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Title 

Light-induced degradation of phyA is promoted by transfer of the photoreceptor into the 

nucleus. 

Abstract 

Higher plants possess multiple members of the phytochrome family of red, far-red light 

sensors to modulate plant growth and development according to competition from 

neighbors. The phytochrome family is composed of the light-labile phyA and several 

light-stable members (phyB-phyE in Arabidopsis). phyA accumulates to high levels in 

etiolated seedlings and is essential for young seedling establishment under a dense 

canopy. In photosynthetically active seedlings high levels of phyA counteract the shade 

avoidance response. phyA levels are maintained low in light-grown plants by a 
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combination of light-dependent repression of PHYA transcription and light-induced 

proteasome-mediated degradation of the activated photoreceptor. Light-activated phyA is 

transported from the cytoplasm where it resides in darkness to the nucleus where it is 

needed for most phytochrome-induced responses. Here we show that phyA is degraded 

by a proteasome-dependent mechanism both in the cytoplasm and the nucleus. However 

phyA degradation is significantly slower in the cytoplasm than in the nucleus. In the 

nucleus phyA is degraded in a proteasome-dependent mechanism even in its inactive Pr 

(red light absorbing) form, preventing the accumulation of high levels of nuclear phyA in 

darkness. Thus light-induced degradation of phyA is in part controlled by a light-

regulated import into the nucleus where the turnover is faster. Although most phyA 

responses require nuclear phyA it might be useful to maintain phyA in the cytoplasm in 

its inactive form to allow accumulation of high levels of the light sensor in etiolated 

seedlings. 

Keywords (4-6) 

Phytochrome, phyA, proteasome, nuclear import, FHY1. 
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 Introduction 

The light environment provides important cues to autotrophic plants about time and place 

allowing them to tune their growth and development to the ever-changing light 

conditions. Plants measure light intensity, day length, spectral quality and light direction 

with UV-B photoreceptors, several families of blue light sensors and the phytochrome 

family of red/far-red receptors [5, 8, 21]. All higher plants possess two classes of 

phytochromes known as type I, which are light labile and type II, which are relatively 

light stable [8, 21]. Phytochrome A (phyA) is the only type I phytochrome in Arabidopsis 

while in this species phytochromes B, C, D and E (phyB-E) are light stable [8]. The 

phytochromes control seed germination, seedling de-etiolation, the timing of flowering 

and a suite of developmental responses known as the shade avoidance syndrome (SAS) 

[5, 8, 21]. 

Phytochromes are synthesized in their inactive red light absorbing form known as Pr [21, 

24]. Upon light absorption they are converted to the active far-red absorbing form Pfr. Pfr 

can return to Pr either following absorption of far-red light or in a slow thermal reaction 

called dark reversion [21, 24]. Thus phytochromes typically initiate light responses in 

response to red light or in light environments leading to the formation of a relatively high 

ratio of activated phytochrome (Pfr/Ptot) [5, 21]. phyA has unique properties such as the 

ability to initiate light responses even if the light signal triggers a very low ratio of 

Pfr/Ptot [3, 5, 21, 24]. Such environments are encountered by an etiolated seedling 

emerging from the soil into a FR-rich environment indicative of vegetational shading [8]. 
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In such environments phyA is the only photoreceptor mediating de-etiolation including 

inhibition of hypocotyl growth, unfolding and development of the cotyledons and setting 

up the photosynthetic apparatus [5, 8, 21]. The vital importance of phyA in young 

seedlings was demonstrated by genetic studies comparing wild type and phyA mutants 

developing under a dense canopy [34]. These unique features of phyA are presumably 

enabled by the high levels of this light sensor in etiolated seedlings [21, 24]. Moreover 

phyA is the only member of the phytochrome family that is efficiently transported into 

the nucleus in FR light [4]. However its exact mode of signal transduction in FR light is 

still debated [21, 24]. 

