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Abstract. Curvature Gabor features have recently been shown to be powerful
facial texture descriptors with applications on face recognition. In this paper we
introduce their use in facial action unit (AU) detection within a novel frame-
work that combines multiple Local Curvature Gabor Binary Patterns (LCGBP)
on different filter sizes and curvature degrees. The proposed system uses the dis-
tances of LCGBP histograms between neutral faces and AU containing faces
combined with an AU-specific feature selection and classification process. We
achieve98.6% overall accuracy in our tests with the extended Cohn-Kanade
database, which is higher than achieved previously by any state-of-the-art method.

1 Introduction

Being the most important non-verbal means of human communication, facial expres-
sions have gained extreme importance for computer vision especially with the ease of
access of recent technological developments. Besides the various applications of basic
emotion recognition, recognizing facial actions now serves much more in areas such as
intelligent human computer interaction or diagnosis and treatment of certain patholog-
ical conditions.

The recent interesting work, such as [11], which investigates the detection of ex-
pressions of pain, or [17], which presents a method for the detection of asymmetric lip
movements, for instance, all point out to the need for increased facial action recogni-
tion accuracy to capture more subtle muscle movements in both intensity and time. To
this end, we introduce a framework with a novel set of features for action unit (AU)
detection that achieves much higher accuracy than previously presented state-of-the-art
methods.

The AUs are the basic units of facial movement, that are defined by the Facial Ac-
tion Coding System (FACS) [7]. FACS serves as a method to objectively define every
independent motion on the face. For an overview of recent advances and the state-of-
the-art in AU and facial expression detection, the reader isreferred to [19], which is
the meta-analysis of the first facial expression recognition challenge and includes the
summary of up to date work using shape and appearance based methods.

In this work we propose the variation among frames of a combination of Local
Curvature Gabor Binary Patterns (LCGBP) as descriptors of facial action. LCGBP is
an extension to the Local Gabor Binary Patterns (LGBP) whichhave been used exten-
sively for face recognition and AU detection (e.g. [22], [16]), since they have proven
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to be quite robust against variations of conditions such as illumination. By adding the
effect of curved formations, which exist commonly in the facial texture, the curvature
Gabors provide a more efficient way of representing the facial components [8] and it
was previously shown in our recent work that they are successful in recognizing fa-
cial identity [2]. Here, we apply this idea by using the change in LCGBP histograms
between neutral and expressive images for detecting the AUs. Using this variation of
histograms between frames has shown to be more efficient thanusing the histograms
themselves directly ([16], [21]). The main contribution ofour work is introducing a
unique way of extracting Gabor features, which includes thecurvature information and
proves by the very high accuracy results to be very powerful descriptors for facial ac-
tions, combined with a feature selection and classificationphase that was proven in our
previous work [21] to be efficient with such features.

The rest of the paper is formed as follows: In Section 2 we explain the formulation of
LCGBP, in Section 3 we describe the framework that we proposefor AU detection and
detail the parameter selection. Section 4 presents the testsettings and results obtained by
several experiments on the CK+ database and comparisons with other types of features
and recent existing methods in the literature. Finally, we report our conclusions and
possible future directions for further improving the system in Section 5.

2 Local Curvature Gabor Binary Patterns

2.1 Curvature Gabor (CG) Wavelets

Gabor wavelets have been recognized as one of the most successful feature extraction
methods for face representation. They form a well-established image decomposition be-
cause of their spatial locality and orientation selectivity characteristics. Therefore, they
are optimally localized in the space and frequency domains,and can be used success-
fully in facial image processing for face and facial expression recognition and analysis.

The conventional Gabor wavelet definition is as follows:
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function, whose real and imaginary parts are respectively the cosine and sine functions.
µ controls the orientation of the filters, withM being the total number of different
orientations, andν scales the center of the filter in the frequency domain [6].

A typical neutral face image contains curve-like features because it contains per-
manent facial components (e.g. eyebrows, lips) as well as straight features. Since facial
expressions are generated by the movement of groups of muscles in any orientation
and transient features like wrinkles and furrows, images with expressions contain even
more curvature characteristics than straight ones. Therefore, to model these curve-like
features, we include CG wavelets for face representation inaddition to the conventional
Gabor wavelets.
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Peters et al. [14] obtained CG wavelets by adding a curvatureparameter to the con-
ventional Gabor formulation as follows:
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where c corresponds to the curvature ratio.
CG wavelets do not have the orientation symmetry as in conventional Gabor wavelet

as shown in Fig. 1 ([2]). For the conventional Gabor wavelet setting, it is usually suffi-
cient to have 8 orientations (M = 8). However, this number should be increased to 16
to obtain the same orientation utilization in case of CG wavelets.

