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EXTREMES AND LIMIT THEOREMS FOR DIFFERENCE OF CHI-TYPE

PROCESSES ∗

Patrik Albin1, Enkelejd Hashorva2, Lanpeng Ji2, 3 and Chengxiu Ling2, 4

Abstract. Let {ζ(κ)m,k(t), t ≥ 0}, κ > 0 be random processes defined as the differences of two independent

stationary chi-type processes with m and k degrees of freedom. In applications such as physical sciences

and engineering dealing with structure reliability, of interest is the approximation of the probability that

the random process ζ
(κ)
m,k stays in some safety region up to a fixed time T . In this paper we derive the

asymptotics of P
{

supt∈[0,T ] ζ
(κ)
m,k(t) > u

}
, u→∞ under some assumptions on the covariance structures of

the underlying Gaussian processes. Further, we establish a Berman sojourn limit theorem and a Gumbel

limit result.
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1. Introduction

Let X(t) = (X1(t), . . . , Xm+k(t)), t ≥ 0,m ≥ 1, k ≥ 0 be a vector process with independent components which are

centered stationary Gaussian processes with almost surely (a.s.) continuous sample paths and covariance functions

satisfying

ri(t) = 1− Ci |t|α + o(|t|α), t→ 0 and ri(t) < 1, ∀t 6=0, 1 ≤ i ≤ m+ k, (1)

where α ∈ (0, 2] and C := (C1, . . . , Cm+k) ∈ (0,∞)m+k. Define in the following
{
ζ

(κ)
m,k(t), t ≥ 0

}
, κ > 0 by

ζ
(κ)
m,k(t) :=

(
m∑
i=1

X2
i (t)

)κ/2
−

(
m+k∑
i=m+1

X2
i (t)

)κ/2
=: |X(1)(t)|κ − |X(2)(t)|κ, t ≥ 0. (2)

In this paper we shall investigate the asymptotics of

P

{
sup
t∈[0,T ]

ζ
(κ)
m,k(t) > u

}
, u→∞,

with some constant T > 0.
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Our study of the above problem of considerable interest in engineering sciences dealing with the safety of structures;

see, e.g., [18–20] and the references therein. More specifically, of interest is the probability that the Gaussian vector

process X exits a predefined safety region Su ⊂ Rm+k up to the time T , namely

P {X(t) 6∈ Su, for some t ∈ [0, T ]} .

Various types of safety regions Su have been considered for smooth Gaussian vector processes in the aforementioned

papers. Particularly, a safety region given by a ball centered at 0 with radius u > 0

Bu =

{
(x1, . . . , xm+k) ∈ Rm+k :

(
m+k∑
i=1

x2
i

)1/2

≤ u

}

has been extensively studied; see, e.g., [2, 6, 15,22]. Referring to [1, 2], we know that for k = 0

P {X(t) 6∈ Bu, for some t ∈ [0, T ]} = P

{
sup
t∈[0,T ]

|X(t)| > u

}
= THm,0

α,1 (C)u
2
αP {|X(0)| > u} (1 + o(1)), u→∞,

where Hm,0
α,1 (C) is a positive constant (see (5) below for a precise definition). Very recently [23] obtained the tail

asymptotics of the product of two Gaussian processes which has the same tail asymptotic behavior as supt∈[0,T ] ζ
(2)
1,1(t).

Our first result extends the findings of [2, 23] and suggests an asymptotic approximation for the exit probability of

the Gaussian vector process X from the safety regions S(κ)
u defined by

S(κ)
u =

{
(x1, . . . , xm+k) ∈ Rm+k : |x(1)|κ − |x(2)|κ ≤ u

}
.

Since chi-type processes appear naturally as limiting processes (see, e.g., [4, 5, 21]), when one considers two inde-

pendent asymptotic models, the study of the supremum of the difference of the two chi-type processes is of some

interest in mathematical statistics and its applications. Another motivation for considering the tail asymptotics of

the supremum of the difference of chi-type processes is from ruin theory, where the tail asymptotics can be consid-

ered as the expansion of the ruin probability since the net loss of an insurance company is ususally modeled by the

difference of two positive random processes; see, e.g., [10].

Although for k ≥ 1 the random process ζ
(κ)
m,k is not Gaussian and the analysis of the supremum can not be transformed

into the study of the supremum of a related Gaussian random field (which is the case for chi-type processes; see,

e.g., [11,18–20,22,25]), it turns out that it is possible to apply the techniques for dealing with extremes of stationary

processes developed mainly in [2, 6, 7]. In the second part of Section 2 we derive a sojourn limit theorem for ζ
(κ)
m,k.

Further, we show a Gumbel limit theorem for the supremum of ζ
(κ)
m,k over an increasing infinite interval. We refer

to [2, 4, 5, 16,22,26] for results on the Gumbel limit theorem for Gaussian processes and chi-type processes.

Brief outline of the paper: our main results are stated in Section 2. In Section 3 we present proofs of Theorem 2.1,

Theorem 2.2 and Theorem 2.3 followed then by an appendix containing the somewhat complicated proofs of three

lemmas utilized in Section 3.

2. Main Results

We start by introducing some notation. Let {Z(t), t ≥ 0} be a standard fractional Brownian motion (fBm) with

Hurst index α/2 ∈ (0, 1], i.e., it is a centered Gaussian process with a.s. continuous sample paths and covariance

function

Cov(Z(s), Z(t)) =
1

2

(
sα + tα − |s− t|α

)
, s, t ≥ 0.

In the following, let {Zi(t), t ≥ 0}, 1 ≤ i ≤ m + k be independent copies of Z and define Wκ to be a Gamma

distributed random variable with parameter (k/κ, 1). Further let O1 = (O1, . . . , Om),O2 = (Om+1, . . . , Om+k)

denote two random vectors uniformly distributed on the unit sphere of Rm and Rk, respectively. Hereafter we shall

suppose that O1,O2,Wκ and Zi’s are mutually independent. Define for m ≥ 1, k ≥ 0, κ > 0

η
(κ)
m,k(t) = Z̃

(κ)
m,k(t) + E, t ≥ 0, (3)
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where E is a unit mean exponential random variable being independent of all the other random elements involved,

and (recall C = (C1, . . . , Cm+k) given in (1))

Z̃
(κ)
m,k(t) =


L1(t), κ > 1,

L1(t) + L2(t), κ = 1,

L2(t), κ < 1,

with


L1(t) =

∑m
i=1

√
2CiOiZi(t)−

(∑m
i=1 CiO

2
i

)
tα,

L2(t) =Wκ −
(
W2/κ
κ + 2(Wκ/κ)

1/κ∑m+k
i=m+1

√
2CiOiZi(t)

+2κ−2/κ
∑m+k
i=m+1 CiZ

2
i (t)

)κ/2
,

(4)

and the convention that
∑m
i=m+1 ci = 0. In addition, denote by Γ(·) the Euler Gamma function. We state next our

main result.

Theorem 2.1. If {ζ(κ)
m,k(t), t ≥ 0} is given by (2) with the involved Gaussian processes Xi’s satisfying (1), then, for

any T > 0

P

{
sup
t∈[0,T ]

ζ
(κ)
m,k(t) > u

}
= THm,k

α,κ (C)P
{
ζ

(κ)
m,k(0) > u

}
(1 + o(1))

{
u

2
ακ , κ ≥ 1,

u
2(2/κ−1)

ακ , κ < 1

holds as u→∞, where, with η
(κ)
m,k given by (3),

Hm,k
α,κ (C) = lim

a↓0

1

a
P
{

sup
j≥1

η
(κ)
m,k(aj) ≤ 0

}
∈ (0,∞). (5)

Remarks: a) The tail asymptotics of the Gaussian chaos ζ
(κ)
m,k(0) is discussed in Lemma 3.1 below.

b) The most obvious choice of κ is 1, which corresponds to the difference of L2-norm of two independent multivariate

Gaussian processes. For the case κ = 2 and m = k = 1 the problem was (implicitly) investigated by considering the

product of two independent Gaussian processes in the recent contribution [23].

c) Since O1 is uniformly distributed on the unit sphere of Rm, we have, for κ > 1 and C = 1, that η
(κ)
m,k(t)

d
=√

2Z(t)−tα+E. In such a case, the constantHm,k
α,κ (1) coincides with the classical Pickands constantHα (see, e.g., [3]).

