
1. Introduction
The dehydration of serpentinite at subduction zones plays a crucial role in the global deep water cycle (e.g., 
Peacock, 1990; Pettke & Bretscher, 2022; Rupke et al., 2004; Ulmer & Trommsdorff, 1995), subduction zone 
dynamics and seismicity (e.g., Bloch et al., 2018; Hacker et al., 2003) and arc magmatism due to mantle wedge 

Abstract Serpentinite dehydration is important for subduction zone dynamics and water cycling. Field 
observations suggest that en échelon olivine veins in serpentinite mylonites formed by dehydration during 
simultaneous shearing of antigorite serpentinite. Here, we test the hypothesis of shear-driven formation of 
olivine dehydration veins with a novel two-dimensional hydro-mechanical-chemical numerical model. Our 
model accounts for the reaction antigorite + brucite = forsterite + water, considering significant solid density 
changes of approximately 25%. We assume ductile shearing, a decrease of shear viscosity with increasing 
porosity, and initially homogeneous total and fluid pressures within the serpentinite stability field. Initial 
perturbations in porosity, and hence viscosity, cause fluid pressure perturbations during simple shearing. 
Dehydration nucleates where fluid pressure locally drops below the thermodynamic pressure controlling the 
reaction boundary. During shearing, dehydration veins grow and serpentinite transforms into olivine inside the 
veins. Simulations show that the ambient pressure and the relation between compaction length and porosity 
have a major impact on vein formation. Conversely, the orientation of the initial porosity perturbation, the 
pressure-insensitive yield stress, the porosity dependence of compaction viscosity, the elastic effects during 
compaction, and the reaction kinetics have minor impacts on the simulations. We quantify the relative 
contribution of the rates of solid volume change, solid density change, and reactive mass transfer to the porosity 
generation. Vein growth is self-limiting and eventually reaches a steady state. We discuss potential implications 
for natural olivine veins, slow slip and tremor, transient weakening, anisotropy generation, and formation of 
shear-driven high-porosity bands without a dehydration reaction.

Plain Language Summary Serpentinite is a rock that contains water which is bound within the 
crystal lattice. When a tectonic plate brings serpentinite down into the Earth's mantle, the changing pressure 
and temperature conditions cause chemical reactions that release the water bound in the crystal lattice; a process 
called dehydration. A typical mineral that forms by serpentine dehydration is olivine. Dehydration is important 
for the global deep-water cycle since much water is transferred with tectonic plates into the mantle and migrates 
back to the Earth's surface after dehydration. However, many aspects of the water cycle remain still unclear, 
since dehydration during the plunging of tectonic plates involves the incompletely understood interaction of 
three fundamental mechanical and chemical processes: mechanical deformation of the rock, porous flow of 
released fluid, and chemical reactions involving changes in rock density. Here, we present a new mathematical 
model to investigate the coupled processes of rock deformation, fluid flow, and dehydration reactions. We 
present computer simulations that can explain why the dehydration occurs in narrow and elongated regions 
which are termed veins. We propose that our simulations could explain the field observation of many small 
olivine veins in strongly sheared serpentinite.
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hydration (e.g., Hebert et al., 2009; John et al., 2012). The coupling of metamorphic reactions, fluid flow, and 
rock deformation is crucial for various geodynamic processes. These include chemical and volatile cycling (e.g., 
Bebout,  2014), reaction-induced weakening of faults and shear zones (e.g., Labrousse et  al.,  2010; Sulem & 
Famin, 2009), and practical applications like carbon storage (e.g., Matter & Kelemen, 2009) and geothermal 
energy exploitation (e.g., Pandey et al., 2018). However, the coupling of metamorphic reactions, fluid flow, and 
rock deformation remains unclear in many aspects.

Indirect observations that have been attributed to serpentinite dehydration at subduction zones are aseismic 
episodic tremor and slow slip (ETS) phenomena (e.g., Behr & Bürgmann, 2021; Burlini et al., 2009; Tarling 
et  al.,  2019). These phenomena are commonly thought to result from episodic fault slip, likely promoted by 
pulses of fluid release associated with fluid pressure variations (e.g., Audet et al., 2009; Connolly, 1997; Frank 
et al., 2015; Gomberg et al., 2010; Shelly et al., 2007; Taetz et al., 2018). For example, such slow slip occurs 
on the plate interface in Cascadia at 30–40 km depth (e.g., Gomberg et al., 2010) and for temperatures probably 
between 400 and 500°C (e.g., Tarling et al., 2019 and references therein).

