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Abstract 
In this study, 129 exposure situations (ESs) with six or more measured inhalation exposures to dust from solids or vapour from 
liquids in occupational settings were compared with modelled European Centre of Ecotoxicology and Toxicology of Chemicals 
(ECETOC) targeted risk assessment tool, version 3 (TRAv3) estimates. The measurement data were extracted from previously 
published studies examining TRAv3 performance and pooled into a curated database. The comparison exercise focussed on the 
vapour exposure scenarios, as there were too few dust scenarios for a meaningful analysis of any required model corrections. 
A group of experts in the exposure modelling field retrieved and reviewed the input parameters used in these ESs. Where con-
sidered appropriate, modifications were applied to better match the input parameter definitions and the scope of applicability of 
the TRAv3. Differences and mean absolute error (MAE) were calculated between the log-transformed modelled exposure value 
and the 75th percentile of each measured data set and regression analysis was performed. The results indicated that the TRAv3 
overestimated 80% of the measured data sets. Both over- and underestimations were mostly by factors 1–5. The calculated 
MAE for liquids was 0.7, indicating that on average the difference between the 75th percentile and the TRAv3 estimate was 
less than one order of magnitude. A multiple linear regression showed that some input parameters such as medium volatility, 
certain process categories (PROC), industrial setting, and the presence of local exhaust ventilation are associated with under-
estimations. The results of the regression analysis can be used by TRAv3 users to review the degree of over- or underestimation 
in their current exposure assessments, compared to the curated database. Although multiple linear regression is an appropriate 
methodology to characterize the TRAv3’s performance, more data sets are still needed in view of some remaining data gaps. 
Nevertheless, the results of the current analysis are being used by ECETOC to further develop the tool as a suitably conservative 
screening tool for use in REACH chemical safety assessment of occupational exposure to chemicals.
Keywords: EU chemical regulation; exposure model; regulatory risk assessment; tiered exposure assessment

© The Author(s) 2023. Published by Oxford University Press on behalf of the British Occupational Hygiene Society.
This is an Open Access article distributed under the terms of the Creative Commons Attribution-NonCommercial License (https://
creativecommons.org/licenses/by-nc/4.0/), which permits non-commercial re-use, distribution, and reproduction in any medium, provided 
the original work is properly cited. For commercial re-use, please contact journals.permissions@oup.com

Received: April 21, 2022. Accepted: January 3, 2023.

mailto:jan.urbanus@shell.com?subject=
https://creativecommons.org/licenses/by-nc/4.0/
https://creativecommons.org/licenses/by-nc/4.0/


Annals of Work Exposures and Health, 2023, Vol. 67, No. 4 497

What’s Important About This Paper?

Exposure models are widely used in chemical registration in the European Union, so it is important to understand model 
performance to ensure appropriate worker protection. This study compared measured vapour exposures with those 
modelled by the ECETOC Targeted Risk Assessment Tool version 3. The model overestimated exposures for 80% of the 
measured exposure datasets, though modelled values were generally within a factor of 1–5 of measured values.

Introduction
Several occupational exposure models have been de-
veloped for chemical exposure assessment within the 
context of the Registration, Evaluation, Authorization, 
and restriction of CHemicals (REACH) legislation 
(ECHA, 2016). The European Centre of Ecotoxicology 
and Toxicology of Chemicals (ECETOC) released 
the first version (ECETOC 2004) of its target risk 
assessment (TRA) tool in 2004, which was later up-
dated to the second (ECETOC 2009) (TRAv2; in 
2009) and a third version (ECETOC 2012) (TRAv3; 
in 2012). With a few other models, such as EMKG-
EXPO-TOOL (Kindler and Winteler 2010), MEASE 
and Stoffenmanager (Marquart et al., 2008; Schinkel 
et al., 2010), the European Chemicals Agency (ECHA) 
recommends TRAv3 to be used as a first-tier model 
(ECHA, 2016). These models are required to be suf-
ficiently conservative—to overestimate the actual (i.e. 
measured) exposure at the workplace for the chemical 
safety assessment to err on the side of caution. The 
more complex, tier-2, approach is recommended when 
the risk is not demonstrated to be adequately controlled 
under the conditions of use by the first-tier modelling. 
Although since recently ECHA defines Stoffenmanager 
as a higher, 1.5, tier model, the only tier-2 model for 
predicting worker inhalation exposure is the Advanced 
REACH Tool (Schinkel et al., 2011, Fransman 2013). 
Unlike the lower-tier models, higher-tier models re-
quire more contextual information on the exposure 
situation to be coded into its input parameters.