Approximation of Pickands constant Hα has been considered by a number of authors; see the recent contribution [9]

which gives some simulation algorithms. Precise estimation of the general Pickands constant Hm,k
α,κ (C) seems to be

hard to find, due to the complexity of the process η. However, some bounds for it could be relatively easier to derive;

this will be addressed in a forthcoming project.

d) We see from Theorem 2.1 and Lemma 3.1 that, if κ > 2, then, for any m, k ≥ 1

P

{
sup
t∈[0,T ]

ζ
(κ)
m,k(t) > u

}
= P

{
sup
t∈[0,T ]

ζ
(κ)
m,0(t) > u

}
(1 + o(1))

holds as u→∞, which means that Xm+1, . . . , Xm+k do not influence the tail asymptotic of supt∈[0,T ] ζ
(κ)
m,k(t). This

is not so surprising as the tail asymptotic behavior of ζ
(κ)
m,k(0) is subexponential.

Next, we consider the sojourn time of ζ
(κ)
m,k above a threshold u > 0 in the time interval [0, t] defined by

L
(κ)
m,k,t(u) =

∫ t

0

I{ζ(κ)
m,k(s) > u} ds, t > 0.

Our second result below establishes a Berman sojourn limit theorem for ζ
(κ)
m,k. See [6] for related discussions on

sojourn times of Gaussian processes and related processes.

Theorem 2.2. Under the assumptions and notation of Theorem 2.1, we have, for any t > 0∫ ∞
x

P
{
u

2τ
ακL

(κ)
m,k,t(u) > y

}
dy = E

{
L

(κ)
m,k,t(u)

}
Υκ(x)(1 + o(1))

{
u

2
ακ , κ ≥ 1,

u
2(2/κ−1)

ακ , κ < 1

holds as u → ∞ for all continuity point x > 0 of Υκ(x) := P
{∫∞

0
I{η(κ)

m,k(s) > 0} ds > x
}

, and τ = 2/κ − 1 for

κ ∈ (0, 1), and 1 otherwise.
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In the following, we derive a Gumbel limit theorem for supt∈[0,T ] ζ
(κ)
m,k(t) under a linear normalization, which is also

of interest in extreme value analysis and statistical tests. We refer to [5, 7, 14, 16] for its applications in deriving

approximations of the critical values of the proposed test statistics.

Theorem 2.3. Under the assumptions and notation of Theorem 2.1, if further the following Berman-type condition

lim
t→∞

max
1≤l≤m+k

|rl(t)|(ln t)c = 0, with c :=


2/κ− 1, 0 < κ < 1,

1, 1 ≤ κ ≤ 2,

k + 1− 2k/κ, κ > 2

(6)

holds, then

lim
T→∞

sup
x∈R

∣∣∣∣P
{
a

(κ)
T

(
sup
t∈[0,T ]

ζ
(κ)
m,k(t)− b(κ)

T

)
≤ x

}
− exp

(
−e−x

)∣∣∣∣ = 0,

where, for T > e

a
(κ)
T =

(2 lnT )1−κ/2

κ
, b

(κ)
T = (2 lnT )κ/2 +

κ

2(2 lnT )1−κ/2 (K0 ln lnT + lnD0) , (7)

with

D0 =

(
Hm,k
α,κ (C)

Γ(m/2)Γ(k/2)

)2

×


2

2
α ( 2

κ−1)+2(1− kκ ) (Γ ( kκ)κ(k/κ−1)
)2
, 0 < κ ≤ 1,

2
2
α+2(1− kκ ) (Γ ( kκ)κ(k/κ−1)

)2
, 1 < κ < 2,

2
2
α−2

(
Γ
(
k
2

))2
, κ = 2,

2
2
α

(
Γ
(
k
2

))2
, κ > 2

K0 =


m− 2 + (2/α)(2/κ− 1) + k(1− 2/κ), 0 < κ ≤ 1,

m− 2 + 2/α+ k(1− 2/κ), 1 < κ < 2,

m− 2 + 2/α, κ ≥ 2.

Under the assumptions of Theorem 2.3, we have the following convergence in probability (denoted by
p→)

supt∈[0,T ] ζ
(κ)
m,k(t)

(2 lnT )κ/2
p→ 1, T →∞,

which follows from the fact that limT→∞ b
(κ)
T /(2 lnT )κ/2 = 1 and that a

(κ)
T is bounded away from zero, together

with elementary considerations. In several cases such a convergence in probability can be strengthened to the pth

mean convergence which is referred to as the Seleznjev pth mean convergence since the idea was first suggested

by Seleznjev in [24], see also [13]. In order to show the Seleznjev pth mean convergence of crucial importance is

the Piterbarg inequality (see [22], Theorem 8.1). Since the Piterbarg inequality holds also for chi-square processes

(see [25], Proposition 3.2), using further the fact that

ζ
(κ)
m,k(t) ≤ |X(1)(t)|κ, t ≥ 0,

we immediately get the Piterbarg inequality for the difference of chi-type processes by simply applying the afore-

mentioned proposition. Specifically, under the assumptions of Theorem 2.3 for any T > 0 and all large u

P

{
sup
t∈[0,T ]

ζ
(κ)
m,k(t) > u

}
≤ KTuβ exp

(
−1

2
u2/κ

)
,

where K and β are two positive constants not depending on T and u. Note that the above result also follows

immediately from Theorem 2.1 combined with Lemma 3.1 below. Hence utilizing Lemma 4.5 in [25] we arrive at

our last result.
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Corollary 2.4. (Seleznjev pth mean theorem) Under the assumptions of Theorem 2.3, we have, for any p > 0

lim
T→∞

E


(

supt∈[0,T ] ζ
(κ)
m,k(t)

(2 lnT )κ/2

)p = 1.

3. Further Results and Proofs

Before presenting the proof of Theorem 2.1 we first give some preliminary lemmas. Hereafter we use the same

notation and assumptions as in Section 1. By
d→ and

d
= we shall denote the convergence in distribution (or the

convergence of finite dimensional distributions if both sides of it are random processes) and equality in distribution

function, respectively. Further, we write fξ(·) for the pdf of a random variable ξ and write h1 ∼ h2 if two functions

hi(·), i = 1, 2 are such that h1/h2 goes to 1 as the argument tends to some limit. For simplicity we shall denote,

with κ > 0 and τ = 2 max(1/κ− 1, 0) + 1,

qκ = qκ(u) = u−2τ/(ακ), wκ(u) =
1

κ
u2/κ−1, u > 0.

In the proofs of Lemmas 3.1–3.3, we denote uκ,x = u+ x/wκ(u) for all u, x > 0.

Lemma 3.1. Let {ζ(κ)
m,k(t), t ≥ 0} be given by (2). For all integers m ≥ 1, k ≥ 0 we have as u→∞

P
{
ζ

(κ)
m,k(0) > u

}
∼
f
ζ
(κ)
m,k(0)

(u)

wκ(u)
∼ 22−(m+k)/2

κ2Γ(k/2)Γ(m/2)

um/κ−1

wκ(u)
exp

(
−1

2
u2/κ

)
Γ(k/κ)

(wκ(u))k/κ
, κ < 2,

Γ(k/2), κ = 2,

κ2k/2−1Γ(k/2), κ > 2,

where Γ(k/κ)/Γ(k/2) := 1 for k = 0 and all κ > 0.