Direct observation of the dehydration of serpentinite at subduction zones is not possible in nature so we must 
use exposed serpentinites on the surface as proxies for the reacted materials. Field observations in areas with 
abundant exposed serpentinites, formed at variable pressure and temperature, may, hence, provide insight into 
incipient dehydration stages. Exposed serpentinites are abundant in many regions of the European Alps, having 
undergone variable peak pressures and temperatures. Examples are the antigorite serpentinites of Saas Zermatt 
(Western Alps) and the Erro-Tobbio unit (Voltri massif, Ligurian Alps, Italy; e.g., Hermann et al., 2000; Kempf 
et al., 2020; Peters et al., 2020; Plümper et al., 2017; Scambelluri et al., 1991, 1995). These serpentinite-bearing 
regions are key areas that preserve ductile and brittle structures that are synchronous to fluid release. The antigor-
ite serpentinites of the Erro-Tobbio unit include olivine-bearing veins (Figure 1). The olivine is most likely meta-
morphic olivine that was formed by the breakdown of antigorite and brucite (e.g., Hermann et al., 2000; Plümper 
et al., 2017; Scambelluri et al., 2004). The serpentinites were initially formed by hydration of the subcontinental 
mantle which was exposed to the Tethyan ocean floor during pre-Alpine extension (e.g., Scambelluri et al., 1995). 
During later Alpine subduction, the serpentinites underwent prograde metamorphism and transformed to antig-
orite serpentinites (e.g., Scambelluri et al., 2004; see also our Figure 2). During subduction, the serpentinites, 
containing likely a small amount of olivine, have been sheared generating antigorite serpentinite mylonites (e.g., 
Scambelluri et al., 1995; our Figure 2). The exhumed antigorite mylonites are dissected by en échelon olivine 
veins (e.g., Scambelluri et al., 1995; our Figure 1). The olivine-bearing antigorite serpentinites in the Erro Tobbio 
region indicate that they underwent the brucite-out reaction during subduction, allowing for olivine formation, 
but did not undergo the antigorite-out reaction before exhumation (e.g., Scambelluri et al., 1995; our Figure 2e). 
Most likely, the olivine veins were formed by the breakdown of mainly brucite when the subducting and actively 
deforming antigorite serpentinite underwent the brucite-out reaction (Figure 2e).

The olivine veins occur in two settings: as minimally deformed veins within little deformed, variably serpenti-
nized peridotite and as deformed veins within strongly deformed antigorite serpentinite, described as a serpen-
tinite mylonite (our Figure 1; e.g., Hermann et al., 2000; Plümper et al., 2017). These serpentinite mylonites 
are cut by en échelon olivine veins, which in turn are dissected by multiple sets of olivine-bearing shear bands 
(Hermann et al., 2000). Plümper et al. (2017) suggested that the association of undeformed and sheared veins 
attests that dehydration-induced vein formation was synchronous with ductile deformation in the enclosing 
serpentinite mylonites. Furthermore, Hermann et al. (2000) hypothesized that (a) multiple sets of olivine shear 
bands provide evidence for continuous deformation, (b) sheared olivine-rich veins are probably very weak due 
to continuous solution and precipitation in the presence of a fluid phase, (c) fluid produced by the dehydration 
reaction was (partially) trapped in the serpentinite mylonite and (d) serpentinite mylonites are not only zones 
with highly localized deformation but they are also zones of focused fluid flow. These hypotheses for olivine 
vein formation imply the coupling of certain mechanical, hydrological, and chemical mechanisms, but these 
hypotheses have not been tested yet with theoretical models and numerical simulations based on the concepts of 
continuum mechanics and thermodynamics.

