogeological properties, the predictive power
of the petrophysical relationship is assumed to be perfect provided that the right parameter
values are used (e.g., Lochbühler et al. 2014; Kowalsky et al. 2005). Brunetti and Linde
(2018) show that this assumption may lead to bias, too narrow uncertainty bounds and overly
variable parameter estimates.

Brunetti and Linde (2018) distinguish three sources of uncertainty in the petrophysical re-
lationship: model, parameter and prediction uncertainty. While the first two result from
uncertainty related to the choice of the petrophysical model and its parameter values, the lat-
ter arises from scatter and bias around the calibrated model. As in Brunetti and Linde (2018),
only petrophysical prediction uncertainty is considered here, using a latent variable model
formulation which expresses the geophysical properties as X =F (θ)+εP , with F (·) being
the petrophysical relationship and εP the petrophysical prediction error (PPE). The inclusion
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of the random effect of the PPE in the latent variable X makes the likelihood function p(y |θ)
intractable. In this study, two alternative methods are investigated to approximate this like-
lihood function in a Metropolis–Hastings algorithm (MH algorithm; Metropolis et al. 1953,
Hastings 1970). The first approach is a Gaussian approximation based on local linearization
of the geophysical forward operator. Thereby, the effect of the noise in the petrophysical
relationship is included by a corresponding addition to the data covariance matrix. This
new approach which is similar to the so-called delta method (Van der Vaart 2000) was sug-
gested by Linde et al. (2017), but it has remained untested to date. This approximate method
is compared against the correlated pseudo-marginal (CPM) method of Deligiannidis et al.
(2018), which is based on the pseudo-marginal (PM; Beaumont 2003; Andrieu and Roberts
2009) method using Monte Carlo sampling of the latent variable to estimate the likelihood.
Friedli et al. (2022) introduced and adapted the CPM method to a geophysical setting and
demonstrated that in data-rich geophysical settings with low noise levels, it is essential to
both use a well-working importance sampling strategy for the draws of latent variables and
to correlate the latent samples used in the proposed and current states of the Markov chain.

In Friedli et al. (2022), the CPM method is compared to the original formulation of litho-
logical tomography (Bosch 1999) and the so-called full inversion approach of Brunetti and
Linde (2018). This latter method avoids intractable likelihood functions by targeting the joint
posterior PDF (θ, x) 7→ p(θ, x |y) of the hydrogeological and geophysical parameters. Within
the original lithological tomography method, first the target variable is sampled using the
proposal scheme of the MH and second, one realization of the latent variable is drawn with
conditional sampling. This actually represents a simplified form of the PM method with
only one latent variable sample and without importance sampling. The original form of
lithological tomography leads to high variability in the estimate of the likelihood function,
with the consequence of the algorithm often being highly inefficient (Brunetti and Linde
2018). Within the full inversion of Brunetti and Linde (2018), the latent variables are treated
as additional target variables and an MH proposal scheme is used to draw new realizations
of both. Friedli et al. (2022) show that this approach becomes inefficient with increasing
dimensionality of the target and latent space and suffers from strong (posterior) correlations
between the target and latent variables. Friedli et al. (2022) present a comparison of CPM with
the original lithological tomography and full inversion approaches in a weakly non-linear
setting showing that the CPM method outperforms the others by greatly enhancing the pos-
terior exploration. While the CPM method already has been tested for geophysical inversion
problems, the linearized Gaussian approach has not been applied to far and in this present
study, the focus is on comparing this approximate approach against the general CPM method.

As a synthetic test case, a similar setting as in Friedli et al. (2022) is considered and multi-
Gaussian porosity fields are inferred using crosshole ground-penetrating radar (GPR) first-
arrival travel times. As in Friedli et al. (2022), a high-dimensional parameterization of the
target porosity field is used. Subsequently, a sensitivity analysis is made to explore the perfor-
mances of the linearized Gaussian approach and the CPM method as a function of increasing
petrophysical prediction uncertainty. To avoid the challenges of a very-high dimensional
target space in this sensitivity analysis, the complexity of the porosity field is reduced and it is
assumed to be layered.
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This contribution is a natural extension of the study by Friedli et al. (2022), which only
considered the CPM method. While the fundamental concepts of the considered problem and
the CPM method are repeated, the introduction and assessment of the linearized Gaussian
approach is completely new. The manuscript is structured as follows: Section 3.2 gives a
methodological overview of the considered latent variable model, Bayesian inference with
intractable likelihoods, the linearized Gaussian approximation approach, the CPM method
and the performance assessment metrics. Section 3.3 presents the results of our synthetic
case study inferring multi-Gaussian porosity fields. In Section 3.4, the sensitivity analysis is
presented. Finally, the study finishes with a discussion and conclusions in Sects. 3.5 and 3.6.

3.2 Methodology

3.2.1 Latent variable model

In the considered setting, the data vector y = (y1, y2, ..., yT ) (geophysical data) is given by,

Y =G (X )+εO =G (F (θ)+εP )+εO , (3.1)

with X = (X1, X2, ..., XL) denoting the latent variable (geophysical property) andθ = (θ1,θ2, ...θd )
the target parameters (hydrogeological parameters). The variable X is referred to as a latent
because it includes the PPE εP , which is unobservable (latent) but affects the observations.
G : RL → RT with εO and F : Rd → RL with εP refer to the physical forward solver with the
observational noise and the petrophysical relationship with the PPE, respectively. In what
follows, random variables and random vectors are referred to with upper-case letters and
realizations thereof with lower-case letters. Assuming Gaussian errors, it holds,

p(x |θ) =ϕL(x ;F (θ),ΣP ), p(y |θ, x) =ϕT (y ;G (x),ΣY ), (3.2)

with ϕM (·;µ,Σ) denoting the PDF of a M-variate normal distribution with mean µ and
covariance matrix Σ. In the test example, the target parameters θ = (θ1,θ2, ...θd ) describe a
Gaussian random field parameterized on a grid of size D × D (d = D2). It holds,

p(θ) =ϕD2 (θ;µθ,Σθ), (3.3)

and it is assumed that the meanµθ and the covariance matrixΣθ of the target field are known.
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3.2.2 Bayesian inference and intractable likelihoods

Bayesian inversion problems target the posterior probability density function (PDF) p(θ|y)
of the model parameters θ given the measurements y . In Bayes’ theorem, this posterior PDF
is given by,

p(θ|y) = p(θ)p(y |θ)

p(y)
, (3.4)

with the prior PDF p(θ) of the model parameters, the likelihood function p(y |θ) and the evi-
dence p(y). As it is not possible to sample directly from the posterior, we use the Metropolis–
Hastings algorithm (MH algorithm; Metropolis et al. 1953; Hastings 1970). At iteration j , the
MH algorithm proposes a new model realization using the model proposal density q(·|θ( j−1)),
which is then accepted or rejected based on the acceptance probability,

αM H

(
θ( j−1),θ( j )

)
= min

{
1,

q(θ( j−1)|θ( j ))p(θ( j ))p(y |θ( j ))

q(θ( j )|θ( j−1))p(θ( j−1))p(y |θ( j−1))

}
. (3.5)

To implement the MH algorithm, the likelihood function θ 7→ p(y |θ) has to be evaluated,

p(y |θ) =
∫

p(y |θ, x)p(x |θ)d x . (3.6)

In a latent variable model, this integral has generally no analytical form, leading to an in-
tractable likelihood function.

Proposal Scheme

When applying the MH algorithm to generate posterior samples, it is essential to choose a
well-working proposal density q(·|θ( j−1)). Cotter et al. (2013) showed that standard random
walk MCMC algorithms entail highly inefficient performance and strong dependence on the
discretization when targeting high-dimensional Gaussian random fields. As a solution, they
suggest proposal schemes that preserve the prior PDF, resulting in an MH algorithm for which
the acceptance ratio only depends on the likelihoods. In geophysics, this proposal scheme is
known as the extended Metropolis algorithm (Mosegaard and Tarantola 1995). If the target
space is high-dimensional, the prior-preserving proposal scheme still needs to be chosen
carefully (Ruggeri et al. 2015). Therefore, Friedli et al. (2022) introduce a prior-preserving
version of the adaptive multi-chain algorithm DREAM(ZS) (DiffeRential Evolution Adaptive
Metropolis using an archive of past states; Laloy and Vrugt 2012).
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3.2.3 Gaussian approximation of the intractable likelihood

The new approach to approximate the intractable likelihood (Eq. 3.6) relies on the linearized
Gaussian approximation proposed by Linde et al. (2017). Here, the data covariance matrix
given by the observational noiseΣY (Eq. 3.2) is adjusted by adding an additional contribution
accounting for petrophysical prediction uncertainty. For our latent variable model, a first-
order Taylor expansion of x 7→G (x) around F (θ) is used,

Y =G (F (θ)+εP )+εO ≈G (F (θ))+ JF (θ)εP +εO , (3.7)

with JF (θ) denoting the Jacobian (sensitivity) matrix of the forward solver corresponding
to F (θ). Due to its dependence on F (θ), the sensitivity matrix is evolving between iterations
(with changing θ). Using Gaussian assumptions for p(εO ) = ϕT (εO ;0,ΣY ) and p(εP ) =
ϕL(εP ;0,ΣP ) (Eq. 3.2), the likelihood function (Eq. 3.6) is approximated by,

p̂(y |θ) =ϕT (y ;µY ,
∼
ΣY ) with µY =G (F (θ)) and

∼
ΣY = JT

F (θ)ΣP JF (θ) +ΣY . (3.8)

As the linearization is made around G (F (θ)) and not around G (F (θ)+εP ), errors arise when
the resulting Jacobians differ. For a linear geophysical problem, there are no approximation
errors. Figure 3.1 shows a flow chart describing this approach at iteration j ; in what follows,
this method will be referred to as LinGau.

Propose new porosity field θ( j ) using proposal density q(·|θ( j−1)) (Sect. 3.2.2).

Approximate intractable likelihood p(y |θ( j )):
• Simulate data y ′ =G (F (θ( j ))) ignoring the petrophysical prediction uncertainty
• Estimate p(y |θ( j )) by comparing the simulated data y ′ with the observed

measurements y using the Gaussian PDF of Eq. (3.8) with the adjusted data
covariance matrix

∼
ΣY

Accept θ( j ) with probability αM H (θ( j−1),θ( j )) (Eq. 3.5), otherwise keep θ( j ) = θ( j−1).

Figure 3.1: Flow chart illustrating the LinGau method at iteration j
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3.2.4 Correlated pseudo-marginal method

The pseudo-marginal method (Beaumont 2003; Andrieu and Roberts 2009) estimates the
intractable likelihood (Eq. 3.6) by Monte Carlo averaging over samples of the latent variable,

p̂N (y |θ) = 1

N

N∑
n=1

w(y |Xn ,θ), with w(y |Xn ,θ) = p(y |θ,Xn)p(Xn |θ)

m(Xn |θ)
, (3.9)

where Xn
i .i .d∼ m(·|θ) for n = 1,2, ..., N with m(·|θ) denoting an importance density function.

This implies that after proposing a new target parameter θ, different latent variable realiza-
tions Xn with the same θ and different PPE εP are sampled. Then, the likelihood of each
realization can be calculated and the intractable likelihood function is estimated by averaging
over the obtained values. To account for the influence of importance sampling on the draws
of the latent variable, weighted averaging has to be applied. Using this non-negative unbiased
estimator of the likelihood leads to a MH algorithm sampling the same posterior distribution
as one using the true likelihood (Beaumont 2003).

To obtain an efficient algorithm, it is crucial that the variance of the log-likelihood ratio
estimator used in each MH step is low enough (Doucet et al. 2015). This can be ensured
by choosing a well-working importance sampling density and by selecting a number of la-
tent variable samples N which is high enough. Following Friedli et al. (2022), a Gaussian
approximation x 7→ ϕL(x ;µI S ,ΣI S ) of x 7→ p(x |θ, y) is used as importance density, which
implies the same linearization of the forward operator as in the LinGau approach (Eq. 3.7).
An inappropriate linearization will lead to errors in the LinGau estimates, while it will only
affect the efficiency of the pseudo-marginal method.

To reduce the magnitude of N , Deligiannidis et al. (2018) introduced the correlated pseudo-
marginal (CPM) method by which the samples of latent variables used in the likelihood ratio
estimator are correlated. Assuming a standard-normal distributed latent variable X , the CPM
method correlates one draw of iteration j with one of the former by,

X( j ) = ρX( j−1) +
√

1−ρ2ϵ, with ρ ∈ (−1,1) and ϵ= (ϵ1,ϵ2, ...,ϵL),ϵi
i .i .d .∼ N (0,1). (3.10)

The general applicability of the CPM method is not limited by the assumption that the latent
variable has a standard-normal distribution since numerous distributions can be obtained
by transformations from standard normal variates (e.g. Chen et al. 2018). The procedure of
the CPM method in iteration j is illustrated in Fig. 3.2. Further details about the method can
be found in Friedli et al. (2022).
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Propose new porosity field θ( j ) using proposal density
q(·|θ( j−1)) (Sect. 3.2.2)

Estimate intractable likelihood p(y |θ( j )):
• Sample N correlated realizations of the latent

random field X using importance density m(·|θ)
derived with the porosity field θ( j )

• Simulate data G (Xn) for each latent variable X n

and calculate N likelihoods p(y |θ,Xn) (Eq. 3.2)
• Estimate p(y |θ( j )) by weighted averaging

(Eq. 3.9)

Importance density m(·|θ):
• Xn =F (θ( j ))+εP n

• Xn sampled using
importance density
ϕL(x ;µI S ,ΣI S )

• Xn =µI S +ΣI S
1/2Z( j )

n ,
with L-variate
standard normal
variable Z( j )

n

correlated with Z( j−1)
n

(Eq. 3.10)

Accept θ( j ) with probability αM H (θ( j−1),θ( j )) (Eq. 3.5),
otherwise keep θ( j ) = θ( j−1).

Figure 3.2: Flow chart illustrating the CPM method with importance sampling at iteration j

3.2.5 Performance assessment

The primarily focus of the assessment of the inversion results is on the exploration of the pos-
terior PDF. To declare convergence of the MCMC chains, the R̂-statistic of Gelman and Rubin
(1992) is used. Subsequently, the posterior samples obtained with the considered methods
are compared. For a numerical assessment of the posterior estimates, the logarithmic score
(logS; Good 1952) is employed. This is a so-called scoring rule (Gneiting and Raftery 2007)
evaluating the accuracy of a predictive PDF θ 7→ p̂(θ) with respect to a true value θtrue. The
logarithmic score is defined as logS(p̂,θtrue) =− log p̂(θtrue) and kernel density estimates with
manually-selected bandwidths are applied to transform the posterior samples into a PDF.
Furthermore, the number of target parameters in which the true porosity value θtrue is in the
range of the posterior samples is considered, as well as the spread of the posterior samples as
quantified by their standard deviations.
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3.3 Case study

The new linearized Gaussian approach is compared against the CPM method using the first
case study considered by Friedli et al. (2022).

3.3.1 Synthetic data generation

The considered model domain is a water-saturated subsurface area of 7.2 m × 7.2 m. As in
Friedli et al. (2022), the target porosity field is assumed to be a Gaussian random field with
known mean (µθ = 0.39) and exponential covariance function. For the latter, a sill of 2×10−4

is assumed such as geometric anisotropy with the main, horizontal direction having an inte-
gral scale of 5.4 m and the integral scale ratio between the horizontal and vertical direction
being 0.13. For the parameterization of the porosity field, a regular (50 × 50)-dimensional
grid (D2 = 2,500) is used. The "true" porosity field θtrue for this case study is depicted in
Fig. 3.3(a).

Given the porosity θ, the dielectric constant κ is predicted using the complex refractive index
model (CRIM; Roth et al. 1990), from which the slowness field (our latent variable X ) can be
derived,

x =
√

c−2κ+εP = 1

c

(p
κs + (

p
κw −p

κs)θ
)+εP , (3.11)

with κw and κs denoting the dielectric constants of water [81] and mineral grains [5], re-
spectively, and c referring to the speed of light in vacuum [0.3 m/ns]. A PPE εP is added
(Fig. 3.3b), which is a realization of a centred Gaussian random field over a regular two dimen-
sional grid of size 50 × 50. Thereby, the same correlation structure as for the porosity field
is used with a sill of 7.11×10−2 ns2/m2. The "true" slowness field is depicted in Fig. 3.3(c)
while Fig. 3.3(d) shows a scatter plot depicting the influence of the PPE on the slowness values.

The 625 first-arrival travel times are generated using 25 equidistant GPR transmitters located
on the left side and 25 receivers on the right side of the model domain (the transmitter-
receiver layout is shown in Fig. 3.3c). As forward solver y 7→G (y), the non-linear (eikonal)
solver time2D of Podvin and Lecomte (1991) is used. The observational noise εO is assumed
to be i .i .d . centered normal with a standard deviation of 1 ns. The noise-affected synthetic
first-arrival travel times are depicted in Fig. 3.3(e).
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Figure 3.3: The synthetic “true” model adapted from Friedli et al. 2022: (a) porosity field θtrue,
(b) PPE field εP true, (c) slowness field x true, (d) scatter plot of porosity and slowness values
per grid cell, the line depicts the petrophysical relationship (Eq. 3.11) without considering
PPE and (e) set of noise-affected first-arrival travel times y

3.3.2 Inversion setting and prior assumptions

As the considered target space is high-dimensional with 2,500 unknown parameters, it is
crucial to choose a well-working proposal scheme for the MH algorithm. Due to its con-
vincing performance in Friedli et al. (2022), this study relies on prior-preserving DREAM(ZS)

proposals (Sect. 3.2.2) and four MH chains are run in parallel. For both the LinGau and the
CPM method, the linearization used to adjust the data covariance matrix and the importance
sampling, respectively, is updated every tenth MCMC iteration. For the CPM method, a con-
figuration of N = 10 and ρ = 0.95 is used as this choice guarantees an appropriate variance of
the log-likelihood ratio estimator (see Friedli et al. 2022).

For the prior on porosity, a Gaussian PDF p(θ) =ϕ2500(θ;µθ,Σθ) with known mean µθ and
covariance structure Σθ (the same values as for the data generation) is assumed. Then,
the 2,500-dimensional vector Z defining the porosity by θ = µθ +Σθ1/2Z is inferred, with
Z having a multivariate standard-normal prior PDF. For the PPE εP also a Gaussian prior
PDF p(εP ) =ϕ2500(θ;0,ΣP ) with known covariance structure ΣP is used. For the likelihood
function, centred independent Gaussian measurement errors εO with a standard deviation
of 1 ns as in the data generation process are assumed.
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The LinGau and CPM methods are compared with an inversion ignoring the petrophysical
prediction uncertainty (No PPE). In this case, the intractable likelihood p(y |θ) is estimated
by ϕT (y ;G (F (θ)),ΣY ). As prior-preserving DREAM(ZS) proposals lead to an unfeasible low
acceptance rate in this case, standard DREAM(ZS) proposals are employed.

3.3.3 Results

Figures 3.4(a) and 3.4(b) display the posterior mean estimates of the LinGau and the CPM
method, respectively. Both images look very similar and the structural resemblance to the
true porosity field in Fig. 3.3(a) is high. Both methods need about 100,000 MCMC iterations
to converge and have a very similar acceptance rate (AR) of 10 %. They also lead to a similar
performance in terms of posterior exploration as both methods sample the true porosity
value in all of the pixels and have very similar median standard deviations and logarithmic
scores (Figs. 3.4d and 3.4e, Table 3.1). By comparing the estimated posterior means of LinGau
and CPM (Figs. 3.4a and 3.4b) with the one of the inversion ignoring the petrophysical
prediction uncertainty (Fig. 3.4c), it is found that the mean estimate of the inversion ignoring
the petrophysical prediction uncertainty has larger amplitudes even if the mean estimates
are structurally similar. Its posterior exploration is less extensive, leading to a higher median
logarithmic score (Fig. 3.4f), roughly half the median posterior standard deviation and many
pixels that never sample the corresponding true porosity value (about one eighth of the pixels;
Tab. 3.1). For this example exhibiting weak non-linearity and rather small petrophysical
prediction uncertainty, it is concluded that the performance for LinGau and CPM are similar.
On the other hand, ignoring petrophysical prediction uncertainty leads to biased estimates
and too small uncertainty bounds.

Table 3.1: Summary of the results for the Gaussian porosity field example: The acceptance
rates (AR), the convergence (Conv) showing the number of iterations needed for the 99th

percentile of the parameter’s R̂-statics to be below 1.2, the percentage of pixels in which the
true porosity value θtrue lies within the range of posterior samples, the median logarithmic
score (logS) and the median posterior standard deviation (Post SD).

Method AR Conv θtrue logS Post SD

LinGau 10 % 108,000 100.00 % 1.10 10.7×10−3

CPM 10 % 96,000 100.00 % 1.16 10.5×10−3

No PPE 15 % 104,000 87.24 % 2.45 5.2×10−3
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Figure 3.4: Estimated posterior means of the porosity field θ obtained with (a) the LinGau
method, (b) the CPM method and (c) an inversion ignoring the petrophysical prediction
uncertainty. Corresponding pixel-wise logarithmic scores assessing the estimated posterior
PDFs for (d) the LinGau method, (e) the CPM method and (f) the inversion ignoring the
petrophysical prediction uncertainty

3.4 Sensitivity analysis

In the previous synthetic test case, both the LinGau and the CPM method perform compara-
bly well. As the computational cost of the LinGau method is lower (no need for N repeated
sampling of the latent variable at each iteration), the use of the LinGau method would be
recommended in such a setting. However, the degree of non-linearity in the geophysical for-
ward operator is rather low for this test case. This is illustrated in Fig. 3.5 showing exemplary
ray paths for the true slowness field x true (Fig. 3.5a) and the slowness field based on the true
porosity field θtrue but ignoring the PPE (Fig. 3.5b): most ray paths are close to linear and they
are very similar for both fields. Since the LinGau approximation of the likelihood (Eq. 3.8)
relies on a first-order Taylor expansion of the physical forward solver (Eq. 3.7), it deteriorates
when adding PPE εP realizations lead to different ray-paths than the field around which the
linearization is made. For a linear geophysical relationship, the first-order Taylor expansion
is exact for any degree of Gaussian petrophysical prediction uncertainty.

In practice, the question is how to decide, for a given setting, if the LinGau approximation of
the likelihood is accurate enough. To shed light on this, a sensitivity analysis exploring the
performances of the LinGau and CPM methods for different levels of petrophysical prediction
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uncertainty is performed. To make the comparison more didactic and to avoid unrelated
challenges associated with a very-high dimensional target space, the porosity field is assumed
to be layered. Generally, the same setup as in Section 3.3 is considered, but only with 13
transmitters and receivers (169 data points). The observational error is assumed to have a
standard deviation of 1 ns.
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Figure 3.5: Exemplary GPR ray paths for (a) the true slowness field x true of the test case
presented in Section 3.3 and (b) the slowness field resulting from the true porosity field θtrue

when ignoring the PPE εP

3.4.1 Likelihood estimation

The "true" porosity field θtrue = (θ1, ...,θ10) is generated by assuming 10 horizontal layers of
equal thickness and drawing independently from a Gaussian distribution with mean 0.3 and
standard deviation 0.03 (Fig. 3.6a). The resulting slowness field (Eq. 3.11) is distorted with a
layered PPE field having zero mean and independent layers with standard deviation σP . For
each of sixteen different standard deviation values σP ranging from 0.0 to 1.5, one hundred
data sets are generated using the same porosity field θtrue (Fig. 3.6a) but different realizations
of the PPE εP . Thereby, the true log-likelihood value p(y |θtrue) of θtrue has a different value
depending on the realization of the PPE and the observational noise, even for the same
σP . Two exemplary PPE fields and resulting slowness fields with σP = 0.5 and σP = 1.0 are
depicted in Figs. 3.6(c)+(d) and 3.6(e)+(f), respectively.

For each of the one hundred data sets per value of σP , p(y |θtrue) is approximated by using
the LinGau approach. The corresponding values and their mean for the different σP are
shown in Fig. 3.7(b). Those values are compared with the log-likelihood estimates obtained
under the assumption of no PPE (Fig. 3.7c). Eventually, the aim is to assess these estimates
by comparing them to the true log-likelihood values p(y |θtrue) of the corresponding data
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set. Due to the intractability inherited by the latent variable model, the analytical solution
remains elusive and the unbiased importance sampling estimate of Equation (3.9) employing
1,000 realizations of the PPE (Fig. 3.7a) is applied. Due to the high number of samples, a
well-specified importance density and the low dimensionality of the problem at hand, this
estimator is close to the true log-likelihood value. To show that this assumption is valid, the
standard deviation of the importance sampling estimator of p(y |θtrue) for both the exemplary
settings with σP = 0.5 and σP = 1.0 of Fig. 3.6 is evaluated (indicated with red symbols in
Fig. 3.7). For bothσP = 0.5 andσP = 1.0, the standard deviation is below one for log-likelihood
values around -260.

With the underlying assumption of the estimators in Fig. 3.7(a) being close to the true value,
they are compared with the ones of the LinGau method (Fig. 3.7d, darkgrey triangles). The
absolute errors in the log-likelihood estimation of LinGau increase with increasing σP . While
the mean absolute error in the log-likelihood estimator for σP = 0.5 is around 30, it grows
to 150 for σP = 1.0 and to 400 for σP = 1.5. However, in comparison to the errors of the
method ignoring the PPE (Fig. 3.7d, lightgrey crosses), the errors of the LinGau approach are
comparably small. When ignoring the PPE completely, the mean absolute error for σP = 0.5
is about 400, for σP = 1.0 it is 1,700 and for σP = 1.5 even 5,000. Thereby, the method ignoring
the PPE almost always underestimates the true log likelihood values p(y |θtrue) as it cannot
account for the true PPE and therefore gives reduced likelihood to the true porosity field θtrue.
The same holds true for the LinGau approach with increasing σP as the method accounts for
an increasingly wrong PPE.

The LinGau approximation relies on a first-order Taylor expansion of the physical forward
solver (Eq. 3.7). This approximation deteriorates with increasing degree of PPE as can be
seen in Fig. 3.7(e) depicting the root mean square errors (RMSE) of the Taylor expansions
for the data sets with increasing σP . While the mean of the RMSEs is comparable to the
observational noise for σP = 0.5, it is twice as large for σP = 1.0. To establish the influence
of the discussed errors on the inversion results, the setups introduced in Fig. 3.6 that are
indicated with red symbols in Fig. 3.7 are considered: The first with σP = 0.5 employs rather
small errors, however, the standard deviation of the PPE is twice as high as in the case-study
in Section 3.3. In the second setting with σP = 1.0 the errors are doubled and a realization is
targeted where the error in the LinGau likelihood approximation is especially high (about 460
while the mean error for σP = 1.0 is 150).

3.4.2 Inversion

Using the two layered synthetic data sets (Fig. 3.6), the MH algorithms are run with three
chains in parallel. Due to the simplicity of the problem, a basic Gaussian random walk is
used as proposal scheme, within which, for comparison purposes, a step width (standard
deviation) of 0.005 is applied for all methods. Furthermore, the linearizations used in the Lin-
Gau and CPM methods are updated at every MCMC iteration to prevent any errors resulting
from less frequent updates. For the CPM method, importance sampling and a configuration
of N = 3,ρ = 0.9 for the first and N = 50,ρ = 0.975 for the second setting is used. For the
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Figure 3.6: Synthetic “true” models for the layered test cases with the (a) same porosity field
θtrue and different PPE for (c) Setting 1 and (e) Setting 2. The right column shows the slowness
fields with exemplary ray paths for (b) the true porosity θtrue without adding PPE, (d) Setting
1 and (f) Setting 2
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Figure 3.7: Estimators of log-likelihood p(y |θtrue) of the true porosity field in the layered
setting as a function of petrophysical prediction uncertainty (σP ): (a) importance sampling
estimate using 1,000 samples of the PPE, (b) LinGau estimate and (c) estimate ignoring the
PPE. For each value of σP , the same underlying porosity field θtrue is used with 100 different
realizations of the PPE, leading to 100 data sets each. The crosses indicate the values for each
data set and the solid lines their mean. (d) The mean absolute difference between the values
of (a) and (b) are shown in darkgrey triangles and (a) and (c) in lightgrey crosses. (e) The
RMSEs in the first-order Taylor expansion (Eq. 3.7) of the data sets; the black horizontal line
shows the standard deviation of the observational noise (1 ns). The red symbols in (a) - (e)
indicate the errors of the settings used in the subsequent inversion examples; thereby in (d),
the red triangles refer to the errors obtained when using LinGau and the red crosses refer to
the errors obtained when ignoring PPE.
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layers of the porosity field, independent Gaussian prior PDFs with mean 0.3 and standard
deviation 0.03 and for the PPE layers, independent centred Gaussian priors with a standard
deviation of 0.5 and 1.0 are assumed, respectively. Finally, for the likelihoods uncorrelated
Gaussian observational noise with a standard deviation of 1 ns is assumed.

The estimated marginal posterior PDFs for both settings are shown in Fig. 3.8 for three of
the ten layers. These results are representative of the other layers, but a summary of the
performance for all layers is for completeness provided in Table 3.2. For the first setting (Figs.
3.8a-c), the modes of all considered methods are located around rather similar values. While
the method ignoring the PPE generates samples that do not include the true value of the
porosity in half of the layers, both LinGau and CPM capture the true value in all of the ten
layers (Table 3.2). However, while the LinGau method already doubles the standard deviation
of the posterior samples compared to the method ignoring the PPE, the CPM method leads
to a further doubling compared to LinGau (Table 3.2). Compared to the method ignoring the
PPE, the LinGau method reduces the median logarithmic score from 3.53 to -2.37 and the
CPM method reduces it even further to -2.71.

For the second setting (Figs. 3.8d-f), rather different posterior estimates are obtained for the
three methods. The method ignoring the PPE generates posterior samples which are far from
the true porosity values and with a small standard deviation (Table 3.2). The realizations ob-
tained with the LinGau method have a twice as high standard deviation but are also centered
far from the true values. The CPM method yields posteriors three times wider than those
obtained with LinGau. Thereby, while the posterior samples obtained with the CPM method
include the true values of the porosity in all layers, the LinGau method misses them for two
layers and the method ignoring the PPE in seven layers. The median logarithmic score of the
CPM method (-2.00) is distinctly lower than the one of the LinGau method (-1.35), which in
turn is dramatically lower than for the method ignoring the PPE (378.77).