Proof. For k = 0 the claim of the lemma is elementary (see, e.g., [2], p.117). Note that for any k ≥ 1

f|X(2)(0)|κ(y) =
21−k/2

κΓ(k/2)
yk/κ−1 exp

(
−1

2
y2/κ

)
, y ≥ 0. (8)

We have, by the total probability law together with elementary considerations

f
ζ
(κ)
m,k(0)

(u) =
1

wκ(u)

∫ ∞
0

f|X(1)(0)|κ(uκ,y) f|X(2)(0)|κ

(
y

wκ(u)

)
dy (9)

=
f|X(1)(0)|κ(u)

wκ(u)

∫ ∞
0

f|X(1)(0)|κ(uκ,y)

f|X(1)(0)|κ(u)

21−k/2

κΓ(k/2)

(
y

wκ(u)

)k/κ−1

exp

(
−1

2

(
y

wκ(u)

)2/κ
)
dy

∼ 21−k/2

κΓ(k/2)

f|X(1)(0)|κ(u)

wκ(u)

∫ ∞
0

(
y

wκ(u)

)k/κ−1

exp

(
−1

2

(
y

wκ(u)

)2/κ

− y

)
dy, u→∞.

Recalling that limu→∞ wκ(u) = ∞, 1/2, 0 correspond to κ <,=, > 2, respectively, we conclude the second claimed

asymptotic relation of the lemma. The first claimed asymptotic relation then follows similarly as

P
{
ζ

(κ)
m,k(0) > u

}
=
f
ζ
(κ)
m,k(0)

(u)

wκ(u)

∫ ∞
0

f
ζ
(κ)
m,k(0)

(uκ,x)

f
ζ
(κ)
m,k(0)

(u)
dx ∼

f
ζ
(κ)
m,k(0)

(u)

wκ(u)

∫ ∞
0

e−x dx, u→∞.

�

Lemma 3.2. If {ζ(κ)
m,k(t), t ≥ 0} is as in Theorem 2.1, then

{
wκ(u)(ζ

(κ)
m,k(qκt)− u)|{ζ(κ)

m,k(0) > u}, t ≥ 0
}

d→
{
η

(κ)
m,k(t), t ≥ 0

}
, u→∞,

with η
(κ)
m,k given by (3). Recall that

d→ stands for the convergence of finite dimensional distributions.
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Proof. We henceforth adopt the notation introduced in Section 2. By Lemma 3.1, we have

wκ(u)(ζ
(κ)
m,k(0)− u)

∣∣∣{ζ(κ)
m,k(0) > u} d→ E, u→∞.

Thus, in view of Theorem 5.1 in [6], it suffices to show that, for any 0 < t1 < · · · < tn <∞, n ∈ N

pk(u) := P
{
∩nj=1{ζ

(κ)
m,k(qκtj) ≤ uκ,zj}

∣∣∣ζ(κ)
m,k(0) = uκ,x

}
→ P

{
∩nj=1{Z̃

(κ)
m,k(tj)+x ≤ zj}

}
, u→∞ (10)

holds for all x > 0 and zj ∈ R, 1 ≤ j ≤ n. Define below

∆iu(tj) = Xi(qκtj)− ri(qκtj)Xi(0), 1 ≤ i ≤ m+ k, 1 ≤ j ≤ n.

By (1) we have

u2τ/κCov(∆iu(s),∆iu(t))→ Ci(s
α + tα − |s− t|α)

= 2CiCov(Zi(s), Zi(t)), u→∞, s, t > 0, 1 ≤ i ≤ m+ k.

Therefore,

{uτ/κ∆iu(t), t ≥ 0} d→ {
√

2CiZi(t), t ≥ 0}, u→∞, 1 ≤ i ≤ m+ k.

Furthermore, by the independence of ∆iu(t)’s and Xi(0)’s, the random processes Zi’s can be chosen such that they

are independent of ζ
(κ)
m,k(0). Note that X(1)(0)

d
= R1O1 holds for some R1 > 0 which is independent of O1. Then,

using the Taylor’s expansion of (1 + x)κ/2 = 1 + κx/2 + o(x), x→ 0, we have, for any zj ∈ R, 1 ≤ j ≤ n

p0(u) = P


n⋂
j=1

{
|X(1)(qκtj)|κ ≤ uκ,zj

} ∣∣∣|X(1)(0)|κ = uκ,x


= P


n⋂
j=1

{
wκ(u)

(
Rκ1

(
1 +

1

R2
1

Vu(tj)

)κ/2
−Rκ1

)
≤ zj − x

}∣∣∣∣∣Rκ1 = uκ,x

}

= P


n⋂
j=1

{κ
2
wκ(u)Rκ−2

1 Vu(tj)(1 + op(1)) ≤ zj − x
} ∣∣∣∣∣Rκ1 = uκ,x

}

= P


n⋂
j=1

{
m∑
i=1

√
2CiOiZi(tj)

u(τ−1)/κ
(1 + op(1))−

(
m∑
i=1

CiO
2
i

u2(τ−1)/κ

)
tαj (1 + op(1)) + x ≤ zj

} , u→∞, (11)

where Vu(tj) :=
∑m
i=1 ∆2

iu(tj) + 2
∑m
i=1 ∆iu(tj)ri(qκtj)Xi(0) −

∑m
i=1(1 − r2

i (qκtj))X
2
i (0). Consequently, the claim

for k = 0 follows. Next, for k ≥ 1, we rewrite pk(u) as

pk(u) =

∫ ∞
0

P


n⋂
j=1

{
ζ

(κ)
m,k(qκtj) ≤ uκ,zj

} ∣∣∣|X(1)(0)|κ = uκ,x+y, |X(2)(0)|κ =
y

wκ(u)


×
f|X(1)(0)|κ(uκ,x+y)f|X(2)(0)|κ(y/wκ(u))

wκ(u)f
ζ
(κ)
m,k(0)

(uκ,x)
dy

=

∫ ∞
0

P


n⋂
j=1

{
|X(1)(qκtj)|κ ≤ uκ,zj+wκ(u)·|X(2)(qκtj)|κ

} ∣∣∣|X(1)(0)|κ = uκ,x+y, |X(2)(0)|κ =
y

wκ(u)

× hκ,u(y) dy,

(12)
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where

hκ,u(y) :=
f|X(1)(0)|κ(uκ,x+y)f|X(2)(0)|κ(y/wκ(u))

wκ(u)f
ζ
(κ)
m,k(0)

(uκ,x)

=
f|X(1)(0)|κ(uκ,x+y)

f|X(1)(0)|κ(uκ,y)

f
ζ
(κ)
m,k(0)

(u)

f
ζ
(κ)
m,k(0)

(uκ,x)

f|X(1)(0)|κ(uκ,y)f|X(2)(0)|κ(y/wκ(u))

wκ(u)f
ζ
(κ)
m,k(0)

(u)

∼
f|X(1)(0)|κ(uκ,y)f|X(2)(0)|κ(y/wκ(u))∫∞

0
f|X(1)(0)|κ(uκ,y)f|X(2)(0)|κ(y/wκ(u)) dy

, u→∞. (13)

Here the last step follows by Lemma 3.1 and (9).