Here, we test a hypothesis for olivine vein formation by using a theoretical model considering the coupling of meta-
morphic reactions, fluid flow, and rock deformation. We refer to such coupled model as hydro-mechanical-chem-
ical (HMC) model (e.g., Kolditz et  al.,  2016; Poulet et  al.,  2012). Such HMC models have been applied to 
study a variety of geodynamic processes, such as reaction-driven cracking during serpentinization (e.g., O. Evans 
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et al., 2020), porosity evolution and clogging during serpentinization (e.g., Malvoisin et al., 2021), the impact 
of dehydration on earthquake nucleation (e.g., Brantut et al., 2011), the impact of shear heating and associated 
chemical rock decomposition on thrusting (e.g., Poulet et al., 2014) and reactive melt migration (e.g., Aharonov 
et al., 1997; Baltzell et al., 2015; Bessat et al., 2022; Keller & Katz, 2016; Schiemenz et al., 2011). Several HMC 
models exist for melt migration which account for the interaction between reactions, fluid flow, and solid defor-
mation (e.g., Katz, 2008; Keller & Katz, 2016; Schiemenz et al., 2011). Most of these models, however, assume 
that the densities of the solid and fluid constituents remain constant during deformation and reaction (e.g., 
Katz, 2008; Keller & Katz, 2016; Schiemenz et al., 2011). Given the considerable changes in the densities of the 
reacting and deforming rocks, these models are not suitable for studying metamorphic reactions, like the serpen-
tinite to olivine reaction (e.g., Malvoisin et al., 2015). Recently, Huber et al. (2022) presented a hydro-chemical 
model to study the formation of olivine veins in dehydrating serpentinite considering density changes. However, 
they do not consider any solid-mechanical aspects of olivine vein formation and hence, do not consider volumet-
ric or shear deformation and associated fluid pressure changes. O. Evans et al. (2018, 2020) presented a numerical 
HMC model to study serpentinization and associated reaction-driven cracking. They consider elastic deformation 
and do not consider the spatial and temporal variation in solid density. Therefore, most existing HMC models are 
not appropriate for studying olivine vein formation caused by dehydration of serpentinite during ductile shearing.

Figure 1. Natural examples of metamorphic olivine veins in antigorite serpentinite from the Erro Tobbio ultramafic rocks, 
Ligurian Alps, Italy. (a) Overview on the limited spatial extent of olivine bearing veins (with darker color) in weakly 
deformed serpentinized peridotite. Coin diameter is 2.4 cm. (b) Olivine veins with characteristic spacing and aspect ratios in 
serpentinized peridotite. (b) shows a closeup of the rock shown in (a). (c) Olivine-bearing veins in a serpentinized peridotite, 
foliation is sub vertical, extent of veins is ca. 20 cm. (d) Serpentinite mylonite with different generations of olivine veins. An 
earlier set is subparallel to the foliation, younger shear bands dissect serpentinite mylonite and olivine veins. The structures 
indicate a top-to-the-left shear sense. Note the late-stage serpentine veins that are perpendicular to the foliation. (e) and (f) 
En échelon olivine veins in antigorite serpentinite. Coordinates: (a) and (b) at 44.56081°N, 8.81376°E; (c) at 44.57147°N, 
8.80825°E; (d) at 44.56958°N, 8.80814°E; (e) and (f) at 44.57140°N, 8.80784°E. All photos have been taken by S. 
Schmalholz and O. Müntener in summer 2022.
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Here, we develop a novel two-dimensional (2D) HMC model that can numerically simulate the formation of 
dehydration veins in viscously shearing serpentinite while taking into account the significant spatial and temporal 
variations in solid density resulting from the dehydration reaction. We follow and elaborate the theoretical model 
of Malvoisin et al. (2015) which investigates the coupling of metamorphic reactions, fluid flow, and volumetric 
rock deformation. This model accounts for spatial and temporal variations in fluid and solid densities, which 
are calculated using equilibrium thermodynamics and Gibbs energy minimization (e.g., Malvoisin et al., 2015). 
Based on this model, Schmalholz et al. (2020) developed a 2D HMC model to numerically simulate the coupling 
between viscous rock deformation, fluid flow, and the dehydration reaction: brucite = periclase + water. Here, 
we elaborate this HMC model and consider a simple MgO-SiO2-H2O (MSH) system for the reaction: antigor-
ite + brucite = forsterite + water (e.g., B. W. Evans, 2004; our Figure 3). For simplicity, we consider an isother-
mal system and a fixed chemical composition so that the reaction antigorite + brucite = forsterite + water is 
balanced everywhere in the model domain.