Fig. 1: Illustration of orientation asymmetry in CG wavelets with c = 0.1 (middle and bottom
row) in comparison with the conventional Gabor wavelet (toprow) (Image courtesy of [2]).

In CG wavelets, one can use different curvature degrees, i.e., c = {0.05, 0.1, 0.2},
and Gaussian sizes, i.e.,σ ∈ {0.5π, π, 2π}, for multi-curvature utilization as well as
scale space utilization. In this way, a more powerful representation of facial structures
is obtained by extracting both fine and coarse features with straight and curved filters.

2.2 Local Binary Patterns

The local binary pattern (LBP) transformation has been proposed as a texture descrip-
tion method [12] and has proven to be very effective in representing facial texture and
been widely used for both face and facial action recognition[1][18]. It maps the texture
variation around each pixel to a binary pattern and the histogram of these patterns in a
local window can be used directly as a descriptor for that certain region of interest. The
computation of the pattern for a pixel at positionx of an imageI is as follows:

LBPP (x) =

P−1
∑

p=0

t(I(xp)− I(x)).2p (4)

In this representation, eachI(xp) is a neighboring pixel of the center pixelI(x) on
a neighborhood defined by the number of pixelsP as well as the shape (e.g. rectangular
or circular) and the distance to the central pixel which determines the resolution of the
transformation. The functiont(x) is the simple thresholding function which returns1
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if the input pixel difference is positive and0 if it is negative. In this way we obtain a
P − bit binary value, or an integer between0 and2P − 1 to represent each pixel.

In this work we use an 8-pixel circular neighborhood with theradius 1, giving 256
possible patterns. It has been shown, however, that only 58 of these patterns, called the
uniform patterns, are sufficient to describe the majority ofthe texture information [13].
So we can reduce the size of the descriptor to 59 bins by assigning all the non-uniform
patterns into a single bin.

Applying the LBP on top of Gabor magnitude images with various scales and ori-
entations results in obtaining a richer representation andfiner description of the facial
texture [22]. In our work we extend this variation of descriptors by also including mul-
tiple curvature degrees and Gaussian sizes, obtaining the Local Curvature Gabor Binary
Patterns (LCGBP) representation. Of course, this extension substantially increases the
number of features obtained, and introduces more redundancy between features and
possibly noise for the final classification task. Therefore,whether using directly the
LCGBP histogram bins as features or, as we perform in this particular work, using a
dissimilarity measure for the histograms between frames, afeature selection or dimen-
sion reduction technique is essential to be able to perform ameaningful classification
using these features. The details on how we compute the histogram dissimilarity as
well as the feature selection technique and the types of selected features are explained
in more detail in the following sections.

3 Facial Action Recognition Framework

This section describes in detail each step in our automated facial action unit detection
system using LCGBP as seen in Fig. 2.

3.1 Face Localization

To be able to perform an effective feature extraction among all images in the dataset,
we first need to locate our region of interest, which is the face, as accurately and con-
sistently as possible. Face detection systems which outputa rectangular region around
the face are generally not reliable enough to extract appearance features because of the
variety across subjects, expressions and head poses. Therefore, we choose to use a fa-
cial point tracking system instead, which provides more stable boundaries for the face
region.

In this paper, we localize 66 facial landmarks as seen in Fig.2, using a publicly
available automatic face tracking system proposed by Saragih et al. [15]. The face
tracker is based on constrained local models (CLM) [5] with regularized landmark
mean-shift as the fitting strategy [15]. The CLM, similar to the Active Appearance
Model (AAM) [4], uses a combined model for the shape and texture, but the model
in CLM consists of templates of appearance around each facial landmark point which
allows accurately tracking facial points even under extreme head poses, intensive facial
expressions and presence of occlusions.

Once we locate the facial landmarks using the face tracker, we crop the image us-
ing the most extreme landmarks on the horizontal and vertical directions of the facial
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Fig. 2: Complete flowchart of the proposed framework for an input video

mask obtained, with a certain safety margin (Fig. 2). No rotation or texture warping is
performed, since the databases that we use to train and test our system were recorded in
quite constrained situations with respect to head pose and since the types of features we
use have proven to be robust against misalignments. In this paper we only aim to show
the strength of LCGBP as features for facial action recognition compared to other types
of features. As future work registration of facial texture will be added to the system to
gain more robustness against cases of unconstrained head pose. In our system we only
scale each detected face region to a fixed size of 120 by 120 pixels.