Next, we derive the limit distribution of wκ(u)|X(2)(qκt)|κ
∣∣∣{wκ(u)|X(2)(0)|κ = y}. Noting that X(2)(0)

d
= R2O2

holds for some R2 > 0 which is independent of O2, we have by similar arguments as in (11) that, for any t ≥ 0(
wκ(u)|X(2)(qκt)|κ

)2/κ ∣∣∣{wκ(u)|X(2)(0)|κ = y}

= (wκ(u))2/κ

(
m+k∑
i=m+1

X2
i (0) + 2

m+k∑
i=m+1

ri(qκt)Xi(0)∆iu(t) +

m+k∑
i=m+1

∆2
iu(t)

−
m+k∑
i=m+1

(1− ri(qκt)2)X2
i (0)

)∣∣∣∣∣
{
Rκ2 =

y

(wκ(u))1/κ

}

= (wκ(u))2/κ

(
R2

2 + 2
R2

uτ/κ

m+k∑
i=m+1

√
2CiOiZi(t)(1 + op(1)) +

2

u2τ/κ

m+k∑
i=m+1

CiZ
2
i (t)(1 + op(1))

−2

(
R2

uτ/κ

)2 m+k∑
i=m+1

CiO
2
i t
α(1 + op(1))

)∣∣∣∣∣
{
Rκ2 =

y

(wκ(u))1/κ

}

= y2/κ + 2y1/κ

(
wκ(u)

uτ

)1/κ m+k∑
i=m+1

√
2CiOiZi(t)(1 + op(1)) + 2

(
wκ(u)

uτ

)2/κ m+k∑
i=m+1

CiZ
2
i (t)(1 + op(1))

=: θκ,u(y, t). (14)

This together with (11) and (12) implies that

pk(u) =

∫ ∞
0

P


n⋂
j=1

{
m∑
i=1

√
2CiOiZi(tj)

u(τ−1)/κ
(1 + op(1))−

(
m∑
i=1

CiO
2
i

u2(τ−1)/κ

)
tαj (1 + op(1)) + x+ y

≤ zj + wκ(u)|X(2)(qκtj)|κ
}∣∣∣∣∣|X(2)(0)|κ =

y

wκ(u)

}
hκ,u(y) dy

=

∫ ∞
0

P


n⋂
j=1

{
m∑
i=1

√
2CiOiZi(tj)

u(τ−1)/κ
(1 + op(1))−

(
m∑
i=1

CiO
2
i

u2(τ−1)/κ

)
tαj (1 + op(1)) + x+ y

≤ zj + (θκ,u(y, tj))
κ
2

}}
hκ,u(y) dy. (15)

Recalling that τ = 1+max(0, 2(1/κ−1)) and wκ(u) = (1/κ)u2/κ−1, we have by (14) that (θκ,u(y, tj))
κ/2 = y+op(1)

for κ > 1. While for κ ∈ (0, 1], it follows by (13) and Lemma 3.1 that,

hκ,∞(y) := lim
u→∞

hκ,u(y) =
1

Γ(k/κ)
yk/κ−1e−y, y > 0, (16)

which is the pdf of a Gamma distributed random variable with parameter (k/κ, 1). Hence, combining (13)–(16) and

(4) for the definition of Z̃
(κ)
m,k(t), the claim in (10) follows. Consequently, the proof of Lemma 3.2 is complete. �

The next lemma corresponds to Condition B in [2]; see also [1,4]. We note in passing that this condition, motivated by

[6], is often referred to as the “short-lasting-exceedance” condition, which is crucial in ensuring that the double sum
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part is asymptotically negligible with respect to the principle sum of the discrete approximations to the continuous

maximum; see, e.g., Chapter 5 in [1]. Denote in the following by [x] the integer part of x ∈ R.

Lemma 3.3. If {ζ(κ)
m,k(t), t ≥ 0} is as in Theorem 2.1, then for any T, a > 0

lim sup
u→∞

[T/(aqκ)]∑
j=N

P
{
ζ

(κ)
m,k(aqκj) > u

∣∣∣ζ(κ)
m,k(0) > u

}
→ 0, N →∞.

Proof. Note first that the case k = 0 is treated in [2], p.119. Using the fact that the standard bivariate Gaussian

distribution is exchangeable, we have, for u > 0

P
{
ζ

(κ)
m,k(qκt) > u

∣∣∣ζ(κ)
m,k(0) > u

}
= 2P

{
ζ

(κ)
m,k(qκt) > u, |X(1)(qκt)| > |X(1)(0)|

∣∣∣ζ(κ)
m,k(0) > u

}
=: 2Θ(u).

Further, it follows from Lemma 3.1 that, for any k ≥ 1

Θ(u) =

∫ ∞
0

∫ ∞
0

P
{
ζ

(κ)
m,k(qκt) > u, |X(1)(qκt)| > |X(1)(0)|

∣∣∣|X(1)(0)|κ = uκ,x+y, |X(2)(0)|κ =
y

wκ(u)

}

×
f|X(1)(0)|κ(uκ,x+y)f|X(2)(0)|κ

(
y

wκ(u)

)
w2
κ(u)P

{
ζ

(κ)
m,k(0) > u

} dxdy

≤
∫ ∞

0

∫ ∞
0

P
{
|X(1)(qκt)|κ > uκ,y

∣∣∣|X(1)(0)|κ = uκ,x+y

} f|X(1)(0)|κ (uκ,x+y) f|X(2)(0)|κ
(

y
wκ(u)

)
w2
κ(u)P

{
ζ

(κ)
m,k(0) > u

} dxdy

=

∫ ∞
0

P
{
|X(1)(qκt)|κ > uκ,y

∣∣∣|X(1)(0)|κ > uκ,y

} P
{
|X(1)(0)|κ > uκ,y

}
wκ(u)P

{
ζ

(κ)
m,k(0) > u

}f|X(2)(0)|κ

(
y

wκ(u)

)
dy.

Moreover, in view of the treatment of the case k = 0 in [2], p.119 we readily see that, for any p ≥ 1, with

R(t) := max1≤i≤m ri(t), r(t) := min1≤i≤m ri(t) and Φ(·) denoting the N(0, 1) distribution function,

P
{
|X(1)(qκt)|κ > uκ,y

∣∣∣|X(1)(0)|κ > uκ,y

}
≤ 4m

(
1− Φ

(
(1−R(qκt))u

1/κ√
m(1− r2(qκt))

))
≤ Kpt

−αp/2, ∀qκt ∈ (0, T ]

holds for some Kp > 0 not depending on u, t and y. Consequently,

P
{
ζ

(κ)
m,k(qκt) > u

∣∣∣ζ(κ)
m,k(0) > u

}
≤ 2Kpt

−αp/2
∫ ∞

0

P
{
|X(1)(0)|κ > uκ,y

}
wκ(u)P

{
ζ

(κ)
m,k(0) > u

}f|X(2)(0)|κ

(
y

wκ(u)

)
dy

= 2Kpt
−αp/2, ∀qκt ∈ (0, T ]. (17)

Therefore, with p = 4/α,

lim sup
u→∞

[T/(aqκ)]∑
j=N

P
{
ζ

(κ)
m,k(aqκj) > u

∣∣∣ζ(κ)
m,k(0) > u

}
≤ 2Kp

∫ ∞
aN

x−2 dx =
2Kp

aN
→ 0, N →∞

establishing the proof. �
The lemma below concerns the accuracy of the discrete approximation to the continuous process, which is related

to Condition C in [2]. As shown in [4] (see Eq. (7) therein), in order to verify Condition C the following lemma is

sufficient. Its proof is relegated to the appendix.
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Lemma 3.4. If {ζ(κ)
m,k(t), t ≥ 0} is as in Theorem 2.1, then there exist some constants C, p > 0, d > 1 and λ0, u0 > 0

such that

P
{
ζ

(κ)
m,k(qκt) > u+

λ

wκ(u)
, ζ

(κ)
m,k(0) ≤ u

}
≤ Ctdλ−pP

{
ζ

(κ)
m,k(0) > u

}
for 0 < t$ < λ < λ0 and u > u0. Here $ is α/2 for κ ≥ 1, and (α/2) min(κ/(4(1− κ)), 1) otherwise.

