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Age-related brain atrophy is not a homogenous process: 
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Aging is characterized by a progressive loss of brain volume at an estimated rate of 5% per 
decade after age 40. While these morphometric changes, especially those affecting gray 
matter and atrophy of the temporal lobe, are predictors of cognitive performance, the 
strong association with aging obscures the potential parallel, but more specific role, of 
individual subject physiology. Here, we studied a cohort of 554 human subjects who 
were monitored using structural MRI scans and blood immune protein concentrations. 
Using machine learning, we derived a cytokine clock (CyClo), which predicted age 
with good accuracy (Mean Absolute Error = 6 y) based on the expression of a subset 
of immune proteins. These proteins included, among others, Placenta Growth Factor 
(PLGF) and Vascular Endothelial Growth Factor (VEGF), both involved in angiogen-
esis, the chemoattractant vascular cell adhesion molecule 1 (VCAM-1), the canonical 
inflammatory proteins interleukin-6 (IL-6) and tumor necrosis factor alpha (TNFα), 
the chemoattractant IP-10 (CXCL10), and eotaxin-1 (CCL11), previously involved in 
brain disorders. Age, sex, and the CyClo were independently associated with different 
functionally defined cortical networks in the brain. While age was mostly correlated 
with changes in the somatomotor system, sex was associated with variability in the 
frontoparietal, ventral attention, and visual networks. Significant canonical correlation 
was observed for the CyClo and the default mode, limbic, and dorsal attention networks, 
indicating that immune circulating proteins preferentially affect brain processes such as 
focused attention, emotion, memory, response to social stress, internal evaluation, and 
access to consciousness. Thus, we identified immune biomarkers of brain aging which 
could be potential therapeutic targets for the prevention of age-related cognitive decline.

brain aging | cytokines | cytokine clock | aging | gray matter volume

Understanding the effects of age is of chief importance as aging is the biggest risk factor 
of disease (1). This observation has stimulated interest in the identification of biological 
parameters that change with age. For example, epigenetic changes strongly correlate with 
the calendar age of an individual, thus providing a readout of a biological clock (2). One 
of the first biological clocks based on changes in the epigenetic landscape showed that 
time has a direct effect on the biology of an organism, but on the other hand, its design 
as a simple readout of time-dependent changes in methylated loci constrains its usefulness 
in understanding the physiology of aging.

Since then, there have been other clocks developed based on physiological factors that 
change with age and are themselves directly related to alterations in body homeostasis. 
An example of such a clock is based on the understanding that systemic chronic inflam-
mation drives the progression of age-related decline and predicts multimorbidity (3, 4). 
Extracting an age clock based on changes of circulating immune factors contains both a 
causal and a consequential element of the effects of age. As a result, this clock is less precise 
in capturing the calendar age but reflects more precisely the age-dependent physiological 
status of the individual. It provides opportunities to directly interact with the physiological 
parameters showing deterioration with age and restoring them to youthful status.

Accumulating evidence demonstrates that certain changes in brain structures predict 
cognitive impairment during aging (5). The areas that seem most affected during aging 
are those important for learning, memory, and other complex brain functions. In the 
elderly, communication among neurons becomes less effective, and blood flow to the brain 
may also decrease. Thus, a rise in inflammatory markers with age (inflammaging) appears 
to be connected to cognitive decline and mental function, even in aging individuals 
without clinical pathology (6–9).

Since the blood–brain barrier separates neurons from components of circulating blood, 
changes in its permeability can affect brain homeostasis (10). For example, brain endothelial 
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cells are sensitive to age-related circulatory cues and could be key 
to understanding the effects of circulating factors on neuroinflam-
mation, cognitive decline, and neurodegenerative diseases (11). 
Systemic factors interact with the brain–blood barrier, and age-re-
lated changes in brain endothelial cells lead to structural and 
molecular effects of peripheral signaling molecules (12).

A paradox of neurodegenerative diseases is that they are known 
to have a localized origin and subsequently spread to other initially 
unaffected regions, while at the same time, they have been linked 
to alterations outside the nervous system that should exert their 
effects broadly over the brain. It is unclear how external systemic 
changes could lead to selective neuronal vulnerability in the areas 
of disease onset (13, 14). Yet, reduction in inflammatory pathways 
and increase in dendritic spines, plasticity genes, neurogenesis, 
olfactory discrimination, and learning/memory as well as vascular 
remodeling can be achieved by infusion of blood from young 
animals into aged ones, thus highlighting the interplay between 
circulating factors and brain health (15).

Across the span of adult human life, there are observable 
changes in brain volumes, and these are considered part of the 
typical nonpathological aging processes in the brain (16). Brain 
atrophy can be observed longitudinally both in a person and in 
cross-sectional population measures. In both cases, the rate is just 
under half a percent of volume per year (17). This change is meas-
urable in both global and regional brain volumes but is not signif-
icant at the level of the total intracranial volume (TIV) (17). 
Interestingly, researchers have noticed that with the progression 
of age, the variance in the measures of brain volumes increases in 
healthy individuals and decreases in individuals with Alzheimer’s 
disease (18). This heterogeneity was also identified at the level of 
trajectories of brain volume atrophy, with frontal regions being 
more affected in normal aging and temporal regions leading the 
atrophy rates in Alzheimer’s disease (19, 20). Moreover, separate 
patterns of brain atrophy have been observed in different disease 
etiologies (21). Heterogeneity in gray matter volume (GMV) has 
been also detected with respect to anatomical brain networks (22). 
However, there is a distinction between brain atrophy in healthy 
aging and that involved in neurodegenerative disease. Using pre-
cise stereotactic cell counting, Morrison and Hof found that, 
contrary to Alzheimer’s disease, normal brain aging is accompa-
nied by very little neuronal death (23). This finding suggests that 
age-specific alterations leading to cortical atrophy are more subtle 
and likely to occur at the synaptic level and/or extracellular matrix, 
while neurodegenerative disease could be related to cell death in 
affected regions. Moreover, diseases that affect the brain have dif-
ferent functional outcomes, e.g., Alzheimer’s disease is predom-
inantly related to memory impairment, while Parkinson’s disease 
is mainly a motor disorder. Functional regions are also known to 
express age-related alterations (24, 25).