With our new HMC model, we evaluate the following process hypothesis (Figure 2): There are zones in a subduc-
tion setting where serpentinite is undergoing viscous shear near the ambient pressure and temperature conditions 
that can trigger the dehydration reaction from serpentinite to olivine (Figures 2e and 3a). The effective viscos-
ity of serpentinite is spatially variable, for example, due to variable porosity or heterogeneities in mineralogy 
(Figure 2b). Domains with lower viscosity cause pressure variations in serpentinite resulting in locally decreased 
pressure compared to ambient pressure. If the pressure decreases below the reaction pressure in certain domains, 
it triggers the dehydration reaction in those domains. The formation of olivine due to dehydration results in 

Figure 2. Simple sketches illustrating the geodynamic setting (a) and the hypothesis for shear-driven dehydration and olivine vein formation in viscous serpentinite 
(b–d; see text for details). The drawing is not to scale. (e) Simplified phase diagram showing the brucite-out and antigorite-out reactions, two common subduction 
geotherms (in °C/km), the likely region of olivine vein formation (green dashed ellipse) and typical minerals. The phase diagram is simplified for a MSH system after 
Figure 6 in Padrón-Navarta et al. (2013). Mineral abbreviations: Atg, antigorite; Br, brucite; Ol, olivine; Opx, orthopyroxene; and Tlc, talc.
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increased porosity, leading to larger weak domains containing a mixture of olivine and fluid. The region of 
dehydration forms structures resembling veins that grow parallel to the direction of maximum compressive stress 
without fracturing (Figures 2b and 2c). Afterward, fluid is released from the area abundant in olivine, and veins 
rich in olivine are formed (Figure 2d).

The primary objective of our study is to investigate the fundamental coupling of dehydration, density changes, 
fluid flow, and rock deformation. To facilitate this study, we employ a simplified model. The specific goals of our 
study are: (a) Development of a 2D numerical HMC model capable of simulating the formation of olivine dehy-
dration veins within viscously shearing serpentinite. This model must account for substantial spatial and temporal 
variations in solid density. (b) Evaluation of the hypothesis concerning the shear-driven genesis of olivine veins in 
antigorite serpentinite. (c) Quantification of the underlying mechanisms governing the evolution and generation 
of porosity during the dehydration of rocks experiencing ductile deformation.

2. Mathematical Model
2.1. Outline

We begin by presenting the dehydration reaction and densities required for our HMC model. We then describe 
the thermodynamic calculation of densities and introduce mass conservation equations that use them. After that, 
we describe the hydrological model for porous flow, and the mechanical model for solid deformation including 
the constitutive, rheological equations. Finally, we present the governing system of equations and the numerical 
algorithm used to solve them.

Figure 3. Thermodynamic results obtained from Gibbs' free energy minimization for the system antigorite + brucite = forsterite + water (see text for exact chemical 
formulas). Density fields of solid (a) and fluid (b) in thermodynamic pressure, P, and temperature, T, space. Corresponding profiles of solid and fluid densities (c) and 
mass fraction of the non-volatile solid component, MgO + SiO2, (d) as a function of fluid pressure at 500°C. The circles in the three profiles in panels (c) and (d) are 
the results from Gibbs energy minimization and the corresponding solid lines are analytical approximations of these profiles, which are used in the numerical algorithm 
(see Appendix A1). Thermodynamic calculations are based on Perple_X.
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2.2. Reaction, Densities, and Mass Fraction

We consider a simple MSH system and the dehydration reaction (e.g., B. W. 
Evans, 2004; Padrón-Navarta et al., 2013):

Mg48Si34O85(OH)62

antigorite

+
20Mg(OH)2

brucite

→

34Mg2SiO4

forsterite

+
51H2O

water

. (1)