Proof of Theorem 2.1: It follows from Lemmas 3.1–3.4 that all the assumptions of Theorem 1 in [2] are satisfied

by the process ζ
(κ)
m,k, which immediately establishes the proof. �

Proof of Theorem 2.2: In view of (17) with p = 4/α and letting vκ = vκ(u) = 1/qκ(u) = u2τ/(ακ), we obtain

vκ

∫ T

N/vκ

P
{
ζ

(κ)
m,k(s) > u

∣∣∣ζ(κ)
m,k(0) > u

}
ds =

∫ vκT

N

P
{
ζ

(κ)
m,k(s/vκ) > u

∣∣∣ζ(κ)
m,k(0) > u

}
ds

≤ K4/α

∫ vκT

N

s−2 ds ≤
K4/α

N
, u→∞.

Hence

lim
N→∞

lim sup
u→∞

vκ

∫ T

N/vκ

P
{
ζ

(κ)
m,k(s) > u

∣∣∣ζ(κ)
m,k(0) > u

}
ds = 0.

Since further Lemma 3.2 holds, the claim follows by Theorem 3.1 in [6]. �

As shown by Theorem 10 in [2], in order to derive the Gumbel limit theorem for the random process ζ
(κ)
m,k two

additional conditions, which were first addressed by the seminal contributions [16, 17], need to be checked, namely

the mixing Condition D and the Condition D′ therein. These two conditions will follow from Lemma 3.5 and Lemma

3.6 below; their proofs are displayed in the appendix.

Lemma 3.5. Let T, a be any given positive constants and M ∈ (0, T ). If {ζ(κ)
m,k(t), t ≥ 0} is as in Theorem 2.1, then

for any 0 ≤ s1 < · · · < sp < t1 < · · · < tp′ in {aqκj : j ∈ Z, 0 ≤ aqκj ≤ T} such that t1 − sp ≥M∣∣∣P{∩pi=1{ζ
(κ)
m,k(si) ≤ u},∩p

′

j=1{ζ
(κ)
m,k(tj) ≤ u}

}
− P

{
∩pi=1{ζ

(κ)
m,k(si) ≤ u}

}
P
{
∩p
′

j=1{ζ
(κ)
m,k(tj) ≤ u}

}∣∣∣
≤ Kuς

∑
1≤i≤p,1≤j≤p′

r̃(tj − si) exp

(
− u2/κ

1 + r̃(tj − si)

)
(18)

and ∣∣∣P{∩pi=1{ζ
(κ)
m,k(si) > u},∩p

′

j=1{ζ
(κ)
m,k(tj) > u}

}
− P

{
∩pi=1{ζ

(κ)
m,k(si) > u}

}
P
{
∩p
′

j=1{ζ
(κ)
m,k(tj) > u}

}∣∣∣
≤ Kuς

∑
1≤i≤p,1≤j≤p′

r̃(tj − si) exp

(
− u2/κ

1 + r̃(tj − si)

)
(19)

hold for all u > 0 and some K > 0 not depending on u. Here ς = 2/κ
(
m− k(2/κ− 1)− 1 + max(0, 2(1/κ− 1)

)
and

r̃(t) := max1≤l≤m+k |rl(t)|, t > 0.

Remark: In contrast to the Normal Comparison Lemma in [16] for the Gaussian processes, we

obtain the crucial comparison inequality of the chi-type processes in Lemma 3.5 to ensure the mixing

D condition, which was first addressed by the seminal paper [17] (see Lemma 3.5 therein and also

Theorem 10 in [2]). Lemma 3.5 is also expected to be useful in extreme value analysis when concerned

with chi-type processes; see, e.g., [26] avoiding the technical verification of mixed-Gumbel limit

theorems for the strongly dependent cyclo-stationary χ-processes.

Lemma 3.6. Under the assumptions of Theorem 2.3, for ς, r̃(·) as in Lemma 3.5 and Tκ given by

Tκ = Tκ(u) =
1

Hm,k
α,κ (C)

qκ(u)

P
{
ζ

(κ)
m,k(0) > u

} , (20)
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we have, for any given constant ε ∈ (0, Tκ)

uς
Tκ
qκ

∑
ε≤aqκj≤Tκ

r̃(aqκj) exp

(
− u2/κ

1 + r̃(aqκj)

)
→ 0, u→∞. (21)

Proof of Theorem 2.3: To establish Conditions D and D′ in [2], we shall make use of Lemma 3.5 with T = Tκ
given by (20) and M = ε ∈ (0, Tκ), and Lemma 3.6. First note that the right-hand side of (18) is bounded from

above by

Kuς
Tκ
aqκ

∑
ε≤aqκj≤Tκ

r̃(aqκj) exp

(
− u2/κ

1 + r̃(aqκj)

)
,

which by an application of (21) implies that the mixing Condition D in [2] holds for the random process ζ
(κ)
m,k.

Next, we prove Condition D′ in [2], i.e., for any given positive constants a and T̃

lim sup
u→∞

[
ε/P

{
ζ
(κ)
m,k(0)>u

}]∑
j=[T̃ /(aqκ)]

P
{
ζ

(κ)
m,k(aqκj) > u

∣∣∣ζ(κ)
m,k(0) > u

}
→ 0, ε ↓ 0. (22)

Indeed, by (19) for some M̃ > T̃ and a positive constant K

P
{
ζ

(κ)
m,k(aqκj) > u

∣∣∣ζ(κ)
m,k(0) > u

}
≤ P

{
ζ

(κ)
m,k(0) > u

}
+Kuς

Tκ
qκ
r̃(aqκj) exp

(
− u2/κ

1 + r̃(aqκj)

)
holds for u > 0 and aqκj > M̃ . Consequently,

lim sup
u→∞

[
ε/P

{
ζ
(κ)
m,k(0)>u

}]∑
j=[T̃ /(aqκ)]

P
{
ζ

(κ)
m,k(aqκj) > u

∣∣∣ζ(κ)
m,k(0) > u

}

≤ lim sup
u→∞

[M̃/(aqκ)]∑
j=[T̃ /(aqκ)]

P
{
ζ

(κ)
m,k(aqκj) > u

∣∣∣ζ(κ)
m,k(0) > u

}
+ ε

+ lim sup
u→∞

Kuς
Tκ
qκ

[
ε/P

{
ζ
(κ)
m,k(0)>u

}]∑
j=[M̃/(aqκ)]

r̃(aqκj) exp

(
− u2/κ

1 + r̃(aqκj)

)
,

which equals ε by an application of Lemma 3.3 and (21), respectively. It follows then that (22) holds. Consequently,

in view of Theorem 10 in [2] we have, for Tκ given by (20)

lim
u→∞

P

{
sup

t∈[0,Tκ]

ζ
(κ)
m,k(t) ≤ u+

x

wκ(u)

}
= exp

(
−e−x

)
, x ∈ R.

Expressing u in terms of Tκ using (20) (see also (33)) we obtain the required claim with a
(κ)
T , b

(κ)
T given by (7) for

any x ∈ R; the uniform convergence in x follows since all functions (with respect to x) are continuous, bounded and

increasing. �

4. Appendix

Proof of Lemma 3.4: By (1), for any small ε ∈ (0, 1) there exists some positive constant B such that

ri(t) ≥
1

2
and 1− ri(t) ≤ Btα, ∀t ∈ (0, ε], 1 ≤ i ≤ m+ k.