The validity of modelled exposure estimates is often 
questioned, and many studies have compared the 
models’ predictions with measurements (Kupczewska-
Dobecka et al., 2011; Mc Donnell et al., 2011; Ishii 
et al., 2017; Savic et al., 2017, 2019; van Tongeren et 
al., 2017). The most comprehensive study, known as 
the ETEAM project (van Tongeren et al., 2017), inves-
tigated the performance of the first-tier models using 
around 2000 inhalation exposure measurements. The 
study found 28% and 35% of the individual measure-
ments for solids and liquids, respectively, were underesti-
mated by the TRA’s estimate, which represents the 75th 
percentile (P75) of the exposure distribution (Money 
et al., 2014). Lee et al. (2019b) performed a similar 
study using around 300 individual exposure measure-
ments collected at 18 workplaces in the USA. The study 

found that 38% of the measurements of exposure to 
volatile liquids were underestimated by TRAv3. Due 
to insufficient data size, results were not reported for 
solids. Moreover, both studies investigated the degree 
of underestimation per input parameter to determine 
which input entries caused these underestimations. Lee 
et al. (2019b) found that the TRA underestimated more 
than 60% of the measurements for process categories 
(PROCs) 3, 10, and 15; the ETEAM reported PROC 7 
and 14 as the least conservative PROCs, that is, under-
estimated more than 70% cases, while PROCs 5 and 
19, although less underestimated, were still considered 
as insufficiently conservative. In addition, both studies 
reported the estimates for low volatility bands and pro-
fessional settings to be more conservative than for indus-
trial settings or higher volatility bands. The two studies, 
however, disagreed regarding the effect of local exhaust 
ventilation (LEV) when present. While ETEAM found 
that 74% of the exposure situations (ESs) with LEV 
were underestimated, the ESs with LEV was more con-
servative in the study conducted by Lee et al. (2019b). 
These projects, along with several of the other reported 
projects, compared individual measurement results with 
a TRA prediction and then examined the overall over- 
and under-estimations, stratified by the various TRA 
input parameters such as PROC and setting. However, 
TRA predictions are based on the upper limits of the 
interquartile ranges of the EASE tool (HSE, 2003), and 
can therefore best be considered 75th percentiles (P75) 
of exposure distributions for particular ESs.

Between-user reliability is another major issue of 
the use of the exposure models. If two users select dif-
ferent model input parameters for the same exposure 
situation, this may lead to different exposure estimates 
and, more importantly, different judgement about the 
risk. This between-user variability is added to the un-
certainties inherent in the model itself and could lead 
to an even larger variance in the new exposure dis-
tribution. As for the models’ validity, several studies 
(Landberg et al., 2015; Lamb et al., 2017; Savic et 
al., 2019) tried to quantify the influence of between-
user variability on the exposure estimates in different 
models. The largest disagreement between individual 
users is found for activity-related parameters (Lamb et 
al., 2017), such as the PROC in the TRAv3. A sensi-
tivity study (Riedmann et al., 2015) found these input 
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parameters to contribute significantly to the final ex-
posure estimate. This could explain why differences 
in the estimates calculated by different users ranged 
within two or even more orders of magnitude in pre-
vious studies (Lamb et al., 2017, Savic et al., 2019). 
This emphasizes the importance of collaboration and 
knowledge and training in the exposure modelling 
process which would improve the quality of validation 
studies. The study of Lee et al. (2019a, b), for example, 
involved six experts from different institutes who were 
asked to code first independently the contextual data 
and then reach a mutual agreement about which input 
parameters best represent the considered ESs. Notably, 
such an approach does not guarantee to completely 
remove the between-user variance. Unlike some other 
studies (Kupczewska-Dobecka et al., 2011; Ishii et al., 
2017), which either did not report their number or only 
a single assessor interpreted the data, the approach by 
Lee et al. (2019a, b) and in the ETEAM project should 
be expected to result in more reliable conclusions.

This study investigated the performance of ECETOC 
TRAv3 by pooling and, if considered necessary, re-
coding the data that were already used in other research 
studies that had considered the TRA (Urbanus et al., 
2020). Utilizing this curated data set as the reference, 
the overall performance of the TRAv3 was investi-
gated in a series of stratified analyses and via multiple 
linear regression to analyze which input parameters 
contributed most to the model’s identified over- and 
underestimations.