In photosynthetically active seedlings the levels of phyA drop considerably and phyA 

becomes significantly less abundant than phyB while phyA accounts for more than 80% 

of all phytochromes in etiolated seedlings [30]. The change of relative abundance of 

phyA and phyB has important developmental consequences in particular for the shade 

avoidance syndrome [8]. Direct sunlight has a ratio of red/far-red slightly above 1. Under 

a plant canopy this ratio drops significantly below 1 due to the strong absorption of red 

light by photosynthetic pigments while far-red light is readily transmitted. This change in 

light quality sensed by the phytochromes is used by shade-avoiding plants to induce the 

shade avoidance syndrome [8]. The shade avoidance syndrome includes the promotion of 

elongation growth responses in stems and petioles, a change in leaf angle leading to a 

more erect position and induction of reproductive growth [8]. By inhibiting elongation 

growth in low R/FR phyA counteracts the shade avoidance response. It has thus been 

proposed that the light-induced degradation of phyA constitutes an important mechanism 
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enabling de-etiolated plants to effectively compete for light in shaded environments [8, 

18]. The strongly attenuated shade avoidance response in phyA over-expressing plants is 

consistent with this notion [1, 23]. 

 

The molecular mechanisms leading to a drastic reduction of phyA levels in 

photosynthetically active plants have only been partially elucidated. PHYA transcript 

levels are down regulated in response to light, however this effect is stronger in monocots 

than in dicotyledonous plants [2]. In Arabidopsis it has been shown that this down-

regulation depends on both phyB and phyA [2]. Light-activated phyA from numerous 

species is ubiquitylated and targeted to the proteasome largely contributing to the rapid 

drop in phyA levels in the light [14, 29]. This primarily depends on sequences in the 

photosensory domain of phyA [6, 32, 33]. In Arabidopsis pharmacological experiments 

have shown that inhibition of the proteasome leads to a slower degradation of phyA in the 

light [28]. The ubiquitin E3 ligase COnstitutively Photomorphogenic 1 (COP1) is 

involved in the light-induced degradation of phyA [28]. Moreover in a cullin 1 (cul1) 

loss-of-function mutant phyA is also more stable in the light [22]. Interestingly COP1 has 

been proposed to be part of cullin 4 based ubiquitin E3 ligase complex possibly 

suggesting that several mechanisms contribute to the degradation of phyA in the light 

(CUL1 and CUL4 based) [35]. 

 

Phytochromes reside in the cytoplasm in their inactive Pr form. Upon light activation 

they rapidly accumulate in the nucleus where they are required for most phytochrome-

mediated responses [11, 13, 19, 25]. Different phytochromes utilize distinct mechanisms 
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to mediate regulated nuclear import [4, 7]. Light activation of phyB triggers a 

conformational change exposing an NLS thus leading to specific import of Pfr [4]. phyA 

relies on a more complex mechanism including the related proteins Far-red Hypocotyl 1 

and FHY1-Like (FHY1 and FHL). These proteins possess a phyA interaction domain, an 

NLS and an NES. They specifically interact with the light-activated phyA in vitro and 

mediate nuclear import of the active photoreceptor [9, 12, 20, 25]. In addition light-

induced accumulation of phyA relies on Far-red HYpocotyl 3 and FAR-red impaired 

response 1 (FHY3 and FAR1) a pair of transposase-related transcriptional activators 

needed for the expression of FHY1 and FHL [16]. Light also triggers the formation of 

phyA speckles both in the cytoplasm and the nucleus [4]. It has been proposed that these 

structures represent sites of phyA turnover suggesting that degradation of the light-

activated photoreceptor occurs both in the cytoplasm and the nucleus [15, 17, 28]. 

 

In order to test this idea further we have studied changes in phyA levels in response to 

light both in the nucleus and in the cytoplasm. We compared the wild type with seedlings 

in which phyA remains in the cytoplasm and seedlings in which phyA is constitutively 

nuclear. Our data indicate that phyA degradation is proteasome-mediated in both 

subcellular compartments. Interestingly phyA degradation is more effective in the 

nucleus than in the cytoplasm and proteasome-mediated degradation of the inactive Pr 

form of phyA was only observed in the nucleus. Thus the light-induced reduction in 

phyA levels is in part an indirect consequence of nuclear import of the light-activated 

photoreceptor. Our data suggest that maintaining inactive phyA in the cytoplasm allows a 
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higher accumulation of this photoreceptor in the dark, which might be important for the 

early light responses critically depending on phyA.  
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Materials and Methods 

 