Furthermore, for any positive t satisfying (recall $ = α/2I{κ ≥ 1}+ α/2 min(κ/(4(1− κ)), 1)I{0 < κ < 1})

0 < t$ < λ < λ0 := min

(
1

2κ+4B
,
κ

2κ+2
, ε$

)
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and any u > 2

u2τ/κθκ(t) ≤ 2κκBtα ≤ κtα/2

16
with θκ(t) :=

1

(r(qκt))κ
− 1, r(t) := min

1≤i≤m+k
ri(t). (23)

Let (X
(1)
1/r(t),X

(2)
1/r(t)) :=

(
X1(t)−r−1

1 (t)X1(0), . . . , Xm+k(t)−r−1
m+k(t)Xm+k(0)

)
which by definition is independent

of {ζ(κ)
m,k(t), t ≥ 0}. For j = 1, 2

P
{
|X(j)

1/r(qκt)| > x
}
≤ P

{
|X(j)(0)| > x

2
√

2Bu−2τ/κtα

}
, uθκ(t) ≤ λ

2wκ(u)
. (24)

In the following, the cases κ = 1, κ ∈ (1,∞) and κ ∈ (0, 1) will be considered in turn.

Case κ = 1: Note by the triangular inequality that

ζ
(1)
m,k(q1t) ≤ |X(1)

1/r(q1t)|+ |X(2)
1/r(q1t)|+

1

r(q1t)
ζ

(1)
m,k(0) + θ1(t)|X(2)(0)|.

Consequently, from (24) we get

P
{
ζ

(1)
m,k(q1t) > u+

λ

u
, ζ

(1)
m,k(0) ≤ u

}
≤ P

{
|X(1)

1/r(q1t)|+ |X(2)
1/r(q1t)|+ θ1(t)|X(2)(0)| > λ

2u
, ζ

(1)
m,k(q1t) > u

}
≤ P

{
|X(1)

1/r(q1t)|+ |X(2)
1/r(q1t)| >

λ

3u

}
P
{
ζ

(1)
m,k(q1t) > u

}
+ P

{
θ1(t)|X(2)(0)| > λ

6u

}
=: I1u + I2u.

By (23) and (24), we have, for any p > 1

P
{
|X(1)

1/r(q1t)| >
λ

6u

}
≤ P

{
|X(1)(0)| > λ

12
√

2Btα/2

}
≤ K

(
λ

tα/2

)−p
holds with some K > 0 (the values of p and K might change from line to line below). Similarly,

P
{
|X(2)

1/r(q1t)| >
λ

6u

}
≤ K

(
λ

tα/2

)−p
and hence

I1u ≤ K
(

λ

tα/2

)−p
P
{
ζ

(1)
m,k(0) > u

}
. (25)

Moreover, in view of Lemma 3.1 and (23) we have for sufficiently large u that

I2u ≤
P
{
|X(2)(0)| > 2λu

tα/2

}
P
{
ζ

(1)
m,k(0) > u

} P
{
ζ

(1)
m,k(0) > u

}
≤ K

(
λ

tα/2

)−(p−k+2)

u−(p+m−2k)P
{
ζ

(1)
m,k(0) > u

}
. (26)

Hence, the claim for κ = 1 follows from (25) and (26) by choosing p > max(4/α+ k, 2k).

Case κ ∈ (1,∞): Denote below by (Y (1)(t),Y (2)(t)) :=
(
r−1
1 (t)X1(0), . . . , r−1

m+k(t)Xm+k(0)
)
. Note that |Y (1)(t)| ≤

|X(1)(0)|/r(t) and |X(2)(0)| ≤ |Y (2)(t)| ≤ |X(2)(0)|/r(t) for all t < ε, and for some constants K1,K2 > 0 whose

values might change from line to line below

|1 + x|κ ≥ 1 + κx, x ∈ R and (1 + x)κ ≤ 1 +K1x+K2x
κ, x ≥ 0.
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We have further by the triangle inequality

ζ
(κ)
m,k(qκt) ≤

(
|Y (1)(qκt)|+ |X(1)

1/r(qκt)|
)κ
−
∣∣∣|Y (2)(qκt)| − |X(2)

1/r(qκt)|
∣∣∣κ

≤ |Y (1)(qκt)|κ +K1|X(1)
1/r(qκt)||Y

(1)(qκt)|κ−1 +K2|X(1)
1/r(qκt)|

κ

−|Y (2)(qκt)|κ + κ|X(2)
1/r(qκt)||Y

(2)(qκt)|κ−1

≤ K1|X(1)
1/r(qκt)||X

(1)(0)|κ−1 +K2|X(1)
1/r(qκt)|

κ

+K3|X(2)
1/r(qκt)||X

(2)(0)|κ−1 +
ζ

(κ)
m,k(0)

(r(qκt))κ
+ θκ(t)|X(2)(0)|κ

holds for qκt ≤ ε and some constant K3 > 0. Therefore, with µ = 1/(2(κ− 1)) and ϕ = α/(4(κ− 1)),

P
{
ζ

(κ)
m,k(qκt) > u+

λ

wκ(u)
, ζ

(κ)
m,k(0) ≤ u

}
≤ P

{
|X(1)(0)| > λµu1/κ

tϕ

}
+ P

{
|X(2)(0)| > λµu1/κ

tϕ

}
+P

{
K1|X(1)

1/r(qκt)|
(
λµu1/κ

tϕ

)κ−1

+K2|X(1)
1/r(qκt)|

κ +K3|X(2)
1/r(qκt)|

(
λµu1/κ

tϕ

)κ−1

+θκ(t)|X(2)(0)|κ ≥ λ

2wκ(u)
, ζ

(κ)
m,k(qκt) > u

}
=: Ĩ1u + Ĩ2u + Ĩ3u. (27)

Note by (23) that λµ/tϕ > 1. Similar arguments as in (26) yield that

Ĩ1u ≤ K
(
λµ

tϕ

)−(p−m+2)
u−(p−k(2/κ−1)I{κ≤2})/κP

{
ζ

(κ)
m,k(0) > u

}
Ĩ2u ≤ K

(
λµ

tϕ

)−(p−k+2)
u−(p−k+m−k(2/κ−1)I{κ≤2})/κP

{
ζ

(κ)
m,k(0) > u

}
and

Ĩ3u ≤

(
P

{
K1|X(1)

1/r(qκt)|
(
λµu1/κ

tϕ

)κ−1

>
λ

8wκ(u)

}
+ P

{
K2|X(1)

1/r(qκt)|
κ >

λ

8wκ(u)

}

+P

{
K3|X(2)

1/r(qκt)|
(
λµu1/κ

tϕ

)κ−1

>
λ

8wκ(u)

})
P
{
ζ

(κ)
m,k(qκt) > u

}
+P
{
θκ(t)|X(2)(0)|κ > λ

8wκ(u)

}
=: (II1u + II2u + II3u)P

{
ζ

(κ)
m,k(0) > u

}
+ II4u.

Furthermore,

II1u ≤ P
{
|X(1)(0)| > K1

λ1/2u−1/κ

t−α/4(r−2(qκt)− 1)1/2

}
≤ P

{
|X(1)(0)| > K1

λ1/2

tα/4

}
≤ K

(
λ

tα/2

)−p/2
.

Similarly,

II2u ≤ K
(
λu2(1−1/κ)

tακ/2

)−p/κ
, II3u ≤ K

(
λ

tα/2

)−p/2
.
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Next, we deal with II4u. We have by (23) that 2κ+4Btα/2 ≤ 1. Therefore, similar arguments as for (26) yield that

II4u ≤ P
{
|X(2)(0)|κ > 2λu

tα/2
1

2κ+4Btα/2

}
≤ K

(
λ

tα/2

)−(p−k+2)

u−(p−k+m−k(2/κ−1)I{κ≤2})/κP
{
ζ

(κ)
m,k(0) > u

}
. (28)

Therefore, the claim for κ ∈ (1,∞) follows from (27) and the inequalities for Ĩ1u, Ĩ2u and II1u– II4u by choosing

p > max(8(κ− 1)/α+ k +m, 2k).