From a hydromechanical point of view, this reaction occurs in a two-phase 
system composed of a solid phase and a free porous fluid phase. The four 
thermodynamic phases considered are antigorite, brucite, forsterite, and 
water. MgO, SiO2, and H2O represent the three chemical components. 
The free porous fluid phase is H2O with pore-fluid density ρf (in kg/m 3). 
All symbols used in the text are explained in Table 1. The solid rock phase 
consists either of forsterite or antigorite + brucite. We assume that antigor-
ite + brucite together represent one solid rock “phase” with a homogeneous 
solid density, ρs, and homogeneous material properties. The ρs in the reac-
tive two-phase system is, hence, either the density of forsterite or of antigo-
rite + brucite. This assumption is consistent with the theories of multiphase 
flow where rock properties such as density or viscosity are average properties 
and apply for regions larger than the rock's grain size (e.g., McKenzie, 1984). 
The total density of the porous two-phase rock is

𝜌𝜌𝑇𝑇 = 𝜌𝜌𝑓𝑓𝜙𝜙 + 𝜌𝜌𝑠𝑠(1 − 𝜙𝜙), (2)

with the porosity ϕ (volume ratio). The solid phase can consist of three 
chemical components, the two solid non-volatile components, MgO and 
SiO2, that remain always in the solid, and the volatile component, H2O, that 
is structurally bound in the solid made of antigorite + brucite and liberated 
during dehydration. Together, MgO and SiO2 represent a single non-volatile 
solid component in the solid phase that either consists of forsterite or antig-
orite + brucite. We quantify the mass (in kg) fraction, Xs, of the non-volatile 
solid component inside the solid phase. For forsterite, Xs  =  1.0 because 
forsterite is made only of the non-volatile solid component, MgO + SiO2. 
To calculate Xs for the solid phase made of antigorite + brucite, we need 
to specify the molar masses, M, of the three chemical components: For 
MgO, MMgO = 0.04 kg/mol, for SiO2, MSiO2 = 0.06 kg/mol, and for H2O, 
MH2O = 0.018 kg/mol. The molar masses of the chemical components can be 
calculated from the atomic weights of the chemical elements involved. These 
atomic weights are available, for example, from online tables of various 
commissions, such as the Commission on Isotopic Abundances and Atomic 
Weights (iupac.qmul.ac.uk/AtWt). Equation  1 indicates how many of the 
chemical components of MgO, SiO2, and H2O are within the solid phase 
made of antigorite  +  brucite. The mass fraction of the non-volatile solid 
component, MgO + SiO2, in the solid phase made of antigorite + brucite is 
then given by:

𝑋𝑋𝑠𝑠 =
68𝑀𝑀MgO + 34𝑀𝑀SiO2

68𝑀𝑀MgO + 34𝑀𝑀SiO2 + 51𝑀𝑀H2O

≈ 0.84. (3)

The relative density of the non-volatile solid component, MgO  +  SiO2, in the solid phase made of antigor-
ite + brucite, is

𝜌𝜌𝑋𝑋 = 𝜌𝜌𝑠𝑠𝑋𝑋𝑠𝑠. (4)

We use the relative density, 𝐴𝐴 𝐴𝐴𝑋𝑋 , later to formulate the mass conservation equation for the non-volatile solid 
component, MgO + SiO2.

Symbol Name/Definition Units

r Bandwidth of Gaussian [m]

w Model width [m]

x, y Spatial coordinates [m]

δ Compaction length [m]

k Permeability [m 2]

t Time [s]

tc Characteristic time [s]

tkin Kinetic time [s]

tMax Maxwell time [s]

𝐴𝐴 𝐷𝐷𝑥𝑥𝑥𝑥 Far-field shearing rate [s −1]

𝐴𝐴 𝐴𝐴𝑠𝑠𝑥𝑥 , 𝐴𝐴 𝐴𝐴𝑠𝑠𝑦𝑦 Solid velocities [m⋅s −1]

𝐴𝐴 𝐴𝐴
𝑓𝑓
𝑥𝑥 , 𝐴𝐴 𝐴𝐴

𝑓𝑓
𝑦𝑦

Fluid velocities [m⋅s −1]

pf Fluid pressure [Pa]

p Total pressure [Pa]

pa Ambient pressure [Pa]

pr Reaction pressure [Pa]

σxx, σyy, σxy Total stresses [Pa]

τxx, τyy, τxy Deviatoric stresses [Pa]

τII Deviatoric stress invariant [Pa]

Ks Bulk modulus solid [Pa]

Kd Bulk modulus drained [Pa]