Growth conditions 

Seeds were surface sterilized by soaking for 5 min in 70% ethanol + 0.05% Triton X-100, 

followed by an incubation of 10-15 min in 100% ethanol. Seeds were plated on ½ 

strength MS (Duchefa Biochemie) + 0.8% (w/v) Phytagar (Gibco BRL, Grand Island, 

N.Y, USA) in Petri dishes (42 x 35mm
2 

x 20mm). The plates were stored at 4°C in the 

dark during 3 days for stratification followed by a 6 hour white light (100mol m
-2

s
-1

) 

treatment to induce germination. After this step the plates were wrapped in aluminium 

foil and placed in phytotron (20°C) for three days to produce etiolated seedlings and/or 

put in the desired light treatment (Red or Far-red light from LED sources with max at 

670 and 730nm respectively). The following genotypes were used in this study. Col was 

used as a wild type. fhy1fhl, phyA-211 and phyA-211 expressing either PHYApro:PHYA-

GFP or PHYApro:PHYA-NLS-GFP were described previously [9, 25]. 

 

Quantitative western blot analysis (Li-Cor) 

Quantitative western blots were performed essentially as described in [32]. Fifty 

seedlings by genotype were exposed either to continuous red (50 mol m
-2

 s
-1

) or to 

continuous far-red (5 mol m
-2

 s
-1

) light, and total protein extract were performed by 

grinding the seedlings with blue pestles in Eppendorf tubes in presence of boiling 2X 

SDS-PAGE sample buffer. Proteins were separated on 8% acrylamide SDS-PAGE gels 

and blotted onto nitrocellulose (BIO-RAD). The membranes were blocked overnight with 

the Odyssey blocking buffer (Li-Cor Biosciences GmbH Cat n°927-40010). The 
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membranes were probed with a mouse monoclonal antibody directed against phyA 

(AA001) [31] or a rabbit polyclonal antibody against DET3 [27] diluted 1/5000 and 

1/10’000 respectively. After two washing steps of 10 minutes, the membrane was 

incubated for 30 minutes with the secondary antibodies Alexa Fluor 680 goat anti-mouse 

(Molecular probes) or IRDye 800 Conjugated Goat anti-rabbit (Rockland) both diluted 

1/5000. The signals were visualized using the Odyssey instrument (Odyssey infrared 

imaging system, Li-Cor Biosciences, Lincon, Nebraska 68504 USA) according to the 

manufacturer’s indications. The data were normalized by dividing the signal intensity of 

phyA by the signal intensity of DET3 in each lane. We use DET3 as a loading control 

because our experiments have shown that DET3 protein levels are remarkably stable in 

young seedlings (in a variety of conditions). We reached this conclusion by carefully 

quantifying total protein levels of different extracts subjected to western blot analysis and 

also by comparing DET3 signal with the signal given by commercially available 

antibodies used by others as a loading control. Analysis of publicly available micro-array 

data also shows that DET3 RNA levels remain constant upon light perception in etiolated 

seedlings. To determine the apparent half-lives of phyA we used the data presented in 

Figures 1B, 3B and Suppl. 1B. The log2 of the relative phyA levels were expressed 

according to time in 50 mol m
-2

 s
-1

 red light and linear regressions were calculated. The 

regression coefficient of the different experiments varied between 0.94 and 0.99 

demonstrating that these functions are a very good representation of our data. The 

apparent half-lives of phyA was then calculated using these functions.  

 

Proteasome inhibitor treatment. 
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Seedlings were incubated in liquid ½ strength MS medium containing 50M MG132 

(Calbiochem) for 2 hours (equivalent DMSO concentration for the control). Seedlings 

were then transferred into red light for increasing amounts of time and total proteins were 

extracted as described above. 

Analysis of gene expression 

Total RNA was extracted from 3-day-old dark-grown seedlings exposed to red light 

50mol m
-2

 s
-1

 during 0 or 4h, using a QIAGEN RNeasy Plant Mini Kit


 . These samples

were treated with QIAGEN DNAseI


 and reverse transcribed using the SuperScript II

Reverse Transcriptase (Invitrogen) according to the manufacturer's instructions. Real-

time PCR was performed with the Power SYBR Green PCR master mix from Applied 

Biosystems using the ABI Prism 7900 HT Sequence Detection Systems according to the 

manufacturer’s instructions. For the relative quantification of the genes we used the 

qBase software for management and automated analysis of real-time PCR 

(http://medgen.ugent.be/qbase). Each reaction was performed in triplicate using a primer 

concentration of 300nM. EF1α (At5G60390) and YLS8 (At5G08290) were used as House 

keeping genes. The following primers were used: 

EF1α (R-atg aag aca cct cct tga tga ttt c / F-tgg tgt caa gca gat gat ttg c) 

YLS8 (R-ctc agc aac aga cgc aag ca / F-tca ttc gtt tcg gcc atg a) 

PHYA (R-gca aac tag cgc gtt atg tc / F-ccg aac act ctt tcc gtt ac). 