Methodology
Exposure data
The occupational inhalation exposure data were 
obtained from previous studies that investigated the 
performance of the TRAv3 (TRA further in the text). 
This process was conducted by teams of two reviewers 
per data source. As described previously (Urbanus et al., 
2020), before further processing, those ESs containing 
less than six individual measurements were discarded 
so that in total, 129 ESs were retained, that is, 10 for 
solids and 119 for liquids. For example, the ETEAM 
project alone provided measurement data for 52 ESs, 
based on a copy of the project’s database provided by 
the German Federal Institute for Occupational Hygiene 
and Medicine to ECETOC. Each ES represents a single 
line in the assembled database (see Supplementary 
Material, available at Annals of Work Exposures and 
Health online). The technical quality of the data for 
each ES were systematically scored using the criteria in 
Table 1, based on a similar system used in another study 
(Franken et al., 2020). All data have to clearly represent 
personal exposure measurements covering a single ac-
tivity or several similar activities during a whole shift 

and have indications of the duration of exposure as well 
as the duration of the measurements. Exposures had 
to be occurring as part of normal routine operations, 
covering activities that could be assigned unequivocally 
to a single process category (PROC) as included in TRA.

For each exposure situation, the 75th percentile 
(P75) was calculated either directly from the geometric 
mean and standard deviation (GSD) if these were 
available or if all individual measurement results were 
available, or from the arithmetic mean and standard 
deviation of the data set.

Coding exposure situation descriptors for 
TRA input
As a next step, the necessary data were extracted by 
the review teams from the publications, their cor-
responding supplementary material, or underlying 
documentation to determine the inputs for the TRA 
parameters. For example, part of the material used in 
the ETEAM project originates from US NIOSH Health 
Hazard Evaluation reports which are readily available 
online from health hazard evaluations | NIOSH | CDC. 
In the cases where the required information could not 
be collected, the authors were directly contacted to 
provide the raw exposure information and the input 
parameters they had used to calculate the estimates.

Based on the information retrieved and/or received, 
a verification of the input parameters coded by the 
publications’ authors was conducted independently 
of the original authors. Two reviewers performed the 
review independently to minimize individual bias. In 
particular, the chosen PROC, type of setting (industrial 
versus professional), and type of general ventilation 
(GV) were verified. For a number of the ESs, the re-
viewers had reason to disagree with the input param-
eter selection by the original authors. Each identified 
disagreement was discussed internally in the project 
team until consensus was achieved and, where justi-
fied, the original coding was corrected. The reason for 
disagreement was documented in the database.

Next, the TRA estimates were verified or corrected 
and then compared with the corresponding measure-
ment data sets. Since the TRA nominally estimates the 
75th percentile of the distribution, equation (1) was 
used to calculate this percentile for the measured ex-
posure. In this equation, the z-score of 0.674 was used 
to calculate the given percentile.

P = GM×GSDz Eq.1

Statistics and visualization
All calculations and the visualization of the obtained 
results were conducted in Python [including its pack-
ages, that is, NumPy (Harris et al., 2020), pandas 
(pandas development team, 2020), and Matplotlib 
(Hunter and Matplotlib, 2007)].

http://academic.oup.com/annweh/article-lookup/doi/10.1093/annweh/wxad001#supplementary-data
http://academic.oup.com/annweh/article-lookup/doi/10.1093/annweh/wxad001#supplementary-data
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Regression
A regression model was established to estimate inter-
cept (a), slope (b), and R2-score between the measured 
and the modelled (i.e. TRA) estimates. Since occupa-
tional exposure usually follows a lognormal distribu-
tion, the log transformation was applied on the 75th 
percentile calculated from the measurements (P75) and 
the modelled exposure estimate. These data points were 
plotted to illustrate how they follow the established re-
gression line. R2-score, or the coefficient of determin-
ation, was determined to show how much variance in 
the P75s of the measurements the TRA could explain.

DeltaTRA
This parameter was calculated to aid the visualization 
of local trends between the measured and modelled ex-
posure. As shown in equation (2), the deltaTRA is cal-
culated as the difference between logs of the modelled 
(TRA) and its corresponding measured value (y). While 
positive deltaTRA’s indicate overestimation, negative 
values indicate an underestimation of the measurements 

by the model. Plotting the deltaTRA’s over a range of the 
measured exposure showed within which ranges the 
model tends to over- or underestimate.

deltaTRA = logTRA− log y Eq.2

Mean absolute error
The mean of the absolute differences between the mod-
elled and measured exposure in equation (3) defines 
another performance measure called mean absolute 
error (MAE) (Walther and Moore, 2005) (equation 3). 
While deltaTRA’s are calculated for all data points, MAE 
is calculated as a single value. This parameter shows 
how far, on average, the modelled estimates are away 
from the measured values for a data set with n ESs.