Here, we explored how age and aging factors relate to the atro-
phy of subnetworks of cortical gray matter identified by their 
functional roles. We subdivided the cortical gray matter into 
7 regions corresponding to functionally identified networks fol-
lowing the segmentation proposed by Thomas Yeo et al. (26). We 
thus recognized the following functional networks: visual, soma-
tosensory/somatomotor, dorsal attention, ventral attention, lim-
bic, frontoparietal, and default mode network (DMN). In order 
to remove the variability related to head size, the volume of each 
network was normalized against the TIV.

We also derived a cytokine clock (CyClo) based on a LASSO 
model of the expression levels of 24 circulating blood proteins. 
Using canonical correlation analysis, we explored the correlations 
of patient’s age, CyClo, and sex against the volume of the 7 func-
tionally determined cortical networks. We obtained 3 correlation 

functions that capture correlations between the aging factors and 
the cortical network volumes.

Results

Study Design: Assessing Immune Features and Brain Morphology 
during Aging. The study followed 554 (246 men and 308 women) 
subjects recruited in the Hillblom Aging Network, an observational 
study of healthy brain aging from the Memory and Aging Center 
at UCSF. Participant average age was 69 y (range, 47–102 y), and 
the average visit number was 3 (range, 1–13), with at least a year 
between visits (cf. SI Appendix, Fig. S6 for histogram of intervals 
between repeat visits). The cohort consisted of healthy individuals 
and patients with cognitive decline (normal = 476, mild cognitive 
impairment = 57, and mild dementia = 1). More detailed cohort 
description is available in the Materials and Methods section and 
other publications (27, 28).

Fig. 1 summarizes the study design and data treatment pipeline. 
Subjects underwent structural MRI scans (n = 1,053) and blood 
serum collection (n = 1,288) performed during yearly study visits. 
MRI volumes were segmented using the SPM12 unified segmen-
tation procedure, and each patient segmentation was warped using 
the DARTEL toolbox (29) to create a study-specific template space. 
TIV and GMV were measured for each patient on the template. 
Subsequently, the cortical GMV was subdivided into 7 functional 
networks defined by intrinsic functional connectivity (26). All vol-
umes were measured in milliliters and normalized against the TIV.

Blood serum was collected (n = 1,288), and 24 circulating pro-
teins with potential roles in aging were assayed: TNFλ, IFNγ, IL-6, 
IL-10, MCP-1, MCP-4, IP-10, eotaxin, eotaxin-3, VEGF, 
VEGF-D, VEGF-C, PLGF, bFGF, Vcam-1, Icam-1, Flt-1, TIE2, 
hs-CRP, SAA, MIP-1a, MIP-1b, TARC, and MDC. Technical con-
straints to assaying circulating proteins led to some retest samples, 
with a coefficient of variation (CV) ≥20. The presence of low-reli-
ability replicates means that the values for some proteins in a patient 
sample must be removed, yielding a dataset with some patient visits 
having incomplete panel results. We illustrate the overall missing-
ness values for each protein across the 1,288 visits in SI Appendix, 
Fig. S1. A discussion on assaying concentrations of chemokines and 
cytokines can be found in an earlier publication (28).

To restore a complete dataset, we implemented an imputation 
protocol that predicted the most likely value for a missing protein 
in a panel based on the expression levels of all other proteins and 
the patient’s sex used as experimental design variables. Inherently, 
making a prediction of a missing value requires choosing from a 
distribution of plausible values for the variable, thus generating 
prediction bias. To avoid this data bias inherent to predicting 
values, we iterated the prediction process 500 times, resulting in 
500 data complete sets of circulating protein panels (Materials and 
Methods) and used the data to generate a CyClo. This procedure 
generated a complete protein panel for each sample. The more 
general problem of sampling bias is addressed in part by the 
cv.glmnet algorithm via cross-validation folds between the training 
data and a test subset of data left out. During the process, indi-
vidual patients were randomly assigned to and kept in the same 
data fold to prevent measures of the same patient appearing in the 
training and testing data.

Prediction of Aging Using Blood Circulating Immune Proteins. 
Expression levels of some blood proteins were previously shown 
to correlate with patient age and were influenced by a multitude 
of confounding factors resulting in very noisy individual values 
that have only limited practicality as predicting factors (30). 
On the other hand, the power of a panel of circulating proteins 
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could provide strong insight into the overall status of the patient 
and by their combined effect reveal the biological age of the 
circulatory system.

We built a predictive feature selection LASSO model that uses 
a tradeoff between bias/sparsity against the variance to select a set 
of proteins whose linear combination optimizes the fit against age. 