Confocal microscopy 
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Three-day-old etiolated seedlings of transgenic lines expressing either phyA-GFP or 

gphyA-NLS-GFP [9] were grown as described above. Seedlings were mounted in water 

between glass slides separated with two layers of transparent tape and sealed using nail 

polish. Samples were visualized using an inverted confocal laser scanning Carl Zeiss 

LSM 510 Axiovert 200M Zeiss microscope with a standard filter set. Laser 

monochromatic excitation light exc=488nm was obtained from Argon/Krypton gas 

mixture. Emission light was collected using a short-pass 505-530nm filter for GFP signal 

(converted into green) and long-pass 650nm filter for plastid signal (converted into red). 

Image analysis was done with the Zeiss LSM software. The same analysis was done after 

1 minute of red irradiation with a monochromatic laser (=660nm) followed by 4 minutes 

in darkness.  
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Results 

 

phyA enters the nucleus upon light activation. Light-induced changes in phyA abundance 

may thus be due to a combination of several levels of regulation, including repression of 

PHYA transcript levels and ubiquitin-mediated degradation of phyA both in the nucleus 

and the cytoplasm [2, 14, 28]. In order to verify whether the light-induced change in 

phyA subcellular location modulates the light-induced decline in phyA levels we 

analyzed phyA levels in the fhy1fhl double mutant, a genetic background in which phyA 

nuclear import is prevented [9, 12, 25]. Wild type (Col) and fhy1fhl etiolated seedlings 

were transferred either into red or far-red light and phyA accumulation was determined 

by quantitative western blot analysis (Figure 1). Upon transfer into red light phyA levels 

dropped very quickly in the wild type with about 20 % of the dark levels remaining after 

4 hours in the light (Figure 1 A, B). This red-light induced decline was significantly 

slower in fhy1fhl where after 4 hours those seedlings still had about 40% of the phyA 

levels in darkness (Figure 1 A, B). This data was used to calculate the apparent half-lives 

of phyA under these growth conditions and we found that the phyA half-life in fhy1fhl 

was the double from the wild-type value (about 3 hours compared to 1 hour and 30 

minutes in Col) (Table 1). Similar results were obtained when the seedlings were 

transferred into far-red light but the kinetics of phyA light-induced decline was much 

slower which is consistent with the small ratio of Pfr/Ptot triggered by far-red light. 

Again the light induced reduction in phyA levels was significantly slower in the fhy1fhl 

double mutant (Figure 1 C, D). 
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One possible interpretation of this result is that light-induced phyA degradation is slower 

in the cytoplasm than in the nucleus. In order to test this we compared plants expressing 

phyA-GFP with plants expressing phyA-NLS-GFP in which phyA is constitutively 

nuclear [9]. Using confocal microscopy we confirmed that in the hypocotyls of etiolated 

seedlings phyA-GFP was found in the cytoplasm while phyA-NLS-GFP was exclusively 

nuclear (Figure 2). phyA-GFP transport into the nucleus of etiolated seedlings was 

triggered by 1 minute illumination with the red laser from the microscope followed by 4 

minutes of darkness. This experiment showed that nuclear accumulation in response to 

red light was very fast (Figure 2). Moreover this experiment confirmed that nuclear body 

(or speckle) formation was specifically induced by red light (Figure 2). phyA levels were 

then compared in those two lines by quantitative western blot analysis using etiolated 

seedlings transferred into red light. This experiment showed that phyA-GFP was rapidly 

degraded in both lines. The decline in phyA levels was slightly faster for the 

constitutively nuclear phyA-NLS-GFP than for phyA-GFP (Figure 3). In order to confirm 

the more rapid degradation of phyA when it is constitutively nuclear we compared the 

degradation of endogenous phyA with the degradation of phyA-NLS expressing plants 