3.2 Feature Extraction

After locating and scaling the face region we extract the appearance features using a
combination of LCGBP transforms, which is the LBP transformapplied on top of the
image filtered by various curvature Gabor wavelets, as explained previously in Section
2 and as represented in Fig. 2. For our training and testing purposes we apply this
filtering to the frame with a neutral expression and the framewith the peak of the posed
expression separately for each sample video, since we utilize the comparison between
those frames. For the CK+ database [10] these frames correspond to the first and last
frames respectively. At this point the system requires thata frame is marked as neutral
expression, then the method can be applied to any other frameof the same subject to
detect action units at different intensities. This automatization problem can be solved by
projecting the subject face with any expression to the PCA space created by examples
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of expressionless faces, as proposed in [16]. However, thismethod was not tested in the
scope of this paper.

The first step of feature extraction is applying the Gabor transforms to the input
images. The classic method for generating Gabor representations of images is to ap-
ply wavelets in different scales and orientations with a fixed Gaussian size. In addition
to adding the curvature component in various degrees we alsoinclude wavelets with
different Gaussian sizes, similar to [2]. This is expected to result in a richer repre-
sentation of finer details of facial texture components, which are crucial for high ac-
curacy action recognition, compared to a single Gaussian size, and so is proven with
our test results (presented in the following section). To bemore precise we use Gabor
wavelets of 3 different scales (ν ∈ {0, 1, 2}), 8 (or 16 in case of curvature, see Fig.
1 ) orientations (µ ∈ {0, · · · , 7}), 3 Gaussian sizes (σ ∈ {π/2, π, 2π}) and 4 cur-
vature degrees (c ∈ {0, 0.05, 0.1, 0.2}). This results in a total of 504 separate filters
(1× 3× 3× 8 + 3× 3× 3× 16).

Next we apply the uniform LBP transform on each of the magnitude images of the
outputs of these 504 filters for both the neutral and peak expression frame. Then to
obtain the local texture information we calculate the histograms on 400 overlapping
windows of sizes 20 by 20, 20 by 40, 40 by 20 and 40 by 40 with an overlap size of 10,
all units in pixels. The conventional tendency in the literature for LBP histogram extrac-
tion has been to use non-overlapping windows of a fixed size, but as shown recently in
our previous work [21], varying the size and performing a more extensive search using
overlaps, combined with a powerful feature selection step,results in a more informative
feature set. Then we compute for each of these windows theχ2 distance of correspond-
ing histograms in the neutral and peak expression frames, and obtain our full set of
features of size 201600 (400 × 504). Using these alterations from the neutral face as
features not only eliminates the variation caused by identity ([16], [21]) but also allows
tracking the relative intensity of the movement between frames.

3.3 Relevant Feature Selection and AU detection

The extensive representation and search strategy chosen inthe feature extraction tech-
nique results in a huge number of features which causes two main problems. First
problem is that most of these features are correlated with each other so using them
in combination in a classification task introduces an unnecessary computational bur-
den. Secondly, only a portion of them are relevant to the task, i.e. detecting a specific
action unit. The irrelevant features cause only noise and a decrease in accuracy in clas-
sification. Therefore we need to use a feature selection method that addresses both of
these problems and that is specific to each action unit. Boosting techniques allow both
reducing the dimensionality of the feature vector and eliminating the irrelevant features,
since they are trained in a manner that maximizes the classification rate.

We adopt in this work the GentleBoost technique, since it hasalready been shown
in the literature to be effective when used in combination with Support Vector Machines
(SVM) ([20],[21]), which is the classification method that we utilize. For 17 AUs, which
have a reasonable number of examples in our training database (CK+), we select 1000
features out of 201600 using GentleBoost separately, so we obtain the most relevant
features in terms of Gabor parameters and the location in the2D space. Then we train,
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once again for each AU, an SVM, for which the two output classes are whether the
AU is present or not. The details of the various tests and results are presented in the
following section.

4 Action Unit Detection Results

In this section we report the results of our experiments performed on the Extended
Cohn-Kanade database of facial expressions (CK+) [10]. Thedatabase consists of 593
videos of 123 subjects performing a facial expression formed by a single or multiple
AUs, manually coded by trained FACS coders. Each sample video starts with a neutral
expression and ends with the peak of the expression. We trainand test our system using
only this final frame of each sequence. All presented resultsare those obtained by a
leave-one-subject-out test, i.e. training the SVM classifier on samples of 122 subjects
and testing it on the remaining subject. We perform the testsfor each AU using 100,
200, 300, 400, 500, 750 and 1000 features in the SVM and at eachcase choose the
number of features giving the highest overall accuracy rate. Using the publicly avail-
able LibSVM implementation [3] we have tested both linear-SVMs and RBF kernels
(parameters optimized using a 5-fold cross validation). Here, however, we only report
results using the RBF kernels, since they result in better accuracy compared to the lin-
ear SVM in every AU, but there is no substantial difference when comparing different
types of features.