Serum

554 individual patients 
246 Males 308 Females
69 average age { 47 - 102 range }
3 average visit number { 1 - 13 range }

1053  T1 weighted MRI scans 
1288   Blood Serum samples

for cytokine analysis 

-Luminex Multiplex panel of 23 cytokines/chemokines
 With CV20 validation and missingness of < 60% 
-High sensitivity C-reactive  Protein assay 

Data are batch corrected and log transformed

MRI

Structural T1 with N3 bias corrected MRI scans.
Tissue segmentation with SPM12

Volumes measured : GMV,  CSF, TIV ;
Functional network volumes according to 
Schaefer segmentation : Visual, Somatosenso-
ry-Motor , Dorsal-Attention, Ventral_Attention, 
Limbic, FPCN, DMN

Volumes normalized against TIV 

Missing data is infered using 500 iterations 
of the MICE algorithm 

Cross validated GLMnet Lasso is applied on each of the 500 
resulting data sets  expressing cytokine levels as function of 
age.
The model is used to predict the patient age  on 1288 visits:  
Cytokine Clock

Feature selection; Cytokines 
changing concentration with age 
cf. Fig  2

Predicted cytokine age is extrapolated to ±3 
years if we have a visit with MRI scan but no 
blood sample in the same year

Total of 1053 matched years with MRI volumes and cytokine age predicted values  are used for model selection 
using AIC, BIC criteria and Canonical Correlation Analysis

Study template created with DARTEL
Nonlinear & rigid body transformation used to 
normalize and modulate subject segmentations

Fig. 1. Study pipeline. Blood samples and MRI scans were performed in a population of subjects spanning a 50-y age range. After preprocessing circulating 
immune proteins, levels were related to age using multivariate linear model with feature selection. This allowed calculation of the physiological age of the patients. 
The last step analyzes the relationship between calendar age, sex, physiological age, and the morphometric values of functionally determined brain networks.
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The model uses cross-validation to estimate the optimal value of a 
penalty factor against feature addition = λ. Fig. 2A illustrates the 
decrease in mean squared error of the model for different values of 
λ and different numbers of features with nonnull β weights in the 
linear model. The “unselected” features receive a β value of 0, while 
the β values of the other features are optimized to maximize the 
variance. Given that the data are centered and scaled in advance, 
the β values reflect the information contributed by each feature. 
Fig. 2B shows the average β value for each feature/protein in the 
500 datasets. The proteins with the highest contributions are known 
to play roles in vascular growth (VEGF, VEGF-D, and PLGF), 
general inflammation (TNFλ and IL-6), chemoattraction for 

monocytes/macrophages (MCP-1 and IP-10), recruitment of eosin-
ophils into sites of inflammation (eotaxin), and promoting inter-
actions between the vasculature and immune cells (Vcam-1).

We interpreted the set of selected features as a tradeoff between 
a sparse set of features that provide a less biased model of the 
variance in the independent variable. In our case, this is the sub-
ject’s calendar age. Fig. 2C illustrates the frequency at which each 
feature is selected in the 500 model iterations. There are 9 proteins 
selected in >90% of the models (TNF l, IL-6, MCP-1, IP-10, 
Eotaxin, VEGF-D, VEGF, PLGF and Vcam-1). These proteins 
indicate an optimal set of imputation independent features that 
minimizes the model error.
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Building the LASSO model allows prediction of the dependent 
variable (subject’s age) based on the levels of the 24 proteins. We 
used the 500 data complete panels to make an age prediction for 
each subject. The predicted subject age, which we also call CyClo 
(cytokine clock), for each subject at a specific visit is the median 
value of the 500 predictions generated as we trained a LASSO 
model on each of the 500 data complete cytokine expression pan-
els. Fig. 2D displays these predicted ages (CyClo) against the cal-
endar age of each patient at each sample time. The solid “dark-blue” 
line with a gray-shaded region shows a linear fit of the two varia-
bles. The patient’s biological and calendar ages show a moderate 
correlation of 0.50. We therefore asked whether the CyClo cap-
tures additional information beyond the effect of calendar age.

CyClo Predicts Age-Related Changes in Brain Volumes. Changes 
in brain volumes with age, sex, and relative GMV are well 
established. Hence, we first investigated GMVs in relation to age 
and sex in the context of our specific cohort (Fig. 3A). Then, we 
tested whether the linear combination of multiple cytokine levels 
that we measured contributes significantly to this correlation in 
addition to the effects of age and sex.

We generated linear mixed-effect models of GMV by incre-
mentally adding explanatory variables and used patients as ran-
dom effects to account for subject ID. We used the AIC and BIC 
as penalty criteria for parameter addition. Post hoc χ2 ANOVA 
test between model 3 and model 4 showed significance, with P 
< 0.001***, confirming that the effect of CyClo is highly 

significant in the presence of the two other variables (age + sex). 
Table 1 summarizes the results and shows that all 3 parameters 
(age, sex, and CyClo) contribute significantly to the model 
robustness. The full model GMV ~ age + sex + CyClo + (1 | 
subject ID) showed the smallest Akaike information criterion 
(AIC) of −5201 and Bayesian information criterion (BIC) of 
−5171. The goodness of fit or r2 (R-squared) is poised to increase 
upon addition of more parameters to the linear mixed-effects 
model at the risk of overfitting the data and decreasing robustness. 
The AIC and BIC balance, respectively, against overfitting and 
underfitting of the model. The full model showed the significant 
chi-squared ANOVA and lowest AIC and BIC values and is there-
fore the one model that provides the optimal fit to the data with-
out overfitting. The feature selection criterion showed that all 
3 parameters (age, sex, and CyClo) contribute significantly to 
explaining the variance of GMV.