MAE =
1
n

n∑
i=1

|logTRA− log y| Eq.3

If, for example, MAE equals 1.0, this would mean that 
the modelled and measured values differ on average by 

Table 1.   Criteria for evaluating and assigning reliability scores to exposure data and input data for generating TRA estimates (based on 
Franken et al., 2020).

Score Adequacy 
assignment 

General criteria Examples 

1 Adequate with-
out restriction

Data of good technical and context-
ual adequacy is available

Completely documented measurement studies, performed 
with validated measurement methods (published by renowned 
institutes) and with all information on each data point in 
annexes. Full and unambiguous data to select TRA input par-
ameter settings

2 Adequate with 
restrictions

Data of at least acceptable technical 
adequacy and information on con-
textual adequacy is available or can 
be evaluated based on expert judge-
ment and reasonable assumptions

Well-documented measurement studies, performed with valid-
ated measurement methods (published by renowned institutes) 
or methods that resemble such methods closely and for which 
sufficient information on validity, accuracy, precision, and 
boundaries is available; sufficient description of context to 
either directly know the values for relevant factors or to make 
informed and justified expert judgement on a number of fac-
tors; activities may need to be categorized, based on descrip-
tions, assumptions on scale and setting may need to be based 
on expert judgement, data on substance and product character-
istics may need to be found in other sources or estimated

3 Useful as sup-
porting evidence

Data of limited technical adequacy Measurements with undocumented sampling techniques; 
statistical summaries of data (vapour pressure of measured 
substances, concentrations of substances in products, or largely 
different settings) that are not stratified; studies in which only 
the jobs of sampled workers are indicated without any indica-
tion of activities being sampled.

4 Not adequate Data for which the technical ad-
equacy cannot be evaluated or that 
are described too insufficiently to 
allow evaluation of several factors 
related to contextual adequacy

Studies in which the sampling method is not described (e.g. no 
reporting of whether respirable dust, inhalable dust, or total 
dust has been measured); the method for measuring solid/liquid 
aerosols is not described; studies in which no information is 
given on e.g. the use or no use of localized control measures, 
the concentration of measured substances in articles, the dur-
ation of activities within shift-based measurements, the contain-
ment of sources, etc
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one order of magnitude or a factor of ten since the dif-
ference is on the log scale.

Precision
This model’s behavior shows how much the model is 
consistent in over- or under-estimating the exposure. 
For precision, we calculated how many modelled es-
timates were lying between different factors φ from 
the measurements. For example, we calculated the per-
centage of ESs for which the modelled estimates were 
higher than the measured P75 value by a factor be-
tween 5 and 10.

DeltaTRA’s per input parameter
Until this point of the analysis, the described steps used 
the dataset as a whole to investigate the behaviour of 
the TRA. However, it was also necessary to identify 
parameters (e.g. ventilation) and/or their categories 
(e.g. GV or enhanced GV) for which the TRA could 
underperform. Since only 10 data sets of six or more 
measurements and with sufficient data quality were 
available for solids, they were not analysed for each 
parameter. For ESs involving liquids, the dataset was 
split into smaller subsets for which deltaTRA’s (equation 
2) were plotted. The split was performed separately for 
vapour pressure, volatility bands, PROCs, type of set-
ting, ventilation, and the presence of LEV. For vola-
tility bands, for example, the dataset (without solids) 
was split into three subsets that included only the ESs 
with low (0.01–500 Pa), medium (500–10000 Pa), or 
high (>10000 Pa) volatility substances. In this case, the 
plotted deltaTRA’s shows for which volatility band TRA 
estimates are most likely over- or underestimating the 
measurements.

Multiple linear regression
Equation (4) is the multiple linear regression model 
that was established to quantify the combined influ-
ence of the various input parameters on the difference 
between the modelled and measured values (i.e. on the 
deltaTRA’s; see equation 2). Again, this was not applied 
to the ESs for solids due to the small database.