3.5 Discussion

In this work, non-linear geophysical inversion problems involving uncertain petrophysical
relationships are targeted. Two different approaches to account for the corresponding in-
tractable likelihood function are explored: a linearized Gaussian approximation (LinGau)
and the correlated pseudo-marginal (CPM) method. The performance of these two methods
for examples with increasing petrophysical prediction uncertainty is assessed. This work is
a continuation of Friedli et al. (2022) as it is the first time the LinGau method is employed
and compared with the CPM method. A synthetic crosshole travel-time tomography is first
considered, with the aim of inferring a water-saturated multivariate Gaussian porosity field in
a situation of only moderate non-linearity and petrophysical prediction uncertainty (adapted
from Friedli et al. 2022). The results obtained with the LinGau and the CPM methods are
very similar (Fig. 3.4 and Table 3.1), thereby, indicating that the approximate LinGau method
works well in this setting. The LinGau method is then to be preferred as it only necessitates
one forward simulation for each MCMC chain and iteration, while CPM with N = 10 (number
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Figure 3.8: Estimates of the marginal posterior PDFs for the layered test cases: Setting 1 for
(a) layer 2, (b) layer 5 and (c) layer 8. Setting 2 for (d) layer 2, (e) layer 5 and (f) layer 8. The
solid vertical lines indicate the true porosity values

of latent variable samples) uses ten times as many forward simulations. If parallelization with
N = 10 more processors are employed, then the computational time can still be made similar
to the LinGau approach even if the overall computational cost is significantly higher. For this
test case, one iteration for one MCMC chain on a standard laptop takes about 0.3 seconds for
LinGau and 2.1 seconds for CPM (N = 10 and no parallelization). Importantly, this example
demonstrated that an inversion that ignores petrophysical prediction uncertainty (the most
common case in the literature) leads to biased estimates and underestimations of the widths
of the posterior estimates by a factor of two.

In Section 3.4, the effect of the degree of petrophysical prediction uncertainty on the likeli-
hood estimation and inversion results is studied for the different methods. To simplify the
comparison, layered porosity and PPE fields are used. By comparing log-likelihood estimates,
it is shown that the errors in the LinGau method increase with increasing degree of petro-
physical prediction uncertainty, even if these errors are much smaller than for the method
ignoring petrophysical prediction uncertainty (Fig. 3.7). By selecting one data set with twice
as high petrophysical prediction uncertainty as in the previous multivariate Gaussian ex-
ample (σP = 0.5, Fig. 3.6c) and one with four times as high uncertainty (σP = 1.0, Fig. 3.6e),
the influence of the likelihood estimation errors on the inversion results is investigated. For
the first setting (moderate degree of PPE), the LinGau method performs less well than CPM
(underestimation of posterior uncertainty by a factor of two; higher logS scores). However,
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Table 3.2: Summary of the results obtained for the study targeting a layered porosity field:
the acceptance rates (AR), convergence with respect to the R̂-statics (Conv), the number of
layers in which the true porosity value lies within the range of posterior samples (θtrue), the
median logarithmic score (logS) and the median posterior standard deviation (Post SD).

Method Setting AR Conv θtrue logS Post SD

LinGau 40 % 2,500 10/10 -2.37 11.8×10−3

CPM 1 (σP = 0.5) 40 % 12’000 10/10 -2.71 21.9×10−3

No PPE 2 % 13,000 5/10 3.53 4.2×10−3

LinGau 40 % 6,000 8/10 -1.35 15.0×10−3

CPM 2 (σP = 1.0) 30 % 51’000 10/10 -2.00 46.4 ×10−3

No PPE 2 % 20,000 3/10 378.77 7.2×10−3

employing the LinGau method still enables a reasonable approximation of the posterior
modes of the layers. Although the true log-likelihood value p(y |θtrue) is underestimated
by about 30 with LinGau (Fig. 3.7d), the RMSE of the Taylor approximation is roughly on
the same order of magnitude as the observational error (Fig. 3.7e). That is different in the
second setting with a higher degree of PPE, where the true log-likelihood value p(y |θtrue)
is underestimated by about 460 and the RMSE of the Taylor approximation is four times as
high as the observational noise. The resulting deterioration in performance for the LinGau
method is drastic: underestimation of the posterior uncertainty by a factor of three and twice
as high difference in the logS score to CPM than for the first setting. The growing error in the
LinGau estimate is due to the Jacobian JF (θ) being increasingly different when considering
or not considering the PPE (Figs. 3.6b and 3.6f). For the CPM method, the growing petro-
physical prediction uncertainty is accompanied by a very important increase in the posterior
standard deviation of the samples (Figs. 3.8d-f), guaranteeing that the method samples the
true porosity values even if the mode of the posterior may be located at the wrong place.
Even if the LinGau method still provides much better results than the common approach of
ignoring PPE altogether, the linearization on which this method is based (Eq. 3.7) is unable
to account for non-linear effects associated with specific PPE realizations. In contrast, the
CPM method only relies on the linearization to derive an importance sampling distribution
and errors in this distribution will only lead to slower convergence of the CPM method while
still targeting the true posterior distribution.
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The approximation error of the first-order Taylor expansion used in the LinGau method
(Eq. 3.7) grows with increasing non-linear effects related to the PPE. By comparing the for-
ward operators for latent variables with (F (θ)+εP ) and without considering the PPE εP

(F (θ)), this relation can be established (as in Figs. 3.5 and 3.6). It is seen that high standard
deviations in the εP have an adverse effect on the approximation accuracy by highly influ-
encing the forward operator. If the PPE εP strongly influences the Jacobian (as in Fig. 3.6e),
caution is advised when applying the LinGau method (Fig. 3.7d). To choose between the Lin-
Gau and the CPM method, this study recommends to investigate the RMSE of the first-order
Taylor expansion (Fig. 3.7e) and to compare it with the observational noise. For a setting
when the RMSE is significantly lower than the observational error (as for σP = 0.25 in Sect.
3.3), the recommendation is to use the LinGau method due to its lower computational cost
(the effect of the petrophysical prediction uncertainty is incorporated into the likelihood
function and no importance sampling of latent variables is needed). If the RMSE is in the
same order of magnitude as the observational error (as for σP = 0.5 in Sect. 3.4), the LinGau
method can be applied if moderate errors in the posterior estimation are acceptable. If the
RMSE is clearly higher than the observational error (as for σP = 1.5 in Sect. 3.4), the exact
CPM method should be used. If this is computationally too expensive, one could consider
accounting for the approximation error in the LinGau method by treating it as a model error
term (see e.g. Hansen et al. 2014).

The approximation underlying the LinGau approach could easily be incorporated in deter-
ministic inversion methods (using gradients), while this is impossible for CPM. On the other
hand, while the LinGau method requires Gaussian assumptions for the PPE, the CPM method
can sample the latent variables from a variety of possible distributions. But in practice the
CPM method needs a well-working importance sampling strategy to be efficient. For the
presented test cases, a decreasing acceptance rate for the CPM method is observed with
increasing petrophysical prediction uncertainty if the number of latent variables N and
correlation ρ are fixed. This occurs as our importance sampling scheme gets more and more
inaccurate, which can be compensated by using larger N or ρ. Although the efficiency is
reduced, the accuracy of the posterior samples remains the same as the importance sampling
is only used to decrease the variance of the likelihood estimator. In contrast, the LinGau
method does not only loose efficiency with increasing non-linearity, but also leads to overcon-
fident and biased estimates of the target parameters as the approximation of the likelihood is
getting increasingly inaccurate (Fig. 3.8).

In the presented test cases, the mean and the covariance structure of the target and petrophys-
ical prediction error fields are assumed to be known. In a setting where they are unknown,
hierarchical Bayes could be employed (as e.g. in Laloy et al. 2015, Brunetti and Linde 2018). A
recent study by Friedli et al. (2023) targets a setting where the problem is formulated differ-
ently: only the posterior mean and the covariance structure are derived, while the small-scale
variations in the model domain are accounted for but not inferred. In this study, a crosshole
ray-based setting that is only weakly non-linear is considered. More non-linear problems
such as electrical resistivity tomography or surface-based seismic refraction tomography
might exhibit an even stronger sensitivity to petrophysical prediction uncertainty and the
applicability of the LinGau might be reduced compared with the present study. Indeed, the
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errors in the LinGau approximation are not due to the petrophysical predication uncertainty
as such, but rather how individual realizations of it affects the sensitivity patterns compared
to the Taylor expansion that is performed in absence of petrophysical prediction uncertainty.
Even if the focus herein is on how to account for petrophysical prediction uncertainty, both
the LinGau and the CPM methods could be adapted to, for instance, account for 3-D effects
in 2-D inversions, variations in porosity in tracer-test tomography targeting the permeability
field, or to account for hydraulic storativity fluctuations in hydraulic tomography studies.
Indeed, this type of latent variable problem arises as soon as the measured data do not only
depend on the main parameters of interest but also on some other variables influencing the
response.

3.6 Conclusions

This work focus on geophysical inversion problems targeting the posterior distribution of
(hydro)geological parameters while accounting for uncertain petrophysical relationships
and non-linear physics. The resulting intractable likelihood function is accounted for by
either the linearized Gaussian approximation (LinGau) method or the correlated pseudo-
marginal (CPM) method. The LinGau method, so far untested in geophysical inversion, is
an approximate method that is computationally cheaper than CPM as it does not neces-
sitate a Monte Carlo estimation of the likelihood at each MCMC iteration. In a first case
study, a water-saturated multivariate Gaussian porosity field is considered for which the
scatter in the petrophysical relationship and the non-linearity is comparatively small. In this
setting involving crosshole first-arrival travel times, the LinGau method succeeds equally
well as CPM in exploring the posterior distribution. For comparison, an inversion ignoring
petrophysical uncertainty provides biased results and too narrow uncertainty estimates. In a
subsequent sensitivity analysis considering layered fields, the degree of petrophysical predic-
tion uncertainty is increased, thereby introducing increasing inaccuracies associated with the
Taylor expansion on which the LinGau method is based. Consequently, the LinGau method
produces increasingly inaccurate results as the petrophysical prediction uncertainty grows
such that the true values are more and more often unsampled and the logarithmic scores are
high. In contrast, the CPM method performs very well for all settings and accommodate the
growing uncertainty in the petrophysical uncertainty, while this is only partially achieved by
the LinGau method. The computationally less intensive LinGau method is attractive when
the impact of the scatter of petrophysical prediction uncertainty is small compared to the
observational noise. In comparison, the computationally more costly CPM method is an
exact and much more general method that clearly outperforms the LinGau method when the
petrophysical uncertainty grows in magnitude, but it needs an efficient importance sampling
distribution to work well in practice. If the CPM method is computationally too expensive
for a given application and if petrophysical uncertainty is significant, it is still better to use
the LinGau method than inversions ignoring petrophysical prediction errors as the resulting
results are less biased and the underestimation of posterior uncertainty is less pronounced.
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Abstract

We consider non-linear Bayesian inversion problems targeting the geostatistical hyperparam-
eters of a random field describing hydrogeological or geophysical properties given hydrogeo-
logical or geophysical data. This problem is of particular importance in the non-ergodic set-
ting as there are no analytical upscaling relationships linking the data to the hyperparameters,
such as, mean, standard deviation, and integral scales. Full inversion of the hyperparameters
and the local properties of the field (typically involving many thousands of unknowns) brings
substantial computational challenges, such that simplifying model assumptions (e.g., homo-
geneity or ergodicity) are typically made. To prevent the errors resulting from such simplified
assumptions while also circumventing the burden of high-dimensional full inversions, we
use a pseudo-marginal Metropolis–Hastings algorithm that treats the random field as latent
variables. In this random effects model, the intractable likelihood of observing the data given
the hyperparameters is estimated by Monte Carlo averaging over realizations of the random
field. To increase the efficiency of the method, low-variance approximations of the likelihood
ratio are obtained by using importance sampling and by correlating the samples used in
the proposed and current steps of the Markov chain. We assess the performance of this
correlated pseudo-marginal method by considering two representative inversion problems
involving diffusion-based and wave-based physics, respectively, in which we infer the hyper-
parameters of (1) hydraulic conductivity fields using apparent hydraulic conductivity data
in a data-poor setting and (2) fracture aperture fields using borehole ground-penetrating
radar (GPR) reflection data in a more data-rich setting. For the first test case, we find that
the correlated pseudo-marginal method generates similar estimates of the geostatistical
mean as classical rejection sampling, while an inversion assuming ergodicity provides biased
estimates. For the second test case, we find that the correlated pseudo-marginal method
estimates the hyperparameters well, while rejection sampling is computationally unfeasible
and a simplified model assuming homogeneity leads to biased estimates.

4.1 Introduction

The scale dependence of most environmental processes poses significant challenges for
hydrogeological and geophysical modeling (e.g., Klemeš 1983; Blöschl and Sivapalan 1995).
The governing partial differential equations (PDEs) traditionally employed to describe fluid
flow, chemical or electrical transport (Neuman and Di Federico 2003) are solved at some
support volume scale assumed to be a “Representative Elementary Volume” (REV; Hill 1963).
That is, it is assumed that smaller-scale heterogeneity averages out and can be represented
(with regard to the process under consideration) by averaged physical or chemical properties.
In practice, the conditions necessary for the existence of a REV are often not met because
geological media exhibit heterogeneity over a wide range of scales (Neuman and Di Fed-
erico 2003). Errors occurring when only partially accounting for or ignoring heterogeneity
generally grow with the non-linearity of the physical or chemical process under study and
can result in misleading predictions (e.g., Dentz et al. 2011, Yu and Michael 2022). For this
reason, it is essential to characterize and account for the statistical properties of small-scale
heterogeneity even when targeting mean properties.
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We consider non-linear inversion problems targeting geostatistical hyperparameters (e.g.,
mean, standard deviation, integral scale and anisotropy factor) of a random field describ-
ing hydrogeological or geophysical properties given indirect data. This problem setting is
applicable when the main properties of interest are the hyperparameters and not the local
field properties. The geostatistical literature is full of studies (e.g., Rehfeldt et al. 1992, Hess
et al. 1992, Bohling et al. 2016) focusing on hyperparameter estimation based on direct data
(e.g., permeability data along boreholes), but much less work has considered indirect data
(e.g., pressure data, tracer breakthrough data) as in the present study. In what follows, we
only discuss this latter case.

One of the first approaches considering unknown hyperparameters in such an inversion
setting was the quasi-linear geostatistical approach by Kitanidis (1995), which optimizes the
hyperparameters along with the spatial field. Another approach enabling joint inference of a
Gaussian random field and its variogram parameters relied on so-called sequential Gibbs
sampling (Hansen et al. 2012, Hansen et al. 2013a Hansen et al. 2013b). Zhao and Luo (2021)
applied an iterative approach based on principal components which is updating biased or
unknown hyperparameters while solving a non-linear inversion problem. Recently, Wang
et al. (2022) proposed an hierarchical Bayesian inversion targeting first global variables (such
as hyperparameters but also physical variables) and later the posterior of the whole field
(referred to as spatial variables). Note that none of these studies focus on inferring the hyper-
parameters only.

We rely on a Bayesian framework and infer the hyperparameters’ posterior probability density
function (PDF) given indirect hydrogeological or geophysical measurements. To sample
from the posterior, we apply a Markov chain Monte Carlo (MCMC) method building on the
Metropolis–Hastings algorithm (MH; Hastings 1970; Metropolis et al. 1953). The basic proce-
dure of the MH algorithm in this setting is to propose iteratively a new set of hyperparameters,
which are then accepted or rejected based on their prior probabilities and likelihoods.

We consider synthetic experimental setups in which the hydrogeological or geophysical data
average over a random field realization that is either ergodic or non-ergodic. A random field
must be stationary to be ergodic, but not vice versa. Stationarity implies that the distribution
does not change with position. Ergodicity, on the other hand, implies that the field realization
is much larger than the characteristic scale of heterogeneity. By the so-called ergodic setting,
we consider data that average over a scale that is much larger than the field’s scale of hetero-
geneity such that the effects of small-scale fluctuations average out. Consequently, the data
do not depend on the local properties of a given random field realization, but on the hyper-
parameters only. By the non-ergodic setting, we refer to cases when the data averaging takes
place over a scale that is smaller or comparable to the scale of heterogeneity. This implies that
the data depend not only on the hyperparameters but also on the random field realization
on which measurements are made. That is, variations between field realizations in terms of
magnitudes and locations of high and low property values lead to different data responses
as the fluctuations do not average out. Broadly speaking, such behavior is expected when
the physical response is averaging over length scales that are less than some ten correlation
lengths of the parameter field. In the non-ergodic setting, there are no analytical upscaling
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relationships linking the data to the hyperparameters of interest. If relationships assuming
ergodicity or assumptions of homogeneity are employed in such a case, bias is likely to occur
in the inferred hyperparameters (e.g., Visentini et al. 2020; Shakas et al. 2018). We suggest that
most measurements in hydrogeology and geophysics take place in such a non-ergodic setting.

Equivalent properties derived from measurements of one type of physics (e.g., the equivalent
aperture describing fluid flow) generally do not represent the equivalent property for another
type of physics (e.g., the equivalent aperture of thermal transport; e.g., Tsang 1992). This
disparity occurs as soon as the underlying physics is non-linear, implying for instance that
equivalent mean properties do not correspond to arithmetic mean properties (e.g., Jougnot
et al. 2018, Shakas and Linde 2015). One solution to this problem that is pursued in the
present study is to instead infer hyperparameters while accounting for small-scale hetero-
geneity. In this way, it is possible to use estimates derived from one type of physics to make
predictions for another type of physics. In many ergodic settings, upscaling theory provides
relevant relationships between hyperparameters and equivalent properties (e.g., Renard and
De Marsily 1997, Torquato and Haslach Jr 2002, Sanchez-Vila et al. 2006), while no such
relationships are available in the non-ergodic setting.

One way to infer hyperparameters in the non-ergodic setting by MCMC methods is to pa-
rameterize the field by hyperparameters and white noise to describe the local properties
(as e.g. in Laloy et al. 2015, Hunziker et al. 2017 and Xiao et al. 2021). The corresponding
full inversion problem involves typically many thousands of parameters, for which either an
efficient MH proposal scheme has to be designed (e.g., Xiao et al. 2021) or dimensionality
reduction arguments have to be invoked (e.g., Laloy et al. 2015, Rubin et al. 2010). While
the first approach is very challenging (curse of dimensionality, e.g., Robert et al. 2018), the
second approach may lead to biased estimates (Laloy et al. 2015). An example of the appli-
cation of dimensionality reduction relevant to the current study is Shakas et al. (2018) who
inferred fracture aperture distribution and geometry by combining GPR forward modeling
with flow-and-transport simulations. Even if this study provided reasonable estimates of the
statistical properties, it was plagued by a low acceptance rate, slow mixing of the chains and
no formal convergence despite a large number of iterations.

Instead of a full inversion, we here target the hyperparameters of interest only. Since the
local properties of the field influence the observations in the non-ergodic setting, the field
is considered a latent (unobservable) variable. Due to the random effect the unobservable
field has on the data, we speak of a random effects model. To implement a MH algorithm
inferring the hyperparameters only, we have to evaluate the likelihood of observing the
data given the currently proposed set of hyperparameters. In a random effects model, this
likelihood has generally no analytical form and is, therefore, referred to as intractable. The
pseudo-marginal (PM) method introduced by Beaumont (2003) and studied by Andrieu
and Roberts (2009) relies on an unbiased estimator of this intractable likelihood function
that is based on averaging over Monte Carlo samples of the latent variables. This implies
that after proposing a new set of hyperparameters, different field realizations with the same
hyperparameters are sampled. Then, the likelihood of each field realization can be calculated
and the intractable likelihood function is estimated by averaging over the obtained values.
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Beaumont (2003) demonstrates that using such a non-negative and unbiased estimator of
the likelihood within the MH algorithm results in an algorithm that draws samples from the
same target distribution as when using the true likelihood. In the PM method, a high variance
of the log-likelihood ratio estimator has a very strong adverse impact on performance, but
achieving a low variance often comes at the price of using an excessive number of samples in
the Monte Carlo averaging. To obtain an efficient algorithm balancing these two aspects, it
has been shown that the standard deviation of the log-likelihood estimator should be around
1.2-1.5 (Doucet et al. 2015). This can be ensured by (1) properly choosing the number of
samples used in the Monte Carlo averaging and by (2) applying importance sampling to draw
the realizations of the latent variables. In the context of state-space models, the number of
samples has to increase linearly with the number of observations, which is computationally
impractical in data-rich settings (Deligiannidis et al. 2018). To address this problem, the
correlated pseudo-marginal (CPM) by Deligiannidis et al. (2018) correlates the draws of latent
variables between two subsequent iterations, thereby, reducing the number of Monte Carlo
draws needed to ensure low-variance log-likelihood ratio approximations.

The pseudo-marginal and correlated pseudo-marginal methods have hardly been studied
in hydrogeological and geophysical settings. In Friedli et al. (2022), the CPM method was
shown to outperform other competing approaches to lithological tomography (Bosch 1999),
in which geophysical data are used to directly infer (hydro)geological properties of interest.
Friedli et al. (2022) considered a very high dimensionality of the target and latent variables
under the assumption of known hyperparameters. Here, the interest is instead placed on
inferring few hyperparameters while accounting for the effects of thousands of latent vari-
ables. This leads to a very different model setting and study objectives than Friedli et al. (2022).

We assess the performance of the CPM method with two synthetic test cases in which we infer
the hyperparameters describing (1) hydraulic property fields using equivalent (apparent) hy-
draulic conductivity data and (2) fracture aperture fields using borehole ground-penetrating
radar (GPR) reflection data. The two test cases are chosen to be representative for trans-
mission problems governed by diffusion (e.g., groundwater flow, heat transport, electrical
conduction) and reflection problems governed by wave-based physics (e.g., GPR, seismics
and acoustics). In the first test case, we consider a very data-poor setting and are mainly in-
terested in the geostatistical mean of the field. By comparing the CPM results with those of an
MH algorithm that replaces the forward solver with an analytical upscaling relationship that
assumes ergodicity, we show that assuming a simplified model can lead to strongly biased
estimates of the hyperparameters in the non-ergodic setting. We also demonstrate that the
CPM results are in agreement with those obtained by rejection sampling, which is computa-
tionally feasible for this very data-poor example. In the second test case, we consider much
more data and show that the CPM method provides accurate estimates of the geostatistical
mean and other hyperparameters. Additionally, we show how these hyperparameters de-
scribing aperture properties inferred from GPR data allow us to predict fracture transmissivity.

This paper is structured as follows. Section 4.2 introduces the CPM methodology in the
considered context. Section 4.3 presents the first test case based on measurements across a
hydraulic conductivity field and Section 4.4 presents the second test case in which borehole
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GPR data are used to infer the hyperparameters of fracture aperture fields. This is followed by
a discussion in Section 4.5 and conclusions in Section 4.6.

4.2 Methodology

The methodology section starts by presenting the considered random effects model and the
chosen notation of Gaussian random fields (Section 4.2.1). Bayesian inference and MCMC
algorithms are then described (Section 4.2.2) before introducing the correlated pseudo-
marginal method (Section 4.2.3) and giving a brief introduction into rejection sampling
(Section 4.2.4). It ends with a description of the performance assessment metrics used to
evaluate the results (Section 4.2.5).

4.2.1 Random effects model

We are interested in a random field describing hydrogeological or geophysical property distri-
butions. A random field (spatial stochastic process) X (d ,ω) with ω ∈Ω is a family of random
variables indexed by the spatial location d ∈ D ⊂ R2 (Chiles and Delfiner 2012). For fixed
ω=ω0, X (·,ω0) is a realization of the random field with ω referring to the “randomness” of
the field. For a fixed location d = d0, X (d0, ·) is a real-valued random variable. For simplicity,
in the following we write X (·) to indicate X (·,ω). The “true” hydrogeological or geophysical
property field is considered a realization of the underlying random field. We are interested in
inferring the hyperparameters θ parameterizing the geostatistical distribution of the random
field X (·).

We consider a Gaussian random field (GRF) X (·) for which all finite-dimensional distributions
are multivariate Gaussians (Chiles and Delfiner 2012). Its distribution is determined by the
mean and the covariance function. We assume the mean function µθ(·) to be constant even if
it would be straightforward to employ a non-stationary function. For the covariance function
Cθ(·, ·), we apply the powered exponential expressed here in isotropic form:

Cθ(b,b′) =σ2exp

(
−

( ||b −b′||
I

)2H
)

, (4.1)

whereby ||b|| =
p

bT b denotes the Euclidean norm, σ the standard deviation, I the integral
scale and H the Hurst exponent (with 0 < H ≤ 1). For H = 0.5, the powered exponential
covariance function reduces to the classical exponential covariance function and for H = 1
to the Gaussian (squared exponential) covariance function. We also consider geometric
anisotropy (e.g., Chiles and Delfiner 2012), for which the covariance depends not only on the
Euclidean distance but also on the direction between the considered positions. We assume a
known anisotropy angle of 90 degrees and refer to the integral scale in the vertical direction
as I y , which, multiplied by the anisotropy factor λ, gives the integral scale in the horizontal
direction I x .
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To infer the P hyperparameters θ = (θ1,θ2, ...,θP ), we have access to T measurements
y = (y1, y2, ..., yT ). As generally there exists no upscaling relationship linking the hyper-
parameters to the measurements, we formulate the problem with a random effects model
using the latent random field X (·):

X ∼ fθ(·) Y |X ∼ gθ(·|X ). (4.2)

For the latent random field X (·) we use a discretized representation on a (D ×D)-grid, whereby
we assume the grid cells to be representative elementary volumes (REV) for the governing
physical process. We consider a setting in which the number of target hyperparameters P
is much smaller than the number of latent variables (grid cells) D2. The measurements are
described by the random variable Y = G (X )+εO with G : RD2 → RT denoting the physical
forward solver and εO the observational noise. While Y refers to the random variable, y
denotes the “true” measurements considered to be a realization of Y .

Assuming the latent random field to be Gaussian, we write fθ(x) = ϕD2 (x ;µθ,Σθ) with
ϕD2 (·;µθ,Σθ) denoting the PDF of a D2-variate normal distribution with mean vector µθ =
(µθ(bi ))1≤i≤D2 and covariance matrix Σθ = (Cθ(bi ,b j ))1≤i , j≤D2 specified by the hyperparam-
eters θ. Furthermore, we assume the observational noise εO to be Gaussian, such that
Y |X ∼ gθ(·|X ) is distributed with the PDF gθ(y |x) = ϕT (y ;G (x),ΣY ), with ΣY being a di-
agonal matrix with the variance of the observational noise on its diagonal. To generate a
realization of the D2-dimensional GRF X (·) with mean vector µθ and covariance matrix Σθ,
we rely on a pixel-based parameterization,

X =µθ+Σθ1/2Z , (4.3)

with Z denoting a D2-dimensional random vector consisting of i .i .d . standard normal dis-
tributed variables.

4.2.2 Bayesian inference with Markov chain Monte Carlo

Bayes’ theorem specifies the posterior PDF p(θ|y) of the model parameters θ conditioned on
the measurements y as,

p(θ|y) = p(θ)p(y |θ)

p(y)
∝ p(θ)p(y |θ), (4.4)

where p(θ) denotes the prior PDF of the model parameters, p(y |θ) the likelihood function
and p(y) the evidence (assumed positive). If there is no analytical form of the posterior PDF
but it is possible to evaluate the unnormalized entity for some value of θ, MCMC methods
(see, e.g., Robert et al. 1999) can be applied to generate realizations drawn proportionally
from the posterior PDF. The basic procedure behind MCMC algorithms is to propose new
values for the target parameters, which are then accepted or rejected with a given probability.
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The Metropolis–Hastings (MH; Metropolis et al. 1953; Hastings 1970) method is a well-known
example. At iteration j , it proceeds as follows: First, new values for the target parameters θ( j )

are proposed using the model proposal density q(·|θ( j−1)). Then, the acceptance probability,

αM H

(
θ( j−1),θ( j )

)
= min

{
1,

q(θ( j−1)|θ( j ))p(θ( j )|y)

q(θ( j )|θ( j−1))p(θ( j−1)|y)

}
(4.5)

= min

{
1,

q(θ( j−1)|θ( j ))p(θ( j ))p(y |θ( j ))

q(θ( j )|θ( j−1))p(θ( j−1))p(y |θ( j−1))

}
,

is calculated and the proposed θ( j ) is accepted (if αM H (θ( j−1),θ( j )) ≥ V ) or rejected
(if αM H (θ( j−1),θ( j )) < V ) on the basis of a draw of a uniformly distributed random vari-
able V ∼ Unif([0,1]). If the proposed θ( j ) is rejected, the MCMC chain remains at the old
position (θ( j ) = θ( j−1)).

In order to evaluate the acceptance probability in Equation (4.5), the value of the likelihood
function θ 7→ p(y |θ( j )) has to be calculated. In a random effects model (see Section 4.2.1),
the likelihood function is given by,

p(y |θ) =
∫

gθ(y |x) fθ(x)d x . (4.6)

This integral often does not admit an analytical form making the direct implementation of the
MH algorithm impossible and specific algorithms such as the correlated pseudo-marginal
method are needed (outlined in Section 4.2.3 below).

MCMC proposal scheme

To achieve an efficient MCMC algorithm, one needs a suitable proposal density q(·|θ( j−1)).
Even in an inversion targeting only few parameters, one has to choose the direction and size
of the model proposal steps carefully. Too large steps lead to a low acceptance rate, while too
small steps lead to very slow exploration of the target space; both of these situations lead
to an algorithm needing an unnecessarily large number of iterations until convergence (see
Section 4.2.5 below for the assessment of convergence).

To generate model proposals, we apply the adaptive Metropolis algorithm of Haario et al.
(2001), in which the covariance matrix describing the Gaussian proposal distribution is
updated during the MCMC run. Despite the adaptation, the algorithm is ensured to be
ergodic, although not Markovian (Haario et al. 2001). The Gaussian proposal distribution at
iteration j is expressed as q(θ( j )|(θ(0),θ(1), ...θ( j−1))) =ϕd (θ( j−1),C(j)), with

C(j) =
{

C(0) j ≤ j0

sP (Cov(θ(0),θ(1), ...,θ( j−1))+ϵIP ) j > j0,
(4.7)

denoting the evolving covariance matrix. During the first j0 iterations, the method uses
an initial covariance matrix C(0) selected according to available prior knowledge. After this
initial period, the covariance matrix is updated with C(j) = sP (cov(θ(0),θ(1), ...,θ( j−1))+ϵIP ),
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where sP is a parameter depending on the dimension of the target space (Haario et al. (2001)
use sP = (2.4)2/P as in Gelman et al. 2013), ϵ > 0 is a small constant and IP denotes the
identity matrix of dimension P . To ensure an efficient calculation, Haario et al. (2001) use the
recursion formula,

C(j+1) = ( j −1)

j
C(j) + sP

j

(
jθ( j−1) θ( j−1)T − ( j +1)θ( j ) θ( j )T +θ( j )θ( j )T +ϵIP

)
, (4.8)

with θ( j ) = 1/( j +1)
∑ j

i=0θ
(i ) and θ(i ) considered to be column vectors.

For a target parameter θi with bounded support [a,b], one has to make sure that the pro-
posed value lies within the considered interval. Therefore, we apply fold boundary handling
implying that a proposal which passes one boundary of the support is re-entered through the
other boundary (Vrugt 2016), that is, similar to periodic boundary conditions in numerical
simulations.

4.2.3 Pseudo-marginal and correlated pseudo-marginal method

In Section 4.2.2, we explained that the considered random effects model has an intractable
likelihood function. The pseudo-marginal and correlated pseudo-marginal methods pre-
sented below provide a solution to this in the form of Monte Carlo estimations of the like-
lihood function. To illustrate the presented concepts, a flow chart describing the basic
procedure of the correlated pseudo-marginal method is depicted in Figure 4.1.