To go a step further, we explored the atrophy associated with 
specific functional networks along human life span. We subdivided 
the GMV into 7 separate networks of functional connections 
(visual, somatosensory/somatomotor, dorsal attention, ventral 
attention, limbic, frontoparietal, and default mode) (26). Fig. 3B 
illustrates pairwise correlations between all resulting variables. All 
7 functional networks show overall high correlation among each 
other. Nevertheless, some structure is obvious, with the visual and 
limbic network showing less volume correlations with other net-
works. The somatosensory/somatomotor and dorsal and ventral 
attention networks seem to form a higher correlated group 
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(average correlation of all volumes 0.86 vs. within-cluster average 
0.9), and the DMN together with the frontoparietal network show 
another pair of highly correlated volumes (correlation of 0.95 vs. 
the average correlation of all volumes of 0.86). The somatosensory/
somatomotor network volume shows the highest correlation with 
age (R = −0.50 and P < 0.01), while overall, the correlation with 
age and CyClo is between −0.27 and −0.46 with P < 0.01. Sex 
being a binary variable, the correlation level represents the average 
volume difference between men and women. The visual network 
volumes seem the most balanced, while the other networks show 
varied levels of balance between sexes. This finding is consistent 
with observations from recent publications (31, 32). SI Appendix, 
Fig. S5 illustrates the within-set associations, with the univariate 
density functions in the diagonal; the lower triangle is a pairwise 
scatterplot, and the upper triangle shows the corresponding cor-
relation coefficient for the pair and its significance score.

Taken together, these results indicate that the changes in 
immune proteins with age can be used to accurately predict the 
age of a person, thus offering insight into the biology of the aging 
immune system.

Canonical Correlation Analysis Reveals Age-, Sex-, and CyClo–
Specific Changes in Brain Functional Networks. Our previous 
analysis illustrated the high within- and between-group correlations 
among the aging factors and the functionally determined gray 
matter networks. It also revealed patterns suggestive of more 
complex interactions. One way to explore the structure between 
two sets of variables is to perform a canonical correlation analysis. 
This analysis creates a set of latent (canonical) variates, one for 
each group of variables, yielding a weighted linear combination 
of the variables in each set. The weights of the variables generating 
each variate are optimized so that the correlation between variates 
is maximized.

We conducted a canonical correlation analysis, which generated 
three canonical functions illustrated in Fig. 4. The figure graphi-
cally tabulates the coefficients of the 3 canonical functions. 
Function 1: The variable with the highest contribution to the 
variate U1 is age (standardized canonical weight 0.78 and canon-
ical loading 0.9) and is reciprocated by the somatomotor system 
(standardized canonical weight −1.26 and canonical loading 
−0.97) as the highest contributor to the canonical variate V1. This 
function generates canonical variates with a correlation of 0.59 
and covers a shared variance of ρ2 = 0.35 (DF = 21 and P < 0.001, 
Bartlett’s χ2 test). Function 2: The variable with the highest con-
tribution to the variate U2 is sex (standardized canonical weight 
0.93 and canonical loading 0.88) and is reciprocated by the fron-
toparietal (standardized canonical weight 1.11 and canonical 
loading 0.43), ventral attention (standardized canonical weight 

0.84 and canonical loading 0.37), and visual (standardized canon-
ical weight −1.21 and canonical loading −0.12) networks, which 
present the highest weights to the variate V2. This function gen-
erates canonical variates with a canonical correlation of 0.38 and 
covers a shared variance of ρ2 = 0.14 (DF = 12 and P < 0.001, 
Bartlett’s χ2 test). Function 3: The variable with the highest con-
tribution to the variate U3 is the CyClo (standardized canonical 
weight −1.15 and canonical loading −0.77) and is reciprocated by 
the default mode (standardized canonical weight 1.1 and canonical 
loading 0.31), limbic (standardized canonical weight 0.41 and 
canonical loading 0.38), and dorsal attention (standardized canon-
ical weight −1.98 and canonical loading −0.10) networks as the 
highest contributors to the canonical variate V3. This function 
generates canonical variates with a canonical correlation of 0.1 
and shared variance of ρ2 = 0.01 (DF = 5 and P ≤ 0.038, Bartlett’s 
χ2 test). All three functions can be considered significant at below 
5% threshold and indicate that different combinations of aging 
factors and functional brain networks help optimize correlations 
between the two sets.

The canonical correlation coefficients are a symmetrical measure 
of correlation between the canonical variates U of the set of vari-
ables X and the canonical variates V of the set of variables Y. We 
also calculated the redundancy coefficients that are nonsymmet-
rical and provide an estimate of the amount of variance in one 
canonical variate that is explained by the other canonical variate. 
The redundancy coefficient on X|Y was 0.21 and Y|X was 0.25, 
which can be interpreted as predictive power, with aging factors 
having stronger predictive power on the expected functional net-
work volumes than the reciprocal.

Together, these results demonstrate that i) after correcting for 
age and sex, the CyClo reflects changes in GMV (ANOVA 
model selection GMV ~ age + sex + CyClo + (1 | subject ID)) 
and ii) age, sex, and CyClo correlate to different extents with 
distinct functional networks in the brain (canonical correlation 
analysis).