delta =ω0 + ωvolvol+ ωcc+ ωprocproc+

ωtsts+ ωventvent+ ωlevlev+ ωtt
Eq.4

In equation (4), the influence on the deltaTRA’s (delta) 
was evaluated for volatility band (vol), concentration 
band in the product (c), PROCs (proc), type of setting 
(ts), room ventilation (vent), presence of LEV (lev), and 
task duration band (t). Since all these parameters are 
categorical values (e.g. PROC-7-industrial spraying), 
they were converted to dummy values. For each input 
parameter, the established linear regression evaluated 
a regression coefficient, ω. We used these coefficients 
to quantify how different parameter entries affect the 

model’s over- and underestimations. Within each input 
parameter, the multiple linear regression selected one 
category as a reference category and to which zero was 
assigned as its regression coefficient, ω. The multiple 
linear regression model selected the reference category 
using the alphabetical order within each input param-
eter. This is why, for example, industrial is a reference 
category and not a professional setting and similarly, 
PROC 10 acted as a reference category. The regression 
coefficients for all other categories (e.g. other PROCs) 
of a given input parameter were then evaluated relative 
to the reference category. This means that a category 
for which a positive coefficient is found is likely to re-
sult in a higher positive or smaller negative difference 
between the modelled and measured exposures than 
the reference category.

Results
Creation of the curated database
Table 2 summarizes the constructed database (avail-
able as Supplementary Material, available at Annals 
of Work Exposures and Health online) and its main 
sources. The largest part of the database covers ESs for 
vapours from volatile liquids (119 ESs, 2171 measure-
ments). A much smaller part covers ESs for dusts from 
solids (10 ESs, 101 measurements). Compared with 
the previous publication of this project (Urbanus et al., 
2020) one further TRA performance study was added 
to the review which covered inhalation exposure meas-
urements and TRA exposure modelling for 20 handling 
scenarios of petroleum substances(Hesse et al., 2018; 
ECETOC, 2022). Data sets for 10 ESs (60 measure-
ments) from the original materials were rated as not 
valid for the comparison exercise, in particular, because 
the measurements covered several worker activities 
that should be described by more than a single PROC, 
or the publication provided insufficient contextual in-
formation and, when followed up, the original authors 
had no longer access to their detailed measurement 

Table 2. Main information sources.

Main 
sources 

Number of exposure 
situations 

Total number 
of  measurements 

ETEAM 
project

52 1045 (ART, 
NIOSH, SUVA)

CONCAWE 20 282

US NIOSH 
2019

14 157

S. Lee 
(Korea)

18 103

Ishii (Japan) 7 72

http://academic.oup.com/annweh/article-lookup/doi/10.1093/annweh/wxad001#supplementary-data
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notes. Details of the quality scoring are documented 
in ECETOC Technical Report 140 (ECETOC, 2022).

The review confirmed the majority of the original 
TRA input parameter selections but identified a number 
of required corrections. The percentage of corrections 
per parameter is indicated in Table 3. PROC selection 
was the parameter with the largest percentage (25) of 
corrections. Examples of these corrections included 
a change from PROC 2 to PROC 4, because the de-
scribed activity was not a continuous process, a change 
from PROC 10 to PROC 7 for an activity described as 
spraying, and a change from PROC 13 to PROC 15 for 
activities with small quantities of substance (less than 
1l), typical for laboratories. Room ventilation status 
was corrected in 16% of the ESs, in particular when 
available data on room size and air volume extracted 
by fans allowed the calculation of the actual number 
of air changes per hour (ACH) to align with the TRA 
definitions of basic (1–3 ACH), general (3–5 ACH) and 
enhanced ventilation (>5 ACH).

Regression and R2-score
Figure 1 illustrates the relation between the measure-
ment P75 values and the modelled exposure to dust 
from solids and to vapour from liquids on logarithmic 
scales. The unity lines where the measurement P75 
values equal the modelled values are added for illustra-
tion. Table 4 shows their corresponding regression co-
efficients and R2 scores. The evaluated slope was close 
to 1.0 for liquids and 0.71 for solids, while the inter-
cepts were found to be negative for both physical states, 
implying that on average the measured data were lower 
than the modelled estimates. Based on the evaluated R2 
score, the regression model explained somewhat better 
the variance in the measurement P75 values taken for 
liquids than for solids (36 versus 24%).

DeltaTRA’s, precision and MAE
The calculated deltaTRA’s for liquids (equation 2) in 
Fig. 2 indicates a tendency of the TRA to overestimate 

lower measurement P75s and underestimate higher 
ones. Table 5 shows the overestimations that the ma-
jority of these, that is, 60% for solids and 47% for 
liquids, were lying within factors 1–5 from the meas-
urement P75s. Smaller percentages of the data were 
highly overestimated, that is, 3% for liquids by a factor 
of >100. TRA underestimated 20% of the measure-
ment P75s for both solids and liquids, respectively, also 
within a factor of 5. Finally, MAE, which was <1.0, 
shows that the modelled estimates and the measure-
ment P75s were, on average, within the same order of 
magnitude.