Pseudo-marginal method

A MH algorithm employing a non-negative unbiased estimator of the likelihood function
samples realizations of the same target distribution as one using the true likelihood (Beau-
mont 2003). To exploit this remarkable property, Beaumont (2003) proposes a MH algorithm
estimating, at each iteration, an intractable likelihood function using Monte Carlo averaging
over samples of the latent variables. This approach was termed the pseudo-marginal (PM)
method and analyzed theoretically by Andrieu and Roberts (2009).

The efficiency of the PM method depends mainly on the variability of the likelihood estimator.
When only one brute force Monte Carlo sample of the latent variables is used to estimate
the likelihood, the algorithm is likely to suffer from a low acceptance rate caused by the high
variability of the log-likelihood estimator. This happens when the likelihood estimator can
take very different values for different realizations of the latent variables. In our setting, this
is the case if different local properties of the latent random field X (·) lead to very different
data responses even if the hyperparameters of the fields are the same. The variance of the
log-likelihood estimator can be reduced by (1) using many samples of the latent variables
and (2) selecting a well-working importance sampling (IS; e.g. Owen and Zhou 2000) scheme
to draw them from.
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The PM method proposes the following unbiased estimator for the likelihood p(y |θ) of
Equation (4.6),

p̂N (y |θ) = 1

N

N∑
n=1

wθ(y |X n), with wθ(y |X n) = gθ(y |X n) fθ(X n)

mθ(X n)
, (4.9)

where X n
i .i .d∼ mθ(·) for n = 1,2, ..., N with mθ(·) denoting the importance density function.

To derive the importance density x 7→ mθ(·), we follow the approach of Friedli et al. (2022).
Therefore, we choose a distribution which is nearly proportional to x 7→ gθ(y |x) fθ(x) (see
e.g., Owen and Zhou 2000 referring to the results of Kahn and Marshall 1953). Since it holds
that p(x |θ, y) ∝ gθ(y |x) fθ(x), we approximate the importance density with a Gaussian
expression of x 7→ p(x |θ, y). For details, see Appendix A.

Correlated pseudo-marginal method

The efficiency of the PM method depends strongly on the number of latent variable samples N
used to estimate the likelihood function. If this number is too low, the variability of the
log-likelihood ratio estimator is likely to be high and the MH algorithm suffers from an
impractically low acceptance rate (Beaumont 2003). In the context of state-space models,
Deligiannidis et al. (2018) show that N needs to increase linearly with the number of data T ,
thereby, often implying prohibitively high computational costs. For this reason, Deligiannidis
et al. (2018) adapted the PM method by correlating the draws of latent variables used in the
current and proposed step of the MH algorithm. The resulting correlated pseudo-marginal
method (CPM method; illustrated in Fig. 4.1) leads to a better performance as the variance of
a ratio of estimators is reduced when positively correlating the estimators of the denominator
and numerator (Koop 1972). For a standard normal distributed latent variable Z , the CPM
method draws a correlated realization of the n-th latent variable in iteration j by,

Z ( j )
n = ρZ ( j−1)

n +
√

1−ρ2ϵ, with ρ ∈ (0,1) and ϵ= (ϵ1,ϵ2, ...,ϵL),ϵi
i .i .d .∼ N (0,1). (4.10)

As numerous distributions can be obtained by transformations from standard normal vari-
ates, the general applicability of the CPM method is not limited by the uncorrelated Gaussian
assumption (e.g. Chen et al. 2018). For example, in our two test cases that will follow, we
generate correlated Gaussian latent variables X with mean µθ and covariance matrix Σθ (or
µI S and ΣI S ) by transforming correlated standard-normally-distributed variables Z using

Equation (4.3). We stress that the proposed latent variables Z ( j )
n are only saved if θ( j ) is

accepted, otherwise we keep Z ( j )
n = Z ( j−1)

n as for θ( j ) = θ( j−1) in the MH algorithm.
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Propose new hyperparameters θ( j ) using proposal
density q(·|θ( j−1)) (Section 4.2.2).

Estimate intractable likelihood p(y |θ( j )):
• Sample N correlated realizations of the latent

random field X using importance density
mθ( j ) (·) derived with hyperparameters θ( j ):

• Simulate data for each field realization G (X n)
• Calculate N likelihoods gθ(y |X n) by

comparing simulated to true data y (Eq. 4.2)
• Estimate p(y |θ( j )) by weighted averaging

(Eq. 4.9)

Importance density mθ( j ) (·):
• Gaussian ϕL(·;µI S ,ΣI S ),

mean µI S and covariance
matrix ΣI S depend on θ( j )

(Appendix 4.7.1)
• X n =µI S +ΣI S

1/2Z ( j )
n ,

L-variate standard normal
variable Z ( j )

n correlated
with Z ( j−1)

n (Eq. 4.10)

Accept θ( j ) with probability αM H (θ( j−1),θ( j ))
(Eq. 4.5), otherwise keep θ( j ) = θ( j−1).

Figure 4.1: Flow chart illustrating the CPM method with importance sampling at iteration j .

The CPM method has two additional parameters compared to the standard MH algorithm:
the latent variable sample size N and the correlation parameter ρ. Deligiannidis et al. (2018)
propose to select N and ρ such that the variance of the log-likelihood ratio estimator,

W = log
(
p̂( j )

N (y |θ)
)
− log

(
p̂( j−1)

N (y |θ)
)

, (4.11)

takes values between 1.0 and 2.0 for θ fixed in a region of high posterior probability mass.
In practice, decreasing the variance of the estimator requires (1) more samples of the latent
field or (2) a higher correlation of the samples making the exploration of the latent space
slower. The range of 1.0 to 2.0 ensures a reasonable trade-off between the variance of the
estimator, the exploration of the latent space (which would be slowed down by high ρ) and the
computational cost (increases with increasing N ). The region of θ with high posterior mass
can be chosen based on an initial MCMC run with N and ρ selected according to available
prior knowledge. This choice can be inefficient, but will anyway give some first information.
In practice, we first fix the number of samples N such that it is smaller than the number of
available parallel processors. Then, we test a range of values for ρ and select one leading to
Var(W ) being between 1.0 and 2.0.
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4.2.4 Rejection sampling

Rejection sampling (RS; Ripley 2009a) is a basic Monte Carlo technique to generate indepen-
dent samples from the posterior PDF. While it often suffers from an unfeasibly low acceptance
rate, it is an exact sampling method (e.g., Robert et al. 1999) proceeding as follows:

1. Sample θ from its prior distribution p(θ).
2. Sample u from a uniform distribution over [0,1].

3. Accept θ if u ≤ p(y |θ)
SL

, where SL is the supremum of the likelihood function.

For our random effects model (Section 4.2.1), we estimate the intractable likelihood p(y |θ)
by sampling one brute-force realization x of the latent variable field X ∼ fθ(·) with hyperpa-
rameters θ,

p̂(y |θ) = gθ(y |x) =ϕT (y ;G (x),ΣY ) (4.12)

= det(2πΣY )−1/2 exp

(
−1

2
(y −G (x))TΣY

−1(y −G (x))

)
.

In practice, an important challenge of RS methods is the need to estimate a tight bound SL

for the likelihood function. The most conservative choice is to assume a perfect data fit
such that for our Gaussian likelihood function above we get SL = det(2πΣY )−1/2, but this will
typically lead to an acceptance rate being close to zero. If we assume the errors to be equal
to the standard deviation of the observational noise, we get SL = det(2πΣY )−1/2 exp

(−1
2 T

)
,

which might lead to some bias as some realizations are likely to have higher likelihoods. One
further possibility is to use the maximum likelihood value of the prior samples. To achieve
this, RS is run by first saving all sampled prior realizations and their corresponding likelihood
values. From this database, the maximum likelihood value is determined and all samples
are assessed using this value. To obtain some accepted prior samples of θ while ensuring an
accurate estimate, we combine the second and the third approach and use the maximum of
those two values as the supremum SL .

4.2.5 Performance assessment

To assess if the CPM algorithm has converged, we use the R̂-statistic of Gelman and Rubin
(1992) comparing the within-chain variance with the between-chain variance of the second
half of the MCMC chains. We follow the convention that the R̂-statistic has to be smaller or
equal to 1.2 for all model parameters. We also consider the acceptance rates (AR), which are
aimed to be between 15% and 30% as proposed by Vrugt (2016).

We evaluate the amount of information gained by the inversion by comparing the marginal
prior and posterior PDFs of the hyperparameters. This is achieved using the Kullback–Leibler
divergence (KL divergence; Kullback and Leibler 1951) expressing the distance between two
PDFs z 7→ p1(z) and z 7→ p2(z) (assumed positive) by,

KL(p1||p2) =
∫

p1(z) log

(
p1(z)

p2(z)

)
d z. (4.13)
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If KL(p1||p2) = 0, this means that the two PDFs are equal (almost everywhere), while an in-
creasing value indicates diverging distributions. For example, for a standard normal PDF p2(·),
a KL divergence KL(p1||p2) = 0.1 is obtained by reducing the standard deviation within a cen-
tred standard normal p1(·) to 0.7 and a KL divergence KL(p1||p2) = 1 is obtained by reducing
the standard deviation to 0.23. To approximate the posterior PDFs, we apply kernel density
estimation to the posterior samples (with manually adapted bandwidth).

To assess the quality of the posterior estimates, we use histograms to visually compare the
marginal distributions with the true underlying values. Additionally, we evaluate the accuracy
of the obtained posterior samples for each hyperparameter θi (i ∈ {1,2, ...P }) numerically by
applying a so-called scoring rule (Krüger et al. 2021). A scoring rule assesses the accuracy of a
predictive PDF z 7→ p(z) with respect to a true value θ by accounting for both the statistical
consistency between predictions and observations (calibration) and the sharpness of the
prediction (Gneiting and Raftery 2007). For our test cases, we employ the logarithmic score
(logS; Good 1952) defined by,

logS(p,θ) =− log p(θ), (4.14)

that is related to the Kullback–Leibler divergence (Gneiting and Raftery 2007). If we compare
two posterior estimates, the one with the lower score is favoured. In practice (as for the KL
divergence), we use a kernel density estimate of the posterior samples, which depends on the
choice of the kernel and the bandwidth of the kernel smoothing window. We use a Gaussian
kernel with manually adapted bandwidth. Our testings show that the choice influences the
specific score values, but that the main results in terms of comparisons and conclusions are
robust. If the posterior samples do not include the true value of θ, the density estimate of
p(θ) can be numerically zero resulting in a logarithmic score of infinity. The logarithmic score
is also available for multivariate densities, thereby, allowing evaluation of the estimated joint
posterior PDFs of the hyperparameters.

4.3 Test case 1: Hydraulic conductivity field

Hydraulic conductivity is a key hydrogeological property. Particularly in contamination
studies, the spatial variation of hydraulic conductivity plays an important role as it has a
major influence on solute movement (Butler 2005). Visentini et al. (2020) rely on time-lapse
electrical resistance data during a tracer test to demonstrate that measurements of equivalent
electrical properties, at a given scale, can be used to infer hyperparameters of the hydraulic
conductivity field below this scale. Here, we seek to infer the hyperparameters of a log-
hydraulic conductivity field in a data-poor setting involving only horizontally- and vertically-
averaged equivalent hydraulic conductivity data. With such limited data, it is tempting to
ignore heterogeneity or rely on upscaling relations valid for ergodic fields, as there is little
hope that the data can constrain the field or its hyperparameters well. This example is used
to demonstrate that ignoring heterogeneity or assuming ergodicity leads to significant errors
when estimating the geostatistical mean. Furthermore, this data-poor setting allows for
comparisons with rejection sampling (Section 4.2.4), thereby, demonstrating that the CPM
method targets the right posterior of the hyperparameters.
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4.3.1 Data and inversion setting

We target a 1 m×1 m log-hydraulic conductivity field distributed according to a Gaussian
random field GRF (µθ(·),Cθ(·, ·)) with constant mean µθ(·) and exponential covariance func-
tion Cθ(·, ·) (Eq. 4.1 with H = 0.5). We allow geometric anisotropy (Section 4.2.1) and denote
the integral scale in the vertical direction (depth) as I y and the anisotropy factor as λ. To-
gether with the mean and standard deviation of the log-field, this forms the hyperparameters
θ = (µ,σ, I y ,λ). Although we are mainly interested in the mean, we infer the other hyperpa-
rameters along with it, thereby, accounting for the possible non-ergodicity of the field. The
log-hydraulic conductivity field (natural logarithm) is generated on a 100×100 grid (cell size
is 1 cm) using a pixel-based approach (Section 4.2.1).

Synthetic data generation

We generate noise-contaminated synthetic data in both an ergodic and a non-ergodic setting.
For the ergodic setting, we create one “true” field realization from which we obtain noise-
contaminated data by assuming the field to be isotropic and use θ = (ln(10−4),0.5,0.03 m,1)
and for the non-ergodic, anisotropic case we choose θ = (ln(10−4),1.5,0.1 m,3). The true
log-hydraulic conductivity fields are shown in Figure 4.2. Due to the discretization of the field
chosen to limit the number of grid cells, the ergodic field is only nearly ergodic, implying
that the generated data will vary somewhat when considering different field realizations with
the true hyperparameters. In what follows, we will refer to it as ergodic except when a more
specific designation is needed.
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Figure 4.2: “True” log-hydraulic conductivity fields of the first test case for (a) the ergodic
setting and (b) the non-ergodic setting.
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For the simulated measurements, we impose a hydraulic pressure gradient along either
the horizontal or the vertical direction of the target field and observe a flux across one
boundary. This information can then be used to calculate the equivalent horizontal and
vertical hydraulic conductivities, given by (Visentini et al. 2020),

K H = 1

△ΦH

∫
ΓH

−K (x)▽x Φ
H (x)dx, (4.15)

K V = 1

△ΦV

∫
ΓV

−K (x)▽y Φ
V (x)dx, (4.16)

where K (x) denotes the hydraulic conductivity at position x with x = (x, y)T referring to the
2-D position vector. Furthermore, △ΦH = △ΦV = 1 kPa denotes the constant hydraulic
pressure difference imposed along the horizontal and vertical direction, respectively and
ΦH (x) andΦV (x) the resulting hydraulic head. Finally, ΓH and ΓV refer to integration paths
separating the left and right and the top and bottom boundaries, respectively.

For the ergodic and isotropic field (Fig. 4.2a), we obtain equivalent hydraulic conductivities
of K H = K V = 9.2× 10−5 m/s and for the non-ergodic anisotropic field (Fig. 4.2b) we get
an equivalent horizontal hydraulic conductivity of K H = 6.6×10−5 m/s and an equivalent
vertical hydraulic conductivity of K V = 4.8×10−5 m/s. Finally, we add i .i .d . relative errors εO

to the data pairs using a centred Gaussian distribution with a standard deviation given by 3%
of the corresponding values.

Inversion settings and prior assumptions

The CPM method is implemented running three chains in parallel with adaptive proposals
(Section 4.2.2) using an initialization period of j0 = 100 where C(0) is a diagonal matrix with
(0.008,0.008,0.002,0.2) along its diagonal. For the prior PDFs of the first three hyperparame-
ters, we use Uniform distributions: for the mean µ, we use the interval [log(10−5), log(10−3)],
a range of standard deviation σ in-between [0,2] and for the integral scale I y we assume
[0 m,0.5 m]. To account for the anisotropy factor λ being asymmetric around one, we employ
a log-Uniform distribution with boundaries [0.1,10].

To tune N and ρ in the CPM method (Section 4.2.3), we consider the variance of the log-
likelihood ratio estimator W (Eq. 4.11). Figure 4.3 depicts the dependence of the variance
of W on the correlation ρ for ten and fifty samples (N = 10,50) of the latent variable X for
both the ergodic and the non-ergodic data setting. To evaluate the variances, we fix θ at
values having high posterior probability and draw realizations of the field by both sampling
from its prior PDF fθ(x) (noIS) and using importance sampling (IS, Appendix 4.7.1). In the
ergodic setting (Fig. 4.3a), all considered cases lead to variances of W being close to the target
range between 1.0 and 2.0 recommended by Deligiannidis et al. (2018) even for ρ = 0. This
is not surprising as in a purely ergodic setting, the realization of the random field does not
influence the data. For the non-ergodic setting (Fig. 4.3b), the variance of W is up to 103

times higher and it is necessary to employ importance sampling. Of course, sampling from
the prior could lead to variances of W being within the desired range, but the required values
of N and ρ would lead to either excessively high computational costs at each iteration or
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very slow mixing in the draws of the latent variables. In the limit of ρ = 1, the variance of
W is trivially equal to zero for all settings as we use the same latent variable samples in the
first and second term of W , but this would lead to biased results. Initial MCMC runs showed
that very diverse values of σ, I y and λ have high posterior probabilities in both the ergodic
and non-ergodic data settings as, in both cases, non-ergodic field realizations are sampled
frequently by the CPM method. To ensure a controlled variance for all values θ with high
posterior probability for both data settings, we perform importance sampling and choose
N = 50 and ρ = 0.975 as it is appropriate for the more challenging non-ergodic settings.
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Figure 4.3: Variance of the log-likelihood ratio estimator W for the first test case (hydraulic
conductivity) as a function of the correlation ρ with θ being fixed at values with high posterior
probability: (a) data generated with the ergodic setting and (b) data generated with the non-
ergodic setting. The different markers refer to the number of latent variable samples and
if sampling is made with or without importance sampling (IS). The black horizontal lines
delimit the range between 1.0 and 2.0 recommended by Deligiannidis et al. (2018).

For comparison purposes, we also run rejection sampling (RS; see Section 4.2.4) and a MH
inversion assuming the parameter field to be ergodic (referred to as simplified MH; Fig. 4.4).
For RS, we use the same number of field samples with corresponding forward simulations as
needed by the CPM method for convergence. For the simplified MH, we rely on equations
presented by Gelhar and Axness (1983) for the equivalent hydraulic conductivities in a two-
dimensional anisotropic infinite domain (ensuring ergodicity) under mean uniform flow
conditions:

K H = KG

(
1+σ2(

1

2
− 1

1+λ )
)
, K V = KG

(
1+σ2(

1

2
− λ

1+λ )
)
, (4.17)

with KG denoting the geometric mean of the linear hydraulic conductivity field K = exp(X )
(entry-wise exponential), which is the only parameter influencing the response for isotropic
fields (λ= 1). It holds that KG = exp(X ) with X being the arithmetic mean of X .
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Propose new hyperparameters θ( j ) = (µ( j ),σ( j ),λ( j ))
using proposal density q(·|θ( j−1)) (Section 4.2.2).

Calculate likelihood p(y |θ( j )):
• Calculate K H( j ) and K V ( j ) for θ( j ) under the

assumption of ergodicity (Eq. 4.17)
• Calculate likelihood p(y |θ( j )) comparing the

calculated data responses K H( j ) and K V ( j )

with the true data y = (K H ,K V ) (Eq. 4.2)

Accept θ( j ) with probability αM H (θ( j−1),θ( j ))
(Eq. 4.5), otherwise keep θ( j ) = θ( j−1).

Figure 4.4: Flow chart illustrating the simplified MH (assuming ergodicity) procedure for the
first test case at iteration j .

4.3.2 Results

We consider first the posterior PDF of the geostatistical mean µ obtained with the CPM
method for the data generated with the ergodic setting (Fig. 4.2a). Only the samples obtained
for the second half of the chains, after convergence has been declared (with respect to the
R̂-statistics, Table 4.1), are shown. The posterior PDF of the mean value µ in the ergodic data
setting is centred around the true geostatistical mean and is clearly distinguishable from
the Uniform prior PDF (Fig. 4.5a). This is confirmed by the correspondingly low logarithmic
score emphasizing the accuracy of the posterior samples and the high KL divergence with
respect to the prior PDF (Table 4.1). Comparison with the posterior samples obtained with
RS (Fig. 4.5b) shows that both methods generate similar results with comparable KL diver-
gences to the prior and almost equal logarithmic scores (Table 4.1). For the posterior samples
obtained by assuming ergodicity (simplified MH, Fig. 4.4), we note a more compactly defined
posterior than with CPM and RS with values of the mean being close to the true value (c.f.,
Figs. 4.5a, 4.5b and 4.5c). Still, the logarithmic score of the mean is much higher than the one
obtained with CPM and RS (Table 4.1), indicating that the samples generated under ergodic
assumptions are not centred around the true geostatistical mean and are overconfident. This
somewhat paradoxical result is a consequence of the data setting only being nearly ergodic,
demonstrating the risk of getting biased and overconfident results even when the assumption
of ergodicity is nearly fulfilled. The considered measurement scale is indeed 33 times larger
than the integral scale.

For the non-ergodic data setting (Fig. 4.2b), the CPM-derived posterior distribution of the
mean value µ contains the true value while being shifted towards the observed equivalent
properties log(K H ) and log(K V ), leading to a higher logarithmic score than in the ergodic
setting (Fig. 4.5d and Table 4.1). The posterior samples obtained with RS (Fig. 4.5e) are spread
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slightly wider than the ones of CPM, thereby, capturing more frequently the true value and
leading to a lower KL divergence and a lower logarithmic score. We note that RS has an
acceptance rate of 0.04% in this very data-poor and non-ergodic setting. In the non-ergodic
setting, the simplified MH method leads to important errors in the estimated mean value
(Fig. 4.5f). Indeed, the posterior samples are located around the (log-transformed) observed
equivalent properties K H and K V and are removed from the true value of the geostatistical
mean. This is reflected in a logarithmic score of infinity (see Table 4.1). Importantly, while
the inversion assuming ergodicity solely samples mean values outside of the true value and
has a very small posterior width, the CPM method includes the true value in the posterior
samples (Figs. 4.5d and 4.5f).

For the other hyperparameters σ, I y and λ inferred along with the mean µ, we get less
well-resolved posterior estimates with both the CPM method and RS indicating that they
are only weakly resolved by the available data. The corresponding plots are depicted in the
Appendix 4.7.2.

Table 4.1: Table summarizing the results for the first test case (log-hydraulic conductivity)
obtained with the CPM method, rejection sampling (RS) and the inversion assuming er-
godicity (simplified MH; Fig. 4.4) for the ergodic (Fig. 4.2a) and the non-ergodic (Fig. 4.2b)
data settings: convergence refers to the iteration in the MH methods with the R̂-statistics
being smaller than 1.2 for all parameters, the logarithmic score (LogS; Eq. 4.14) assesses
the accuracy of the posterior samples with respect to the true value and the KL divergence
(Eq. 4.13) is calculated for p1 being the kernel density estimate gained with the (marginal)
posterior samples and p2 being the prior PDF. The bandwidth used for the marginal kernel
density estimates of µ is 0.03 for CPM and RS and 0.005 for simplified MH.

Method CPM RS Simp. MH CPM RS Simp. MH
Dataset Erg. Erg. Erg. Non-erg. Non-erg. Non-erg.

Convergence 1’300 - 4’000 2’200 - 10’000
AR 15 % 0.11 % 20 % 15 % 0.04 % 15 %

LogS µ -0.33 -0.32 17.23 1.57 1.19 Inf
KL div. µ 1.07 1.16 3.92 1.05 0.66 4.01
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Figure 4.5: Posterior samples obtained with the CPM method, rejection sampling (RS) and
an inversion assuming ergodic conditions (simplified MH, Fig. 4.4) for the mean µ in the
first test case (log-hydraulic conductivity): CPM results using the data generated with the
(a) ergodic setting, (d) non-ergodic setting, RS using the data generated with the (b) ergodic
setting and (e) non-ergodic setting and simplified MH using the data generated with the (c)
ergodic setting and (f) non-ergodic setting. The dashed line is denoting log(K H ), the dotted
line log(K V ), the solid vertical line indicates the true mean value and the red horizontal line
the prior PDF.

4.4 Test case 2: Fracture aperture fields

Rock fractures play an important role as conduits (or barriers) for flow and solute transport.
Their properties have often a major influence on hydrogeologic and geotechnical processes
(National Research Council 1996), but field characterization is inherently difficult. The high
contrast between the electrical properties of the filling of the fractures and the host rock (e.g.,
a water-filled fracture in granite host rock) leads to a very strong thin-bed response in ground
penetrating radar (GPR) data. Quite remarkably, even sub-mm apertures yield measurable
GPR responses even when the wavelength in the host rock may be on a metric scale. Imaging
and characterization of fractures with GPR data has been studied extensively both from a
theoretical perspective (e.g., Bradford and Deeds 2006; Deparis and Garambois 2009) and
in controlled experiments (e.g., Grégoire and Hollender 2004; Tsoflias et al. 2015). In these
studies, it is typically either assumed that the aperture and material properties do not vary
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over the first Fresnel zone or that the influence of heterogeneous aperture fields average
arithmetically in the acquired data. In a modeling study, Shakas et al. (2018) assess this latter
simplification by exploring a deterministic inversion in which the actual aperture field is
heterogeneous at small scales, while it is assumed to be homogeneous when inferred for.
Despite that the data can be fitted to the noise level, they find that the estimated apertures
offer only reliable approximations of the arithmetic mean of the aperture field when the
correlation length of the aperture heterogeneity is larger than the first Fresnel zone. Since
fractures are known to be highly heterogeneous with self-affine properties, the study by
Shakas et al. (2018) suggest that many GPR-based estimations of mean apertures are biased
and unreliable. They suggest that such heterogeneity needs to be explicitly accounted for,
but they do not propose a solution. In this second data-rich test case, we will demonstrate
how the CPM method can be used to obtain unbiased estimates of the mean aperture and
statistics pertaining to the aperture field. We will then show how this information can be used
to predict the equivalent hydraulic transmissivity of the fractures.

4.4.1 Data and inversion setting

We consider a 5 m×5 m fracture aperture field X (·) described as an isotropic Gaussian ran-
dom field GRF (µθ(·),Cθ(·, ·)) with constant mean µθ(·) and powered exponential covariance
function Cθ(·, ·) as specified in Equation (4.1). With the CPM method, we target the mean µ,
the standard deviation σ, the integral scale I = I x = I y and the Hurst exponent H . The het-
erogeneous aperture field X (·) is simulated using a pixel-based approach (Section 4.2.1) on a
50 × 50-dimensional grid (D = 50, cells of 10 cm side-lengths).

Synthetic data generation

The fracture aperture field from which data are generated is depicted in Figure 4.6a; the
true hyperparameters are θ = (µ,σ, I , H) = (0.5 cm,0.1,0.2 m,0.8). We only consider a single
fracture in a model domain of 10 m×10 m×10 m (Fig. 4.6b). The background rock matrix is
assumed to be homogeneous with a relative electrical permittivity of 9 and an electrical con-
ductivity of 0.001 S/m. For the fracture, we assume a constant relative electrical permittivity
of 81 and electrical conductivity of 0.1 S/m.

To generate the synthetic GPR reflection data, we rely on the effective-dipole method of
Shakas and Linde (2015). This modeling framework combines analytical solutions for radia-
tion in the matrix domain and dipole elements, corresponding to discretized sections of the
fracture, radiating as electric dipoles modulated by the thin-bed reflection coefficients. A
simple schematic of the method is represented in Figure 4.6c (adapted from Fig. 3 of Shakas
et al. 2018). We use two GPR reflection traces generated with sources and receivers located
5 m away from the fracture and with offsets of 0 m and 2 m (Fig. 4.6b). The source signal is
assumed to be vertically-oriented with a source spectrum consisting of a Ricker wavelet with
dominant wavelength of 100 cm. With a discretization of 10 cm of the aperture field, this
results in 10 elements per dominant wavelength for which highly accurate simulations are
expected (Shakas et al. 2018). The responses are generated in the frequency-domain using
a frequency range from zero to 300 MHz with a sampling step size of 1 MHz. As in practice,
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the amplitude of the source wavelet is unknown, Shakas et al. (2018) normalize the response
values in the data generation and inversion. Here, we instead introduce an unknown factor
cA by which the responses are multiplied. This factor is equal to one for the true data and
it is inferred within the inversion. This extends the target variables to θ = (µ,σ2, lc , H ,cA).
Finally, for each of the 300 complex-valued numbers representing the electric field, we add
independent realizations of Gaussian measurement noise εO with a standard deviation of
3 % of the maximal value. The inversions are performed in the frequency-domain, but we
present for visual purposes the two corresponding traces in the time-domain (Figure 4.6d).
For completeness, we also show the smoother traces (Figure 4.6e) obtained by sampling over
the same frequency range with a sampling step size of 0.1 MHz.
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Figure 4.6: (a) “True” fracture aperture field of the second test case with θ =
(0.5 cm,0.1,0.2 m,0.8,1). (b) Model domain with aperture field and transmitter-receiver
layout. (c) Schematic of the effective-dipole forward modeling framework (adapted from Fig.
3 of Shakas et al. 2018). GPR reflection traces (time-domain) with a sampling step size of
(d) 1 MHz and (e) 0.1 MHz.
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Inversion settings and prior assumptions

As in the first test case, we run an adaptive Metropolis–Hastings version of the CPM method
with three chains in parallel. We specify j0 = 500 and C(0) as a diagonal matrix with 0.001 on
its diagonal. Furthermore, to ensure a suitable acceptance rate, we decrease the step size
by 50 %. For the prior PDFs of the hyperparameters, we use Uniform distributions: for the
mean µ we use Unif[0 cm,1 cm], for the standard deviation σ we use Unif[0 cm,0.5 cm], for
the integral scale lc we use Unif[0 m,1 m], for the Hurst exponent H we use Unif[0.1,1] and
for the amplitude factor cA we use Unif[0.5,2].

The importance sampling mean µI S for the latent aperture field X when the proposed θ( j )

is the true hyperparameters is depicted in Figure 4.7a (see formulas in Appendix 4.7.1). Fig-
ure 4.7b depicts the dependence of the variance of the log-likelihood ratio estimator W
(Eq. 4.11) on N and ρ. The importance sampling leads to a tremendous decrease of the
variance of W (e.g., for N = 1 and ρ = 0, the variance of W is reduced from 106 to 102). Fur-
thermore, increasing the number of latent variable samples N and the correlation parameter
ρ also reduces the variance of W strongly. Following Figure 4.7b, we run the CPM algorithm
with N = 5 and ρ = 0.975 in combination with importance sampling.
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Figure 4.7: (a) Importance sampling mean µI S of the aperture field for the true values of θ in
the second test case (Appendix 4.7.1) and (b) variance of the log-likelihood ratio estimator W
as a function of the correlation ρ with θ being fixed at values with high posterior probability.
The different markers refer to different numbers N of latent variable samples drawn with or
without importance sampling (IS). The black horizontal lines delimit the range between 1.0
and 2.0 recommended by Deligiannidis et al. (2018).
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To place the results obtained with CPM into context, we compare them to those obtained
with an inversion assuming the aperture field to be homogeneous (illustrated with a flow
chart in Fig. 4.8). To achieve this, we only infer the mean aperture µ and the amplitude factor
cA, which is broadly similar to the inversion setting considered by Shakas et al. (2018).

Propose new hyperparameters θ( j ) = (µ( j ),c( j )
A )

using proposal density q(·|θ( j−1)) (Section 4.2.2).

Estimate likelihood p(y |θ( j )):
• Calculate data for a homogeneous aperture field

X =µ( j ) with amplitude factor c( j )
A

• Calculate likelihood p(y |θ( j )) comparing the
calculated data with the true data y (Eq. 4.2)

Accept θ( j ) with probability αM H (θ( j−1),θ( j )) (Eq. 4.5),
otherwise keep θ( j ) = θ( j−1).