(in the phyA background) [9]. This experiment confirmed that when constitutively present 

in the nucleus phyA is turned over more rapidly (Supplementary Figure 1) (table 1). The 

modest difference in degradation kinetics between the photoreceptor with light-regulated 

nuclear import and a constitutively nuclear phyA might be the consequence of the very 

rapid nuclear import observed for phyA-GFP in response to red light (Figure 2). 
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Light does not only lead to phyA degradation but also to a decline in PHYA transcript 

levels [2]. Although this transcriptional regulation of PHYA is less important in 

dicotyledonous plants than in monocots [2], we analyzed PHYA transcript abundance in 

the different genotypes by quantitative RT-PCR. In etiolated seedlings PHYA levels were 

very similar in Col, phyA expressing phyA-GFP and fhy1fhl (Figure 4). In all cases a red 

light treatment led to a comparable decline in PHYA abundance (Figure 4). Interestingly 

the phyA-NLS-GFP line had much higher levels of PHYA than all other genotypes. 

However the light-induced decline of PHYA was normal in this genotype (Figure 4). The 

situation at the RNA level contrasted with the abundance of phyA-NLS-GFP. Despite 

having almost twice as much RNA those etiolated seedlings expressed less than half the 

phyA protein level than all other genotypes (Figure 4). These results indicate that the 

slower decline of phyA in fhy1fhl was not due to an altered light-regulated PHYA 

abundance. Moreover they show that when phyA is constitutively present in the nucleus 

the protein accumulates to lower levels than in the cytoplasm even in its inactive Pr form. 

phyA degradation follows ubiquitylation and is proteasome mediated [14, 28]. We thus 

decided to verify whether proteasome-mediated degradation of phyA occurs both in the 

nucleus and the cytoplasm by comparing the effect of the proteasome inhibitor MG132 

on the decline of phyA levels in fhy1fhl (cytoplasmic phyA) and phyA-NLS-GFP 

(nuclear phyA). MG132 effectively slowed down the reduction in phyA levels in both 

genotypes indicating that phyA degradation is mediated by the proteasome in both 

compartments (Figure 5). The effect of MG132 was more obvious in phyA-NLS-GFP 

plants than in fhy1fhl presumably because in phyA-NLS-GFP the decline in phyA was 
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faster (Figure 5). Interestingly MG132 significantly increased the level of phyA-NLS-

GFP in etiolated seedlings while it did not have an effect on phyA in etiolated fhy1fhl 

(Figure 5). To verify that this effect was not an artifact due to the presence of GFP in the 

phyA-NLS-GFP construct we compared the effect of MG132 on etiolated seedlings 

expressing phyA-GFP with seedlings expressing phyA-NLS-GFP. This experiment 

showed that MG132 had no effect on the accumulation of the cytosolic phyA-GFP while 

it led to a higher accumulation of the nuclear phyA-NLS-GFP protein (Supplementary 

Figure 2, Figure 2). This data suggests that when present in the nucleus phyA in the Pr 

conformation is turned over more rapidly than in the cytoplasm and that this degradation 

is proteasome dependent (Figure 5, Supplementary Figure 2). 
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Discussion 

 

phyA has a number of properties that are unique among all phytochromes. Those include 

the capacity of initiating light responses such as the promotion of seed germination and 

de-etiolation in light conditions that trigger only a very minimal activation of the 

photoreceptor (very low ratio of Pfr/Ptot) [5, 8, 21]. In addition phyA levels decline 

rapidly upon light activation a property which is important to prevent phyA from 

antagonizing the shade avoidance syndrome in photosynthetically active plants [1, 23]. 

The light-labile nature of phyA is thus an important property of this photoreceptor, which 

is still relatively poorly understood. 

 

Degradation of phyA correlates with phototransformation of Pr into Pfr. This primary 

light reaction also triggers import of phyA into the nucleus upon conformer-specific 

interaction with FHY1 and FHL [9, 12, 25]. We thus decided to investigate whether the 

light-induced degradation of phyA is also due to a change in subcellular localization. By 

comparing the light-induced reduction of phyA levels in Col and fhy1fhl we showed that 

in this double mutant phyA remains much more stable in the light (Figure 1). We do not 

have an explanation for why this effect was not observed in a previous study [25], 

however we would like to point out that these authors did not perform quantitative 

western blots. Importantly the reduced decline in phyA levels is not due to an effect of 

fhy1fhl on the light-induced reduction of PHYA transcript levels (Figure 4). One possible 

interpretation of this result which has previously been proposed by others is that FHY1 

and FHL are required to degrade light activated phyA [26]. This possibility is unlikely 
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given that the stability of phyA-NLS-GFP is not altered in the fhy1 mutant background 