Discussion

Here, we used a systems approach involving different technological 
platforms to map blood immune biomarkers to age-related mor-
phometric changes in the brain and understand how different 
factors contribute to volume variation in specific brain areas that 
comprise functional brain networks. We were able to decouple the 
effects of age from those of sex and circulating proteins onto these 
functional networks. We confirmed previous findings associating 
aging with changes in certain areas of the cortex (somatosensory 
and somatomotor) and identified specific immune proteins that 
correlate with changes in the default mode and the limbic and 
dorsal attention networks, which are areas involved in attention, 
emotion, memory, and response to social stress, internal evalua-
tion, access to consciousness, and creativity functions. Since brain 
disorders such as Parkinson’s disease and late-onset Alzheimer’s 
disease have increased prevalence in older patients and are often 
considered diseases of “old age” (33–35), our study suggests that 
modulating the immune system with age can have implications 
for brain health in a very specific manner, thus dissociating the 
effect of age from the effects of age-related immune factors.

Together with the skin, the brain might be the one organ where 
the compound effects of age might be the most obvious at the 
structural level, thus confounding age as a corollary with other 
potential factors of atrophy (36, 37). On the other hand, we know 
that external factors such as diet and behavior, as well as genetic 
background, play a role in the onset of neurodegenerative 
disorders (38). Previous studies show that external factors can 

Table 1. ANOVA model evaluation for GMV
GMV ~

Model Null Age Age + Sex Age + Sex + CyClo

CyClo2 ***

Sex *** ***

Age *** *** ***

Constant *** *** *** ***

AIC
BIC

−4,875 −5,129 −5,188 −5,201
−4,860 −5,109 −5,163 −5,171

Parameter selection tests. The linear mixed-effects model with the smallest AIC and BIC 
score is model 4 that takes into account all 3 parameters (age, sex, and CyClo). ANOVA of 
models 3 and 4 returns significant P < 0.001***.
Random effect = subject ID.
*P < 0.05; **P < 0.01; ***P < 0.001.

https://www.pnas.org/lookup/doi/10.1073/pnas.2207181119#supplementary-materials
https://www.pnas.org/lookup/doi/10.1073/pnas.2207181119#supplementary-materials
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Fig. 4. Canonical correlation functions 1–3. The functions illustrate the standardized canonical coefficients (weights) for each variable presented in a rectangular 
box. The canonical loadings (also called canonical structure correlations) for each variate are listed over the converging arrows, and the canonical correlations on 
the arrow connect the two ovals representing the canonical variates. In red and yellow are the coefficients of the variables with the highest contribution for each 
canonical variate. Note that the canonical weights are specific to each canonical function and represent the weighted contribution of each measured variable 
to the synthetic canonical variate; they can be interpreted within the function. On the other hand, the canonical loadings of each variable can be interpreted 
as similar to factor loadings and reflect the variance that the observed variable shares with each canonical variate. There is no mathematical reason behind a 
coincidence of the highest canonical weights and highest loadings in a given function, and it is therefore simply an indication of consistent results.
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interact with the aging brain by modulating cytokine levels (39). 
However, the directionality and specificity of immune proteins 
affecting different brain regions have not been studied. Both major 
“age-related” brain pathologies are considered progressive diseases 
with a localized origin and subsequent propagation to the whole 
brain (40, 41).

In this study, we distinguished among the effects of age, sex, 
and circulating blood proteins as reflected in the age-related mor-
phological changes in 7 distinct cortical regions involved in dif-
ferent functional networks. We distinguished the visual, 
somatomotor, dorsal attention, ventral attention, limbic, fronto-
parietal, and DMNs and measured the corresponding brain vol-
umes. The choice of working with functionally determined 
networks that represent functional specializations rather than 
tracking the anatomical neighborhood allows us to focus on evo-
lutionarily determined units rather than simple topological prox-
imity. This approach is consistent with theories of brain evolution 
operating by duplication of modules, which could lead to physical 
proximity without functional similarity (42–45).

The levels of 24 circulating proteins were measured over 1,288 
visits in patients with a 50-y age span. Statistical modeling allowed 
us to identify a combination of 9 proteins that change expression 
levels with age, and we built a CyClo that predicts age by a weighted 
combination of the expression levels of these proteins. Previous 
studies focused on immune proteins to understand how the 
immune system participates in the development and severity of 
age-related pathology (46–50). In this study, machine learning 
approaches showed that this CyClo helps explain the variance in 
GMV, even if age and sex are accounted for as factors. Thus, we 
considered changes in all three factors against the brain volumes. 
Canonical correlation is widely used to identify and measure asso-
ciations among two sets of variables. In medical problems, canonical 
correlation has been shown to be applicable to discrimination of 
multivariate relationships among modalities of the same subject 
(51–53) and is appropriate in situations where multiple regression 
would be but where there are multiple intercorrelated outcome 
variables (54). For example, via canonical correlation, studies have 
demonstrated that multiple SNPs correlate with multiple disease 
phenotypes (55) and found genetic variants that correlate with 
Alzheimer’s disease (56). In brain aging and Alzheimer’s disease, 
cytokine levels were shown to affect microglia activation in order 
to reduce amyloid burden as a protective mechanism, but chronic 
unresolved inflammation leads to pathological outcomes (57).