Figure 4.8: Flow chart illustrating the homogeneous inversion procedure for the second test
case at iteration j .

4.4.2 Results

The estimated marginal posterior PDFs of θ = (µ,σ2, lc , H ,cA) obtained with the CPM method
are depicted in Figures 4.9a-4.9e. Convergence is reached within 10,000 iterations with
respect to the R̂-statistic and we display the results for the second half of the chains. The
histograms depicting the posterior samples of the mean µ (Fig. 4.9a), standard deviation σ
(Fig. 4.9b) and amplitude factor cA (Fig. 4.9e) show the strongest concentration with respect
to the prior and correspondingly high KL divergences (Table 4.2). The sample range for the in-
tegral scale I (Fig. 4.9c) and the Hurst exponent H (Fig. 4.9d) is equally wide as the respective
prior PDFs and the corresponding KL divergences are rather small. Nonetheless, the integral
scale is preferentially sampled in the region of the true value. As the values of the logarithmic
score (Table 4.2) can generally not be compared between hyperparameters (different width
of support), they will become of interest only in the comparison with a competing method.

Figures 4.9f and 4.9g show the histograms of the posterior samples for the mean µ and the
amplitude factor cA obtained for the inversion assuming a homogeneous aperture (Fig. 4.8).
The range of the samples is very narrow with high KL divergences with respect to the prior PDF
(Table 4.2) but located far from the true parameter values. This results in infinite logarithmic
scores (Table 4.2). As we have seen, the CPM method accounting for heterogeneity leads
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to posterior samples of the mean and amplitude factor that cover a wider range including
the true values used to generate the data as reflected in lower logarithmic scores (Table 4.2).
The estimates of the mean aperture µ and the amplitude factor cA are highly correlated.
Figure 4.9h shows that under the assumption of knowing cA = 1, the range of the samples
obtained with CPM for the mean aperture would be more narrow and shifted towards the
true value of 0.5 cm. We further see that the homogeneous inversion only explores a small
part (and the wrong part) of the joint posterior model space, leading to a logarithmic score of
infinity for the estimated joint posterior PDF (Table 4.2). For this second data-rich test case,
rejection sampling is unfeasible as the acceptance rate is below 0.001 %.
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Figure 4.9: Posterior samples obtained with CPM in the second test case for the (a) mean
aperture µ, (b) standard deviation σ, (c) integral scale I , (d) Hurst exponent H and (e)
amplitude factor cA. Posterior samples obtained with an inversion assuming the aperture
field to be homogeneous for the (f) mean aperture µ and (g) amplitude factor cA. Scatter plot
of the sampled pairs of mean aperture µ and amplitude factor cA for the CPM method and
the homogeneous inversion. The black lines indicate the true values and the red horizontal
lines the prior PDFs.
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Table 4.2: Table summarizing the results for the second test case (aperture field, Fig. 4.6)
obtained with the CPM method and the inversion assuming homogeneity (Fig. 4.8): conver-
gence refers to the iteration with a R̂-statistics being smaller than 1.2 for all parameters, the
logarithmic score (logS; Eq. 4.14) evaluates the accuracy of the marginal and joint posterior
samples with respect to the true value and the KL divergence (Eq. 4.13) is calculated for p1

being the marginal kernel density estimate gained with the posterior samples and p2 being
the prior PDF. For the kernel density estimates of CPM, we use the following bandwidths:
0.01 (µ), 0.006 (σ), 0.02 (I ), 0.04 (H ), 0.01 (cA) and 0.02 for both in the joint PDF of (µ,cA). For
the homogeneous inversion, we use 0.001 (µ), 0.001 (cA) and 0.002 for both in the joint PDF
of (µ,cA).

Method CPM Homogeneous inv.

Convergence 10’000 1’000
Acceptance rate 15 % 15 %

LogS µ 0.60 Inf
LogS σ -1.34 -
LogS I -1.05 -
LogS H -0.27 -
LogS cA 0.51 Inf

LogS (µ,cA) -1.31 Inf
KL divergence µ 0.96 3.31
KL divergence σ 0.95 -
KL divergence I 0.35 -
KL divergence H 0.02 -
KL divergence cA 1.29 3.90

Predictions of hydraulic transmissivity

To complement the results obtained for this GPR test case and to strengthen the link to hydro-
geology, we use the aperture field estimates to derive equivalent hydraulic transmissivities.
First, we use the inferred mean apertures obtained with the inversion assuming the field to
be homogeneous (Fig. 4.9f). These aperture field realizations are used to derive hydraulic
transmissivities at the fracture scale using the classical parallel plate model (Tsang 1992),

T = (1/(12η))µ3, (4.18)

with η= 8.9×10−4 Pa ·s denoting the dynamic viscosity (25 degree C) and µ being the inferred
mean aperture values (in meters). The resulting horizontal equivalent log-hydraulic trans-
missivities are shown in Figure 4.10 (light gray). This result is now compared with the value
obtained for the true aperture field under the assumption that the Reynolds equation is valid,
implying that we can apply Equation (4.18) locally to obtain a hydraulic transmissivity field
and then solve numerically for the resulting effective transmissivity at the fracture scale. The
results show that the true effective hydraulic transmissivity is roughly one order of magnitude
smaller and that the posterior PDF of the homogeneous inversion (light gray) is nowhere
close to include this value. This is reflected in a infinite logarithmic score. We then sample
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field realizations using the posterior PDFs of the hyperparameters inferred with the CPM
method. The resulting equivalent log-hydraulic transmissivity values are shown in Figure 4.10
(blue). This distribution is much wider, it includes the true value, and the mean is clearly
shifted towards the true value. The corresponding logarithmic score is 0.23.
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Figure 4.10: Posterior PDF of the horizontal equivalent log-hydraulic transmissivity (log10-
scale) for heterogeneous aperture fields (second test case) sampled with the inferred hyper-
parameters of the CPM method (blue) and homogeneous aperture fields generated with the
inferred mean values of the inversion assuming the field to be homogeneous (light gray). The
black vertical line indicates the value corresponding to the true aperture field.

4.5 Discussion

Our two test cases presented in Sections 4.3 and 4.4 demonstrate the ability of the correlated
pseudo-marginal method (CPM method; Fig. 4.1) to estimate the posterior PDF of the tar-
get field’s hyperparameters (e.g., mean, standard deviation, integral scale, Hurst exponent
and anisotropy factor) while accounting for the impact of small-scale heterogeneity within
the estimate of the likelihood function. We further demonstrate that inversions invoking
simplified assumption such as ergodicity or homogeneity lead to biased and overconfident
results such that the inferred posteriors often do not include the true values. Compared to
previous inversion approaches targeting hyperparameters (e.g., Laloy et al. 2015 and Xiao
et al. 2021), the CPM method infers the hyperparameters only, thereby, avoiding to infer the
posterior PDF of the many thousands of latent variables. The two presented test cases cover
one data-poor transmission problem governed by diffusion (e.g. electrical conduction, heat
conduction, or groundwater flow) and one more data-rich reflection problem governed by
wave-based physics (e.g., GPR, seismics, acoustics). The generality of these settings suggest
that the CPM method has a wide applicability in hydrogeology and geophysics.
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The first test case related to heterogeneous hydraulic conductivity fields concerns a very
data-poor setting in which only the horizontal and vertical equivalent hydraulic conduc-
tivities are used as data points. To compare the performance of the CPM method with an
inversion assuming ergodicity (referred to as simplified MH; Fig. 4.4), we consider a nearly
ergodic and a non-ergodic data setting. In both settings, the geostatistical mean of the model
domain can be inferred from the equivalent conductivities using the CPM method. In the
ergodic setting, both the CPM method and the simplified MH lead to reasonable estimates
of the geostatistical mean, with the posterior range of the CPM method being wider as its
underlying assumptions are less restrictive (Figs. 4.5a and 4.5c). In the non-ergodic data
setting, the simplified MH leads to important errors in the estimation of the geostatistical
mean with a posterior range far from the true value (Fig. 4.5f). For the CPM method, the
estimated posterior uncertainty is wider and the true value of the mean is included (Fig. 4.5d).
Thereby, the logarithmic score is reduced from infinity to 1.57 when applying CPM compared
with the simplified MH (Table 4.1). We conclude that even in this extremely data-poor setting,
the use of simplified model assumptions leads to a substantial bias in the mean estimate
and an overconfident posterior bound. For the other hyperparameters (standard deviation,
integral scale and anisotropy factor), we conclude that only little information can be gained in
this data-poor setting. Furthermore, we demonstrate that the CPM results are in agreement
with those obtained by rejection sampling.

In the second test case concerning fracture aperture fields, we limit ourselves to a non-ergodic
data setting and compare the results obtained with CPM with those of an inversion assum-
ing the aperture field to be homogeneous (Fig. 4.8). We can consider this homogeneous
inversion as either (1) an inversion inferring the geostatistical mean under simplified model
assumptions or (2) an inversion targeting the equivalent GPR aperture. We show that the
homogeneous assumption leads to posterior samples being located far from the true geosta-
tistical mean value (Fig. 4.9f), demonstrating in accordance with Shakas et al. (2018) (1) that
the geostatistical mean of the aperture field can be very different than the equivalent GPR
aperture and (2) that inferring the geostatistical mean based on a too simple model descrip-
tion leads to biased estimates. Indeed, in such an inversion one appears to get increasingly
certain about the wrong parameter values as more data are added or the data noise level
is decreased (Brynjarsdóttir and O’Hagan 2014). In contrast, the CPM method accounting
for non-ergodicity and heterogeneity by inferring additionally for the standard deviation,
integral scale and Hurst exponent leads to a wider posterior including the true value of the
aperture mean (Fig. 4.9a). For this second example, employing the CPM method leads to a
reduction of the logarithmic score from infinity to 0.60 for the posterior estimate of the mean
in comparison with the homogeneous inversion (Table 4.2). Additionally, CPM enables to
infer information about other hyperparameters (standard deviation and integral scale) of the
field.

Probabilistic inference of hyperparameters offers the possibility to translate from one type
of equivalent property to another. We demonstrate this by predicting the equivalent log-
hydraulic transmissivity at the fracture scale using the fracture aperture fields obtained in the
second test case (Fig. 4.10). The predicted values for the constant aperture field inversion are
obtained by applying the equivalent GPR aperture in the cubic law. When deriving hydraulic
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properties from these constant fields, we assume that this equivalent GPR aperture is the
same as the equivalent “cubic law aperture” (in the sense of Tsang 1992), which is the equiva-
lent parallel plate aperture with respect to hydraulic flow properties. These predictions are
very different from those obtained from the true aperture field when applying the local cubic
law (Fig. 4.10). This visualises clearly that the equivalent aperture for one type of physics
cannot be assumed to be the same when considering another type of physics. Actually, the
equivalent aperture (in a cubic law sense) with respect to the hydraulic data of the true
aperture field is 0.47 cm, a value considerably diverging from the one inferred from the GPR
data when assuming homogeneity (about 0.9 cm). Using field realizations sampled with the
posterior PDFs of the hyperparameters obtained by CPM lead to a wider and more accurate
range of effective log-hydraulic transmissivity values (Fig. 4.10). While the logarithmic score
for the transmissivity predictions obtained with the homogeneous inversion is infinity, the
one obtained with CPM is 0.23. This suggests that while equivalent properties always refer to
one specific kind of physics, the inference of hyperparameters enables a general description
of the model domain. The CPM method is well suited to achieve this by targeting only the
hyperparameters of interest, thereby, enabling probabilistic forecasts for different types of
physics.

This study expands further the range of applications that the CPM method can address
in geoscientific settings. While Friedli et al. (2022) used it to account for uncertainties in
petrophysical relationships in the context of hydrogeophysics, we provide here a very dif-
ferent problem setting in which the CPM method is used to account for non-ergodicity and
small-scale heterogeneities when inferring hyperparameters. In these examples, we only
consider heterogeneities in two dimensions. In field applications, the data are of course
affected by heterogeneities outside the 2-D plane of measurements (e.g., between boreholes)
or by outer-space effects (Maurer and Friedel 2006). To further improve the estimation and
uncertainty quantification in such setups, the CPM method could be employed to integrate
out heterogeneities in three dimensions (in the context of the present study), or in the third
out-of-plane dimension in the setting considered by Friedli et al. (2022) or in general 2-D
inversions to avoid over-confident (and possibly biased) estimates. For the presented test
cases we used a pixel-based representation of the Gaussian latent random field. We stress that
there exist many alternative ways to represent and generate a Gaussian random field as, for
example, the fast circulant embedding technique using a spectral representation by Dietrich
and Newsam (1997). While such an approach offers an increased efficiency in the generation
of the random field realizations, careful consideration must be given on a case-by-case basis
as to whether this could be integrated into a well-working importance sampling strategy.
Moreover, in settings where the correlation length is of similar size as the model domain, the
embedding has to be extended and the efficiency is reduced. We assume the latent random
fields to be Gaussian, simplifying the derivation of the importance sampling density. An
important topic for future research would be to develop and assess suitable importance
distributions in non-Gaussian settings.

The efficiency of the CPM method depends strongly on the variance of the log-likelihood ratio
estimator. Especially in settings with a high number of observations with a low signal-to-noise
ratio, one needs a well-working importance density when sampling the latent variables. The
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relevance of a well-tuned importance sampling strategy becomes clear when comparing the
number of samples needed to control the variance in the first and second test cases (Figs. 4.3
and 4.7b). For the first test case, the IS density is of only moderate quality and many samples
(N = 50) are needed even for this data-poor setting. For the second more data-rich test case
with a well-defined IS density, only a few samples (N = 5) are sufficient. If the determination
of a well-working IS distribution is not feasible, this can be detrimental to the applicability of
the CPM method. In such a scenario there is also the risk of poor exploration of the latent
space, namely if the likelihood estimator depends mainly on one or two latent variable sam-
ples with a particularly beneficial small-scale structure. One solution in such a scenario is
to infer some additional main features of the latent field together with the hyperparameters
and then to apply the CPM method to sample out the remaining randomness of the field.
This could be done using the main components of a dimensionality reduction approach and
should reduce the importance of a well-tuned IS density. We leave this idea for future research.

Recently, Wang et al. (2022) proposed an hierarchical Bayesian inversion approach targeting
first so-called global variables (such as hyperparameters but also physical variables) and
then estimating the posterior of the whole field. For the estimation of the global variable’s
posterior in a non-linear setting, Wang et al. (2022) apply a machine-learning based approach
and train a neural network to output the global variables given a data realization followed
by kernel density estimation of the results. Such a method relies on the ability to estimate
the hyperparameters by brute-force prior sampling and subsequent comparison of the
resulting data with the true measurements. In strongly non-ergodic settings, this can be
computationally challenging as an unrealistically high number of prior samples would be
needed to obtain reasonable estimates. To illustrate this, Figure 4.11 shows the 100 highest
log-likelihood values sampled from 5000 prior samples of the aperture field in the second test
case (Section 4.4). We note that no sample was generated with a likelihood close to the true
one (black horizontal line) implying that an unfeasible large amount of samples would be
needed to guarantee accurate hyperparameter estimates. Indeed, even the highest sampled
likelihood has a likelihood that is still 1044 times smaller than the true likelihood. In contrast,
our CPM method using three chains need 10’000 iterations per chain for convergence.

4.6 Conclusions

We consider Bayesian MCMC inversions inferring hyperparameters (e.g., mean, standard
deviation and integral scales) from hydrogeological or geophysical data. To achieve this is
particularly challenging in the non-ergodic setting, in which the data depend on the actual
geostatistical field realization under consideration and not only on the hyperparameters. To
prevent errors arising when assuming homogeneity or ergodicity, we rely on the correlated
pseudo-marginal method targeting the hyperparameters while integrating out the random
effects of actual field realizations in the likelihood estimation. This approach has the advan-
tage of ensuring accurate posterior estimates of hyperparameters without having to infer
thousands or more parameters as needed if the whole random field would be inferred. To
ensure efficiency, the correlated pseudo-marginal method employs importance sampling and
correlation of the latent draws used in the proposed and current steps of the MCMC chain.
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We assess the performance of this method through two synthetic test cases involving (1)
diffusion-based physics in a data-poor setting targeting hydraulic properties using equivalent
hydraulic conductivity data and (2) wave-based physics in a more data-rich example targeting
a fracture aperture field using single-hole ground-penetrating radar (GPR) reflection data.
By using these two examples that are representative of a broad range of geophysical and
hydrogeological problems, we demonstrate that the correlated pseudo-marginal method
provides accurate estimation of the geostatistical mean in both ergodic and non-ergodic
settings. Furthermore, for all considered hyperparameters, we show that the correlated
pseudo-marginal method avoids over-confident and biased posterior PDF estimates that
plague inversion results obtained when assuming ergodicity or homogeneity. Estimating
hyperparameters allows for a general description of property fields which is independent
of the physics under consideration, thereby, allowing ultimately to use the estimated pos-
terior PDFs to make predictions for other types of physics or experimental set-ups. This is
demonstrated by transforming the fracture properties inferred by GPR data into predictions
of equivalent hydraulic transmissivity at the fracture scale.
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Figure 4.11: Log-likelihood values obtained with brute-force sampling of the latent aperture
field X in Test case 2 (Section 4.4) when drawing prior samples from the hyperparameters;
for readability, we only show the samples with the 100 highest log-likelihood values (out of
5000 samples). The horizontal lines depict the true log-likelihood and the vertical lines the
true values of the hyperparameters.
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4.7 Appendix

4.7.1 Importance sampling for CPM

As emphasized in Section 4.2.3, it is essential that the variance of the log-likelihood ratio
estimator is low to ensure efficient PM or CPM performance. Especially in settings with
large data sets with high signal-to-noise ratios, the integrand gθ(y |x) in Equation (4.6) is
likely to have a peak in a region of X with very small probability under its prior PDF x 7→
fθ(x). Sampling the latent variables using the prior distribution then leads to an inefficient
algorithm. One remedy to this is importance sampling, where instead of the prior distribution,
a so-called importance distribution given by the PDF x 7→ mθ(x) is employed. The importance
distribution is chosen such that it preferentially generates samples with high gθ(y |x) fθ(x)
while guaranteeing that all values x , for which gθ(y |x) fθ(x) > 0, are included in its support
(Owen and Zhou 2000). It holds,∫

gθ(y |x) fθ(x)d x =
∫

gθ(y |x) fθ(x)

mθ(x)
mθ(x)d x , (4.19)

from which the unbiased importance sampling estimate of the likelihood function in Equa-
tion (4.9) is derived. To minimize the variance of the estimator, x 7→ mθ(x) should be nearly
proportional to x 7→ gθ(y |x) fθ(x) as presented in Owen and Zhou (2000) referring to the
results of Kahn and Marshall (1953). Since it holds that p(x |θ, y) ∝ gθ(y |x) fθ(x), we use for
the importance density an approximation of x 7→ p(x |θ, y).
In Section 4.2.1, we specify Y = G (X )+εO with G : RD2 → RT being the (physical) forward
solver and εO the observational noise. If the forward solver is non-linear, there is no exact
expression for p(x |θ, y). For this reason, we approximate p(x |θ, y) by expressing the map
x 7→G (x) based on either an upscaling formula assuming an anisotropic ergodic setting (test
case 1) or a linearization of the forward solver (test case 2). Following Friedli et al. (2022), we
use Gaussian distributions and a lemma about marginal and conditional Gaussians; see for
example Bishop and Nasrabadi (2006).

Lemma 2 Marginal and Conditional Gaussians

Assume a marginal Gaussian distribution for X ∈RD2
and a conditional Gaussian distribution

for Y ∈RT given X in the form

p(x) =ϕT (x;µ,Λ−1), (4.20)

p(y|x) =ϕT (y;Ax+b,L−1), (4.21)

with ϕT (·;µ,K ) denoting the PDF of the T -variate normal distribution with mean µ and
covariance matrix K . Then, the marginal distribution of Y and the conditional distribution of
X given Y are given by

p(y) =ϕT (y;Aµ+b,L−1 +AΛ−1AT), (4.22)

p(x|y) =ϕL(x;Σ
(
ATL(y−b)+Λµ)

,Σ), (4.23)

where Σ= (Λ+ATLA)−1.
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Test case 1: Hydraulic conductivity fields

We are concerned with the latent log-conductivity field X ∼ fθ(x) = ϕL(x ;µθ,Σθ) and, to
express the measurements as a linear function of the latent field, we use the log-transformed
Equation (4.17)) out of Sanchez-Vila et al. (2006),

log (K H ) = X + log
(
1+σ2(

1

2
− 1

1+λ )
)

(4.24)

log (K V ) = X + log
(
1+σ2(

1

2
− λ

1+λ )
)
. (4.25)

Then, we denote ỹ = log(y) and write ỹ ≈ J X +b with J being a (2,D2)-dimensional ma-

trix with constant entries of 1
D2 and b = (b1,b2), where b1 = log

(
1+σ2( 1

2 − 1
1+λ )

)
and b2 =

log
(
1+σ2( 1

2 − λ
1+λ )

)
. Subsequently, we approximate gθ(ỹ |x) with g̃θ(ỹ |x) =ϕT (ỹ ; J X +b,Σ̃Y ),

where Σ̃Y = I2 ∗0.12, with I2 denoting the two by two identity matrix. With this choice of
Σ̃Y , we transfer the observational error to the log-space and artificially increase the uncer-
tainty to account for the errors resulting from the ergodic assumption made to derive the IS
distribution. To finally derive an approximation for p(x |θ, y), we use:

p̃(x |θ, ỹ) =ϕL(x ;µI S ,ΣI S ), with (4.26)

µI S =ΣI S

(
J T Σ̃Y

−1 (
ỹ −b

)+Σθ−1µθ

)
,

ΣI S = (Σθ
−1 + J T Σ̃Y

−1 J )−1.

Test case 2: Fracture aperture fields

We target the fracture aperture field X ∼ fθ(x) = ϕL(x ;µθ,Σθ) and locally approximate
p(x |θ, y) by expressing the map x 7→ G (x) based on a first-order expansion around x lin

(as Friedli et al. 2022),

G (x) =G (x lin +x −x lin) ≈G (x lin)+ J x lin (x −x lin). (4.27)

Here, J x lin refers to the sensitivity (Jacobian) matrix of the forward solver corresponding to
x lin, which is a homogeneous field with the currently proposed geostatistical mean (µθ = θ1).
Subsequently, we approximate gθ(y |x) with g̃θ(y |x) =ϕT (y ;G (x lin)+J x lin (x−x lin),ΣY ). Again,
we derive an approximation for p(x |θ, y) by using Equation (4.23):

p̃(x |θ, y) =ϕL(x ;µI S ,ΣI S ), with (4.28)

µI S =ΣI S
(

J T
x lin
ΣY

−1 (
y − (G (x lin)− J x lin x lin)

)+Σθ−1µθ
)

,

ΣI S = (Σθ
−1 + J T

x lin
ΣY

−1 J x lin )−1.

Since this expression is approximate due to the linearization step, we multiplyΣY with a factor.
Following Friedli et al. (2022), we use 1.2 as this choice led to a satisfactory performance.
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4.7.2 Complementary figures concerning test case 1

Here we present the additional hyperparameter-plots of the posterior samples obtained
for the first test case (Section 4.3). Figure 4.12 shows the results obtained for the ergodic
data setting (Fig. 4.2a) and Figure 4.13 those for the non-ergodic setting (Fig. 4.2b). In the
ergodic setting, the posteriors of the standard deviation σ obtained by CPM (Fig. 4.12a), RS
(Fig. 4.12d) and the simplified MH (Fig. 4.12g) are as wide as the prior PDFs with the mode of
the distributions being located around the right value for all three approaches. Thereby, the
posterior obtained with the simplified MH is better defined than the ones of RS and CPM.
The integral scale is only inferred by CPM (Fig. 4.12b) and RS (Fig. 4.12e) with both methods
generating posterior samples still distributed proportionally to the Uniform prior PDF. For
the anisotropy factor λ, the simplified MH clearly favours values above 1 (Fig. 4.12h) and
the same holds true for RS (Fig. 4.12f). Finally, CPM (Fig. 4.12c) samples close to the prior PDF.

Employing the data generated with the non-ergodic setting, we obtain posteriors favoring
correctly the horizontal layering of the field, whereby the estimates of RS (Fig. 4.13f) and the
simplified MH (Fig. 4.13h) are better defined than the one of CPM (Fig. 4.13c). For I y , we
again obtain estimates close to the prior for both RS (Fig. 4.13e) and CPM (Fig. 4.13b). While
CPM also samples σ close to the prior (Fig. 4.13a), the RS realizations show a tendency for
higher values (Fig. 4.13d). Finally, the simplified MH samples values of σ (Fig. 4.13g) having a
high concentration at incorrect values.
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Figure 4.12: Posterior samples for the remaining hyperparameters for the first test case
(log-hydraulic conductivity) using the data generated with the ergodic setting; (a) standard
deviation σ, (b) integral scale I y and (c) anisotropy factor λ with CPM. (d) Standard deviation
σ, (e) integral scale I y and (f) anisotropy factor λ with RS. (g) Standard deviation σ and (h)
anisotropy factor λ with simplified MH. The solid vertical lines indicate the true hyperparam-
eter values and the red horizontal lines the prior PDFs. Note that for the anisotropy factor λ
we employ a logarithmic scale on the x-axis.
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Figure 4.13: Posterior samples for the remaining hyperparameters for the first test case (log-
hydraulic conductivity) using the data generated with the non-ergodic setting; (a) standard
deviation σ, (b) integral scale I y and (c) anisotropy factor λ with CPM. (d) Standard deviation
σ, (e) integral scale I y and (f) anisotropy factor λ with RS. (g) Standard deviation σ and (h)
anisotropy factor λ with simplified MH. The solid vertical lines indicate the true hyperparam-
eter values and the red horizontal lines the prior PDFs. Note that for the anisotropy factor λ
we employ a logarithmic scale on the x-axis.
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Abstract

Bayesian inversions followed by estimations of rare event probabilities are often needed to
analyse groundwater hazards. Instead of focusing on the posterior distribution of model
parameters, the main interest lies then in the distribution of a specific quantity of interest
contingent upon these parameters. To address the associated methodological challenges,
we introduce a two-stage application of Sequential Monte Carlo methods. In the first phase,
it generates particles that approximate the posterior distribution; in the second phase, it
employs subset sampling techniques to assess the probability of the rare event of interest.
By considering two hydrogeological problems of increasing complexity, we showcase the
efficiency and accuracy of the resulting PostRisk-SMC method for rare event probability
estimation related to groundwater hazards. We compare the performance of the PostRisk-
SMC method with a traditional Monte Carlo approach that relies on Markov chain Monte
Carlo samples. We showcase that our estimates align with those of the traditional method,
provided that the rare event probability can be estimated by Monte Carlo sampling, but the
coefficients of variation are notably lower for the same computational budget when targeting
more rare events. Furthermore, we highlight that the PostRisk-SMC method allows estimating
rare event probabilities approaching one in a billion using less than one hundred thousand
forward simulations. Even if the presented examples are related to groundwater hazards, the
methodology is well-suited for addressing a wide range of challenges in the geosciences and
beyond.

5.1 Introduction

Decision-making processes concerning groundwater and other environmental systems are
subject to uncertainty. Consequently, decision-making often involves the identification and
avoidance of hazards while assessing associated risks. While a hazard represents a dangerous
phenomenon itself, risk considers the resulting potential of harm for human individuals or
economic assets (Ward et al. 2020). Risk assessment plays a crucial role in the context of
groundwater management, as fresh and uncontaminated groundwater is a prerequisite for
global water security (Famiglietti 2014) and as remediation of contaminated aquifers is ex-
tremely costly and time-consuming. Groundwater contamination and over-exploitation have
not only direct adverse consequences for humans, but also for ecosystems and ecosystem
services.

Our focus is a particular aspect of risk assessment, namely, the estimation of the probability
of a hazard occurring. This hazard is defined by a quantity of interest that takes on critical
values. For a precise analysis of hazard occurrence, it is essential to take into consideration
the uncertainty associated with the parameters of a conceptual model. Hence, in the field of
hydrogeology, Monte Carlo approaches for sampling uncertain hydrological model parame-
ters have been widely employed (e.g., Lahkim and Garcia 1999, Khadam and Kaluarachchi
2003, Benekos et al. 2007, Siirila et al. 2012, Enzenhoefer et al. 2012). Such approaches can be
challenging since hazards often fall under the category of rare events, requiring specialized
modeling techniques to accurately represent the tail behavior of the quantity of interest.
In this context, classical Monte Carlo estimation is impractical as it requires an excessively

116



large sample (Cérou et al. 2012). One approach to mitigate the computational burden is
to combine Monte Carlo methods with surrogate modeling (e.g., Li and Xiu 2010), thereby
speeding up the computation time of forward evaluations. Another option is to employ
importance sampling in order to focus the sampling on critical regions of the quantity of in-
terest. However, selecting a well-working importance density for high-dimensional problems
is often difficult (Au and Beck 2003a). Extreme value theory (e.g., Brodin and Klüppelberg
2008), relying on fitting an extreme value distribution to represent the distribution of the
quantity of interest, offers yet another alternative and is widely used to predict probabilities
of environmental hazards such as extreme floods (Morrison and Smith 2002). Extreme value
theory necessitates sizable sample sizes for distribution fitting, is contingent on the chosen
distribution’s shape, and does not offer simulations of the rare event (e.g., Diebold et al. 2000).
An alternative data-intensive method for estimating extremes is based on the ’Peaks over
Threshold’ technique (POT; Leadbetter 1991). In this approach, extreme events are analysed
by focusing on values that exceed a certain threshold.

We perform rare event probability estimation for the case when indirect site-specific data y
are available (e.g., from tracer or pumping tests). We employ a Bayesian framework in which
the hydrogeological parameters θ are characterized by a posterior probability density func-
tion (PDF) p(θ|y), given by the distribution of θ conditioned on measurements y . Compared
to a standard Bayesian inversion problem in which the end-product is an approximation of
the posterior PDF, we interrogate the distribution of a quantity of interest depending on the
parameters through a non-linear relationship θ 7→R(θ), for instance, in the probability of
this quantity exceeding a critical threshold (considered as the hazard). In practical scenarios,
the presence of non-linearity frequently precludes the availability of an analytical formula for
the distribution of the quantity of interest when conditioned on the data y .