DeltaTRA’s per variable
For the liquids, deltaTRA’s for several specific vari-
ables were plotted to examine trends, as described 
here below. Due to the small data size, this analysis 
was not conducted for solids. No trend can be seen 
with an increase in the vapour pressure in Fig. 3 within 
volatility bands. The deltaTRA’s, however, decrease for 
all volatility bands with the increase in the measured 
exposure. Among PROCs (Fig. 4), PROC-7-industrial 
spraying, PROC-10-roller application or brushing, 
and PROC-14-production of preparations or articles 
by tableting, compression, extrusion, or pelletization 
were more prone to underestimations than the other 
PROCs. Higher tendencies for underestimations were 
also found for industrial versus professional type-of-
settings and for ESs with a LEV (LEV) measure present 
over those without. For GV, only for enhanced (mech-
anical) ventilation (air exchange rate of at least 5 per 
hour) there were no cases of underestimation, whilst 
the other options of no ventilation, GV and outdoor 
setting had various portions of underestimated ESs.

Multiple linear regression (MLR)
By splitting the data set repeatedly into training and 
test subsets and using different ratios between the two 
sets, the maximal R2 score of 0.503 and an adjusted 
R2 of 0.356 were obtained when the split was per-
formed with an 80:20% ratio in favour of the former. 
This means that when the multiple regression model is 
trained, it can explain half of the variance in the test 
data. Shuffling the data or changing the ratio between 
the two subsets resulted in lower R2-score values, 
which were sometimes almost zero.

Table 6 summarizes the evaluated intercept and 
regression coefficients compared with the reference 
categories for the TRA’s variables considered in the 
multiple regression model of the deltaTRA’s. Solids were 
again not processed due to insufficient data size. The 
lowest coefficients were obtained for ESs that included 
medium volatility, PROCs 7, 14, and 19, industrial set-
tings, GV, with LEV present, and shorter durations, 

Table 3. Percentage coding corrections applied to original 
materials for input parameters to generate TRA exposure 
predictions.

Parameter Corrected (%)​ 

PROC 25

Room ventilation status 16

Local exhaust ventilation 8

Setting (IND, PROF) 6

Application of duration factor 5

Concentration substance in product 3

Substance fugacity 1
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meaning that for these input selections, the TRA is 
more likely to underestimate exposure.

Discussion
This study investigated the overall and per-input par-
ameter performance of the ECETOC TRAv3 (TRA) by 
pooling and reusing existing exposure data from earlier 
TRA performance studies. Since the TRA is intended to 
provide a 75th percentile estimate of the exposure dis-
tribution for an activity, 75th percentiles (P75) calcu-
lated from data sets of six or more measurements for 
a given exposure situation were selected for analysis. 
They provide a more certain basis for comparison than 
individual measurement data as were done in several 
other projects, because some of these individual meas-
urements could have been less representative of the 
workplace situation. The contextual data used in those 
previous studies were compared with their assigned 
input parameters in the TRA. Where a disagreement 
with these parameters was identified, a consensus-
based correction was done by the authors of this study 

and documented in a curated database. Every such 
modification required the exposure to be recalculated. 
Consequently, a number of the TRA exposure predic-
tions obtained for this study differed from those in the 
original studies.

The results for solids were in general agreement with 
the ETEAM project. Overall, however, the TRA was 
found to be more conservative than suggested in both 
ETEAM and the study conducted by Lee et al. (2019b). 
The insufficient conservatism for solids could be due to 
the limited data that were available (i.e. 10 ESs versus 
119 ESs for liquids) and would need to be confirmed 
when more data become available. An interesting re-
sult is that the modelled and measured exposures were 
mostly within the same order of magnitude. More 
precisely, we found that the TRA’s estimates were dis-
tanced by not more than a factor of five from the meas-
urements for 80% of the ESs for solids and 63% for 
liquids, including both over- and underestimations. 
While the majority of the underestimations found were 
thus within this range, for 20 and 25% ESs for solids 
and liquids, respectively, this difference was by 1–2 or-
ders of magnitude.

The TRA’s conservatism was investigated also graph-
ically using deltaTRA’s, that is, visualizing the difference 
between the modelled and measured exposures on a 
logarithmic scale. This approach is useful to investigate 
the model’s conservatism within certain ranges and al-
lows us to find a potential trend. Indeed, it was found 
that the TRA’s conservatism decreases from lower to 

Figure 1. Measured 75th percentile (P75) versus modelled (TRA) exposure for solids and liquids. Both figures: thick line represents the 
regression line, think line represents unity (P75 = TRA) added for illustration. For solids: y = 0.7053 × −0.3792 (R2 = 0.64). For liquids: y 
= 1.0671 × −0.6437 (R2 = 0.6079).