[9]. In other words when phyA is constitutively nuclear FHY1 does not affect the stability 

of the photoreceptor. Formally it is thus still possible that FHY1 and FHL are required for 

the rapid degradation of light-activated cytoplasmic phyA. Nevertheless taken 

collectively our data are more consistent with the notion that light-activated phyA is more 

stable in fhy1fhl because the protein remains in the cytoplasm. Indeed when phyA is 

constitutively nuclear such as in plants expressing phyA-NLS-GFP, phyA accumulates to 

relatively low levels in etiolated seedlings despite the presence of high mRNA levels 

(Figures 3 and 4). 

In plants expressing the constitutively nuclear phyA-NLS-GFP construct this protein 

never accumulates to very high levels despite the presence of more PHYA-NLS-GFP 

transcript than in the wild type or the phyA-GFP control lines (Figure 4). Moreover 

phyA-NLS-GFP levels can be increased when treating etiolated seedlings with the 

proteasome inhibitor MG132 while this drug had no effect in dark-grown control lines 

(Figure 5, supplementary Figure 2). This result suggests that when present in the nucleus 

phyA might be less stable in the Pr conformation than when present in the cytoplasm. 

This is consistent with the observation that in vitro COP1 interacts with phyA both in the 

Pr and the Pfr conformation [28]. Thus maintaining phyA in the cytoplasm in dark-grown 

seedlings may contribute to the very high accumulation of the photoreceptor observed in 

etiolated plantlets. Maintaining high levels of phyA in etiolated seedlings may be 

important for the seedling emerging from the soil to detect the very first signs of light. 
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Moreover cytoplasmic accumulation of phyA is presumably required for a number of 

cytosolic phytochrome responses [25]. 

 

When transferred into the light proteasome inhibitors slowed down the degradation of 

phyA both in the cytoplasm (in fhy1fhl) and in the nucleus (in phyA-NLS-GFP 

expressing plants), thus suggesting that proteasome mediated degradation occurs in both 

cellular compartments. As discussed above a high degradation rate for phyA in light 

grown plants is important to prevent the inhibition of the shade avoidance syndrome. 

Moreover in vivo dark-reversion is undetectable for phyA [10], thus one effective way to 

prevent excessive signaling from the light activated phyA is to degrade the protein. Our 

results suggest that one element of the light-regulated stability of phyA is the light-

induced nuclear import of the photoreceptor. It will be interesting to determine whether 

different degradation mechanisms control phyA stability in the nucleus and the 

cytoplasm. This is a distinct possibility given that COP1 and CUL1 which presumably 

belong to distinct ubiquitin E3 ligase complexes have both been implicated in the control 

of phyA abundance [22, 28]. 
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Figure Legends 

 

Figure 1: The light-induced reduction of phyA levels is slower in fhy1fhl. Total protein 

extracts from 3-day-old etiolated seedlings of Col-0 and fhy1fhl transferred for increasing 

amounts of time into red light (50mol m
-2

 s
-1

) or far-red light (5mol m
-2

 s
-1

) were 

separated on 8% SDS-PAGE gels, blotted and probed with anti phyA and anti DET3 

antibodies. (A & C) Representative western blots from the red and far-red experiments 

respectively. (B & D) quantification of phyA levels in red and far-red following the 

method of [32]. Results are expressed relative to the dark levels of each genotype (set to 

1); data are means of biological triplicates +/- SD. 

 

Figure 2: phyA-NLS-GFP is constitutively localized in the nucleus and form speckles 

after red light irradiation. 3-day-old etiolated seedlings of transgenics phyA null mutants
 

expressing either phyA-GFP (A and C) or phyA-NLS-GFP (B and D) were analyzed by 

confocal microscopy using an immersion objective 40X. Transgenics lines were kept in 

the dark (upper panel) or irradiated with a red laser ( 660nm) for 1 minute followed by 4 

minutes in darkness prior to microscopic examination (lower panel). (C) White arrows 

indicate the nuclei of cells expressing a phyA-GFP fusion. (D) The inset shows a zoom 

(factor 6.6) of one nucleus. Confocal microscopy was carried out using an inverted 

confocal LSM510 Axiovert 200M Zeiss microscope. The scale bars represent 20m.  