In structural engineering, similar problems have been addressed by performing probabilistic
updating of system parameters using dynamic data and subsequently updating the esti-
mation of the system’s reliability (e.g., Papadimitriou et al., 2001). In this context, Straub
(2011) introduced the so-called Bayesian Updating with Structural reliability methods (BUS;
e.g. Straub and Papaioannou 2015). For the Bayesian analysis, BUS can be interpreted as
an extension of rejection sampling (Ripley 2009b). To extend BUS for posterior rare event
probability estimation, Straub et al. (2016) present an approach targeting both the posterior
and the rare event by using reliability methods. A challenge of this method is the selection of
the constant employed in the extended rejection sampling, as its choice can impact overall
performance. In a similar approach targeting ‘updated robust reliability measures’, Jensen
et al. (2013) rely on transitional MCMC (Ching and Chen 2007) to derive a set of posterior
samples followed by subset sampling for the reliability analysis. A very different approach
enabling the combination of inference and rare event estimation that has been explored in
the geosciences is Bayesian Evidential Learning (BEL; Hermans et al. 2016), which aims to
learn a direct relationship between measurements and quantity of interest by sampling from
the prior distribution (e.g., Thibaut et al. 2021). For higher-dimensional parameter spaces
and non-linear relationships, it can be difficult for BEL to capture the full joint distribution
with a reasonable number of samples.
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We propose a two-stage application of Sequential Monte Carlo (SMC; Doucet et al. 2001),
which we refer to as the Posterior Risk Sequential Monte Carlo (PostRisk-SMC) method.
Bayesian inversion in hydrogeology and other environmental fields is often addressed using
Markov chain Monte Carlo (MCMC) methods. For high-dimensional problems with non-
linear forward solvers, standard MCMC methods often have difficulties in approximating the
posterior PDF within realistic computational constraints. This happens as the Markov chains
may be trapped in local minima for long times or have insignificant probabilities of switching
between posterior modes (e.g., Neal 2001, Amaya et al. 2022). As an alternative to MCMC,
particle methods use a weighted sample of particles for posterior approximation. One such
particle approach is the SMC method (Doucet et al. 2001), which simulates a sequence of
power posteriors transferring the prior PDF to the posterior PDF by successively increasing
the weight of the likelihood (Del Moral et al. 2007). While the SMC method is extensively used
in science and engineering, it has only seen limited use in the geosciences (i.e., Vrugt et al.
2013, Linde et al. 2017). We build our PostRisk-SMC method on an adaptive version of the
SMC method by Zhou et al. (2016), which automatically tunes the cooling sequence between
power posteriors. Recently, adaptive SMC methods have been employed successfully for
geophysical (Amaya et al. 2021 Davies et al. 2023) and hydrogeological (Amaya et al. 2022)
inversion problems, demonstrating superior performance compared with state-of-the-art
MCMC methods.

Relying only on a particle approximation of the posterior PDF is insufficient when estimating
rare event probabilities. As a relatively small number (tens or hundreds, sometimes thou-
sands) of particles is used in practice, this means that no particle is likely to be associated
with the rare event that might, for instance, have a probability of one in a million. To address
this, a new SMC formulation has emerged that specifically targets rare events by employing a
sequence of nested sets pertaining to the hazard scenario. This approach relies on the fact
that the small probability of the rare event can be expressed as a product of larger conditional
probabilities involving the intermediate sets. Such a splitting technique was first introduced
as ‘subset sampling’ by Au and Beck (2001) in the context of reliability analysis and has
been applied for instance in the context of radioactive waste management (e.g., Cadini et al.
2012) and earthquake engineering (e.g., Au and Beck 2003b). In the SMC literature, subset
sampling is presented by Del Moral et al. (2006) and Johansen et al. (2006). Cérou et al. (2012)
and Botev and Kroese (2008) extended the existing methods by using an adaptive method
that optimally selects the subsets on the fly. Subset sampling has been further leveraged by
employing surrogates (Bourinet et al. 2011) or by employing a multilevel approach (Ullmann
and Papaioannou 2015). While all of these applications rely on uncertain parameters θ
following a ‘prior’ PDF, we here adapt this approach to rare event estimation with respect
to a posterior PDF that is first approximated by adaptive SMC. The resulting PostRisk-SMC
method relies on the same principles as the approach of Jensen et al. (2013) but within the
theoretical formulation of particle methods and SMC. While Jensen et al. (2013) consider
engineering applications and dynamic data, we introduce the PostRisk-SMC in the context of
hydrogeological rare event probability estimation. Furthermore, we perform resampling of
the particles only occasionally (during the posterior phase), while the transitional MCMC
approach applied by Jensen et al. (2013) does so in every iteration. Since resampling impacts
the variance of estimates (Douc and Cappé 2005), it is usually beneficial to resample only
when the variation in the particle weights becomes too high.
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For comparison purposes, we consider a conventional Monte Carlo approach for the rare
event probability estimation, as applied for instance by Dall’Alba et al. (2023) for risk as-
sessment of groundwater inflow within the setting of tunnel construction. In our inversion
setting, we rely on MCMC samples approximating the posterior PDF for the Monte Carlo
estimation. Our first example consists of a simplified one-dimensional flow scenario where
we utilize pumping tests to estimate the probability of high flow rates. Subsequently, we
consider a more realistic two-dimensional flow and transport problem, focusing on assess-
ing the probability of contamination breakthrough. The remainder of the manuscript is
organized as follows: Section 5.2 gives a methodological overview of the considered setting
and introduces the PostRisk-SMC method; Section 5.3 presents the one-dimensional flow
example and Section 5.4 the two-dimensional transport example; finally, the study ends with
a discussion and conclusions in Sections 5.5 and 5.6, respectively.

5.2 Methodology

5.2.1 Notation

We target an unknown property vector θ ∈RP representing a model domain from which we
obtain measurements y ∈ RM . We consider a setting where measurements are realizations
of the random variable Y =G (θ)+εO , with G :RP →RM referring to the forward solver and
εO to the observational noise. Assuming independent Gaussian observational errors, we
express the likelihood as p(y |θ) =ϕM (y ;G (θ),ΣY ), with ϕM (·;G (θ),ΣY ) denoting the PDF of
a M-variate normal distribution with the mean G (θ) and the diagonal covariance matrix ΣY

of the observational errors.

We consider a quantity of interest R = R(θ) derived from θ via some function R : RP → R.
More specifically, we target a rare set A = {θ ∈ RP : R(θ) ∈ T } for some interval T ⊆ R∪
{∞,−∞}. If we target the exceedance probability P(R(θ) ≥ T ) for some real number T , we
assign T = [T,∞). We are interested in P(θ ∈ A|y) for θ distributed according to the posterior
PDF p(θ|y) and write,

P(θ ∈ A|y) =
∫

A
p(θ|y)dθ. (5.1)

5.2.2 Bayesian inversion

In Bayes’ theorem, the posterior PDF is given by,

p(θ|y) = p(θ)p(y |θ)

p(y)
, (5.2)

with the prior PDF p(θ) of the model parameters, the likelihood function p(y |θ) and the
evidence p(y). As in practice, it is often not possible to sample directly from the posterior
when the forward solver θ 7→G (θ) is non-linear, MCMC and SMC methods are applied.
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Metropolis–Hastings algorithm

The most used MCMC method is the Metropolis–Hastings algorithm (MH algorithm; Metropo-
lis et al. 1953; Hastings 1970). The MH algorithm is an iterative algorithm that, in each
iteration, proposes a new set of model parameter values θpr op using the proposal density
q(·|θcur r ), which is then accepted or rejected based on the acceptance probability,

αM H
(
θcur r ,θpr op

)= min

{
1,

q
(
θcur r |θpr op

)
p

(
θpr op

)
p

(
y |θpr op

)
q

(
θpr op |θcur r

)
p (θcur r ) p

(
y |θcur r

) }
. (5.3)

The choice of the proposal density q(·|θcur r ) is crucial, as it has to balance the trade-off
between exploration and exploitation. While standard Gaussian model proposals can be
applied for a model space with reduced dimension, more high-dimensional parameter
spaces present considerable challenges (e.g., Robert et al. 2018). To ensure robustness
against different discretization choices and to maintain a reasonable step size while inferring
thousands of unknowns, we rely on preconditioned Crank-Nicolson proposals that preserve
the prior PDF (pCN; e.g. Cotter et al. 2013). For a target variable with a Standard-Normal
prior, the pCN proposal is given by,

q (·|θcur r ) =
√

1−ρ2θcur r +ρζ, (5.4)

with ζ ∼ N (0,1) and ρ ∈ (0,1), ensuring that the variable remains standard-normally dis-
tributed. The utilization of such prior-preserving proposals results in the acceptance prob-
ability being solely dependent on the likelihood values. In the field of geophysics, MCMC
algorithms with model proposals that preserve the prior are known as extended Metropolis
(Mosegaard and Tarantola 1995).

5.2.3 From Sequential Monte Carlo to PostRisk-SMC

In this Section, we first introduce Sequential Monte Carlo for posterior inference and Sequen-
tial Monte Carlo for rare event estimation. Subsequently, we introduce PostRisk-SMC , a
novel sequential combination of both methods, designed to tackle the challenge of estimating
rare event probabilities while accounting for posterior uncertainty. For the methodology of
the first phase, we rely on the framework of Del Moral et al. (2007) and Zhou et al. (2016)
and refer to their works for further details. Likewise, for the second phase, we follow the
framework presented by Cérou et al. (2012) and suggest consulting their paper for additional
information.
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Sequential Monte Carlo for posterior inference

Posterior estimation with the SMC method is based on a particle approximation using N
particles {θ(1),θ(2), ...,θ(N )} with weights {W (1),W (2), ...,W (N )}. If the particles are sampled
according to the posterior, the weights are redundant and reduce to 1/N . In practice, it is
generally not possible to sample from the posterior and importance sampling using a density
η(θ|y) is applied. Importance sampling generates samples from an importance distribution
that assigns higher probabilities to regions where the target distribution is expected to have
most of its mass, thereby reducing the variance of estimators (e.g. Owen and Zhou 2000). To
achieve a well-working importance sampling approach for the posterior PDF, one should
strive for aη(θ|y) as close as possible to p(θ|y). This can be achieved by building a sequence of
K PDFs {p0(θ|y), p1(θ|y), ..., pK (θ|y)} with p0(θ|y) = p(θ) and pK (θ|y) = p(θ|y), thus moving
gradually from the prior PDF to the posterior PDF (Del Moral et al. 2007). The sequence is
built on unnormalized power posteriors (Neal 2001),

pk (θ|y) = p(y |θ)αk p(θ), (5.5)

with 0 = α0 < α1 < ... < αK = 1. With increasing exponent αk , the relative influence of the
likelihood on the power posterior grows. For a smaller exponent, the exponeniated term is
‘flatter’ such that the power posterior is closer to the prior PDF. When using the importance
density η(θ|y) to sample the particles θ(p), the weights W (p) correspond to the normalized
version of the importance weights w (p) = p(θ(p)|y)/η(θ(p)|y).

We start at iteration k = 0 with particles θ(p)
0 (p = 1,2, ..., N ) sampled from the prior PDF

p0(θ|y) = p(θ) and initial weights W (p)
0 being all equal to 1/N . At iteration k of the SMC

method, pk (θ|y) is approximated by importance sampling based on the previously estimated

power posterior pk−1(θ|y). Therefore, the particles θ(p)
k−1 are assigned with incremental

weights,

w (p)
k =

pk

(
θ

(p)
k−1|y

)
pk−1

(
θ

(p)
k−1|y

) = p
(

y |θ(p)
k−1

)αk

p
(

y |θ(p)
k−1

)αk−1
= p

(
y |θ(p)

k−1

)αk−αk−1
. (5.6)

To account for the previous importance sampling steps, the cumulative normalized weights

W (p)
k of the particles θ(p)

k−1 are defined as,

W (p)
k = W (p)

k−1w (p)
k∑N

j=1 W ( j )
k−1w ( j )

k

, (5.7)

taking into account the history of weights and normalizing them to ensure their sum equals

one. The particles θ(p)
k−1 approximating pk−1(θ|y) are generated by propagating each particle

θ
(p)
k−2 according to a Markov kernel leaving pk−1(θ|y) invariant (Neal 2001). This can be

achieved by employing a finite number s of MH steps (Del Moral et al. 2007). In contrast to
general MCMC methods, the MH steps do not have to converge as the importance sampling
weights account for any possible sampling from the wrong distribution (Del Moral et al. 2007).
This SMC procedure for posterior inference is illustrated in Figure 5.1.
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Figure 5.1: Illustration of the SMC method for posterior inference. We depict the first four
power posteriors for an example with N = 4 particles and s = 4 MH steps.

When the (empirical) variance of the weights W (p)
k at iteration k becomes large, it is beneficial

to resample the particles before propagation (Del Moral et al. 2007, Doucet and Johansen
2009). Resampling decreases the variance of the weights by discarding most particles with
low weights and preferably reproducing those with high weights. Here, we use systematic

resampling (Doucet and Johansen 2009). Subsequently, the weights W (p)
k are set to 1/N , as

the resampled particles are approximately distributed according to pk (θ|y). Resampling
increases the variance of the estimator, making it wasteful if the importance weights do not
exhibit significant variability (Del Moral et al. 2006). To decide when resampling is to be
performed, the effective sample size (ESS; Kong et al. 1994),

ESSk =
(∑N

p=1 W (p)
k−1w (p)

k

)2

∑N
o=1

(
W (p)

k−1

)2 (
w (p)

k

)2 , (5.8)

is used. For instance, Del Moral et al. (2006) apply the decision rule of resampling if the
ESSk falls below 30 % of the number of particles N . To ensure that the final particles are
a (unweighted) approximation of the posterior, we enforce a resampling step in the last
iteration.

When defining the sequence of exponents α, one has to consider that too large differences
between αk−1 and αk lead to a large discrepancy between the power posteriors pk−1(θ|y)
and pk (θ|y) and a subsequent poor performance of the importance sampling. However, if
the difference is very small, an excessive number of steps are needed until αk = 1 is reached.
It is natural to aim for a similar discrepancy between successive power posteriors (Zhou et al.
2016). To select the sequence of exponents α, we use the adaptive method of Zhou et al.
(2016), based on the conditional effective sample size (CESS),

C ESSk = N

(∑N
p=1 W (p)

k−1w (p)
k

)2

∑N
p=1 W (p)

k−1

(
w (p)

k

)2 . (5.9)
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The C ESSk quantifies the quality of pk−1(θ|y) as an importance density to estimate expec-
tations under pk (θ|y) (Zhou et al. 2016). The C ESS is equal to the ESS when resampling is
conducted at each iteration. Zhou et al. (2016) show that using the C ESS for the adaptive
sequence leads to a reduction in estimator variance compared to an approach using the
ESS. To define the next αk , a binary search for the value for which the C ESS is the closest
to a pre-defined target value C ESS∗ is performed. The closer this target value C ESS∗ is to
N , the better the approximation, but the slower the algorithm becomes as the number of
power posteriors grows. The SMC algorithm stops when αk reaches one. Such an adaptive
approach is expected to result in a more efficient algorithm compared to its non-adaptive
counterpart. Importantly, it also leads to a more automated algorithm by minimizing the
number of user-defined tuning parameters (Beskos et al. 2016). However, using an adaptive
method for the selection of the exponents introduces a slight bias into the results. Beskos
et al. (2016) explore the convergence behaviour for such adaptive approaches and establish
that the output satisfies a weak law of large numbers and a central limit theorem. To indicate
if we use an adaptive or fixed sequence of exponents, we specify the binary variable AD AP as
1 for an adaptive and 0 for a predetermined selection. The full workflow of the SMC method
for posterior inference is summarized in Figure 5.2.

Sequential Monte Carlo for rare event estimation

The SMC method can be modified to enable simulation of rare events and estimation of
their probabilities by using a sequence of not-so-rare nested events (Del Moral et al. 2006
Johansen et al. 2006 Cérou et al. 2012). It is assumed that θ is a random element on RP

with probability distribution p(θ) that can be sampled from. To estimate P(θ ∈ A), the SMC
method for rare event estimation employs a sequence of nested sets Ak = {θ ∈RP : R(θ) ∈Tk },
with RP = A0 ⊃ A1 ⊃ ... ⊃ AK = A. It holds that,

P (θ ∈ A) =
K∏

k=1
P (θ ∈ Ak |θ ∈ Ak−1) . (5.10)

If we are interested in P(R(θ) ≥ T ), the sequence of nested sets Ak = {θ ∈RP : R(θ) ∈ [Tk ,∞)}
corresponds to a sequence of increasing thresholds {T0, ...,TK } with T0 = −∞ and TK = T .
For P(R(θ) ≤ T ), we employ Ak = {θ ∈RP : R(θ) ∈ (−∞,Tk ]} using a sequence of decreasing
thresholds with T0 =∞ and TK = T .

The SMC method for rare event estimation starts by initializing N particles θ0 = (θ(1)
0 , ...,θ(N )

0 )
sampled from p(θ). The first intermediate distribution p A0 (θ) = p(θ|θ ∈ A0) is equal to p(θ).
To approximate the intermediate distribution p Ak (θ) = p(θ|θ ∈ Ak ) for k ≥ 1, each particle

θ
(p)
k−1 is assigned a weight,

W (p)
k =

{
1/|Ik |, if θ(p)

k−1 ∈ Ak

0, otherwise,
(5.11)

with Ik = {p : θ(p)
k−1 ∈ Ak } and |Ik | denoting its cardinality. Thereby, we are assuming that Ik is

non-empty, otherwise the particle system dies. Subsequently, systematic resampling (Doucet

123



Initialization
• Select: N , s, ESSr es

• Select how to choose exponents:
– Adaptive: AD AP = 1, C ESS∗

– Non-adaptive: AD AP = 0, fixed α

• Sample θ0 = (θ(1)
0 , ...,θ(N )

0 ) from prior

• Set weights w (p)
0 =W (p)

0 = 1/N ,
α0 = 0, k = 1

• If AD AP = 1: Search for αk

s.t. C ESSk closest to C ESS∗

(Eq. 5.9)
• If AD AP = 0: Set αk =αk

If αk ≥ 1, set αk = 1

Define the weights w (p)
k

(Eq. 5.6) and normalized
weights W (p)

k (Eq. 5.7).

Check if ESSk < ESSr es

(Eq. 5.8) or αk = 1, if
YES then resample and
set w (p)

k = W (p)
k = 1/N

Propagate particles for s
MH steps leaving pk (θ|y)

invariant and define
θk with the last states

Check if αk = 1,
if YES then STOP

k = k +1

Figure 5.2: Flow chart illustrating the SMC method for posterior inference.
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Figure 5.3: Illustration of the SMC method for rare events targeting P(R(θ) ≥ T ). We depict
the first three thresholds for an example with N = 4 particles, s = 4 MH steps and a quantile
of γ= 0.25.

and Johansen 2009) is employed such that particles which do not lie in Ak are replaced by
particles that do. The resampled particles are propagated using a Markov kernel, leaving
p Ak (θ) invariant (Cérou et al. 2012). We are considering s steps with a MH algorithm whereby
a transition is only accepted if θ stays in Ak . The procedure of SMC for rare event estimation
targeting P(R(θ) ≥ T ) is illustrated in Figure 5.3.

We need to choose a sequence of nested sets such that P(θ ∈ Ak |θ ∈ Ak−1) is reasonably
high. Cérou et al. (2012) detail both a fixed and an adaptive algorithm. For Ak = {θ ∈ RP :
R(θ) ∈ [Tk ,∞)}, an adaptive method based on quantiles of R(·) of the particles ensures that
the asymptotic variance of the estimator is minimal (see Cérou et al. 2012). Utilizing the
γ-quantile,

Tk = qγ (R(θk−1)) , (5.12)

guarantees that a ratio of (1−γ) of the particles survive. The adaptive algorithm’s stopping
criterion is met when the quantile surpasses the targeted threshold, at which point the last
TK is set equal to T . Then, P(θ ∈ A) is estimated by multiplication of all Pk = |Ik |/N for
k = 1, ...,K . Due to the adaptiveness of the thresholds, the resulting estimator is biased given
the finite number of particles N (Au and Beck 2001). This bias is positive and becomes negli-
gible compared to the variance of the estimator as the number of particles increases (Cérou
et al. 2012). To circumvent this bias, one can either re-run the algorithm with the previously
optimized sequence or use a predetermined fixed sequence of thresholds. With the binary
variable AD AR we indicate if we use fixed (AD AR = 0) or adaptive (AD AR = 1) sequences of
thresholds. The work flow of the SMC method for rare event estimation is summarized in the
flow chart in Figure 5.4.
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Initialization
• Select: N , s
• Select how to choose thresholds:

– Adaptive: AD AR = 1, γ-quantile
– Non-adaptive: AD AR = 0, fixed T

• Sample θ0 = (θ(1)
0 , ...,θ(N )

0 ) from prior

• Set weights W (p)
0 = 1/N ,

T = (T0,T1, ...) = (−∞,−∞, ...),
P = (P1,P2, ...) = (1,1, ...)

• If AD AR = 1: Next threshold
with γ-quantile (Eq. 5.12)

• If AD AR = 0: Set Tk = T k

Check if Tk ≥ T

Define the
weights W (p)

k (Eq. 5.11).

Resample particles ac-
cording to weights and

set Pk = |Ik |/N (Eq. 5.11)

Propagate particles for s
MH steps leaving p Ak (θ)

invariant and define
θk with the last states.

Set Tk = T ,
Pk = |Ik |/N and calculate

P(θ ∈ A) = ∏k
j=1 P j

NO

k = k +1

YES

Figure 5.4: Flow chart illustrating the SMC method for rare event estimation of P(R(θ) ≥ T ).

Posterior Risk Sequential Monte Carlo method

To estimate P(θ ∈ A|y), we introduce a sequential combination of the two SMC methods
described in the previous paragraphs (PostRisk-SMC) . Let us write the k-th power posterior
with respect to the subset Ak as,

p A
k

(
θ|y)= p

(
y |θ)αk p(θ)1{θ ∈ Ak }. (5.13)

While the first stage of the PostRisk-SMC algorithm generates particles distributed according
to the posterior by increasing the exponent of the likelihood αk with the subset Ak being held
constant as Rp , the second stage shrinks the subset while leaving the exponent of the power
posterior at 1. For the rare event analysis, it is crucial that we start the second phase with a
unweighted particle approximation of the posterior, ensured by the resampling step in the
last step of the posterior inference stage. We denote as KP the number of intermediate power
posteriors, as KR the number of thresholds and as K = KP +KR their sum. Additionally, we
define sP as the number of MH steps employed between each importance sampling step in
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Initialization

Posterior inference (Fig. 5.2)

p A
k

(
θ|y)

(Eq. 5.13)

• Increase exponent αk

• Constant Ak =Rp

• k = 1,2, ...,KP

Particle
approximation

posterior
p(θ|y)

Rare event estimation (Fig. 5.4)

p A
k

(
θ|y)

(Eq. 5.13)

• Shrink subset Ak

• Constant αk = 1
• k = KP +1,KP +2, ...,K

Rare event probability
estimate P(θ ∈ A|y) and
rare event simulations

Figure 5.5: Work flow of the PostRisk-SMC method.

the posterior phase and sR as the number between the subset sampling steps during the rare
event phase. When the same number of steps is used for both, we denote it as s = sP = sR .
The PostRisk-SMC method inherits the theoretical properties of the SMC methods utilized
in the two stages, including any biases present in the estimators resulting from adaptive se-
quences of exponents and thresholds. The complete work flow of the PostRisk-SMC method
is summarized in Figure 5.5.

In high-dimensional scenarios characterized by complex posterior distributions, the process
of particle propagation using a limited number of MH steps can become limiting. In such
contexts, the frequency of particle resampling becomes important to monitor. In the rare
event probability estimation phase, this aspect becomes even more critical as frequent
resampling is unavoidable. This implies the need to ensure that a sufficient number of MH
steps are used to prevent particle collapse following the resampling steps. In groundwater
settings where the rare event revolves around contamination hazards, the simulation of the
quantity of interest often demands more computational resources than the forward model
used to estimate the posterior PDF. To achieve computational speed-up under such situations
(as exemplified in Section 5.4), we introduce a minor modification to the propagation step
during the rare event phase of PostRisk-SMC . Instead of simulating both the forward response
and quantity of interest in every step, we conduct first a series of ssR posterior steps within
each of the sR steps. Subsequently, the last state is treated as a proposal from the posterior
which is accepted or rejected based on whether it falls within the current subset.
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5.3 1D flow example

As a first example, we study a steady-state 1-D groundwater flow problem (diffusion equa-
tion). The chosen problem setting is influenced by a test case by Straub et al. (2016), which
corresponds to the steady-state version of a test case introduced by Marzouk and Najm (2009).
The fast run time of this simple toy example allows for a sensitivity analysis of the algorithmic
parameters of our (PostRisk-SMC) method.

5.3.1 Synthetic setting

The model domain is the unit interval D = [0,1] m and we consider the following steady-state
equation,

d

d x

(
θ(x)

dh

d x

)
+b(x) = 0, (5.14)

with hydraulic conductivity θ(x) [m/s], source b(x) [1/s] and hydraulic head h(x) [m].

The log-conductivity logθ(x) is parameterized as a finite rank Gaussian random process
expressed by,

logθ(x) =µlogθ+
n∑

i=1

p
wi vi (x)Zi , (5.15)

with {wi , vi } representing the first n eigenvalues and eigenfunctions from the Karhunen-
Loève expansion of a Gaussian process with mean µlogθ = log(10−5) and exponential covari-
ance function κlogθ(∆x) = σ2 exp(−∆x/l ) with standard deviation σ = 3 and integral scale
l = 0.3 m. Zi denote independent standard normally-distributed variables. Following Straub
et al. (2016), we employ a truncation after n = 10 terms. For the representation, we use a uni-
form grid with 40 intervals and under the assumption of the mean and covariance structure
being known, we infer the ten first Zi . The ’true’ log-hydraulic conductivity values logθ(x)
are depicted in Figure 5.6a.

For the measurements y , the source term b(x) in Equation (5.14) is modelled using sources
in the cells at 0.26, 0.51 and 0.76 m with identical strengths of 0.001 1/s. The measurements
are performed on the steady-state solution of h(x) employing 7 sensors spaced uniformly
on D excluding the endpoints. To achieve this, Equation (5.14) is solved with linear finite
differences on a uniform grid employing 40 cells and boundary conditions h(0) = h(1) = 0
m (Langtangen and Linge 2017). Finally, the synthetically-generated measurement values
are contaminated with independent Gaussian errors having a standard deviation of 0.01 m
(Fig. 5.6b).

For the rare event, we consider flow from the left to the right of the model domain and define
the ‘hazard’ as the flow rate on the right boundary exceeding a critical value of T . To calculate
the flow rate, we assume a hydraulic head difference of 1 m and take the harmonic mean
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(a) (b)

Figure 5.6: (a) ’True’ log-hydraulic conductivity logθ(x) on D = [0,1] m and corresponding
(b) steady-state solution h(x) (solid line) for the diffusion equation including the pumping
sources (source locations dashed) and the resulting noisy measurements y (crosses).

of the conductivity values. To enable a comparison with MC estimation, we consider a first
value of T ∗ = 9×10−6 m/s; the second value of T ∗∗ = 9.5×10−6 m/s is selected such that it
targets a rare event with probability of one in a billion.

5.3.2 Results

We employ independent normal prior PDFs for the unknown Zi of the KL-expansion repre-
senting the log-conductivity (Eq. 5.15). For the likelihood, we assume independent Gaussian
measurement errors with the same standard deviation as used in the data generation process.
We compare the results of the PostRisk-SMC method with those of a standard MH algorithm
employing Gaussian proposals. To ensure an acceptance rate of approximately 30 %, the
step width of the proposals is adjusted accordingly, taking into account the different scales
of variation in the KL components (based on initial MH runs). The same configuration of
the MH algorithm is used in the MH steps employed in each iteration of the PostRisk-SMC
method.

For the PostRisk-SMC method, the following parameter choices have to be made: the number
of particles N , the number of MH steps s in each iteration (here s = sP = sR ), the selection of
the exponents αk (Eq. 5.9), the threshold ESSr es below which resampling is employed (Eq.
5.8) and the selection of the thresholds Tk (Eq. 5.12). Following Del Moral et al. (2006), we
fix ESSr es = 0.3×N for the resampling in the initial stage of posterior inference. We start by
testing a configuration of PostRisk-SMC with N = 40,C ESS∗ = 0.99×N , γ= 0.05 and s = 40,
employing adaptive schedules for the likelihood’s exponents and the thresholds. Figure 5.7
depicts resulting particle approximations of the following distributions of the log-diffusivity
profile: (a) prior p A

0 (θ|y) = p(θ), (b) posterior p A
KP

(θ|y) = p(y |θ)p(θ) and (c) posterior rare

event p A
K (θ|y) = p(y |θ)p(θ)1{R(θ) ≥ T ∗}.
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Figure 5.7: Results for the 1D flow example with the PostRisk-SMC method: Particle represen-
tation (N = 40) of the log-conductivity’s (a) prior, (b) posterior and (c) posterior rare event (for
T ∗) distribution; the black lines depict the true profile and the coloured lines the particles.

To explore the level of bias introduced by the adaptive schemes for our choice of N = 40
particles, we re-run the algorithm using the previously defined sequences as fixed values.
The range of ten resulting estimates for T ∗∗ are depicted in Figure 5.8a (adaptive and re-run).
The adaptive runs yield a mean estimate that is approximately 200 times greater than that
of the re-runs. To circumvent bias while avoiding the computational burdens associated
with increasing the number of particles or performing re-runs, we adopt in what follows a
fixed sequence of thresholds for the rare event estimation part (AD AR = 0 in Fig. 5.4). With
KP denoting the number of intermediate power posteriors and following the flow chart in
Figure 5.5, the first threshold different from minus infinity is TKP+1. For the shape of the
sequence, a suitable form can be determined, for example, by conducting an initial adaptive
run (Fig. 5.8b). We use a logarithmic function,

fT (k) = a log(k)+TKP+1, (5.16)

increasing from TKP+1 to T ∗∗. Therefore, we set the thresholds to Tk = fT (k − KP ) for
k = KP +1, ...,K and ensure that TK = fT (KR ) = T ∗∗ by expressing a = (T ∗∗−TKP+1)/ log(KR ).
Finally, we change the closest value of T ∗ to this very value. For the first threshold, we test the
choices of TKP+1 = 3,5,7×10−6. The resulting threshold sequences are depicted in Figure 5.8b,
together with the adaptive sequence utilizing γ= 0.05. The range and mean of ten estimates
for T ∗∗ obtained with the different sequences are depicted in Figure 5.8a. We note that while
the adaptive sequence leads to much higher values, the ones of the re-runs and the fixed
sequences with the different TKP+1 are comparable.

In our specific context, where the focus is on estimating the probability of rare events and the
posterior of θ is rather smooth, the bias caused by the adaptive schedule in the first stage of
posterior estimation is minimal. Tests (not shown) demonstrated that even when considering
T ∗∗ and N = 40, the adaptive sequence for the posterior estimation resulted in an almost
identical mean estimate compared to the re-runs (less than 0.02 % difference). As a result,
we continue to use an adaptive sequence of exponents for the first stage of the algorithm
(AD AP = 1 in Fig. 5.2).
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(a) (b)

Figure 5.8: Illustration of the bias resulting from the adaptively determined threshold se-
quence within the PostRisk-SMC method for the 1D flow example: (a) Range of estimates
P(R(θ) ≥ T ∗∗|y) using the different threshold sequences (ten runs each); the red crosses
indicate the mean of the values and (b) evolving particle estimation of R(θ) with the adap-
tive Tk -sequence (red) and the different fixed logarithmic sequences (black, Eq. 5.16 with
different TKP+1).