Table 4. Regression coefficients and R2-score.

 Intercept, a Slope, b R2-score 

Solids −0.38 0.71 0.24

Liquids −0.65 1.07 0.36
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higher measurements. Previous publications (Savic et 
al., 2017; van Tongeren et al., 2017, Lee et al., 2019b) 
reported similar findings for several models including 
the TRA (Lee et al., 2019b). A consequence is that the 
model tends to overestimate lower and underestimate 
higher measurements.

The analysis results obtained for individual input 
parameters and the established multiple regression 
coefficients explained which input parameter under-
estimations are more likely. Figures 3 and 4 illustrate 
the results graphically, subdivided for various TRA 
input parameters. This study found that TRA predic-
tions with low volatility, professional setting, and ESs 
without LEV are more conservative compared to their 
alternatives (e.g. industrial setting). As in the ETEAM 
study, PROC-7, PROC-14, and PROC-19 were more 
prone to underestimation than the other process 
categories. Underestimations in our case were also 
obtained for PROC-10. On the other hand, our results 
for PROC-15 were more numerous and showed a ten-
dency to overestimate, contrary to the ETEAM study. 
These results were further analysed using a multiple 

regression model because all available categories de-
fined for the input parameters were not uniformly dis-
tributed in all data sets. For example, PROC-7 only 
addresses industrial settings. To answer the question 
of whether the underestimations encountered were 
caused by PROC or other types of input parameters a 
multiple regression model was therefore established to 
investigate their independent effects on the degree of 
under- or overestimations. By combining the evaluated 
regression coefficients and the intercept in Table 6, the 
expected behaviour for a given set of input parameters 
can then be calculated. Equation (5) shows an example 
of such a calculation for the following set of input 
parameters:

-	 Volatility: low
-	 Concentration > 25%
-	 PROC: 10
-	 Type of settings: professional
-	 Ventilation: GV
-	 LEV: no
-	 Duration > 4h

Table 5. Precision and MAE. Precision is estimated as the percentage of the modelled values lying between factors Φ from the 
measured value.

 φ MAE 

−1000 to (−100) −100 to (−10) −10 to (−5) −5 to (−1) 1–5 5–10 10–100 100–1000 

Solids 0 0 0 20 60 0 20 0 0.5

Liquids 0 1 3 16 47 8 22 3 0.7

Figure 2. DeltaTRA’s [log (P75) − log (TRA)] versus 75th percentiles of measurement data sets for solids and liquids.
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Figure 3. DeltaTRA’s [log (P75) − log (TRA)] versus vapour pressure (top row) and 75th percentiles of measurement data sets (bottom 
row) for the three volatility bands (liquids only).

Figure 4. DeltaTRA’s [log (P75) − log (TRA)] per process category (PROC), sector of use (SU)/type-of-setting (IND: industrial, PRO: 
professional), presence of LEV and room ventilation [GV: general ventilation (3–5 air changes per hour], EV: enhanced ventilation [5–10 
air changes per hour)] (liquids only).
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delta =0.65− 0.29− 0.03+ 0.00+

0.35− 0.25+ 0.00+ 0.15
Eq.5

In equation (5), the first value is the intercept from 
Table 4. The obtained result equals 0.58, which means 
that for the provided set of input parameters and based 
on the data in our curated database, an overestimation 
by the TRA of the measured exposure by a factor of 
100.58 or 3.8 is predicted; the modelled and measured 
values are thus within the same order of magnitude. 
In other words, all categories in Table 6, for which 

a positive coefficient was evaluated, are in favour of 
overestimations. If the outcome of equation 5 for a 
particular ES is a negative value, then underestimation 
is expected. Regarding PROCs, whilst the majority 
have a positive coefficient compared to PROC 10, the 
lowest coefficients were found for PROC-7 (−0.09), 
PROC-14 (−0.28), and PROC-19 (−0.57). A higher 
probability for underestimation can be expected also 
for medium volatility, industrial settings, GV, and with 
LEV present. It is obvious that these results are similar 
to those illustrated in Figs. 3 and 4, but the regression 
results are more precise as they quantify the likelihood 

Table 6. Summary of multiple regression coefficients obtained for liquids (deltaTRA’s).