Our analysis using canonical correlation generated three corre-
lation functions corresponding to the number of parameters in the 
smaller dataset (age, sex, and CyClo). We chose these functions to 
optimize the correlation of latent variables generated by weighted 
linear combinations of the factors of each dataset. On the left-hand 
side of each function, the latent variable was generated by over-
weighted contribution from a distinct aging factor (age, sex, or 
CyClo), while the right-hand side was loaded with a weighted com-
bination of the volumes of the seven functional networks that max-
imized the correlation. This resulted in a differential participation 
of different networks in the three functions. The function most 
heavily loaded with patient’s age information received the highest 
load from the somatosensory/somatomotor cortex to maximize the 
correlation, suggesting that age by itself relates mostly to changes 
in this network. The function that distinguished sex information 
was reciprocated by strongest participations from the frontoparietal, 
visual, and ventral attention networks, implying that these networks 
are more strongly differentiated by sex rather than age or cytokine 
levels. The function receiving the heaviest weighting from cytokines 
was reciprocated by heavy participation of the default mode and 
limbic and dorsal attention networks, indicating that these networks 

express sensitivity to circulating aging factors. The two main factors 
we identified to change expression levels with age are VEGF and 
PLGF. Both play roles in vascular health. A third factor with signif-
icant participation in the cytokine age clock is VCAM-1, known 
to play a role in recruitment and adhesion of immune cells to epi-
thelial cells. Interestingly, infusion with aged blood was found to 
impair hippocampal neural precursors and activate microglia via 
VCAM-1. This finding suggests localized effects of circulating mol-
ecules (58). Further evidence suggests that the blood–brain barrier 
is strongly implicated in the pathology of both Alzheimer’s and 
Parkinson’s diseases (41)(59). Our results are consistent with that 
view. Furthering the understanding of the interaction between the 
immune system and the status of the central nervous system (CNS) 
is an essential step in the quest to understanding neurodegenerative 
diseases. Accumulating evidence suggests that cell-free proteins in 
the cerebrospinal fluid correlate with age, and these proteins are 
associated with inflammation and response to injury in the 
CNS (60). These observations have been extended to peripheral 
circulating proteins(61–63), and predictive models of cognitive 
impairment and dementia have been generated based on plasma 
proteins (47). Our research focused on a small number of chemok-
ines and cytokines with potential involvement in inflammatory 
processes and inflammaging, and we found that the atrophy in 
specific functional networks of the cortical gray matter correlates 
with these protein concentrations in the peripheral blood. More 
detailed studies of the proportions of different immune cells in the 
blood and untargeted proteomics analyses of circulating blood pro-
teins in large cohorts would allow better understanding of how the 
immune system shapes aging and neurodegenerative diseases (64).

In summary, using an unbiased approach to immunological 
and brain aging in a large cohort, we have decoupled the effects 
of age, sex, and inflammaging in brain morphometric features, 
including functional networks. We find that while age influences 
somatosensory and somatomotor effector functions, inflammatory 
mediators correlate with changes in different networks, preferen-
tially affecting brain processes such as focused attention, emotion, 
memory and response to social stress, internal evaluation, access 
to consciousness, and creativity. This study suggests that modifying 
the immune biomarkers found here could have therapeutic impli-
cations for preventing brain aging.

Materials and Methods

Participants. The data for this study were derived from the Hillblom Aging 
Network cohort that was established by the Memory and Aging Center at the 
University of California San Francisco (UCSF). Participants for this cohort are 
primarily recruited via community outreach events, flyers, and media advertise-
ments across the Bay Area in California. The research protocols have received 
IRB approval by the UCSF Committee on Human Research, and the research-
ers have followed the principles established by the Declaration of Helsinki. 
Written informed consent was obtained from all included participants. The 
data collected consisted of comprehensive health examinations, blood draws 
for cytokine and chemokine assaying, and structural MRI scans. Scripts and data 
have been deposited at https://www.synapse.org/#!Synapse:syn42844729/
files/ (65).

Data Collection and Statistical Analysis. All statistical analyses were per-
formed with R (66) . Deidentified data, scripts used for analyses, and other rele-
vant documentation will be made available upon reasonable request by qualified 
researchers interested in replicating our results or performing independent anal-
yses. Such requests should be sent to the corresponding author.

MRI Data Acquisition and Preprocessing. All brain MRIs were performed 
at the UCSF Neuroscience Imaging Center using either a Siemens Trio 3T or 
Siemens Prisma 3T scanner. Magnetization-prepared rapid gradient-echo 
(MPRAGE) sequences were used to obtain whole-brain T1-weighted images 

https://www.synapse.org/#!Synapse:syn42844729/files/
https://www.synapse.org/#!Synapse:syn42844729/files/
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(TR/TE/TI = 2300/2.98/900 ms, α = 9° and TR/TE/TI = 2300/2.9/900 ms, α = 
9°). The field of view was 240 × 256 mm, with 1 × 1 mm in-plane resolution and 
1-mm slice thickness and sagittal orientation for both sequences.

Before processing, all T1-weighted images were visually inspected for qual-
ity control, and those with excessive motion or image artifacts were excluded. 
Magnetic field bias was corrected using the N3 algorithm (67). Tissue segmenta-
tion was achieved using SPM12’s unified segmentation procedure, and each par-
ticipant’s gray matter segmentation was warped using the DARTEL (Diffeomorphic 
Anatomical Registration using Exponentiated Lie algebra) to create a study-spe-
cific template (29) (68). Each participant’s native space gray matter segmentation 
was normalized and modulated via nonlinear and rigid body transformations to 
study-specific template space. A Gaussian kernel of 4-mm full width half maxi-
mum was applied to smooth the images. Transformations (linear and nonlinear) 
between the DARTEL space and ICBM space were conducted to enable statistical 
comparisons (69). Each subject’s segmentation was carefully inspected to ensure 
robustness of the process. Quantification of total gray volume was accomplished 
by summing all voxels in each subject’s native space segmentation. The TIV was 
calculated for each subject as the sum of the gray matter, white matter, and cere-
brospinal fluid segmentations. For this study, our regions of interests were total 
gray and white matter volumes. All MRI volumes were expressed in milliliters 
and then normalized against the TIV.