4.1 Comparing types and combinations of Gabor features

We first compare the test results obtained by various parameter settings for the LCGBP
and also using only LBP as a baseline comparison method. All settings are kept the
same for this comparison, except only for the LBP the maximumnumber of features
tested in the training phase of SVM is kept at the highest possible, i.e. 400.

We have tested 14 configurations in addition to the standard LBP features; namely
12 settings for LCGBP with 3 scales and 8 (or 16) orientationsand a fixed Gaussian
size (σ) chosen from0.5π, π or 2π and fixed curvature degree (c) from0, 0.05, 0.1, 0.2
(0 meaning standard LGBP with 9600 total features, each of the rest yields 19200), one
setting combining all proposedσ choices withc = 0 (28800 features) and one setting
combining all possibleσ andc choices (201600 features), which is the setting for the
main proposed system. The comparison in three types of accuracy measures (overall
accuracy, F1 and area under Receiver-Operator-Characteristics (ROC) curve (AUC))
averaged over 17 AUs (Upper face AUs 1, 2, 4, 5, 6, 7, 9 and lowerface AUs 11, 12, 15,
17, 20, 23, 24, 25, 26, 27) can be seen in Fig. 3. The ROC curve was obtained by alter-
nating the SVM decision threshold. The first observation, other than the definite superi-
ority of LGBP to standard LBP, is that for all the singleσ settings the curvature Gabors
perform significantly better than the non-curvature standard Gabor setting, which is the
first indication of the effectiveness of curvature featuresfor facial action recognition.
Another important comparison is the one between the 4 non-curvature LGBP settings.
Using different sizes of Gaussians in the Gabor formulationin combination with each
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(a) Overall Accuracy(%)

(b) F1(%)

(c) Area Under ROC Curve (%)

Fig. 3: Comparison of three different accuracy measures fordifferent LCGBP feature settings &
LBP

other results in a substantial increase in accuracy with respect to any fixedσ configura-
tion. This indicates the necessity of alternating the Gaussian size along with the scale
and orientation in any Gabor setting, which contradicts with the usual tendency in the
literature for selecting Gabor wavelets for facial expression or AU detection.

The proposed setting, which is combining 3 differentσ values and 4 different cur-
vature degrees gives the highest classification accuracy for all action units, as expected.
The results for each AU tested can be seen in Table 1 in comparison with the non-
curvature case combining differentσ’s. The superiority is clearly not because of the
greater number of features extracted (201600 vs. 28000), but because the various cur-
vature degrees and filter sizes allow extracting those that are relevant to each action
unit. We observe that for some AUs the difference between thetwo cases is less sig-
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Table 1: Number of features used (No Feat.), Overall accuracy (OA), F1 and area under ROC
curve (AUC) values for combinations of LCGBP(Curv.) and LGBP (No curv.) for 17 AUs

AU No Feat. OA F1 AUC
Curv. No curv. Curv. No curv. Curv. No curv. Curv. No curv.

AU1 750 750 0.976 0.958 0.959 0.928 0.995 0.983
AU2 1000 1000 0.992 0.987 0.978 0.965 0.997 0.998
AU4 750 750 0.963 0.935 0.942 0.897 0.994 0.976
AU5 750 1000 0.985 0.965 0.956 0.895 0.997 0.992
AU6 1000 1000 0.985 0.955 0.963 0.884 0.998 0.991
AU7 750 750 0.968 0.936 0.917 0.835 0. 996 0.969
AU9 750 300 1 0.995 1 0.979 0.998 0.994
AU11 1000 300 0.997 0.979 0.969 0.786 0.999 0.984
AU12 1000 1000 0.988 0.968 0.973 0.923 0.998 0.994
AU15 1000 750 0.988 0.969 0.962 0.897 0.999 0.993
AU17 1000 1000 0.975 0.956 0.963 0.935 0.993 0.989
AU20 500 1000 0.983 0.975 0.937 0.905 0.996 0.991
AU23 750 500 0.993 0.971 0.967 0.838 0.999 0.993
AU24 750 1000 0.993 0.965 0.964 0.796 0.999 0.989
AU25 500 1000 0.979 0.966 0.982 0.969 0.994 0.994
AU26 1000 1000 0.989 0.959 0.938 0.721 0.999 0.987
AU27 200 1000 0.998 0.995 0.994 0.981 0.999 0.999