We now keep TKP+1 = 5×10−6, and explore the influence of the remaining parameters on the
rare event estimation. As a baseline configuration, we use N = 20,C ESS∗ = 0.9×N (resulting
in KP = 40), KR = 100 and s = 20, requiring 55,000 forward simulations for T ∗∗. Next, we
multiply the computational budget by a factor of ten, allocating these extra computational
resources successively to each of the parameters. This results in N = 200, C ESS∗ = 0.9999×N
(such that KP = 1250), KR = 1330 and s = 200. The resulting ranges of the rare event probabil-
ity estimates for T ∗∗ using ten runs are depicted in Figure 5.9a and the means and coefficients
of variation (COV; ratio of standard deviation to the mean) for both thresholds are summa-
rized in Table 5.1. While the means are comparable for all configurations, it is seen that
the parameter with the most impact in reducing the COV for both thresholds is the number
of particles N . In this test example, the optimal C ESS∗ only has limited influence on the
variance of the rare event estimate. Still, a high-quality representation of the posterior from
the first stage leads to a smaller variance of the rare event estimate. Concerning the number
of MH steps, we perform additional tests with values s = 5,10,20,200,500 (Fig. 5.9b for T ∗∗).
While there is high variance in the estimates for s = 5, the variance seems to stabilize from a
value of s = 20 steps. Further increasing s to 200 or 500 necessitates a considerable number
of additional forward operations, but leads to a much smaller improvement in the accuracy
of the rare event estimate compared to increasing the number of particles. Furthermore,
in the context of parallel computation, increasing the number of particles is more efficient
compared to increasing s. Finally, when testing a value of KR smaller than 100, we observed
frequent failures due to the particle system dying. On the other hand, increasing the value to
KR = 1330 resulted in a decrease in the COV for both thresholds. Although this decrease was
more significant than the effect of increasing the number of MH steps s, it still did not match
the substantial improvement achieved by increasing the number of particles.
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(a) (b)

Figure 5.9: Impact of the configuration choices within the PostRisk-SMC method for the
1D flow example. (a) Range of the rare event probability estimates for T ∗∗ with the first bar
corresponding to the base configuration and the following ones referring to the successive
allocation of ten times more computational resources for either of the parameters with
N = 200,C ESS∗ = 0.9999×N , KR = 1330 and s = 200. (b) Range of the rare event probability
estimates for T ∗∗ using different numbers of MH steps s. The red crosses in both plots
indicate the mean values of the ten runs.

(a) (b)

Figure 5.10: Results for the 1D flow example with the MH method: (a) Estimated posterior
median (red) and credible interval (dashed) of the log-conductivity profile, together with the
true profile (blue) and (b) transformed MH samples using θ 7→R(θ) with the thresholds of
interest indicated (T ∗ in red and T ∗∗ in blue).
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Table 5.1: Table summarizing the different trials of the PostRisk-SMC and MH method applied
to the 1D flow test case. The second column indicates the computational budgets used for the
thresholds (in terms of the total number of forward and quantity of interest simulations); the
mean and COV (coefficient of variation) are calculated based on 10 estimates ofP(R(θ) ≥ T |y)
for T ∗ and T ∗∗.

T ∗/T ∗∗

[×103]
N C ESS∗

N s KR
Mean T ∗

[×10−3]
COV T ∗ Mean T ∗∗

[×10−9]
COV T ∗∗

PostRisk-SMC 40/55 20 0.9 20 100 2.28 0.71 3.88 1.72
PostRisk-SMC 400/550 200 0.9 20 100 2.45 0.27 4.81 0.35
PostRisk-SMC 510/550 20 0.9999 20 100 2.60 0.49 6.91 1.66
PostRisk-SMC 400/550 20 0.9 200 100 2.91 0.65 4.77 1.08
PostRisk-SMC 255/550 20 0.9 20 1330 2.72 0.44 4.31 0.79

MH 400/550 - - - - 2.45 0.25 0 -

To enable comparison with the standard MH algorithm, we run 10 chains in parallel with
one million iterations each. The resulting posterior median and 95% credible interval of
the estimated log-diffusivity are shown in Figure 5.10a and the resulting samples of R(θ)|y
in Figure 5.10b. If we would perform MH running three chains in parallel, convergence
according to the potential-scale reduction factor (R̂-statistics using a target value of 1.2 for all
parameters and the second half of the chains; Gelman and Rubin 1992) would be declared
after 140’000 iterations and the resulting estimate would be 6.44×10−3 for T ∗ and zero for
T ∗∗. This indicates that with the computational budget of the basic version of PostRisk-SMC
as shown in Table 5.1, we are unable to obtain any reliable estimates with MH. With a higher
budget of 400,000 for T ∗, the mean of the ten estimates is 2.45×10−3, and the COV is 0.25. The
mean value matches the ones obtained with the PostRisk-SMC method. The comparable COV
for the same computational budget of PostRisk-SMC (N = 200) is not surprising since the
target probability enables enough samples in the MH chains. However, for T ∗∗, all estimates
obtained with MH are zero, even when using the full one million samples per chain.

Finally, we would like to highlight the power of including measurement data into this rare
event estimation problem. As indicated in Figure 5.8b, for the prior distribution of the
log-conductivity field (k = 0), R(θ) ≥ T is not a rare event for the considered thresholds.
Therefore, we can easily estimate P(R(θ) ≥ T ) under the prior using a limited number of
Monte Carlo samples, which gives us 0.23 for T ∗ and 0.22 for T ∗∗ (here employing 10,000
samples). We conclude that, compared to this previous prior probability of about one quarter,
the pumping test measurements lead us to the assessment that the hazard occurrence can be
specified as highly unlikely, especially for T ∗∗.
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5.4 2D transport example

In the second test case, we infer a hydraulic transmissivity field θ using steady-state pressure
data y from pumping tests. For the quantity of interest R(θ), we consider the release of
a contaminant on the left side of the model domain and observe the breakthrough of the
concentration at a location on the right side of the domain. We are examining a hypothetical
scenario where the contamination is expected to no longer pose a risk beyond a pre-defined
time frame. That is, the hazard materializes if we observe a breakthrough at the considered
location before this time has elapsed.

5.4.1 Problem setting

The aquifer under consideration has a size of 250×250×5 m and we use a discretization on a
grid with 51×51×1 cells. We assume the properties to be uniform in the vertical direction,
thereby simplifying the problem to two spatial dimensions. For the purpose of simulating
both the data and the quantity of interest, we utilize the MODFLOW package implemented in
Python, specifically the FloPy library (Bakker et al. 2016).

We make the assumption that the system under investigation is confined. The unknown
log-transmissivity field θ is assumed to be a Gaussian Random field (Chiles and Delfiner
2012). We assume a constant mean µlogθ = log(5×10−5) with the transmissivity having units
of m2/s. For the isotropic covariance function, we employ an isotropic exponential covariance
function in R2 with standard deviation σ= 3 and integral scale l = 25 m. In order to generate
a realization of the (51×51)-dimensional Gaussian random field, we utilize a pixel-based
parameterization,

X =µθ+Σθ1/2Z , (5.17)

whereΣθ denotes the exponential covariance matrix and Z represents a (51×51)-dimensional
random vector composed of independent and identically distributed (i.i.d.) standard normal
variables. The ‘true’ log-transmissivity field is depicted in Figure 5.11a.

For the data y , we are considering a five-spot pumping test using a pumping well located in
the middle of the model domain and local measurements of the log-transmissivity field at the
well locations (Fig. 5.11b). For the pumping test, we consider a fixed hydraulic head at the
left (2.5 m) and right (0 m) sides of the domain, no-flow boundaries on the other boundaries
and pump with a rate of 5×10−4 m3/s. For the data collection, we consider the steady-state
of the system and measure the hydraulic head in four wells centered in the middle of the
four quadrants of the domain. For the generation of the synthetic data, we add independent
Gaussian observational errors with a standard deviation of 0.02 m. For the local measure-
ments in the five wells, we assume a Gaussian measurement error with a standard deviation
of 0.1 (log-scale). Then, we employ standard results for conditional Gaussian random fields,
resulting in a mean and covariance matrix in Equation (5.17), which are conditioned on the
local measurements and include their error.
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For the rare event, we examine a scenario where a contaminant is released on the left side
of the model domain, while monitoring the concentration of the contaminant on the right
side. Our primary focus lies in determining the time of breakthrough R(θ) in a critical area in
the middle of the right side of the model domain. The hazard is specified as a breakthrough
before 60 days (T = 60 days), with the breakthrough being specified as the concentration
being higher or equal than 1 mg/l. To simulate this, we assume a constant concentration of 1
g/l on the left side, along with a fixed hydraulic head difference of 2.5 m between the left and
right sides (as for the data collection). Additionally, we maintain a constant porosity of 0.3,
an effective molecular diffusion coefficient of 10−9 m2/s, a longitudinal dispersivity of 1 m,
and a ratio of the transverse to the longitudinal dispersivity of 0.1. Figure 5.11c illustrates the
concentration distribution after 60 days from the start of the injection for the true field, and
Figure 5.11d visualizes the corresponding breakthrough front.

5.4.2 Results

We first investigate the occurrence of a contamination breakthrough without incorporating
the data. Given the resource-intensive nature of the transport simulations, we adhere to a
computational limit of approximately 15,000 evaluations of R(·). When using the PostRisk-
SMC method for this setting, we only employ the second phase and use N = 40 particles
and sR = 10 MH steps per subset (Fig. 5.4). For the sequence of thresholds, we employ a
decreasing logarithmic sequence ranging from T1 = 3500 days down to 100 days, utilizing
30 steps (according to Equation 5.16 with KP = 0). As the conditional probability during
the last steps becomes lower and the risk of the particle system dying is particularly high,
we adapt the sequence to steps of five days from 100 days down to the 60 days of interest,
leading to KR = 38. For the propagation of the particles with MH, we use pCN proposals
(Eq. 5.4) initialized with a ρ = 1 (independent proposals), which is then geometrically de-
creased by a factor of 0.9 in each subset. In Figure 5.12, we provide visual representations of
three illustrative log-hydraulic transmissivity field realizations extracted from the final subset
where R(θ) ≤ 60 days. These examples are accompanied by their respective contamination
fields. Figure 5.13a displays the mean transmissivity field of the particles. Running ten repe-
titions of the PostRisk-SMC method, we obtain a mean of 0.71×10−4 and a COV of 0.37 for
P(R(θ) ≤ 60 d) (Table 5.2). With prior sampling and Monte Carlo estimation for the same
computational budget, we obtain a mean of 0.87×10−4 and a COV of 0.60. While the Monte
Carlo approach includes zero in the range of the ten probability estimates, the PostRisk-SMC
method specifies the probability as being at least 0.24×10−4.

We now consider the data. Figure 5.11d demonstrates that the hazard is occurring for the true
log-hydraulic transmissivity field and we are interested to see if the integration of the local
and pumping measurements helps to reflect this by increasing the rare event probability
estimate. For the posterior inference part of PostRisk-SMC , we use a configuration with
N = 40, C ESS∗/N = 0.99 (leading to KP = 100) and sP = 100 MH steps per iteration (Fig.
5.2). A particle estimate of the posterior mean is depicted in Figure 5.13b. For the rare event
phase of PostRisk-SMC , we implement the adaptation outlined in Section 5.2.3, wherein
we conduct ssR = 100 posterior steps within each of the sR = 10 MH steps during the rare
event phase of the algorithm. This implies that for every subset, we need to assess R(·) ten
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(a) (b)

(c) (d)

Figure 5.11: (a) ’True’ log-hydraulic transmissivity field and corresponding (b) hydraulic
heads resulting from the steady-state pumping test, the red dots indicate the well locations,
(c) contamination field and (d) breakthrough front after 60 days.
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(a) (b) (c)

(d) (e) (f)

Figure 5.12: Rare event estimation for the 2D transport example with the PostRisk-SMC
method (without inversion): (a-c) log-hydraulic transmissivity field examples from the final
subset with R(θ) ≤ 60 days and (d-f) their corresponding contamination breakthrough fronts.

times and G (·) one thousand times. We use the same sequence of thresholds with KR = 38 as
described above. In total, this results in N×(KP ×sP +KR ×sR ×sRR ) = 1.92 Million evaluations
of G (·) and N ×KR × sR = 15,200 evaluations of R(·) (Table 5.2). For the propagation, the
step size of the pCN proposals (Eq. 5.4) is adapted such that the ‘posterior’ steps have an
acceptance rate of about 30 %. In Figure 5.14, we showcase three particles from the final
posterior subset where R(θ) ≤ 60 days, along with their corresponding contamination fields.
Figure 5.13c shows the mean of the particles lying in the last posterior subset. Upon executing
the PostRisk-SMC method ten times, we compute an average of 4.56×10−4 and observe a
COV of 0.21 for P(R(θ) ≤ 60 days) (Table 5.2).

For a fair comparison with Monte Carlo estimation based on MH samples, we run ten chains
with 1.92 Million steps and evaluate R(·) for only 15,000 samples (per chain) that are obtained
by thinning. We employ pCN proposals with an adjusted step size aiming for an acceptance
rate of 30 %. We obtain a mean rare event probability estimate of 5.64×10−4 and a COV of
0.49 (Table 5.2). Using the first three chains, convergence with respect to the R̂-statistics
would be declared after 350,000 iterations. The corresponding merged 1,500 thinned samples
per chain would specify the hazard occurrence probability as zero.

Similar to the one-dimensional flow example, we can observe that incorporating measure-
ments leads to a shift in our estimation of the hazard occurrence probability. In the context
of this two-dimensional transport example, the incorporation of local measurements and
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pumping data increases the estimated probability of hazard occurrence by a factor of about
six compared with the estimate based on prior knowledge only. We observe that for the
ten considered estimates, the range of the values for the prior and posterior can be clearly
separated (for both PostRisk-SMC and Monte Carlo estimation).

(a) (b) (c)

Figure 5.13: Results for the 2D transport example with the PostRisk-SMC method: Particle
mean representing the log-hydraulic transmissivity field from the (a) prior subset where
R(θ) ≤ 60 days, (b) posterior distribution and (c) posterior subset where R(θ) ≤ 60 days.

Table 5.2: Table summarizing the different trials of the PostRisk-SMC and MH method
applied to the 2D transport test case under the prior and the posterior distribution. The
second column shows the number of required simulations of the forward response G (·) and
quantity of interest R(·) and mean, COV (coefficient of variation), min (minimum) and max
(maximum) refer to the 10 estimates of the rare event probability.

Method
G (·)/R(·)

[×104]

Mean
[×10−4]

COV
Min

[×10−4]

Max
[×10−4]

N C ESS∗
N sP sR ssR KR

Prior PostRisk-SMC - / 1.5 0.71 0.37 0.24 1.09 40 - - 10 - 38
Monte Carlo - / 1.5 0.87 0.60 0 1.33 - - - - - -

Posterior PostRisk-SMC 192 / 1.5 4.56 0.21 3.55 6.64 40 0.99 100 10 100 38
MH 192 / 1.5 5.64 0.49 2.01 12.75 - - - - - -
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(a) (b) (c)

(d) (e) (f)

Figure 5.14: Rare event estimation for the 2D transport example with the PostRisk-SMC
method (with inversion): (a-c) log-hydraulic transmissivity field examples from the final
subset with R(θ) ≤ 60 days and (d-f) their corresponding contamination breakthrough
fronts.

5.5 Discussion

Sustainable groundwater management and assessment of associated hazards are pressing
needs that are being accentuated under global change (e.g., Siebert et al. 2010, Famiglietti
2014, Gorelick and Zheng 2015). With the Posterior Risk Sequential Monte Carlo (PostRisk-
SMC) method, we present an approach that combines Bayesian inversion and rare event
probability estimation under uncertainty. It first generates a particle approximation of the
posterior which is then propagated to provide an accurate estimation of the rare hazard
probability. Thereby, the method relies on ‘subset sampling’ and aims to estimate a small
probability as a product of larger conditional probabilities. In addition to probability estima-
tion, the method also generates realizations of the rare event (as illustrated in Figs. 5.7 and
5.14), providing tangible representations of how the subsurface property field leading to the
hazard could look like in practice.

In the first phase of the PostRisk-SMC method, we employ adaptive SMC proposed by Zhou
et al. (2016), relying on an adaptive sequence of the exponent of power posteriors giving
increasingly more weight to the likelihood. Generally, as the number of particles increases,
the approximation becomes more accurate. Moreover, a slower increase of the exponent
and a higher number of MH steps per iteration also contribute to improving the accuracy
of the approximation. All three factors come at the expense of computational resources.
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However, unlike many MCMC methods, the SMC method is particularly well-suited for paral-
lel computation, as the particles can be distributed across multiple computing nodes. The
configuration and computational power required ultimately depends on the complexity of
the posterior distribution, which is influenced by various factors such as the dimension of
the parameter space, the underlying physics, and the characteristics of the measurement
setup (Amaya et al. 2021).

In the second phase of the PostRisk-SMC method, we rely on subset sampling to estimate
the rare event probabilities. The selection of intermediate thresholds is a crucial aspect that
involves a trade-off between the intermediate conditional probabilities and the number of
particles (Au and Beck 2001). If the threshold increases slowly, the conditional probabilities
are large and a small number of particles is needed to ensure accurate estimation. On the
other hand, more intermediate thresholds are needed until the target threshold is reached. If
the thresholds increase faster, more particles are needed for an accurate estimation, which
also increases the total number of simulations. Cérou et al. (2012) propose an adaptive
sequence of thresholds based on quantiles to increase the efficiency of their algorithm. The
negative aspect of introducing adaptive thresholds is a positive bias in the rare event proba-
bility estimate, which diminishes with an increasing number of particles (Cérou et al. 2012).
Cérou et al. (2012) propose a correction factor for the bias, however, their analytical study
assumes that the particles are independent, which is hard to guarantee in practice due to the
resampling and the finite number of MH steps s.

In the one-dimensional flow example (Section 5.3), the bias resulting from the adaptive
thresholds turns out to be far from negligible, especially when using a relatively small number
of N = 40 particles and targeting a rare event with probability of one in a billion (Fig. 5.8). To
avoid this bias, and the computational burden associated with re-running or increasing the
number of particles, we employ instead a fixed sequence of thresholds (Eq. 5.16). However,
this leads to the possibility of the particle system “dying” during the rare event estimation
process if no particles exceed the current threshold. We did not specifically consider this sce-
nario, but one possible approach to address this issue is discussed by LeGland and Oudjane
(2006). Their idea involves continuing to generate new particles until a specified count of
particles has reached the given threshold. Both increasing the number of particles N and
the number of subsets KR decreases the risk of a dying particle system. While increasing the
number of particles N seems to be a general recipe to decrease the rare event estimator’s
variance, increasing KR leads to fewer particles discarded in each step, which reduces the
variance of the estimator. However, it potentially results in high conditional probabilities that
are hard to estimate with a small number of particles, which could be a factor mitigating the
benefit. Furthermore, in this first simplistic test case with a rather smooth posterior, a slower
increase of the exponents (higher C ESS∗) only had a limited influence on the variance of the
rare event estimate. This happens as a small number s of MH steps can prevent the particles
from collapsing, even after resampling steps.

In the context of the two-dimensional transport example (Section 5.4), posterior exploration
presents a challenge as strong non-uniqueness and underdetermination enable a wide range
of solutions to accurately explain the observed data (Soueid Ahmed et al. 2014 Cotter et al.
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2013). Hence, the number of resampling steps and the propagation through the MH steps play
a crucial role in preventing particle collapse. This latter aspect gains even greater significance
during the phase of rare event estimation, as resampling cannot be avoided. For this reason,
we implement a slight adaptation of the PostRisk-SMC method outlined in Figure 5.5. Rather
than simulating both the forward response and the quantity of interest at each iteration of the
rare event phase, we first perform a sequence of ssR posterior steps during each of the sR MH
steps. We then consider the last state as proposal from the posterior distribution and decide
to accept or reject it depending on whether it lies within the current subset. In scenarios
involving contamination simulations, where the computational cost of the contamination
simulation typically surpasses that of the data simulation flow model, this strategy enhances
particle propagation efficiency while simultaneously decreasing computational demands.

In both test examples, we investigate the significance of using the posterior instead of the prior
PDF to determine the probability of hazard occurrence. In the context of the one-dimensional
flow example, we showcase how the introduction of pumping test measurements in this sce-
nario alters a rather likely event into a highly unlikely one. Indeed, the initial occurrence
probability of roughly a quarter is after considering the data turned into a probability of one
in a billion for T ∗∗. In the case of the two-dimensional transport example, the situation is
reversed: the inclusion of local measurements and pumping data helps in quantifying the
probability of hazard occurrence as being six times higher than with prior knowledge alone.
The integration of posterior inference serves as a clear demonstration of why it is crucial to
design appropriate data acquisition strategies within the realm of risk assessment. Designing
appropriate experimental designs for such tasks is a relatively open research area that we
leave for the future.

We compare the performance of the PostRisk-SMC method with a conventional Monte Carlo
approach relying on prior or posterior samples obtained by the MH algorithm. In the one-
dimensional flow example (Table 5.1), the estimates obtained with PostRisk-SMC align with
those of the traditional method for the less rare event. For the more rare event with occur-
rence probability approaching one in a billion, the Monte Carlo approach fails in simulating
the hazardous scenario. The PostRisk-SMC method, on the other hand, is able to specify
the occurrence probability with a coefficient of variation of 0.35. In the two-dimensional
transport example (Table 5.2), the PostRisk-SMC method successfully reduces the coefficient
of variation by more than 50 % compared to Monte Carlo estimation based on MH samples
(for the inversion setting). This comparison is established within a scenario where Monte
Carlo estimation remains feasible. For rarer events, we anticipate complete failure of Monte
Carlo estimation, as showcased by the one-dimensional flow example (Table 5.1).

It is worth noting that the two phases of the PostRisk-SMC method exhibit different dynamics.
While in our 1D flow example, the adaptive procedure for the exponents defining the power
posteriors leads to an exponential increase, the sequence of thresholds follows a logarithmic
progression. In Section 5.4, we take an initial step in addressing this distinct difference in
dynamics by using different numbers of MH steps for the two phases of the method. However,
there is considerable potential for further exploration and refinement in this regard. So far,
we only dealt with rare sets A = {θ ∈RP : R(θ) ∈T } with T = [T,∞) or T = (−∞,T ] for some
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real number T . If we would consider T = [T ∗,T ∗∗], one could gradually shrink the interval
from both sides. Looking ahead, it could be interesting to incorporate surrogate modeling
within the PostRisk-SMC method to tackle more complex and realistic problems. Surrogates
(e.g. Razavi et al. 2012) in this context can serve as simplified models or approximations
of the underlying system, allowing for faster evaluations and reducing the computational
burden.

5.6 Conclusions

The combination of Bayesian inversion and rare event estimation is very helpful for un-
derstanding groundwater hazards and their implications for humans and ecosystems. To
overcome the challenges of rare event estimation in an inversion setting, we present a two-
stage formulation of Sequential Monte Carlo, denoted as the PostRisk-SMC method. First,
particles are generated to approximate the posterior distribution by adaptively increasing
the exponent of the likelihood function. Second, subset sampling is employed to evaluate
the probability of the rare event of interest. To showcase the efficacy and accuracy of the
PostRisk-SMC method, we present a one-dimensional flow example and a two-dimensional
flow- and transport example. The one-dimensional example demonstrates that the PostRisk-
SMC method allows us to estimate rare event probabilities as low as one in a billion. In the
two-dimensional example, we showcase the method’s capability for rare event probability
estimation in a more realistic and complex setting. In both examples, the PostRisk-SMC
method successfully reduces the coefficient of variation of the rare event probability estimate
compared to Monte Carlo estimation based on posterior samples. In both cases, the addition
of the measurement data lead to a distinctly different assessment of the occurrence proba-
bility than relying on the prior only. This highlights the need for experimental design in this
context; a subject that we leave for future research. Future work will also consider inclusion
of surrogate modeling to speed up computations and applications to actual field settings.
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Abstract

The estimation of rare event probabilities plays a pivotal role in diverse fields. Our aim
is to determine the probability of a hazard or system failure occurring when a quantity
of interest exceeds a critical value. In our approach, the distribution of the quantity of
interest is represented by an energy density, characterized by a free energy function. To
efficiently estimate the free energy, a bias potential is introduced. Using concepts from
energy-based models (EBM), this bias potential is optimized such that the corresponding
probability density function approximates a pre-defined distribution targeting the failure
region of interest. Given the optimal bias potential, the free energy function and the rare event
probability of interest can be determined. The approach is applicable not just in traditional
rare event settings where the variable upon which the quantity of interest relies has a known
distribution, but also in inversion settings where the variable follows a posterior distribution.
By combining the EBM approach with a Stein discrepancy-based stopping criterion, we
aim for a balanced accuracy-efficiency trade-off. Furthermore, we explore both parametric
and non-parametric approaches for the bias potential, with the latter eliminating the need
for choosing a particular parameterization, but depending strongly on the accuracy of the
kernel density estimate used in the optimization process. Through three illustrative test
cases encompassing both traditional and inversion settings, we show that the proposed EBM
approach, when properly configured, (i) allows stable and efficient estimation of rare event
probabilities and (ii) compares favorably against subset sampling approaches.

6.1 Introduction

Estimating rare event probabilities is a fundamental challenge in various fields, including
finance, engineering and environmental sciences. Rare events are characterized by their
low occurrence rates, but they become crucial when their outcomes have substantial con-
sequences (Juneja and Shahabuddin 2006). In the field of uncertainty quantification, rare
events are frequently related to the failure of engineering systems that are designed to be
highly reliable (Beck and Zuev 2015), examples of which include hydroelectric dams, air-
planes, or nuclear reactors. In these cases, the accurate estimation of rare event probabilities
is of utmost importance as it enables informed decision-making, effective risk management,
and the design of robust systems.

In practical applications, there are commonly no analytical formulas for estimating rare
event probabilities. To address this issue, asymptotic approximation methods such as the
first-order reliability method (FORM; Hasofer and Lind 1974) have been proposed. However,
relying solely on FORM results without understanding the characteristics of the linearized
domains, particularly in higher dimensions, is not recommended (Straub et al. 2016). On
the other hand, conventional Monte Carlo simulation methods are often computationally
inefficient. Consequently, a considerable amount of research has been dedicated to develop-
ing more efficient stochastic simulation techniques for rare event probability estimations
(e.g., Bucklew 2004, Rubino and Tuffin 2009). Beck and Zuev (2015) present two principal
stochastic simulation approaches: importance sampling and subset simulation. Importance
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sampling is a variance reduction technique, aiming to increase sampling frequency in the
region of interest, which in the present context corresponds to the region containing the
rare event and its vicinity (e.g., Au and Beck 1999). Subset simulation (Au and Beck 2001)
represents a rare event probability as a product of larger probabilities, effectively breaking
down the rare event into less rare conditional events (e.g., Au and Wang 2014). While subset
sampling explores a wide range of parameter combinations, the more directed line sampling
(e.g., Hohenbichler and Rackwitz 1988, Koutsourelakis et al. 2004) generates samples on a
hyperplane that is orthogonal to a significant direction pointing to the rare event region.

In this study, we are particularly interested in rare event probability estimation in the con-
text of an underlying inverse problem. We employ non-linear Bayesian inversion aiming
to infer unknown properties θ given measurements y . Instead of being interested in the
posterior distribution itself, we target the distribution of a real-valued quantity of interest
that depends on the unknown properties through a non-linear relationship θ 7→R(θ). More
particularly, we would like to estimate the probability of this quantity exceeding a critical
threshold, P(R(θ) ≥ T |y), which is related to the problem of evaluating the probability of
failure of a system. As the underlying relationships are non-linear, analytical formulas for
the distribution of R(θ) conditioned on the data y are typically not available. In structural
reliability engineering, similar problems have been targeted with data first being used to
update θ and then apply these updated distributions to the prediction of rare events (e.g.,
Papadimitriou et al. 2001, Jensen et al. 2013, Sundar and Manohar 2013, Hadjidoukas et al.
2015). Specialized estimation methods are essential since conventional Monte Carlo ap-
proaches relying on posterior samples would typically demand overwhelmingly large sample
sizes.

In practice, most structural reliability methods encounter difficulties when starting with a
sample approximation of the posterior, but subset sampling is an exception (Straub et al.
2016). In an inversion context, it was employed to estimate the so-called “updated robust
failure probability” by Jensen et al. (2013) and Hadjidoukas et al. (2015). Also in the engi-
neering literature, Straub (2011) introduced Bayesian Updating with Structural reliability
methods for posterior inference (BUS; e.g. Straub and Papaioannou 2015). This method can
be considered as an extension of rejection sampling that aims to overcome its inefficiency by
treating the acceptance event as a rare event using structural reliability methods (e.g., FORM,
subset simulation and line sampling; see Straub et al. 2016). It offers a framework, in which
the rare event probability under the posterior can be estimated directly within the framework
of structural reliability analysis. A recent advancement to the BUS framework involves the
utilization of cross entropy-based importance sampling, which enables efficient sampling
from the critical region of the posterior failure domain (Kanjilal et al. 2023).

Free energy is a fundamental concept in materials science and physical chemistry (Stecher
et al. 2014). Performing the free energy estimation on crude Monte Carlo draws is rarely
practical as it would need an excessively large number of samples to sufficiently cover the
whole range of the states, particularly in a rare event setting as ours. To address this challenge,
one solution is to enhance the sampling in specific regions of interest by introducing a bias
term. This approach, known as umbrella or non-Boltzmann sampling, can be traced back
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to the work of Torrie and Valleau (1977), who demonstrated how to recover the unbiased
probability distribution from the biased samples. Applications for free energy functions
are numerous (e.g., Stecher et al. 2014, Kästner and Thiel 2005). More recently, Shirts and
Ferguson (2020) introduced a Bayesian formalism to estimate the free energy function by
minimizing the Kullback–Leibler divergence between a continuous trial function and the
empirical samples generated by biased sampling. Constructing a bias potential is a non-
trivial task, therefore, Valsson and Parrinello (2014) introduced a variational approach that
adaptively combines exploration and reconstruction by iteratively improving and refining
the bias potential and the free energy function. The approach by Valsson and Parrinello
(2014) not only utilizes the bias potential to improve the sampling technique employed for
optimizing the free energy function (as with umbrella sampling), but also depends on it to
directly estimate the free energy function. This variationally-enhanced sampling method
has been applied in the context of coarse-graining methods by Invernizzi et al. (2017) and
combined with machine-learning techniques by Bonati et al. (2019).

By employing concepts from energy-based models (EBMs), we propose a new formulation
and approach to solve rare event probability estimation problems. We write the marginal pos-
terior distribution of the quantity of interest R =R(θ) as an energy density function with free
energy r 7→ F (r ). To estimate F (r ) efficiently in the region of interest, a bias potential r 7→V (r )
and a corresponding probability density function (PDF) r 7→ pV (r ) ∝ exp(−(F (r )+V (r ))),
are introduced. That is, the energy density function of R (knowing y) is p0(r ), where 0 refers
to a zero-valued bias potential. The considered EBM (Goodfellow et al. 2016) approach
relies on optimizing the bias potential V (r ) such that pV (r ) approximates a pre-defined PDF
pref(r ), which is selected such that it has high probability mass in the targeted region. Given
the optimal bias potential V (r ), it is straightforward to derive the free energy F (r ) with an
accurate estimation in the region where pref(r ) has most of its mass being emphasized. Our
approach is related to the variational method by Valsson and Parrinello (2014), but we adopt
the fundamental concepts of their method within a different formulation and apply it to a
novel context, that is, rare event probability estimation. Practically, in EBM methods, the po-
tential V (r ) is parameterized using methods such as neural networks, splines or radial basis
functions. In Valsson and Parrinello (2014), the optimal V (r ) is approximated by minimizing
a loss function which is related to the Kullback–Leibler divergence between pref(r ) and pV (r )
using stochastic optimization methods. We adapt this approach and add a stopping criterion
based on the Stein discrepancy (Gorham and Mackey 2015) to achieve a balance between
computational efficiency and satisfactory model performance. Furthermore, we introduce a
non-parametric approach for the bias potential, thereby alleviating the challenge of selecting
an appropriate parameterization.