Cytokine Assay Collection and Preprocessing. Under the current state of the 
art, the quantification of blood-based inflammatory biomarkers, chemokines, and 
cytokines that have plasma concentrations in the picogram per milliliter range is 
largely platform dependent. For the Hillblom Aging Network, the concentrations 
of the biomarkers are assessed by high-performance electrochemiluminescence 
using the MSD (Rockville, MD) V-PLEX human proinflammatory chemokine and 
cytokine panels. More detailed explanation of procedures is available in earlier 
publications from the cohort (70–73). In short, the blood collection is performed 
in the morning after a 12-h overnight fast. The tubes are centrifuged for 15 min 
at 4°C at 2,000 × g. The plasma is collected and stored in 500-µL polypropylene 
cryovials at −80°C until the assay is run. Following the manufacturer’s guidelines, 
the plasma is gradually raised to room temperature, and aliquots of 25 µL for the 
proinflammatory panel and 12.5 uL for the chemokine panel are loaded into a 
96-well plate and diluted 2× for the proinflammatory cytokine panel and 4× for 
the chemokine panel. The multiplex arrays are analyzed in the MESO QuickPlex 
SQ 120 Imager and treated with Discovery Workbench v4.0 software (provided 
by the MSD). The plasma samples are always measured in duplicate as per the 
manufacturer’s protocol, and a CV is calculated for each sample's test–retest 
concentration measurements. The “acceptable” value of CV was set to 20, and 
all detectable concentrations with a CV≤20 were retained. All procedures were 
performed by board-certified technicians not familiar with the study purpose.

Several cytokines with missing data in more than 55% of samples were 
removed from our analysis (IL-1β, IL-4, IL-8, IL-2, IL-12p70, and IL-13). An assay 
of hs-CRP was added. The high-sensitivity C-reactive protein test (hs-CRP) has the 
ability to detect general levels of inflammation and has been shown to be indic-
ative of the odds of “healthy aging” (74–76). Circulating blood immunoprotein 
expression levels were natural log transformed. The blood sample assays were 
processed in 4 batches. To remove the unwanted batch effects associated with 
technical variables, we used the “removeBatchEffect” function from the limma 
(77) package, with participant age and sex accounted for as experimental design 
parameters. The resulting dataset is visualized in SI Appendix, Fig. S1. Of the total 
24 markers, 11 had less than 5% missingness and 13 had between 40 and 55%. 
We imputed the incomplete data by multivariate imputation by chained equa-
tions using the R package “mice” (78). "mice" uses a fully conditional specification 
on a variable-by-variable model and is the preferred multivariate imputation 
method when it is impractical to specify a joint multivariate distribution of the 
missing data. It defines a set of conditional densities, one for each incomplete 
variable, and draws imputations by iterating over these conditional densities. 
Given that we are focusing on the effects of age on the cytokine levels, we need 
to work with balanced data with respect to distribution of ages sampled. To avoid 
overweight contribution of certain age groups, we binned the patient ages and 
plotted a histogram of the distribution (SI Appendix, Fig. S2A) and then used the 
counts of patients in each bin to calculate the regularization weights as the “1/no. 
of patients per bin” ratio (SI Appendix, Fig. S2B). The predictor design matrix 
(SI Appendix, Fig. S3) took into account the expression levels of all cytokines and 

the patient sex. The imputation parameters were set to method = “weighted.
pmm” (predictive mean matching), predictor matrix as shown in SI Appendix, Fig. 
S3, and imputation weights determined by the regularization weights as shown 
in SI Appendix, Fig. S2B. We ran 500 iterations of the imputation process, thus 
generating 500 “data complete” cytokine expression sets that we later used to 
build our CyClo model.

CyClo. Each of the 500 datasets were independently modeled, and the outcomes 
were subsequently pooled to generate results unbiased from the imputation 
choices. The 500 data complete sets were iteratively fit with a cross-validated 
multinomial GLM regression using the R package “glmnet” (79) with least abso-
lute shrinkage and selection operator (LASSO) via the cv.glmnet function. The 
model contains the 24 blood proteins as predictor variables and age as outcome 
variable. The model family is set to “Gaussian,” and data balancing weights are 
applied in the same way as described for the imputation process. In short, each 
sample is weighted by 1/no. of samples in the age bin. The alpha parameter is set 
to 1 to enforce the LASSO method. In order to obtain comparable beta values, the 
cytokine data were centered and scaled in advance, so the in-function parameter 
“standardize” is set to “false.” If this step is omitted, the generated beta values will 
be dependent on the level of expression of each protein and will not be compa-
rable across proteins. The output of each model fit is generated using the “coef” 
function that tabulates the beta values of the model and the “predict” function 
that outputs an estimate age for each subject based on their protein expression 
levels. We calculated for each patient sample the average value of the 500 pre-
dictions and call this value “cytokine age.” We are working with a total of 2,339 
visits of which 1,288 have cytokine measures and 1,053 have MRI scans. There 
are 536 visits where both a blood sample and MRI scan are reported in the same 
visit. In order to increase the overlap, we propagated the CyClo to neighboring 
visits with a chosen range of ± 3 y (e.g., a patient only had an MRI scan at her 
visit in 2019 but she has a visit with cytokine measure in 2020, we will take the 
2020 CyClo value of this patient subtract 1 and register it for the visit of 2019). 
The choice of a 3-y range was made so that it is less than half of the precision of 
the CyClo itself. With this approach, the outcome is 1053 matched visits with MRI 
measure and corresponding CyClo estimate.