Input parameter Category Coefficient P > |t| CI (25th–75th) 

– Intercept, a 0.65 0.13 −0.20 1.49

Volatility band Low −0.29 0.23 −0.77 0.18

Medium −0.72 0.12 −1.64 0.19

High 0.00

Concentration > 25% −0.03 0.88 −0.42 0.36

5–25% 0.29 0.23 −0.18 0.76

1–5% 0.00

< 1% 1.06 0.02 0.15 1.97

PROC PROC-2 0.58 0.09 −0.09 1.25

PROC-3 0.05 0.90 −0.77 0.88

PROC-4 0.02 0.95 −0.61 0.65

PROC-5 0.26 0.35 −0.30 0.83

PROC-7 −0.09 0.62 −0.43 0.26

PROC-8a 0.54 0.11 −0.12 1.20

PROC-8b 0.18 0.40 −0.25 0.62

PROC-9 0.45 0.21 −0.26 1.15

PROC-10 0.00

PROC-13 0.62 0.07 −0.04 1.28

PROC-14 −0.28 0.50 −1.10 0.54

PROC-15 0.65 0.01 0.17 1.15

PROC-16 0.44 0.48 −0.80 1.68

PROC-19 −0.57 0.22 −1.48 0.34

Type of settings Industrial 0.00

Professional 0.35 0.06 −0.02 0.73

Ventilation No general ventilation −0.14 0.66 −0.78 0.49

General ventilation (GV) −0.25 0.44 −0.88 0.38

Enhanced GV 0.00

Outdoors 0.03 0.94 −0.71 0.76

Local Exhaust Ventilation (LEV) No LEV 0.00

LEV present −0.33 0.03 −0.63 −0.03

Duration > 4 h 0.15 0.34 −0.17 0.47

1–4 h 0.00

15 min–1 h −0.35 0.26 −0.97 0.27

< 15 min −0.51 0.18 −1.26 0.23
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of underestimations for a given category versus its 
counter pair(s) for the input parameter. However, very 
few coefficients were statistically significant.

One input parameter available in the TRA could not 
be examined in the current study, i.e. respiratory pro-
tective equipment (RPE). Occupational exposure meas-
urement is conventionally carried out in the worker’s 
breathing zone outside any RPE that is worn. In the 
case of RPE use the measurement result does there-
fore not directly reflect the composition of the inhaled 
air. The protection afforded by RPE has been adopted 
in the TRA based on externally available references 
which have not been questioned in the TRA validation 
studies. When calculating over- and underestimation of 
the TRA using the MLR equation for a given exposure 
scenario with RPE use, the RPE parameter should 
therefore be first excluded from the modelled estimate.

It should be noted that despite the large effort 
on data review, correction, and pooling, the avail-
able database is not complete for all possible TRA 
scenarios, and thus all potential combinations of the 
input parameters’ categories. In addition, the number 
of data points per scenario is also not balanced, hence 
the conclusions presented on overall TRA performance 
and any recommendations for improvement of TRA 
remain conditional. Nevertheless, the available data 
and conducted analysis allowed us to give more weight 
to the detailed results per scenario and on individual 
parameters than to overall tool performance indica-
tors presented by previous studies. For example, no 
instances of underestimation of Professional scenarios 
were found and many other scenarios were found to 
be predicted in a suitably conservative way. Based on 
the stratified analysis results, several tool settings were 
identified that will be corrected in a future version of 
the TRA, including LEV efficiency which will be re-
duced from 95 to 90% for PROC-7 and PROC 8b/
industrial, and from 90% to 80% for PROC 8b/profes-
sional. These changes will address in part the observed 
lack of conservatism in the LEV parameter, as well as 
better align this parameter across the tool. Also, the 
base estimates for medium volatility liquids for PROC 
10 will be doubled. The scenarios involving these par-
ameter settings contributed a significant portion of the 
datasets to the current overall curated database with 
a consequent impact on the observed overall tool per-
formance. The planned corrections will reduce the 
underestimations in the curated database from 20 to 
13% (data not shown). Other apparent underestima-
tions (e.g. scenarios with PROC 14 and 19, see also 
Fig. 4) had insufficient observations to identify a suit-
able correction. With these targeted adjustments, the 
TRA can continue to fulfil its role as an efficient tier-1 
or screening tool in REACH chemical safety assess-
ment of occupational exposure to chemicals. Further 

enhancement of the validation database is desirable 
and should preferably focus on data gaps, not on those 
scenarios for which conclusions have already been 
reached.
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