Case κ ∈ (0, 1): Note that

(1 + x)κ ≤ 1 + x, x ≥ 0 and − |1− x|κ ≤ −(1− x), x ∈ [0,∞).

We have further by the triangle inequality

ζ
(κ)
m,k(qκt) ≤

(
|Y (1)(qκt)|+ |X(1)

1/r(qκt)|
)κ
−
∣∣∣|Y (2)(qκt)| − |X(2)

1/r(qκt)|
∣∣∣κ

≤ |Y (1)(qκt)|κ + |X(1)
1/r(qκt)||X

(1)(0)|κ−1 − |Y (2)(qκt)|κ + |X(2)
1/r(qκt)||Y

(2)(qκt)|κ−1

≤ |X(1)(0)|κ

(r(qκt))κ
+ |X(1)

1/r(qκt)||X
(1)(0)|κ−1 − |X(2)(0)|κ + |X(2)

1/r(qκt)||X
(2)(0)|κ−1

=
ζ

(κ)
m,k(0)

(r(qκt))κ
+ θκ(t)|X(2)(0)|κ + |X(1)

1/r(qκt)||X
(1)(0)|κ−1 + |X(2)

1/r(qκt)||X
(2)(0)|κ−1.

Therefore, we have by (24), with ψ = α/(4(1− κ))

P
{
ζ

(κ)
m,k(qκt) > u+

λ

wκ(u)
, ζ

(κ)
m,k(0) ≤ u

}

≤ P

θκ(t)|X(2)(0)|κ +
|X(1)

1/r(qκt)|
(u−τ/κtψ)1−κ +

|X(2)
1/r(qκt)|

(u−τ/κtψ)1−κ >
λ

2wκ(u)
, ζ

(κ)
m,k(qκt) > u


+P
{
|X(1)(0)| ≤ u− τκ tψ, ζ(κ)

m,k(qκt) > u
}

+ P
{
|X(2)(0)| ≤ u− τκ tψ, ζ(κ)

m,k(0) ≤ u, ζ(κ)
m,k(qκt) > u+

λ

wκ(u)

}
=: I∗1u + I∗2u + I∗3u.

Now we deal with the three terms one by one. Clearly, for any u > 2

I∗1u ≤ P
{
θκ(t)|X(2)(0)|κ > λ

6wκ(u)

}
+ P

{
|X(1)

1/r(qκt)| >
λκtα/4

6uτ/κ

}
P
{
ζ

(κ)
m,k(qκt) > u

}
+P
{
|X(2)

1/r(qκt)| >
λκtα/4

6uτ/κ

}
P
{
ζ

(κ)
m,k(qκt) > u

}
,

where the first term can be treated as for II4u, see (28). For the rest two terms, we have, by using (24)

P
{
|X(j)

1/r(qκt)| >
λκtα/4

6uτ/κ

}
≤ P

{
|X(j)(0)| > κ

12
√

2B

λ

tα/4

}
≤ K

(
λ

tα/4

)−p
, j = 1, 2. (29)

In order to deal with I∗2u and I∗3u, set below (X(1)
r (t),X(2)

r (t)) :=
(
X1(0)−r1(t)X1(t), . . . , Xm+k(0)−rm+k(t)Xm+k(t)

)
which by definition is independent of {ζ(κ)

m,k(t), t ≥ 0}. For j = 1, 2

P
{
|X(j)

r (qκt)| > x
}
≤ P

{
|X(j)(0)| > 2

√
λx√

u−2τ/κtα

}
. (30)
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Using further the triangle inequality |X(1)
r (qκt)|κ ≥ (r(qκt))

κ|X(1)(qκt)|κ−|X(1)(0)|κ and (23) (recalling |X(1)(qκt)|κ ≥
ζ

(κ)
m,k(qκt) > u), we have

I∗2u ≤ P
{
|X(1)

r (qκt)|κ > u

(
(r(qκt))

κ − tψκ

u1+τ

)}
P
{
ζ

(κ)
m,k(qκt) > u

}
≤ P

{
|X(1)

r (qκt)|κ >
(1− 2−κ)u

2κ

}
P
{
ζ

(κ)
m,k(0) > u

}
≤ P

{
|X(1)(0)| > (1− 2−κ)1/κ

√
λ

tα/2

}
P
{
ζ

(κ)
m,k(0) > u

}
≤ K

(
λ

tα

)−p/2
P
{
ζ

(κ)
m,k(0) > u

}
. (31)

For I∗3u, using |X(1)(qκt)|κ > u+ λ/wκ(u) and

|X(1)(0)|κ = ζ
(κ)
m,k(0) + |X(2)(0)|κ ≤ u

(
1 +

tψκ

u1+τ

)
we have

I∗3u ≤ P
{
|X(1)

r (qκt)|κ > u

(
(r(qκt))

κ

(
1 +

λ

uwκ(u)

)
−
(

1 +
tψκ

u1+τ

))}
P
{
ζ

(κ)
m,k(qκt) > u

}
= P

{
|X(1)

r (qκt)|κ > u−τ
(
λκ(r(qκt))

κ − u1+τ (1− (r(qκt))
κ)− tψκ

)}
P
{
ζ

(κ)
m,k(0) > u

}
,

where by (23)

λκ(r(qκt))
κ − u1+τ (1− (r(qκt))

κ)− tψκ ≥ λκ

2κ+1
− tψκ ≥ λκ

2κ+2
.

Consequently, it follows further by (30) that

I∗3u ≤ P
{
|X(1)(0)| > 2−2/κκ1/κλ

1/κ+1/2

tα/2

}
P
{
ζ

(κ)
m,k(0) > u

}
≤ K

(
λ1/κ+1/2

tα/2

)−p
P
{
ζ

(κ)
m,k(0) > u

}
,

which together with (28), (29) and (31) completes the proof for κ ∈ (0, 1) by taking p > 4/α+ k. Consequently, the

desired claim of Lemma 3.4 follows. This completes the proof. �
Proof of Lemma 3.5: We give only the proof for (18) since (19) follows by similar arguments. Since the claims

for k = 0 are already shown in [1], we only consider that k ≥ 1 below. Define, for j = 1, 2, independent random

vectors
(
|Y (j)(s1)|, . . . , |Y (j)(sp)|

)
and

(
|Ỹ

(j)
(t1)|, . . . , |Ỹ

(j)
(tp′)|

)
, which are independent of the process ζ

(κ)
m,k and

have the same distributions as those of
(
|X(j)(s1)|, . . . , |X(j)(sp)|

)
and

(
|X(j)(t1)|, . . . , |X(j)(tp′)|

)
, respectively.