The proposed EBM approach reduces the potentially high-dimensional problem of esti-
mating the posterior distribution of θ and subsequently R(θ) to an optimization of a one-
dimensional function V :R→R. Importantly, the EBM approach is not limited to inversion
settings and can also be effectively applied to traditional rare event probability estimation.
We examine the performance of our proposed method using three illustrative test examples.
The first example targets the probability of high contamination values endangering organ-
ism living in the soil. The presence of an analytical solution allows us to explore the EBM
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method’s sensitivity to implementation variables. Next, we consider the two-dimensional
four-branch function problem, commonly used as a benchmark in reliability analysis. This
example does not involve inversion and demonstrates the method’s suitability for general
rare event estimation scenarios. Last, we use a simple load and capacity example from Straub
et al. (2016) to compare the EBM method’s performance against their BUS approach. The
manuscript is organized as follows: Section 6.2 introduces the problem setting, outlines
our energy-based model approach, and details the methods employed for comparison. In
Section 6.3, the test examples are presented. Subsequently, Section 6.4 discusses the results,
leading to the conclusions exposed in Section 6.5.

6.2 Methodology

6.2.1 Problem setting

In the considered rare event setting, we target a quantity of interest R =R(θ) derived from
the random vector θ on Rd by some non-linear function R : Rd → R. We consider a rare
set A = {θ ∈ Rd : R(θ) ≥ T } with T ∈ R and want to estimate P(θ ∈ A). In a traditional rare
event setting, we consider θ distributed according to a prior PDF pθ(θ), which is absolutely
continuous with respect to a dominating measure, typically the Lebesgue measure on Rd .
The rare event probability can then be expressed as,

P(R(θ) ≥ T ) =P(θ ∈ A) =
∫

A
pθ(θ)dθ. (6.1)

Bayesian probabilistic inversion methods target generally unknown properties θ and seek to
infer their posterior PDF given the measurements y ∈Rm . In most applications, the random
data vector is given by Y =G (θ)+εO , with G :Rd →Rm referring to the forward operator and
εO to the observational noise. In Bayes’ theorem, the posterior PDF of the target parameters
θ given measurements y is given by,

pθ|Y (θ|y) = pθ(θ)pY |θ(y |θ)

pY (y)
, (6.2)

with the prior PDF pθ(θ), the likelihood function pY |θ(y |θ) and the evidence pY (y) (assumed
non-zero). Assuming independent Gaussian observational errors, the likelihood is expressed
as pY |θ(y |θ) = ϕm(y ;G (θ),ΣY ), with ϕm(·;µ,Σ) denoting the PDF of a m-variate normal
distribution with mean µ and diagonal covariance matrix Σ with the variance of the ob-
servational error on its diagonal. For θ distributed according to a Bayesian posterior PDF
θ 7→ pθ|Y (θ|y), we aim to estimate,

P(R(θ) ≥ T |y) =P(θ ∈ A|y) =
∫

A
pθ|Y (θ|y)dθ. (6.3)
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6.2.2 Energy-based model approach

While our methodology is formulated for an inversion setting, it can be readily adjusted to
suit a conventional rare event estimation scenario with θ being distributed according to a
prior PDF.

We write the posterior PDF of θ as an energy density function,

pθ|Y (θ|y) = exp(−U (θ))

Z
, Z :=

∫
exp(−U (ζ))dζ, (6.4)

with free energy U (θ) =− log pY |θ(y |θ)− log pθ(θ). The marginal posterior distribution of the
quantity of interest R =R(θ) is thus given by,

pR|Y (r |y) =
∫

exp(−U (θ))

Z
δ(r −R(θ))dθ. (6.5)

More details on the definition of such integrals can be found in Lelièvre et al. (2010) (Lemma 3.2;
co-area formula). We write pR|Y (r |y) as an energy density function with (unknown) free en-
ergy r 7→ F (r ),

pR|Y (r |y) = exp(−F (r )). (6.6)

In order to estimate F (r ) and pR|Y (r |y), we have the option of utilizing posterior samples
obtained from pθ|Y (θ|y) and applying a transformation θ 7→R(θ). Since this follows a typical
Monte Carlo approach, it would need an impractically large number of samples to include the
low probability regions of pR|Y (r |y) that are of interest. To enhance sampling in the region of
interest, we seek to sample in accordance to a pre-defined pref(r ) with most mass on the set
{R ≥ T }. To achieve this, we introduce the bias potential r 7→V (r ) and the PDF r 7→ pV (r ),

pV (r ) = exp(−(F (r )+V (r )))∫
exp(−(F (s)+V (s)))ds

. (6.7)

We seek pV (r ) = pref(r ), which holds for Vopt(r ) = −F (r )− log(pref(r )) (for pref(r ) > 0, ig-
noring an irrelevant constant). Given Vopt(r ), it is straightforward to obtain F (r ) as F (r ) =
− log(pref(r ))−Vopt(r ), for pref(r ) > 0 and hence pR|Y (r |y). Eventually, we can express the
probability of the rare event as,

P(R(θ) ≥ T |y) =
∫ ∞

T
pR|Y (r |y)dr =

∫ ∞

T
exp(−F (r ))dr. (6.8)

A basic visualization of the EBM approach is given in Figure 6.1.

An important choice is the definition of pref(r ). When the PDF of pR|Y (r |y) is supported by
a compact interval with lengthΩp , one possible and natural choice is to set pref(r ) = 1/Ωp

(Valsson and Parrinello 2014). This results in uniform sampling and is commonly employed in
other enhanced sampling approaches (Wang and Landau 2001). If the support is unbounded,
then pref(r ) can be selected such that it shifts mass to the range of R which is of interest (here
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R ≥ T ). To enable accurate rare event probability estimation, the right tails of the selected
pref(r ) have to be at least as heavy as the tails of the target PDF pR|Y (r |y).

Figure 6.1: Illustration of the energy-based model approach. (a) For V (r ) = 0, pV (r ) =
pR|Y (r |y) has low probability mass on the set {R ≥ T }. (b) For V (r ) ≈Vopt(r ), pV (r ) ≈ pref(r )
yielding by design a high probability mass on the set {R ≥ T }.

Parameterization and optimization of V (r )

We parameterize the bias potential V (r ) using a flexible model Vψ(r ) with free parameters ψ.
We employ here radial basis functions (RBFs) with squared exponential kernels,

Vψ(r ) =
B∑

j=1
w jφ(r −b j ), where φ(r ) = exp(−(κ j r )2). (6.9)

For a number B of RBFs, we obtain ψ= (w,b,κ) ∈RB ×RB ×RB . Then, we seek the optimal
Vψ(r ) by minimizing the Kullback–Leibler divergence between pref(r ) and pVψ(r ) with respect
toψ. We achieve this by employing stochastic gradient descent with momentum (SGDM; e.g.,
Liu et al. 2020),

mn =βmn−1 + (1−β)
∂KL(pref||pVψ)

∂ψ
, (6.10)

ψn+1 =ψn −γmn ,

using initial momentum m0 = 0, momentum weight β, learning rate γ and a stochastic gra-
dient of KL(pref||pVψ) at ψn . For a momentum weight of β= 0, SDGM reduces to traditional
stochastic gradient descent.
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It holds that

KL(pref||pVψ) =
∫

pref(r ) log pref(r )dr −
∫

pref(r ) log pVψ(r )dr (6.11)

= const.+
∫

pref(r )Vψ(r )dr + log
∫

exp(−(F (s)+Vψ(s)))ds,

and (assuming standard regularity assumptions that allow swapping the order of differentia-
tion and integration),

∂KL(pref||pVψ)

∂ψ
= ∂

∂ψ

∫
pref(r )Vψ(r )dr + ∂

∂ψ
log

∫
exp(−(F (s)+Vψ(s)))ds (6.12)

=
∫

pref(r )
∂

∂ψ
Vψ(r )dr −

∫
pVψ(s)

∂

∂ψ
Vψ(s)ds.

This allows us to approximate,

∂KL(pref||pVψ)

∂ψ
≈ 1

n

n∑
i=1

∂

∂ψ
Vψ(ri )− 1

n

n∑
i=1

∂

∂ψ
Vψ(si ), with ri ∼ pref(·), si ∼ pVψ(·). (6.13)

This requires samples from pVψ(·) and pref(·), with the latter being straightforward as the PDF
pref(·) is pre-defined. Sampling from pVψ(·) directly is not possible as it would require that
F (r ) was known. Thus, we use samples of the original space of θ by introducing,

pVψ(θ) = exp(−(U (θ)+Vψ(R(θ))))∫
exp(−(U (ζ)+Vψ(R(ζ))))dζ

, (6.14)

and then transform them using R(·). This is correct as one can easily check that the following
identity

∫
pVψ(θ)δ(r −R(θ))dθ = pVψ(r ) holds. In our implementation, the samples of pVψ(θ)

are obtained using a Metropolis–Hastings algorithm (MH; Metropolis et al. 1953; Hastings
1970).

This idea of optimizing the bias potential to estimate the free energy coincides with the
variational approach of Valsson and Parrinello (2014), Invernizzi et al. (2017) and Bonati et al.
(2019) introduced in metadynamics, working with the functional,

Ω(V ) = log

(∫
exp(−(F (r )+V (r )))dr∫

exp(−F (r ))dr

)
+

∫
pref(r )V (r )dr, (6.15)

which they show is convex and invariant under the addition of an arbitrary constant to
V (r ). It is easy to show that minimizingΩ(V ) is equivalent to minimizing KL(pref||pV ) (e.g.
Invernizzi et al. 2017). Furthermore, we can reformulate the minimization of the Kullback–
Leibler divergence as a maximum likelihood estimation problem (Appendix 6.6.1), which
offers multiple theoretical possibilities as it allows us to transfer known theoretical results on
maximum likelihood estimation to our approach.
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Non-parametric bias potential V (r )

In addition to the parametric bias potentials Vψ considered so far, the functional Ω(V ) of
Eq. (6.15) can be applied to a broader class of bias potentials V . While Invernizzi et al. 2017 is
not really giving details regarding the source space on whichΩ(V ) is defined, it is noticeable
that for V integrable with respect to pref, Ω(V ) can be seen as a convex functional (taking
infinite values in case of non-integrable exp(−F −V )). Furthermore, for suitable V and
directions H , one can work out directional derivatives ofΩ

dΩ(V ; H) =
∫

pref(r )H(r )dr −
∫

pV (r )H(r )dr =
∫

(pref(r )−pV (r ))H(r )dr. (6.16)

In particular, for bounded V and pref as considered herein, the directional derivative at V in
the direction pref −pV is well defined and pV −pref delivers a descent direction. In sequential
settings, the function Vn can be updated with SGDM (Eq. 6.10) using pref − pV in lieu of
stochastic gradient at Vn . While for the PDF pref, we have access to its analytical form, we rely
here in practice for pVn on a kernel density estimate derived from the MH samples.

Stopping criteria

Appropriate stopping criteria are crucial when employing stochastic gradient-based optimiza-
tion in order to strike a balance between computational efficiency and achieving satisfactory
model performance. One naïve approach is to stop the training after a pre-defined number of
optimization steps. Since this approach does not ensure convergence if the selected number
is too low or might waste computational resources if chosen to be too high, it makes sense
to monitor the values of the loss function and terminate the optimization when it reaches a
desired criterion or when it no longer improves significantly.

Here we consider a convergence measure based on Stein’s method (Stein 1972): the Stein
discrepancy (Gorham and Mackey 2015). To circumvent the latter’s computational intractabil-
ity, we use a specific version known as the kernel Stein discrepancy (KSD; Liu et al. 2016,
Chwialkowski et al. 2016, Gorham and Mackey 2017),

K SD(pref||pVψ) =
√√√√ 1

n2

n∑
i , j=1

kpref (ri ,r j ), ri ∼ pVψ(·), with, (6.17)

kpref (r, s) =∇r∇sk(r, s)+〈∇r k(r, s),∇s log pref(s)〉+〈∇sk(r, s),∇r log pref(r )〉
+k(r, s)〈∇r log pref(r ),∇s log pref(s)〉,

with kernel k(r, s). The use of the KSD is particularly advantageous in our setting due to the
analytical knowledge about the probability distribution pref(r ).

As stopping criterion, we employ a statistical test for goodness-of-fit based on the squared
KSD (Liu et al. 2016, Chwialkowski et al. 2016). Employing bootstrap sampling for the
estimation of the test statistic, the algorithm stops as soon as the null hypothesis of pref = pVψ
cannot be rejected with a significance level of α anymore. To counteract the conservative
nature of the test procedure when dealing with the correlated samples resulting from MH,
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Chwialkowski et al. (2016) suggest an approach based on the wild bootstrap technique (e.g.,
Shao 2010). The proposed test statistics S takes into account the correlation structure in the
samples by mimicking it with an auxiliary Markov chain taking values in {−1,1},

S = 1

n2

n∑
i , j=1

Wi W j kpref (ri ,r j ), using Wi =1(Ui > aBS)Wi−1−1(Ui < aBS)Wi−1, (6.18)

where W1 = 1 and Ui ∼ Unif(0,1). Chwialkowski et al. (2016) suggest combining this method
with thinning of the generated samples. They recommend to thin the chain such that
Cor(ri ,ri−1) < 0.5, set aBS = 0.1/q with q < 10 and use at least n = max(500q,100) samples.

Related work in machine learning

Energy-based models are a popular class of probabilistic models in machine learning (Good-
fellow et al. 2016). In this context, EBMs are used to model the distribution of available data
(ri )N

i=1 (say images) distributed according to an unknown PDF pref(r ) via a model of the form

pψ(r ) = exp(−Uψ(r ))

Zψ
, (6.19)

the potential Uψ(r ) being typically parameterized by a neural network. The parameter ψ can
be learned by maximizing the normalized log-likelihood, that is,

ℓN (ψ) = 1

N

N∑
i=1

log pψ(ri ), (6.20)

which approximates up to an additive constant independent of ψ the Kullback–Leibler diver-
gence KL(pref||pψ) as N →∞ (Appendix 6.6.1). Similarly to our scenario, the gradient of this
discrepancy requires sampling from pψ(r ) using Markov chain Monte Carlo.

Compared to applications in machine learning, the rare event simulation context discussed
in this paper enjoys several attractive properties. First, we can obtain as many samples from
pref(r ) as we want. Second, because we know pref(r ) analytically, we can assess how good our
estimate of pref(r ) is via pψ(r ) as discussed in the previous section. Third, we only need to
estimate a one-dimensional function Vψ(r ) instead of a complex high-dimensional potential
Uψ(r ). We note finally that numerous alternatives to Kullback–Leibler minimization have
been developed to train EBMs and that some of them might be applicable to the rare event
simulation context, see Song and Kingma (2021) for a recent review.
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6.2.3 Alternative rare event probability estimation methods

Subset sampling

Subset sampling for rare event probability estimation was introduced by Au and Beck (2001)
and is based on the realization that the probability of a rare event can be expressed as a
multiplication of higher conditional probabilities involving intermediate failure events. To
estimate P(θ ∈ A|y) = P(R(θ) ≥ T |y), subset sampling employs a sequence of thresholds
{T0, ...,TK } with T0 =−∞ and TK = T and corresponding nested sets Ak = {θ ∈Rd : R(θ) ≥ Tk }.
It holds that,

P(θ ∈ A|y) =
K∏

k=1
P(θ ∈ Ak |θ ∈ Ak−1, y). (6.21)

Au and Beck (2001) propose to select the sequence of thresholds adaptively such that a ratio
of (1−γ) of the samples survive. Such an adaptive procedure leads to positively biased
estimates, however, this bias decreases with an increasing number of samples per subset
(Cérou et al. 2012). To use subset sampling in our inversion setting, we initialize the first set
of samples with a draw from the posterior using the states sampled by a MH algorithm after
burn-in. In this context, the thinning factor is critical as the initial set of samples should be as
independent as possible. We then propagate the set of samples to estimate the conditional
probabilities by sampling from the subsets while accounting for the posterior. A similar
approach was applied by Jensen et al. (2013), who rely on transitional MCMC to generate the
first set of posterior samples.

Bayesian updating of rare event probabilities

In the article by Straub and Papaioannou (2015), building upon their previous work presented
in Straub (2011), a methodological framework called Bayesian Updating with Structural
reliability methods (BUS) is introduced. This method serves as an extension of the con-
ventional rejection sampling technique in Bayesian analysis. In a basic version of rejection
sampling, samples are generated from the prior distribution and subsequently accepted
with a probability of pY |θ(y |θ)/p̄, where p̄ is an upper bound on supθpY |θ(y |θ). The issue
with the basic rejection sampling algorithm is its inefficiency, particularly when dealing with
high-dimensional or complex posterior distributions. The core concept behind BUS is to
address the challenge posed by the small acceptance probabilities in rejection sampling with
structural reliability methods.

We consider BUS with subset sampling, employing the principles of subset sampling to
sample from the acceptance region of the extended rejection sampling algorithm, while
enabling an adaptive estimation of the constant p̄ (Betz et al. 2014). In the study of Straub
et al. (2016), this method strikes an appropriate balance between accuracy and the number
of model evaluations and has the advantage of being more robust compared to line sampling
that they also consider. To apply BUS for rare event probability estimation in an inversion
setting, Straub et al. (2016) combine two subset sampling runs, where the first generates
samples from the posterior and the second propagates these samples towards the targeted
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rare event. This approach is comparable to the subset sampling method described in the
previous section with the difference that the posterior sampling part is replaced with BUS.

6.3 Illustrative test examples

We now explore the performance of our EBM method in different illustrative test examples.
We start with exploring the method’s sensitivity to the choice of configuration using a hypo-
thetical contamination problem for which an analytical solution is available. Next, we con-
sider the two-dimensional four-branch function problem, a frequently utilized benchmark in
reliability analysis. This example does not require inversion and effectively demonstrates the
method’s suitability for more traditional rare event estimation scenarios. For both of these
first examples, we compare the EBM method against a standard implementation of subset
sampling. Finally, we consider a simple load and capacity example of Straub et al. (2016) to
compare the EBM method’s performance against the BUS approach with subset sampling.

(a) (b) (c)

Figure 6.2: PDFs of the quantity of interest R in the three illustrative examples: (a) The dose
response in Section 6.3.1, (b) the four-branch function in Section 6.3.2 and (c) the difference
between load and capacity in Section 6.3.3 (nC = 10). The vertical lines show the different
critical thresholds T targeted within P(R(θ) ≥ T |y).
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6.3.1 Analytical contamination example

In our first test example, we seek to infer a hypothetical contamination field θ using cell
measurements y and aim at predicting the probability of a resulting dose response R(θ)
being critically high for organisms living in the soil. We consider a setting with M = 9 contam-
ination cells. The “true" values of the contamination level are sampled using independent
Gaussian PDFs θm ∼N (1,0.32). For the data y , we measure the concentration of the contam-
ination in three cells and assume independent Gaussian observation errors with a standard
deviation of 0.05. We target the quantity of interest R(θ) = ∑M

m=1θ
2
m , which is related to

the linear quadratic dose response (e.g., McMahon 2018). We assume that a dose response
that is greater or equal than 20 is critical for the organisms in the soil and aim to estimate
P(R(θ) ≥ 20.0|y). As the prior and the likelihood are Gaussian and the measurements depend
linearly on the property field θ, there exists an analytical solution for the Gaussian posterior
pθ|Y (θ|y). The PDF pR|Y (r |y) of the quantity of interest follows a generalized chi-square
distribution (Fig. 6.2a). Even if this distribution does not have a simple closed-form expres-
sion, we can derive numerically the true probability of the considered rare event, which is
P(R(θ) ≥ 20.0|y) = 1.76×10−6.

We parameterize the bias potential Vψ(r ) using RBFs with squared exponential kernels (Eq.
6.9). We assume a constant shape parameter κ, use evenly distributed centers b j from LB to
HB and only optimize the weights w j during the optimization of Vψ(r ). We choose LB =−80
and HB = 120 to ensure that the optimization of the bias potential is not limited by a too
narrow range. After testing different numbers of RBFs B and shape parameters κ, we choose
a parameterization with B = 500 and κ= 1. We also explore our non-parametric approach
for modeling the bias potential, which involves employing a kernel density estimate to ap-
proximate the probability density function pV (r ). To perform this estimation, we utilize the
R function density (R Core Team 2021) with the ‘nrd’ bandwidth configuration (Scott 2015).
In practice, for numerical evaluations, we discretize the function by considering equidistant
points within the range of -80 to 120, with a spacing of 0.1.

We introduce a base scenario for the algorithmic setting. For pref(r ), we use a Gaussian
PDF N (20,72) centered on the critical threshold. We iterate for a maximum of 500 SGDM
optimization steps employing a constant learning rate γ of 1.2 and a momentum weight β
of 0.5 for the RBF parameterization (Eq. 6.10). For the non-parametric form of the bias
potential, we use the same momentum weight and a constant learning rate of 15. For the
sampling of si ∼ pVψ(·) (Eq. 6.13), we use MH steps employing Gaussian proposals with a step
width chosen by initial testing to obtain an acceptance rate close to 30 %. To account for the
fact that the posterior is much better defined for the cells where measurements have been
made, we adjust the step size for these specific cells. We utilize the KSD stopping criterion
with a significance level of α = 95% and a bootstrap parameter aBS = 0.4. Following the
recommendations of Chwialkowski et al. (2016), we use n = 125 final samples with a thinning
factor of th = 10 and a burn-in of 100 steps.

First, we examine various choices of pref(r ) based on Gaussian distributions N (20,σ2), where
the standard deviation σ ranges from 5 to 8. Figure 6.3a depicts the range of rare event prob-
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ability estimates obtained from 50 runs using the different choices of pref(r ) and both the
RBF and the non-parametric estimation of the bias potential. For both forms, the stability
and accuracy of the method becomes apparent from a standard deviation of 7 and above.
The black points in Figure 6.3a depict the mean probability values of the 50 runs. We ob-
serve a positive bias that diminishes as the standard deviation of pref(r ) increases. This bias
in the estimate is more pronounced for the RBF bias potential. This is a consequence of
initializing V (r ) as a constant function. During the optimization, the weights of the RBF
V (r ) are only updated up to a value where samples of pref(r ) are located. For r larger than
a high quantile of pref(r ), the resulting optimized bias potential is biased upwards. Accord-
ingly, F (r ) =− log(pref(r ))−Vopt(r ) is too small in that region. This results in pR|Y (r |y) and
P(R(θ) ≥ T |y) being too large. This effect is less pronounced with the non-parametric bias
potential, as the stochastic gradient is based on the analytical PDF pref(r ). Figure 6.3b il-
lustrates the minimum and maximum number of forward simulations used in the 50 runs.
Despite the stability of the probability estimate’s uncertainty from a standard deviation of
7, the number of required optimization steps continues to rise as the standard deviation
increases. The RBF parameterization demands a greater number of simulations compared to
the non-parametric approach and yields estimates with a lower variance.

(a) (b)

Figure 6.3: Analytical contamination example. (a) Range of rare event probability estimates
obtained from 50 EBM runs using different standard deviations in defining pref(r ), as well as
parametric and non-parametric forms of the bias potential, (b) the corresponding minimum
and maximum number of forward simulations. The horizontal line in (a) indicates the true
rare event probability and the dots the mean of the 50 estimates.

We now focus on the optimization scheme while maintaining pref(r ) = N (20,72) and the
non-parametric form of the bias potential. Figures 6.4a - 6.4d show exemplary trajectories of
the Kullback–Leibler divergence, KSD values and rare event probability estimates for different
learning rates γ and momentum weights β. We perform 200 optimization steps without any
stopping criterion and illustrate the step at which the KSD criteria would have halted the opti-
mization process (indicated by vertical lines). We emphasize that while the Kullback–Leibler
divergence exhibits a great amount of scatter, the KSD values demonstrate a much clearer
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convergence (Figs. 6.4a and 6.4b). The mean, root-mean-square-error (RMSE) and coeffi-
cient of variation (COV) of the estimates using a learning rate γ= 15 and momentum weight
β= 0.5 are summarized in Table 6.1. It is observed that whether a stopping criterion is applied
or not, the accuracy of the estimate is similar. However, the computational budget can be
reduced by almost a factor of 4 when considering 200 fixed optimization steps. Increasing
the learning rate comes with a trade-off: while it reduces the computational requirement by
reducing the number of optimization steps needed, there is a corresponding loss in accuracy
(Fig. 6.4c). The momentum weight plays a crucial role in mitigating the impact of stochastic
gradient fluctuations. However, when paired with a too high learning rate, there is a risk of
overshooting, necessitating careful adjustment of the learning rate for optimal performance
(Fig. 6.4d, further discussed in Section 6.3.3).

(a) (b)

(c) (d)

Figure 6.4: Analytical contamination example. Exemplary trajectories for the evolving (a)
Kullback–Leibler divergence, (b) KSD and (c, d) rare event probability estimate using different
learning rates γ and momentum weights β. The horizontal lines in (c, d) indicate the true rare
event probability and the vertical lines in (b, c, d) the step at which the KSD criteria would
have halted the optimization process.

We compare the results of the EBM method with subset sampling. To perform subset sam-
pling, we establish a fixed burn-in of 100 steps during the initial posterior estimation process.
Additionally, we utilize a thinning factor of 500 for the MH samples to promote an initial sam-
ple representation that is free from correlation. To prevent bias from an adaptive sequence of
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thresholds and avoid re-running the algorithm, we use a fixed sequence of thresholds given
by a logarithmic function increasing from 5.0 to T within nrt steps. Then we assume the
same total computational budget as for the EBM method (including the posterior sampling)
and choose the number of samples per subset such as the number of MH steps per subset
based on the lowest RMSE using 50 test runs. Here, we choose 60 samples per subset that
are each propagated using 20 MH steps. The statistics of the resulting rare event probability
estimates are summarized in Table 6.1. Both the lowest RMSE and COV values obtained with
subset sampling are about 60 % higher than the ones of our EBM approach.

Table 6.1: Comparison of the EBM method and subset sampling for the analytical contamina-
tion example. Mean refers to the mean of the 50 estimates of P(R(θ) ≥ T |y), RSME to their
root-mean-square-error and COV to the coefficient of variation. The budget noted for EBM is
equal to the mean budget.

Method Budget Mean RMSE COV

EBM (Stopping criterion) 72 k 1.74×10−6 0.62×10−6 0.36

EBM (200 iterations) 270 k 1.79×10−6 0.62×10−6 0.35

Subset sampling 72 k 1.73×10−6 1.00×0−6 0.58

6.3.2 Four-branch function

The four-branch function represents a widely used benchmark in structural reliability analysis,
characterizing the failure of a system comprising four distinct component limit states (e.g.,
Schöbi et al. 2017). It is used here to demonstrate the applicability of our EBM method
outside of an inversion setting. The four-branch function is defined as,

R(θ) = min


3+0.1(θ1 −θ2)2 − θ1+θ2p

2

3+0.1(θ1 −θ2)2 + θ1+θ2p
2

(θ1 −θ2)+ 6p
2

(θ2 −θ1)+ 6p
2

 , (6.22)

with input variables θ = (θ1,θ2), which are modeled by two independent standard normally-
distributed variables. The traditional rare probability of interest is P(R(θ) ≤ T ∗) =P(−R(θ) ≥
T ∗), with T ∗ = 0. Given that with probability 4.46×10−3 (according to a MC estimation with
108 samples in Schöbi et al. 2017) this is not a particularly rare event, we also direct our focus
towards P(−R(θ) ≥ T ∗∗) with T ∗∗ = 2. The distribution of the quantity of interest R =−R(θ)
is depicted in Figure 6.2b and the limit states θ with R(θ) = T ∗ are depicted in Figure 6.5b-d
as black outlines.
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We use the non-parametric form of the bias potential with the same Gaussian kernel density
estimate as in the previous section. As evaluation points, we employ equally-spaced intervals
between -10 and 100 with a spacing of 0.1. Our objective is to investigate the performance
of the EBM method under a restricted computational budget of 10,000 evaluations. To per-
form the sampling of si ∼ pVψ(·), we use MH steps with Gaussian proposals aiming for an
acceptance rate close to 30 %. We test a configuration using a stopping criterion employing
a significance level of α= 0.99 and aBS = 0.5. With an appropriate thinning factor (4) and
burn-in period (5 steps), this results in 100 samples obtained during 405 MH iterations. We
run the EBM process with a constant learning rate of γ= 6.5 and momentum weight β= 0.5.

The optimized bias potential Vopt(r ) takes on different forms depending on the chosen PDF
pref(r ), impacting not only pVopt(r ), but also pVopt(θ) (Eq. 6.14), which has to be explored
by MH steps to obtain the samples si ∼ pVψ(·). This is particularly interesting in this test
example, as the failure event is connected to four distinct regions of the parameter space.
Figure 6.5 shows samples of the resulting joint PDFs pVopt (θ1,θ2) for different choices of pref(r )
together with the limit states θ with R(θ) = T ∗ (black outlines). The corresponding means
and COVs for the rare event probability estimates are shown in Table 6.2. We start with a
Gaussian distribution centred on the first threshold of interest, N (0,22). The resulting joint
PDF pVopt (θ1,θ2) (Fig. 6.5b) appears to be relatively compact and only explores a small part
of the area outside the limit states. This leads to a high mean estimate (Table 6.2). Merely
increasing the standard deviation means that pref(r ) also puts high mass on the left tails of
the distribution of R, a wasteful allocation of resources.

As an alternative, we consider an asymmetric and heavy -tailed Generalized Extreme Value
(GEV) distribution as pref(r ). We start with GEV(2,2,0.33) using a location parameter of 2, a
scale parameter of 2, and a shape parameter of 0.33. This shift results in a PDF pref(r ) that
has minimal mass in the high-probability region of R (Fig. 6.5a). The resulting joint PDF
pVopt (θ1,θ2) (Fig. 6.5c) displays an increased level of exploration outside the limit states but
partly omits the central region that links the four branches. This creates challenges when
transitioning between modes during the MH sampling process, leading to biased probabil-
ity estimates with high COVs (Table 6.2). These findings suggest that a well-chosen pref(r )
should not only have heavy right tails, but also include the high probability region of R while
excluding the left tails of its distribution. Therefore, we change to a type I extreme value
distribution GEV(2,3,0) (Fig. 6.5a), which expands the joint PDF pVopt (θ1,θ2) while the central
region is still incorporated (Fig. 6.5d). Consequently, our results yield a mean probability
estimate for T ∗ that aligns with the one in Schöbi et al. (2017). Moreover, for T ∗∗, we observe
a significantly reduced mean compared to the alternative pref(r ), and for both thresholds, the
COVs are at their lowest with the latter choice.

To ensure a connected pVopt (θ1,θ2) and enhanced exploration of the failure regions, we
consider GEV(2,3,0) to be the best choice. In evaluating subset sampling for comparison
purposes, we employ the average computational budget of the EBM approach. A satisfactory
performance was achieved with 80 samples per subset and a propagation using 5 MH steps.
For both thresholds, we obtain comparable mean estimates with both methods, yet higher
COVs with subset sampling compared to EBM with GEV(2,3,0). In fact, the COV for the
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second threshold T ∗∗ is about 50 % higher.