Statistical Analysis of GMV, Age, and CyClo. We analyzed the relative con-
tribution of calendar age, sex, and CyClo in explaining the variance of the GMV 
measured via MRI (Fig. 3A and SI Appendix, Fig. S5). We created four linear 
mixed-effect models incrementally adding independent variables and accounting 
for subject ID as a random-effect model 1 (null) = GMV ~ (1 | subject ID), model 
2 = GMV ~ age + (1 | subject ID), model 3 = GMV ~ age + sex + (1 | subject 
ID), and model 4 = GMV ~ age + sex + CyClo + (1 | subject ID)). We used the 
AIC and BIC to evaluate the tradeoff between addition of new parameters and the 
model goodness of fit expressed by the R-squared. Post hoc chi-squared ANOVA 
of model 3 and model 4 returned a P < 0.001***, suggesting that the CyClo 
parameter is significant in the presence of the two other variables in a random 
intercept model. The results are summarized in Table 1. Once we established the 
relation between the overall GMV and the patterns of cytokine aging, we split the 
GMV into 7 functionally defined subnetworks and then computed the correlation 
between all variables. This is illustrated by the correlation matrix in Fig. 3B.

Canonical Correlation between Brain Volumes and Age Parameters. In 
order to identify the multiparameter correlations between CyClo, age, sex, and 
cortical gray matter subdivided into a set of 7 functional networks, we performed 
a canonical correlation analysis as implemented by the CCA package (80) and the 
yacca package (81). We created two, line-matched matrices, matrix X (calendar_
age, cytokine_age, and sex) and matrix Y (visual, somatosensory/somatomotor, 
dorsal_attention, ventral_attention, limbic, frontoparietal, and default_mode). 
Canonical correlation analysis is a general case of multivariate regression analy-
sis; it generates functions of latent (canonical) variables U and V that maximize 
the correlation between the two sets of multiple variables X and Y (82). The new 
synthetic variables are called canonical variates CVU1 = a1x1 + a2x2. . . apxp and 
CVV1 = b1y1 + b2y2. . . bqyq. Together, a pair of canonical variates forms a canon-
ical function. The first canonical function is chosen in such a way that the linear 
combination of the weights (a1, a2. . . ap; b1, b2. . . bq) of all variables maximizes 
the amount of correlation explained. The subsequent functions are calculated on 
the residuals of the previous function and thus finding linear combinations that 
are uncorrelated with the first canonical correlation. The maximum of canonical 

https://www.pnas.org/lookup/doi/10.1073/pnas.2207181119#supplementary-materials
https://www.pnas.org/lookup/doi/10.1073/pnas.2207181119#supplementary-materials
https://www.pnas.org/lookup/doi/10.1073/pnas.2207181119#supplementary-materials
https://www.pnas.org/lookup/doi/10.1073/pnas.2207181119#supplementary-materials
https://www.pnas.org/lookup/doi/10.1073/pnas.2207181119#supplementary-materials
https://www.pnas.org/lookup/doi/10.1073/pnas.2207181119#supplementary-materials
https://www.pnas.org/lookup/doi/10.1073/pnas.2207181119#supplementary-materials
https://www.pnas.org/lookup/doi/10.1073/pnas.2207181119#supplementary-materials
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functions is equal to the number of different variables in the smaller set, but the 
number of significant canonical functions can be less than that. In our case, the 
smallest set of variables contains three variables, and therefore, we can have at 
most 3 canonical functions. The canonical correlation coefficient is the amount 
of correlation between the canonical variates in a function. We calculated the 3 
canonical functions with the “cc” function and extracted the loadings with the 
“comput” function. Fig. 4 illustrates the 3 canonical functions, the respective var-
iates, coefficients of variation, the regularized canonical weights or coefficients of 
each variable, and the loadings of the variable in the function. We tested the sig-
nificance of each dimension of the canonical variates using Rao’s F approximation 
and Bartlett’s chi-squared test. It performs Rao’s test and provides statistics on 3 
tests. Test 1 informs whether all 3 canonical functions together are significant. Test 
2 checks the significance of dimensions 2 and 3 together. Test 3 checks if the third 
dimension is significant by itself. It calculates P values using F approximations 
of the test statistics of number of observations, size X, and size Y, and the input 
canonical correlation coefficients are squared to generate the canonical roots (ρ2) 
that capture an estimate of the shared variance.

Data, Materials, and Software Availability. The data collected consisted 
of blood draws for cytokine and chemokine assaying, and structural MRI 
scans. Scripts and data have been deposited at Synapse (https://www.synapse.
org/#!Synapse:syn42844729/files/) (65). De-identified data and the scripts 
used for analyses, and other relevant documentation will be made available 

upon reasonable request by qualified researchers interested in replicating our 
results or performing independent analyses. Such requests should be sent to 
the corresponding author.
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