Avg. 0.986 0.967 0.963 0.89 0.997 0.989

nificant than others, and this can be explained by the variation of amount of curvature
that shapes the deviation from the resting state for each action unit. However, observing
Table 2, which shows the ratio of features chosen by the GentleBoost with respect to
σ andc values and the deviation among action units, we can say that none of the types
of features show a too powerful dominance over others in noneof the AUs, although
the non-curvature features are selected significantly lessfrequently than the rest. This
suggests that every type of feature chosen is of similar importance to the detection task
and their combination is essential for such a high classification accuracy.

Table 2: Mean and standard deviation of percentage of features chosen from different Gaussian
sizes defined byσ and curvature values (c).

@
@@c
σ

0.5π π 2π Total

0 3.7 ± 0.6 4.8± 0.9 5.4± 1.4 13.9± 1.6

0.05 7.6± 1 9.2± 1.2 10.6 ± 1.4 27.3± 2.2

0.1 7.6 ± 1.2 8.8± 1 11.3 ± 1.1 27.7± 1.1

0.2 8.2± 1 9.7± 0.8 13.3 ± 2.6 31.1± 2.3

Total 27± 2.6 32.5± 1.8 40.5 ± 2.7
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4.2 Comparison with existing work

We compare our results, as shown in Table 3, with 3 recently conducted works ([20],
[16] and [21]) which have reported results on the Cohn-Kanade database and have used
similar techniques either in the feature extraction or the classification phase, in addition
to the baseline system proposed in [10]. Valstar et al. [20] have used the evolution of
certain facial landmarks throughout the video sequence as features and utilized the Gen-
tleboost and SVM as the feature selection and classificationmethods. In our recently
published work [21], we have also used Gentleboost and SVM with a combination of
shape features similar to [20] and LBP features that are improved with the help of
three filters. The work in [16] uses as features directly the bins of histogram differ-
ence of LGBP magnitude images extracted from 16 non-overlapping windows with a
fixed Gaussian size and no curvature, and as classification adopts SVM with a specially
trained kernel. In [10] the database was validated using 68 geometrically normalized
facial point locations and canonical normalized appearance vectors as features for an
SVM classification.

Table 3: Accuracy comparison with 4 other methods; No of AUs represents the number of com-
mon AUs taken into consideration

Type of acc. F1(%) AUC(%) AUC(%) AUC(%)
No of AUs 14 17 16 14

Method [20] Our Met. [10] Our Met. [16] Our Met. [21] Our Met.
61.86 96.09 94.5 99.7 96.45 99.69 96.9 99.65

As seen in Table 3, our method certainly outperforms all the other state-of-the-art
methods on the CK+ database in AU detection accuracy. The comparison with the two
methods ([20] and [21]) using the same type of feature selection and classification, and
the database validation system [10] which also uses SVM, shows the efficiency of the
type of features utilized in our system. Although it is only fair to say that the comparison
with [20] is not exactly straightforward since the authors have used many frames from
each sequence, instead of using only the peak expression one, which naturally causes
a decrease in the classification accuracy. Also, they have used the CK database [9] in-
stead of the CK+, which is a previous version that includes less subjects and sequences.
The comparison with [16], which uses a rather complicated classification scheme, also
proves the utility of using curvature based features in addition to combining different
sizes of Gabor wavelets.

These initial results obtained on the CK+ database demonstrates a great potential
of the proposed features, but additional tests certainly need to be performed on larger
databases to show the generalizability of the system, whichremains as principal future
work.
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5 Conclusions

We have presented a novel framework for facial action unit detection in videos. The
proposed system consists of extracting a combination of curvature Gabor features at
different filter sizes, applying the LBP on top and computingthe difference in his-
tograms for neutral and peak frames. Then the obtained features are used in an AU spe-
cific feature selection and classification process to detectthe present AUs. We achieve
98.6% accuracy,96.3% F1 and99.7% AUC scores in average for the leave-one-out
test performed on the CK+ database, which is to our knowledgethe highest reported to
date. To assess the generalizability of the system, furthertests should be performed
with a dataset containing a larger variability among expressions. However, the ex-
tremely high accuracy presented in this work already shows the representation and
discriminative power of the proposed features, which we believe will constitute an im-
portant position in future facial action recognition and expression analysis research.
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