(a) (b) (c) (d)

Figure 6.5: Impact of pref(r ) for the four-branch function example. (a) Distribution of the
quantity of interest R (filled) with two considered thresholds (dashed vertical), along with
the PDFs N (0,22) (red), GEV(2,2,0.33) (blue) and GEV(2,3,0) (orange). A total of 10,000
samples of the resulting trained pV (θ1,θ2) obtained with (b) N (0,22), (c) GEV(2,2,0.33), and
(d) GEV(2,3,0). The black outlines in (b, c, d) depict the limit states θ with R(θ) = T ∗.

Table 6.2: Comparison of the EBM method and subset sampling for the four-branch example.
Mean refers to the mean of the 50 estimates of P(−R(θ) ≥ T ) for the two thresholds T ∗ and
T ∗∗ and COV to the coefficient of variation. The budget noted for EBM is equal to the mean
budget. The Monte Carlo results for T ∗ are copied from Schöbi et al. (2017).

Method pref(r ) Budget
Mean T ∗

[×10−3]
COV T ∗ Mean T ∗∗

[×10−5]
COV T ∗∗

MC - 105 k 4.46 0.0015 - -
EBM N (0,22) 5 k 5.79 0.47 45.69 0.63
EBM GEV(2,2,0.33) 12 k 82.45 1.63 31.29 1.09
EBM GEV(2,3,0) 10 k 4.97 0.31 1.56 0.53

Subset sampling - 10 k 4.91 0.36 1.36 0.80
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6.3.3 Load capacity example

As a third test case, we consider the load capacity example of Straub et al. (2016), enabling
comparison of our EBM approach with their BUS method. The problem under consideration
is a basic reliability problem concerned with the failure of an engineering system when the
load θL exceeds the capacity θC . The corresponding rare event probability of interest is,

P(R(θ) ≥ 0) =P(θL −θC ≥ 0), (6.23)

with θ = (θL ,θC ). For the load θL, we assume a prior Gumbel distribution with mean 2 and
standard deviation 1 and the capacity θC is lognormal distributed with mean 12 and standard
deviation 2; the variables are assumed to be independent. To investigate the performance
for a problem with increasing number of model parameters, Straub et al. (2016) express the
capacity as a product of component capacities θC

i (1 ≤ i ≤ nC ). The component capacities θC
i

follow a lognormal distribution such that θC still has mean 12 and standard deviation 2.

In this inversion setting, individual measurements yi of the component capacities θC
i are

considered. To ensure analytical solutions, multiplicative lognormal measurement errors,

pY |θ(y |θ) = p(y |θC
1 ,θC

2 , ...,θC
nC

) ∝ exp

(
−1

2

nC∑
i=1

(
log yi − logθC

i

σy

)2)
, (6.24)

with σy = 0.05 and yi = 81/nC are employed. Following Straub et al. (2016), we consider
nC = 10 and nC = 100 with the resulting failure probabilities P(θL −θC ≥ 0|y) being 6.8×10−5

and 2.1×10−5, respectively. The posterior distribution of R =R(θ) = θL −θC for nC = 10 with
the critical threshold of T = 0 is depicted in Figure 6.2c.

The results of the BUS approach with subset sampling are reproduced in Table 6.3. As Straub
et al. (2016), we transform the reliability problem to the standard normal space by marginal
transformations of the load and capacity variables. To enable a direct comparison of the EBM
with the BUS approach, we employ the same computational budgets. In order to accommo-
date a consistent and constrained computational budget in the context of EBM, we use a
fixed number of optimizations steps (no stopping criterion). Following our analysis in the pre-
vious section, we employ as pref(r ) a type I extreme value distribution GEV(0,7,0). To make
the method dimensionally robust, we use prior-preserving preconditioned Crank-Nicolson
proposals (pCN; e.g. Cotter et al. 2013) within the sampling of si ∼ pVψ(·). Then, we use a
burn-in of 10 steps, a thinning factor of th = 6 and aBS = 0.5. As we do not rely on a stopping
criterion, we further divide the number of final samples by a factor of two (Chwialkowski et al.
2016), leading to n = 50 obtained by 310 MH steps. Then we fix the number of optimization
steps in accordance with the computational budget (resulting in 25 and 27 steps for the two
values of nC ).

We test both a parametric and non-parametric form for the bias potential. For the parametric
approach, we employ RBFs with squared exponential kernels (Eq. 6.9), using LB =−100 and
HB = 100, B = 500 and κ= 0.5. We run the EBM process with an exponentially decreasing
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learning rate initiated as γ = 0.5 (factor -0.005) and momentum weight β = 0.5. For the
non-parametric form, we use the same Gaussian kernel density estimate of pV (r ) as in the
previous sections and evaluation points between -100 and 100 with a spacing of 0.1. Here
we employ an exponentially decreasing learning rate initiated as γ= 19 (factor -0.005) and
momentum weight β= 0.95. The means and 95 % confidence intervals of 50 runs are shown
in Table 6.3 and the corresponding estimates of V (r ) are depicted in Figure 6.6a for the RBFs
and in Figure 6.6b for the non-parametric form. With a non-parametric V (r ), we some-
times obtain bias potentials characterized by minor-scale fluctuations, in contrast to the
smoother bias potentials generated by RBFs, which exhibit more pronounced large-scale
fluctuations. The small-scale fluctuations arise due to the constraints of our limited compu-
tational resources, compelling us to base the kernel density estimates on a relatively small
set of samples, which may not be adequately thinned. To mitigate this issue and promote a
smoother estimation, we have increased the momentum weight to β= 0.95. However, this
adjustment also introduces challenges in fine-tuning the learning process, as it tends to cause
overshooting during optimization. Due to the changed PDF pR|Y (r |y) and computational
budget for nC = 100, we have to adapt the learning rate schedule for an optimal performance
and use γ= 22 and a decay factor of -0.003. On the other hand, the RBF parameterization
with lower momentum weight is less sensitive to the choice of the learning rate schedule and
we can use the same for both scenarios. For both nC , both presented configurations of the
EBM approach lead to a reduction of the 95 % confidence interval’s length compared to the
BUS approach. While the non-parametric form, when coupled with a higher momentum
weight, yields noticeably increased accuracy, it also becomes significantly more sensitive to
the learning rate schedule.

(a) (b)

Figure 6.6: Twenty optimized bias potentials V (r ) for the load capacity example (nC = 100)
using (a) the RBF parameterization and (b) the non-parametric form.
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Table 6.3: Table summarizing the comparison of EBM and BUS for the load capacity example.
The 95 % confidence intervals of the BUS method with subset sampling are copied from
Straub et al. (2016), the mean value is not provided.

Case Method Budget Mean 95 % confidence interval

nC = 10 Analytical - 6.8×10−5 -

EBM (non-par.) 7.7 k 7.0×10−5 [2.7,12.0]×10−5

EBM (RBF) 7.7 k 7.1×10−5 [0.9,19.5]×10−5

BUS 7.7 k - [2.1,35.0]×10−5

nC = 100 Analytical - 2.1×10−5 -

EBM (non-par.) 12.6 k 2.7×10−5 [1.2,4.7]×10−5

EBM (RBF) 8.4 k 4.0×10−5 [0.3,10.0]×10−5

BUS 8.4 k - [0.2,12.0]×10−5

6.4 Discussion

This paper presents a novel energy-based model (EBM) approach for estimating probabilities
of rare events that is applicable not only for conventional rare event estimation but also in
inversion settings. The approach centers on representing the distribution of the quantity of
interest as an energy density function. The estimation of the related free energy is achieved
by optimizing a bias potential, aligning it with a predefined distribution pref(r ) that has most
mass on the region of interest.

When parameterizing the bias potential Vψ(r ), it is crucial to allow for an appropriate amount
of flexibility. We recommend to compare results obtained by a chosen parameterization
with those obtained with a more flexible parameterization. An alternative approach is to
use a non-parametric form for the bias potential V (r ). Depending on the test case and
the computational budget, we illustrate the effectiveness of the non-parametric bias poten-
tial in alleviating bias issues and reducing computational needs (Fig. 6.3). However, the
non-parametric approach relies heavily on the quality of the kernel density estimate used
during the optimization. In cases where computational resources are limited, and when
dealing with correlated samples, it is possible to obtain bias potentials that exhibit fine-scale
fluctuations resulting from individual optimization steps (Fig. 6.6b). A parameterization,
on the other hand, does not face this problem as it can be chosen such that it enforces a
smooth bias potential (Fig. 6.6a). However, when opting for a parameterization, we face the
critical decision of choosing the appropriate form, which can significantly impact the final
outcomes. When manually fine-tuning the bandwidth of the kernel density estimate within
the non-parametric approach, we also retain the capability to shape the potential’s form, but
this comes at the cost of introducing additional configuration choices.
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When selecting the distribution pref(r ), one needs to consider that too light right tails lead
to a positive bias in the estimates of P(R(θ) ≥ T |y). This effect is the most pronounced for
the parametric approach, as the optimization relies on samples of pref(r ) and pV (r ). Be-
yond a certain quantile, the probability of obtaining samples is extremely small, leading to
an overestimation of V (r ) in this region (under the assumption that the initial potential is
constant everywhere). The same principle would hold for P(R(θ) ≤ T |y) and the left tails of
pref(r ). Since our primary focus is on failure probability estimates, a slight positive bias in
the probability value is not too problematic. Additionally, the non-parametric form reduces
this bias as the optimization relies on PDFs enabling an integration of the tails. The choice of
pref(r ) also determines the form of the PDF pV (θ) (Eq. 6.14), which needs to be explored by
MH in each optimization step. In the second test example utilizing the four-branch function
(Section 6.3.2), we showcase the benefit of using an asymmetric Generalized Extreme Value
(GEV) distribution as pref(r ) (Fig. 6.5). The form of the GEV distribution enables a pref(r ) with
heavy right tails that includes the high probability region of R. For this example with distinct
regions contributing to the rare event, the incorporation of the region of high probability of
the quantity of interest within pref(r ) facilitates the MH algorithm’s ability to shift between
the modes, leading to a lower coefficient of variation in the probability estimates.

We optimize the bias potential using stochastic gradient descent with momentum. Regarding
the learning rate, a smaller value tends to lead to more stable estimates but also to a larger
number of optimization steps (Fig. 6.4). Conversely, higher learning rates result in increased
fluctuations but require fewer steps for convergence. The momentum has the advantage
of dampening oscillations in the convergence process and making it more robust to noisy
gradients, however, it requires careful tuning of the learning rate and momentum weight, to
achieve optimal performance. Besides stochastic gradient descent with momentum, there
exist numerous alternative implementations for the optimization. For instance, for the last
test case requiring fine tuning of the optimization schedule (Section 6.3.3), exploring more
advanced optimization algorithms like Adam (Kingma and Ba 2015) would be interesting. We
combine the optimization with a stopping criterion based on a goodness-of-fit test employing
the Kernelized Stein discrepancy. This is done as the Kullback–Leibler divergence used in
the optimization of the bias potential exhibits a great amount of scatter compared with KSD
that demonstrates a much clearer convergence. This characteristic of the KSD makes it a
valuable diagnostic tool in determining the appropriate moment to stop the optimization
process. This achieves two key benefits: First, it helps stabilize the rare event probability
estimates by ensuring that the biased probability distribution pV (r ) closely approximates the
target probability distribution pref(r ). Second, it reduces computational effort by allowing
the optimization process to halt as soon as the approximation becomes sufficiently accurate
(Fig. 6.4). To account for the correlation in the samples, we use the specific bootstrap method
proposed by Chwialkowski et al. (2016).

We compare the performance of the EBM approach against alternative methods (Section 6.2.3)
using three illustrative test examples. In the first contamination test case involving inversion
(Section 6.3.1), the EBM method outperforms subset sampling, reducing the root-mean-
square-error (RMSE) and coefficient of variation (COV) by about 40 % (Table 6.1). In the
second example involving the four-branch function (Section 6.3.2), subset sampling also
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exhibits poorer performance than the EBM approach, with the latter reducing the COV by up
to 35 % compared to subset sampling. In the third example in Section 6.3.3, we compare the
EBM method’s performance against the BUS approach with subset sampling in a simplistic
engineering test case from Straub et al. (2016). For both numbers of considered capacity
components, the EBM method is able to narrow down the 95 % confidence interval compared
to the BUS approach (Table 6.3).

Regarding different approaches for sampling si ∼ pVψ(·), we experiment with various boot-
strap parameters aBS (results not shown). We notice that there is an increase in the variance
of the probability estimates with growing aBS . However, the reduced values for small boot-
strap parameters come at the expense of a higher number of forward simulations. Similar to
the learning rate, there seems to be a trade-off between computational cost and accuracy.
Besides testing other parameterizations for V (r ), distributions for pref(r ) and optimization
schemes for updating V (r ), one could also consider replacing the sampler for pV (θ). For
instance, other proposal schemes, interacting MH chains or a particle method could be con-
sidered (e.g., Robert et al. 2018). In data rich settings with narrow posterior distributions, it is
expected that V (r ) will vary over very large ranges. In such scenarios, it could be beneficial
to know in advance the expected properties of V (r ) such as shape, smoothness class and
range. This could potentially be achieved by using a simplistic free energy function estimate
(e.g. histogram based) of some thousands of posterior samples giving together with pref(r ) to
obtain a first approximation of Vopt(r ).

6.5 Conclusion

This paper introduces an energy-based model (EBM) approach to estimate rare event prob-
abilities. The approach is based on formulating the distribution of the quantity of interest
as an energy density function with a corresponding free energy function. By optimizing a
bias potential such that the corresponding energy density approaches a pre-defined PDF
pref(r ), the method estimates the free energy accurately in the region targeted by pref(r ).
The presented approach is applicable both for traditional rare event estimation and in the
context of inversion settings when one is not interested in the posterior itself, but rather in
the distribution of a quantity that depends on the posterior. When employed in such a setting,
this formulation reduces the potentially high-dimensional problem of first estimating the
posterior and subsequently the quantity of interest to the optimization of a one-dimensional
function. The optimization of the bias potential involves minimizing the Kullback–Leibler
divergence and a stopping criterion based on the Kernelized Stein Discrepancy is introduced
to terminate the optimization process. The stopping criterion not only enhances the stability
and accuracy of the rare event probability estimation but also optimizes computational
resources by terminating the optimization process when the approximation is deemed satis-
factory. A non-parametric form of the bias potential is introduced, which eliminates the need
to make a parameterization choice while simultaneously enabling efficient and accurate
probability estimates. For the three presented exemplary test cases, a properly configured
EBM approach ensures precise estimations of rare event probabilities and outperforms the
examined variants of subset sampling methods.
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6.6 Appendix

6.6.1 Relation to maximum likelihood estimation

We can reformulate the minimization of the Kullback-Leibler divergence as a maximum
likelihood estimation problem. While we summarize the general concepts and implications
of this relation, we refer to Van der Vaart (2000) for the theoretical details about maximum
likelihood estimation.

Let R be a random variable, whose distribution P has a PDF pVψ(r ) with a statistical model
{pVψ(·) :ψ ∈Ψ}. Furthermore, ri for 1 ≤ i ≤ n are n independently generated realizations of R .
The log-likelihood function of the model is given by,

ln(ψ) = log
n∏

i=1
pVψ(ri ) =

n∑
i=1

log pVψ(ri ). (6.25)

A maximum likelihood estimator (MLE) is defined as ψ̂MLE ∈Ψwith ln(ψ̂MLE ) = max
ψ∈Ψ

ln(ψ).

We define,

ℓ(ψ) := Eψ0 (log pVψ(R)) =
∫

log pVψ(r )pVψ0
(r )dr. (6.26)

Under the assumption that the model is well specified with pVψ0
(r ) being the PDF of P and

E(| log pVψ(R)|) < ∞, ψ 7→ ℓ(ψ) is maximized at ψ0. The normalized log-likelihood ψ 7→
1
n ln(ψ) is a sample approximation of ψ 7→ ℓ(ψ), and under some regularity constraints,
1
n łn(ψ)

a.s.−→ Eψ0 (log pVψ(R)) almost surely such that the MLE ψ̂MLE is a consistent estimator for
ψ0. Furthermore, under some additional conditions, the MLE follows asymptotic normality,

p
n(ψ̂MLE −ψ0)

d−→N (0, I (ψ0)−1), for n →∞, (6.27)

with the Fisher information matrix I (ψ0) = Eψ0

(
∇ψ log pVψ(R)∇ψ log pVψ(R)T

)
.

In our setting, we assume that pref(r ) = pVψ0
(r ) forψ0 ∈Ψ. Furthermore, the Kullback-Leibler

divergence between two distributions with PDFs pVψ(·) and pVψ0
(·) can be expressed as

ℓ(ψ0)−ℓ(ψ):

KL(pVψ0
||pVψ) =

∫
log pVψ0

(r )pVψ0
(r )dr −

∫
log pVψ(r )pVψ0

(r )dr. (6.28)

The reformulation ℓ(ψ) = ℓ(ψ0)−KL(pVψ0
||pVψ) shows that maximizing the likelihood is equal

to minimizing the Kullback-Leibler divergence.
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Chapter 7

Conclusions and outlook

7.1 Conclusions

This thesis presents a compilation of methodological advancements leveraging traditional
probabilistic Bayesian inversion approaches. Addressing geoscientific applications, their
value for accurate posterior estimation and reliable uncertainty quantification is demon-
strated. First, this thesis delves into the practical application of statistical estimation and
approximation approaches within the context of scenarios involving intractable likelihood
functions and latent variable models. Second, it introduces advanced statistical techniques
that integrate inversion and risk assessment, providing specialized approaches for scenarios
where the emphasis lies not on the posterior distribution, but rather on the probability of
a rare event of interest. The presented methodological advancements improve the compu-
tational efficiency and realism of probabilistic Bayesian inversion approaches for targeted
estimation of properties and attributes of environmental systems.

Chapters 2, 3, and 4 of this thesis center around inversion problems concerned with in-
tractable likelihood functions, arising from latent variables, which obscure the relationship
between the target model parameters and the observed measurements. Our findings demon-
strate that by accurately estimating the intractable likelihood function, we can directly obtain
reliable posterior estimates of the target parameters. In the context of geophysical inversion,
we leverage the original formulation of lithological tomography by employing the correlated
pseudo-marginal (CPM) method (Chapter 2). This approach estimates the intractable likeli-
hood function by employing Monte Carlo averaging over samples of the latent variable. By
doing so, it can directly target the (hydro)geological parameters of interest while accounting
for the uncertainty in the petrophysical relationship. Through combination of the CPM
method with importance sampling and prior-sampling MCMC proposals, we effectively
address the limitations of the original lithological tomography formulation when confronted
with high-dimensional problems and large datasets featuring high signal-to-noise ratios.
Moreover, the incorporation of prior-sampling proposals enhances exploration capabilities
in the context of high-dimensional problems. Subsequently, in Chapter 3, we compare the
CPM method against a linearized Gaussian approximation (LinGau) method. We find that the
LinGau method provides a computationally efficient approximation, which works well when
the scatter of petrophysical prediction uncertainty is small compared to the observational
noise. Nevertheless, the computationally more demanding CPM method offers an accurate

171



and more general approach that outperforms the LinGau method in scenarios with high
petrophysical uncertainty. However, for the CPM method to perform effectively in practical
applications, it requires an efficient importance sampling distribution. In Chapter 4, we
employ the CPM method to infer geostatistical hyperparameters of the model domain from
hydrogeological or geophysical data. By avoiding the bias and overconfidence that often arise
from simplified model assumptions, the CPM method enables precise posterior estimates of
the hyperparameters. Additionally, it eliminates the need to infer a large number of parame-
ters related to the local properties of the model domain.

In Chapters 5 and 6, we demonstrate that combining inversion and reliability methods
enables stable rare event probability estimates even in scenarios for which the probability
of occurrence is less than one in a million. This demonstrates the benefit of specialized
methods against traditional Monte Carlo estimation based on posterior sampling approaches.
In Chapter 5, we introduce a two-stage application of the Sequential Monte Carlo method
within an inversion framework to assess groundwater hazards. Through flow and transport
examples, we aim to demonstrate the method’s ability to accurately estimate the occurrence
of extremely rare hazards. In Chapter 6, we present a novel approach based on energy-
based models (EBM) to estimate probabilities of rare events. In inversion settings, this
approach reduces the potentially high-dimensional problem of estimating the posterior
and subsequently the quantity of interest to the problem of optimizing a one-dimensional
function. We demonstrate the accuracy and effectiveness of the EBM method through
test cases sourced from the geosciences and engineering literature. The results showcase
the method’s favorable performance compared to state-of-the-art reliability methods in
traditional rare event estimation but also in inversion settings.
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7.2 Outlook

The findings of this thesis give rise to various potential directions for future research. We
categorize these points into three overarching areas: General Bayesian inference, likelihood
estimation and rare event estimation.

7.2.1 Bayesian inference

It is important to emphasize that this thesis has only considered the analysis of synthetic data.
While synthetic data provide a controlled environment for methodological development and
evaluation, it is essential to extend these investigations to field demonstrations in order to
assess the practical applicability and performance of the proposed methods under real-world
conditions. Furthermore, it is important to acknowledge that the entire body of our research
presented in Chapters 2, 3 and 4 is built upon Gaussian assumptions for the target field, latent
variables and observational noise. These assumptions have provided a useful framework for
developing and analyzing the proposed methods. Future investigations could explore the
broader applicability of the proposed methods in scenarios including non-Gaussian behavior.

In studies employing probabilistic inversion methods, there is not only a lack of consistent
utilization of convergence diagnostics but also a notable absence of a universally applicable
tool for assessing posterior estimates. While we provide a brief discussion on certain aspects
related to this thesis, it is important to note that these are vast areas of research that offer
numerous opportunities for further investigations. Convergence diagnostics play a crucial
role in determining whether the posterior sampling approach has achieved a stationary
distribution and if the obtained samples effectively represent the target distribution. In
Chapter 2, we demonstrate that the widely used R̂-statistics (Gelman and Rubin 1992) is an
insufficient metrics to assess the convergence of an adaptive MCMC algorithm. Despite the
availability of upgraded versions of the original R̂-statistics (Vats and Knudson 2021), the
limitation of this diagnostic to detect lack of convergence when the chains fail to explore
regions of critical mass remains. Nevertheless, it is probably the most commonly utilized
convergence diagnostics in probabilistic inversion studies.

Given that only synthetic data is utilized in this thesis, direct comparison between the pos-
terior estimates and the true parameter values is always possible. We employ scoring rules
(Gneiting and Raftery 2007) for this purpose, which assess both the statistical consistency
between predictions and observations and the sharpness of the prediction. However, deter-
mining the most appropriate rule to emphasize a given objective in a geoscientific context
remains an area for further investigation. In non-synthetic settings, where a true parameter
value is unavailable for comparison, the posterior predictive distribution can be compared to
the measurements (Krüger et al. 2021). The optimal way to achieve this is by reserving certain
data for assessment purposes. Especially in the context of rare event estimation, exploring
the relationship between the quality of the posterior predictive distribution and the accuracy
of rare event probability estimates offers a fascinating avenue of investigation.
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7.2.2 Likelihood estimation

Likelihood estimation is a crucial aspect when performing inversion in latent variable models,
with applications in various contexts beyond those discussed in this thesis:

• Petrophysical uncertainty
Chapters 2 and 3 focus on accounting for the scatter in petrophysical relationships while
assuming that the petrophysical model and parameters are known. It is important to
note that uncertainty exists at these levels as well. Furthermore, our studies exclusively
consider petrophysical uncertainty in latent variable models where the data are given
by GPR first-arrival travel times. It is worth mentioning that more complex, non-linear
problems such as electrical resistivity tomography or surface-based seismic refraction
tomography may exhibit an even greater sensitivity to petrophysical uncertainty.

• Curse of dimensionality
In this thesis, we work in the full parameter space whenever possible such that any
distortions in the posterior estimations due to model reductions can be avoided. How-
ever, the curse of dimensionality poses a general challenge for MCMC algorithms, as
the convergence time increases with the number of target parameters (e.g., Robert
et al. 2018). To address this issue while considering the full parameter space, one could
infer some main features and account for the remaining components in the likelihood
estimation (for instance with the CPM method).

• Auxiliary parameters
In most geoscientific inversion problems, the primary emphasis is on a specific property
of interest. Nevertheless, the observed data can also be influenced by other factors (e.g.,
variations in porosity in tracer-test tomography). In such cases, the uncertainty of the
auxiliary parameters can be accounted for by employing latent variables.

• 3D-effects
This thesis exclusively focuses on model domains that are limited to two spatial dimen-
sions. In real-world applications, the data are influenced by heterogeneities that exist
beyond the two-dimensional plane of measurements (e.g., between boreholes) or by
outer-space effects (Maurer and Friedel 2006). To further improve the estimation and
uncertainty quantification in such setups, latent variables could be used to represent
the heterogeneities in the out-of-plane dimension.

• Multiple-point statistics with geophysical constraints
Multiple-point statistics (MPS) methods use sequential simulations to generate geo-
statistical realizations that preserve the complex spatial patterns and relationships
observed in so-called training images (Guardiano and Srivastava 1993). To effectively
incorporate geophysical constraints into MPS methods, it is necessary to evaluate the
likelihood of proposed candidate values. Thereby, the not yet informed model parame-
ters can be considered as latent variables. This falls in the scope of the current work
of Shiran Levy, where I am involved as co-author on one paper. Shiran Levy, together
with Macarena Amaya, are the two PhD students in the same SNSF project under the
guidance of Niklas Linde.
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The CPM method provides a way to handle latent variable models by estimating the likeli-
hood function. The effectiveness of the CPM method relies heavily on the variance of the
log-likelihood ratio estimator. Particularly in scenarios with a large number of observations
and a high signal-to-noise ratio, a well-working importance density is required for efficient
sampling of the latent variables. While an inadequate importance sampling strategy can
decrease efficiency, the posterior samples remain unbiased as the importance sampling is
solely employed to reduce the variance of the likelihood estimator. A significant area for
future research would involve the development and evaluation of importance sampling
schemes that do not depend on Gaussian assumptions. Promising starting points for such
research could include the exploration of efficient importance sampling techniques proposed
by Richard and Zhang (2007), as well as the application of multiple importance sampling
methods introduced by Veach and Guibas (1995) and popularised by Owen and Zhou (2000).
In situations where it is challenging to determine a suitable importance sampling distribu-
tion, the applicability of the CPM method can be compromised. One potential solution in
such cases is to infer additional key characteristics of the latent field alongside the target
parameters and subsequently employ the CPM method to sample the remaining (smaller)
variability associated with the latent variables.

In addition to CPM, we also employ the LinGau method, which utilizes a Gaussian approx-
imation and local linearization for the likelihood estimation. The accuracy of the LinGau
method relies on the quality of the first-order Taylor expansion used to approximate the
forward solver, and its effectiveness diminishes as the variance in the latent variable increases.
To address the approximation error inherent in the LinGau method, one potential approach
is to treat it as a model error term (see e.g. Hansen et al. 2014).

7.2.3 Rare event estimation

Within this thesis, our focus lies in addressing rare event estimation in the presence of uncer-
tain model parameters. This pertains not only to traditional rare event estimation scenarios
but also extends to inversion frameworks. When it comes to evaluating risks and making
well-informed decisions, a broader range of uncertainties may impact the outcome. It is
important to recognize the potential influence of external factors on the system under study,
such as climate change or natural disasters. With increasing diversity in the sources of un-
certainty, optimizing the strategy for data acquisition becomes crucial. This optimization
could involve integrating rare event estimation with joint inversion techniques or designing
measurement collection in a manner that maximizes the information pertaining to rare event
probability estimates.

In Chapter 5, we employ a sequential combination of Sequential Monte Carlo methods
(PostRisk-SMC) for rare event estimation in inversion settings. In the first phase of obtain-
ing a particle approximation of the posterior, we employ the adaptive Sequential Monte
Carlo (SMC) method proposed by Zhou et al. (2016). This method has already been tested
in geoscientific contexts by Amaya et al. (2021) and Amaya et al. (2021), where, in contrast
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to state-of-the-art adaptive Markov Chain Monte Carlo methods, it proved to be effective
for handling multi-modal distributions, well-suited for parallel computation, and relatively
insensitive to the choice of model proposal schemes. Despite these benefits, the application
of SMC methods in geoscientific inversion remains somewhat limited (Linde et al. 2017). In
future research, one potential avenue is to explore its application in replacing Metropolis–
Hastings in latent variable model scenarios, as examined in the initial part of this thesis. In
the second phase, the PostRisk-SMC method relies on subset sampling to estimate the rare
event probabilities. In this context, the selection of the intermediate thresholds is a critical
aspect, requiring a trade-off between the number of conditional probabilities and the number
of particles (Au and Beck 2001). To avoid the bias resulting from an adaptive sequence of
thresholds or additional cost from re-running the algorithm with the previously optimized
threshold schedule, we employ a fixed sequence of thresholds. This choice presents the
possibility that the particle system may "die" at some stage during the rare event probability
estimation process if no particles exceed the current threshold. One possible approach to ad-
dress this issue is discussed by LeGland and Oudjane (2006) and entails generating additional
particles until a specified particle count meets the given threshold. Moreover, the frequent
resampling in the second phase of PostRisk-SMC necessitates to invest in well-working par-
ticle propagation with Metropolis–Hastings to ensure that a sufficient number of steps can
prevent particle collapse. Finally, it is worth noting that the two phases of the PostRisk-SMC
method exhibit different dynamics. It is conceivable to explore different configurations for
the two phases, such as the number of particles and Metropolis-Hastings steps, to potentially
optimize the method’s performance. In the two-dimensional transport example (Section 5.4),
we initiate the process of addressing these differences by employing varying numbers of
Metropolis-Hastings steps for each phase of the method.

The new energy-based model approach to rare event probability estimation (Chapter 6) relies
heavily on the careful selection of the form of the bias potential, as well as the choice of
the PDF pref(r ) determining the specific region that is to be explored. By assuming that the
chosen parameterization exhibits sufficient flexibility, we can employ the bias potential to
directly estimate the free energy associated with the posterior of the quantity of interest.
In the context of this thesis, the parameterization is based on either Gaussian radial basis
functions, with fixed centers and shapes, or a non-parametric form eliminating the need
to make a parameterization choice. A comprehensive exploration of both the presented
parameterization approaches and alternative methods could be considered for future investi-
gation. In the process of selecting the probability distribution pref(r ), one has to recognize
the impact of the distribution’s support and tail behavior on the rare event probability esti-
mation. We optimize the bias potential using stochastic gradient descent with momentum
combined with a stopping criteria based on a goodness-of-fit test employing the Kernelized
Stein discrepancy. Besides the stochastic gradient descent with momentum, there exist more
advanced optimization algorithms such as Adam (Kingma and Ba 2015). When considering
future applications, it would be interesting to explore the potential benefits of coupling
the energy-based model approach with more sophisticated optimization approaches. Fur-
thermore, the method could be combined with more advanced samplers for pV (r ), such as
particle methods. Finally, it would be valuable to delve into the theoretical properties of the
method.
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