 

Figure 3: Constitutively nuclear phyA-NLS-GFP levels decline rapidly in response to 

light. Total protein extracts from 3-day-old etiolated seedlings of phyA-GFP and phyA-
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NLS-GFP expressing seedlings shifted for increasing amounts of time into red light 

(50mol m
-2

 s
-1

) were separated on 8% SDS-PAGE gels, blotted and detected with anti 

phyA and anti DET3 antibodies. (A) A representative western blot. (B) Quantification of 

phyA levels following the method of [32]. Results are relative to the dark levels of each 

genotype. Data are means of biological triplicates +/- SD. 

 

Figure 4: the phyA levels observed in fhy1fhl are not due to an altered light-induced 

decline of PHYA mRNA. (A) Expression levels of PHYA in 3-day-old etiolated seedlings 

of Col-0, fhy1fhl, phyA-GFP and phyA-NLS-GFP kept either in the dark or exposed to 4 

hours of red light (50mol m
-2

 s
-1

) were analyzed by reverse transcription followed by 

real-time PCR. EF1 and YLS8 were used as house keeping genes. Data correspond to the 

mean +/- SD of three independent biological replicates with technical triplicates for each 

sample. (B) Quantification of phyA levels from 3-day-old etiolated seedlings of Col-0 , 

fhy1fhl, phyA-GFP and phyA-NLS-GFP kept in the dark or exposed to 4 hours of red 

light (50mol m
-2

 s
-1

) following the method of [32]. Results are relative to the dark level 

of Col-0, data are mean of biological triplicates +/- SD. 

 

Figure 5: phyA degradation in the nucleus and in the cytosol is delayed by inhibitors of 

the proteasome. Total protein extracts from 3-day-old etiolated seedlings of phyA-NLS-

GFP or fhy1fhl incubated or not with the proteasome inhibitors MG132 (MG132) and 

transferred for increasing amounts of time into red light (50mol m
-2

s
-1

) were separated 

on 8% SDS-PAGE, blotted and probed with anti phyA and anti DET3 antibodies. (A & 

C) Representative western blots of phyA-NLS-GFP and fhy1fhl respectively. (B & D) 
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quantifications of phyA levels in phyA-NLS-GFP and fhy1fhl following the method of 

[32]. Results are relative to the dark levels of each genotype, except for the insets where 

they are represented relative to the –MG132 level. Data are means of biological 

triplicates +/- SD. 

 

Table 1: Apparent half lives of phyA in 50 mol m
-2

 s
-1

 red light. The apparent phyA 

half-lives were calculated using data presented on Figures 1B, 3B and Supplementary 

Figure 1B (see materials and methods). It is important to point out that this data was 

obtained in seedlings that were not treated with translation inhibitors and therefore do not 

represent the actual half-life of the protein. 
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Genotype Half-live of phyA 

Col 89 minutes 

fhy1fhl 178 minutes 

phyA-GFP 84 minutes 

phyA-NLS-GFP 66 minutes 

phyA-NLS 44 minutes 

Table 1 
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Supplementary material 

 

Figure legends 

 

Supplementary figure 1: phyA-NLS levels decline faster in response to light than 

endogenous phyA. Total protein extracts from 3-day-old etiolated seedlings of Col-0 and 

phyA-NLS seedlings [1] shifted for increasing amounts of time into red light (50µmol m-2 

s-1) were separated on 8% SDS-PAGE gels, blotted and detected with anti phyA or anti 

DET3 antibodies. (A) A representative western blot. (B) Quantification of phyA levels 

following the method of [2]. Results are relative to the dark levels of each genotype, data 

are means of biological triplicates +/- SD. 

 

Supplementary figure 2: the degradation of phyA in the nucleus is independent of its 

conformation (Pr or Pfr). Total protein extracts from 3-day-old etiolated seedlings of 

phyA-NLS-GFP or phyA-GFP, incubated or not with the proteasome inhibitors MG132 

(MG132) for 2 hours in the dark were separated on 8% SDS-PAGE, western blotted and 

probed with anti phyA or anti DET3 antibodies. (A) Representative western blots of 

phyA-NLS-GFP and phyA-GFP respectively. (B) Quantifications of phyA levels relative 

to DET3 in phyA-NLS-GFP and phyA-GFP following the method of [2]. Data are means 

of technical triplicates +/- SD. 
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