ηf Fluid viscosity [Pa⋅s]

ηs Shear viscosity solid [Pa⋅s]

ζ Compaction viscosity [Pa⋅s]

ρs Solid density [kg⋅m −3]

ρf Fluid density [kg⋅m −3]

Γ Mass transfer rate [kg⋅m −3⋅s −1]

ϕ Porosity []

ϕa Ambient porosity []

ϕ0 Initial porosity []

Xs Mass fraction of MgO + SiO2 []

a Parameter in ηs versus ϕ relation []

n Exponent in ηs versus ϕ relation []

α Biot-Willis coefficient []

Ω1,2,3,4,5,6 Dimensionless parameters; Equation 29 []

Table 1 
Symbols Used in the Text
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2.3. Thermodynamics and Kinetics

We consider local thermodynamic equilibrium, a constant temperature, and a closed system with constant system 
composition for the entire model domain. The composition is constant with respect to the non-volatile solid 
components, MgO and SiO2, and H2O can migrate in the model domain. It has been theoretically and experimen-
tally demonstrated that metamorphic reactions in solid-fluid systems are controlled by fluid pressure, pf (e.g., 
Dahlen, 1992; Llana-Fúnez et al., 2012). Therefore, we approximate ρs, ρf, and Xs as a function of pf, which is 
expressed as (e.g., Schmalholz et al., 2020):

𝜌𝜌𝑓𝑓 = 𝜌𝜌
𝐸𝐸𝐸𝐸

𝑓𝑓
(𝑝𝑝𝑓𝑓 )

𝜌𝜌𝑠𝑠 = 𝜌𝜌
𝐸𝐸𝐸𝐸
𝑠𝑠 (𝑝𝑝𝑓𝑓 )

𝑋𝑋𝑠𝑠 = 𝑋𝑋
𝐸𝐸𝐸𝐸
𝑠𝑠 (𝑝𝑝𝑓𝑓 )

, (5)

whereby the values of 𝐴𝐴 𝐴𝐴
𝐸𝐸𝐸𝐸
𝑠𝑠  , 𝐴𝐴 𝐴𝐴

𝐸𝐸𝐸𝐸

𝑓𝑓
 , and 𝐴𝐴 𝐴𝐴

𝐸𝐸𝐸𝐸
𝑠𝑠  for a range of values of pf are calculated by equilibrium Gibbs 

free-energy minimization using the program Perple_X (e.g., Connolly, 1990, 2005, 2009; our Figure 3), utilizing 
the thermodynamic data set of Holland and Powell (1998). Newer thermodynamic data sets do not differ consid-
erably from the Holland and Powell (1998) data set concerning Gibbs free energies and the associated densities 
of the minerals considered here. We assume that ρf always corresponds to 𝐴𝐴 𝐴𝐴

𝐸𝐸𝐸𝐸

𝑓𝑓
 , because of its equation of state 

(Figure 3c).

Due to the considerably sharp, step-like variation of 𝐴𝐴 𝐴𝐴
𝐸𝐸𝐸𝐸
𝑠𝑠  and 𝐴𝐴 𝐴𝐴

𝐸𝐸𝐸𝐸
𝑠𝑠  with varying pf across the dehydration reaction 

(Figures 3c and 3d), we assume that the reaction can involve a kinetic reaction timescale. We apply the kinetic 
model of Omlin et al. (2017) which represents simple, first-order reaction kinetics. If pf changes, then the values 
of ρs and Xs are not instantaneously assigned to the corresponding values of 𝐴𝐴 𝐴𝐴

𝐸𝐸𝐸𝐸
𝑠𝑠  and 𝐴𝐴 𝐴𝐴

𝐸𝐸𝐸𝐸
𝑠𝑠  , but there is a kinetic 

time delay to reach the values of 𝐴𝐴 𝐴𝐴
𝐸𝐸𝐸𝐸
𝑠𝑠  and 𝐴𝐴 𝐴𝐴

𝐸𝐸𝐸𝐸
𝑠𝑠  . The first-order reaction kinetics relevant to the thermodynamic 

equilibrium are (e.g., Omlin et al., 2017)