Note that, for any u > 0, the left-hand side of (18) is clearly bounded from above by∣∣∣∣∣∣P


p⋂
i=1

{
|X(2)(si)|κ ≥ |X(1)(si)|κ − u

}
,

p′⋂
j=1

{
|X(2)(tj)|κ ≥ |X(1)(tj)|κ − u

}
− P


p⋂
i=1

{
|Y (2)(si)|κ ≥ |X(1)(si)|κ − u

}
,

p′⋂
j=1

{
|Ỹ

(2)
(tj)|κ ≥ |X(1)(tj)|κ − u

}
∣∣∣∣∣∣

+

∣∣∣∣∣∣P


p⋂
i=1

{
|X(1)(si)|κ ≤ |Y (2)(si)|κ + u

}
,

p′⋂
j=1

{
|X(1)(tj)|κ ≤ |Ỹ

(2)
(tj)|κ + u

}
− P


p⋂
i=1

{
|Y (1)(si)|κ ≤ |Y (2)(si)|κ + u

}
,

p′⋂
j=1

{
|Ỹ

(1)
(tj)|κ ≤ |Ỹ

(2)
(tj)|κ + u

}
∣∣∣∣∣∣ . (32)
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Next, note by Cauchy-Schwarz inequality that u2 + v2 ≤ (u2 − 2ρuv + v2)/(1− |ρ|) for all ρ ∈ (−1, 1) and u, v ∈ R.

It follows that, fij(·, ·), the joint density function of
(
|X(1)(si)|, |X(1)(tj)|

)
, satisfies

fi,j(x, y) =

∫
|x|=x,|y|=y

m∏
l=1

1

2π
√

1− r2
l (tj − si)

exp

(
−x

2
l − 2rl(tj − si)xlyl + y2

l

2(1− r2
l (tj − si))

)
dxdy

≤ 1

(2π)m(1− (r̃(tj − si))2)m/2

∫
|x|=x,|y|=y

m∏
l=1

exp

(
− x2

l + y2
l

2(1 + |rl(tj − si)|)

)
dxdy

≤ 1

(2π)m(1− (r̃(tj − si))2)m/2
exp

(
− x2 + y2

2(1 + r̃(tj − si))

)∫
|x|=x,|y|=y

dxdy

=
(xy)m−1

2m−2(Γ(m/2))2(1− (r̃(tj − si))2)m/2
exp

(
− x2 + y2

2(1 + r̃(tj − si))

)
, x, y > 0.

Therefore, in view of Lemma 2 in [1], with K a constant whose value might change from line to line, the first

absolute value in (32) is bounded from above by

K

p∑
i=1

p′∑
j=1

∫
xκ>u

∫
yκ>u

r̃(tj − si)
(

(xκ − u)(yκ − u)
)(k−1)/κ

exp

(
− (xκ − u)2/κ + (yκ − u)2/κ

2(1 + r̃(tj − si))

)
fij(x, y) dxdy

≤ K
p∑
i=1

p′∑
j=1

r̃(tj − si)

(∫ ∞
u

(x− u)(k−1)/κxm/κ−1 exp

(
− x2/κ

2(1 + r̃(tj − si))

)
dx

)2

≤ Ku(2/κ)(m−(k−1)(2/κ−1)−2)

p∑
i=1

p′∑
j=1

r̃(tj − si) exp

(
− u2/κ

1 + r̃(tj − si)

)
,

where in the first inequality, we use first the bound e−x ≤ 1, x ≥ 0 and then a change of variable x′ = xκ, while the

second inequality follows by a change of variable x′ = u2/κ−1(x−u) and Taylor’s expansion of (u+x′/u2/κ−1)2/κ =

u2/κ + (2/κ)x′ +O(u−2/κ) for large u and x′ ≥ 0. Similarly, denoting by g(·) the pdf of |X(2)(0)| (see also (8)), we

obtain that the second absolute value in (32) is bounded from above by

K

p∑
i=1

p′∑
j=1

r̃(tj − si)
∫ ∞

0

∫ ∞
0

(
(xκ + u)(yκ + u)

)(m−1)/κ

exp

(
− (xκ + u)2/κ + (yκ + u)2/κ

2(1 + r̃(tj − si))

)
g(x)g(y) dxdy

≤ K
p∑
i=1

p′∑
j=1

r̃(tj − si)

(∫ ∞
0

(xκ + u)(m−1)/κxk−1 exp

(
− (xκ + u)2/κ

2(1 + r̃(tj − si))

)
dx

)2

≤ Ku(2/κ)(m−k(2/κ−1)−1)

p∑
i=1

p′∑
j=1

r̃(tj − si) exp

(
− u2/κ

1 + r̃(tj − si)

)
,

where the last step follows by a change of variable x′ = u2/κ−1xκ. Hence the proof of (18) is established since

(
m− k(2/κ− 1)− 1

)
−
(
m− (k − 1)(2/κ− 1)− 2

)
= −2(1/κ− 1).

The desired result in Lemma 3.5 follows. �
Proof of Lemma 3.6: The proof follows by the same arguments as for Lemma 12.3.1 in [16], using alternatively

the following asymptotic relation (recall (20) and Lemma 3.1)

u2/κ = 2 lnTκ +K0 ln lnTκ + lnD0(1 + o(1)), Tκ →∞ (33)

with D0,K0 defined in Theorem 2.3. We split the sum in (21) at T βκ , where β is a constant such that 0 < β <

(1 − δ)/(1 + δ) and δ = sup{r̃(t) : t ≥ ε} < 1 (see, e.g., Lemma 8.1.1 (i) in [16]). Below K is again a positive

constant which value might change from line to line. From (33) we conclude that exp
(
−u2/κ/2

)
≤ K/Tκ and
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u2/κ = 2 lnTκ(1 + o(1)). Further,

uς
Tκ
qκ

∑
ε≤aqκj≤Tβκ

r̃(aqκj) exp

(
− u2/κ

1 + r̃(aqκj)

)

≤ uς+ 4τ
ακT β+1

κ exp

(
− u

2/κ

1 + δ

)
≤ K(lnTκ)

κς
2 + 2τ

α T
β+1− 2

1+δ
κ ,

which tends to 0 as Tκ →∞ since β+1−2/(1+δ) < 0. For the remaining sum, denoting δ(t) = sup{|r̃(s) ln s| : s ≥ t},
t > 0, we have r̃(t) ≤ δ(t)/ ln t as t→∞, and thus in view of (33) for aqκj ≥ T βκ

exp

(
− u2/κ

1 + r̃(aqκj)

)
≤ exp

(
−u2/κ

(
1− δ(T βκ )

lnT βκ

))
≤ K exp(−u2/κ) ≤ KT−2

κ (lnTκ)−K0 .

Consequently, with c given by Theorem 2.3 (recall τ = 2 max(1/κ− 1, 0) + 1),

uς
Tκ
qκ

∑
Tβκ≤aqκj≤Tκ

r̃(aqκj) exp

(
− u2/κ

1 + r̃(aqκj)

)

≤ Kuς
(
Tκ
qκ

)2

T−2
κ (lnTκ)−K0

1(
lnT βκ

)c 1

Tκ/qκ

∑
Tβκ≤aqκj≤Tκ

r̃(aqκj)
(

ln(aqκj)
)c

≤ K(lnTκ)
κς
2 + 2τ

α −K0−c 1

Tκ/qκ

∑
Tβκ≤aqκj≤Tκ

r̃(aqκj)
(

ln(aqκj)
)c
. (34)

Since K0 = m − 2 + 2τ/α + kmin(1 − 2/κ, 0) and ς := 2/κ(m − k(2/κ − 1) − 1 + max(0, 2(1/κ − 1))), we have

κς/2 + 2τ/α−K0− c = 0 for all κ > 0. Noting further that the Berman-type condition limt→∞ r̃(t)
(

ln t
)c

= 0 holds

and β < 1, the right-hand side of (34) tends to 0 as u→∞. Thus the proof is complete.

�

References

[1] J.M.P. Albin. On extremal theory for non differentiable stationary processes. PhD Thesis, University of Lund, Sweden, 1987.

[2] J.M.P. Albin. On extremal theory for stationary processes. Ann. Probab., 18(1):92–128, 1990.

[3] J.M.P. Albin, and H. Choi. A new proof of an old result by Pickands. Electron. Commun. Prob., 15(15): 339–345, 2010.
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