𝜕𝜕𝜕𝜕𝑠𝑠

𝜕𝜕𝜕𝜕
=

𝜕𝜕
𝐸𝐸𝐸𝐸
𝑠𝑠 − 𝜕𝜕𝑠𝑠

𝜕𝜕kin

𝜕𝜕𝜕𝜕𝑠𝑠

𝜕𝜕𝜕𝜕
=

𝜕𝜕
𝐸𝐸𝐸𝐸
𝑠𝑠 −𝜕𝜕𝑠𝑠

𝜕𝜕kin

, (6)

where tkin is the characteristic kinetic timescale. For simplicity, we assume that tkin is constant. Our kinetic model 
is similar to first-order linear kinetic models, for example, applied to study reaction-infiltration instabilities, in 
which the mass transfer rate is proportional to the difference between an equilibrium concentration and the actual 
concentration of a component (e.g., Aharonov et al., 1995, 1997; Jones & Katz, 2018; Spiegelman et al., 2001). 
In contrast to our model, these models assume that ρs is constant during the reaction and therefore do not consider 
any change of ρs during the reaction progress.

2.4. Mass Conservation

For two-phase systems, the conservation of mass (per unit volume) of the solid and the fluid is frequently given 
by the respective equations (e.g., McKenzie, 1984)

𝜕𝜕(𝜌𝜌𝑠𝑠(1 − 𝜙𝜙))

𝜕𝜕𝜕𝜕
+ ∇ ⋅ (𝜌𝜌𝑠𝑠(1 − 𝜙𝜙)𝐯𝐯𝑠𝑠) = −Γ (7)

𝜕𝜕(𝜌𝜌𝑓𝑓𝜙𝜙)

𝜕𝜕𝜕𝜕
+ ∇ ⋅

(

𝜌𝜌𝑓𝑓𝜙𝜙𝐯𝐯
𝑓𝑓
)

= Γ, (8)

where t is time, ∇⋅ is the divergence operator, v f and v s are vectors of the fluid and solid barycentric veloci-
ties, respectively, and Γ is a mass transfer rate from the solid to the fluid phase. Concerning the symbols for 
vector and tensor quantities, we use indices f and s as superscripts, because vector and tensor components will 
have additional subscripts indicating the spatial direction, and scalar quantities can be easily distinguished from 
vector  and  tensor quantities. In our mathematical model, we do not use two mass conservation equations in the 
form of Equations 7 and 8. Instead, we employ two different forms of the mass conservation equations: a conser-
vation equation for total mass and a conservation equation for the mass of the total solid non-volatile component, 
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MgO + SiO2. The conservation equation of total mass results from the sum of Equations 7 and 8 (e.g., Beinlich 
et al., 2020; Fowler, 1985; Malvoisin et al., 2021; Plümper et al., 2017; Schmalholz et al., 2020):

𝜕𝜕𝜕𝜕𝑇𝑇

𝜕𝜕𝜕𝜕
+ ∇ ⋅

(

𝜕𝜕𝑓𝑓𝜙𝜙
(

𝐯𝐯
𝑓𝑓 − 𝐯𝐯

𝑠𝑠
))

+ ∇ ⋅ (𝜕𝜕𝑇𝑇 𝐯𝐯
𝑠𝑠) = 0. (9)

The conservation equation for the total non-volatile component, MgO + SiO2, is (e.g., Plümper et  al.,  2017; 
Schmalholz et al., 2020)

𝜕𝜕

𝜕𝜕𝜕𝜕
(𝜌𝜌𝑋𝑋(1 − 𝜙𝜙)) + ∇ ⋅ (𝜌𝜌𝑋𝑋(1 − 𝜙𝜙)𝐯𝐯𝑠𝑠) = 0. (10)

There is no fluid velocity in the conservation Equation 10 because we assume that the dissolution of MgO and 
SiO2 in the fluid is negligible. The main reason why we use mass conservation Equations 9 and 10, instead of 
Equations 7 and 8, is that Equations 9 and 10 do not include the term for the mass transfer rate, Γ. Therefore, we 
do not need to provide an expression for Γ.

2.5. Porous Flow

We apply Darcy's law to describe the porous flow of the free fluid phase. For simplicity, we consider porous flow 
in the absence of gravity for which Darcy's law is:

𝜙𝜙
(

𝐯𝐯
𝑓𝑓 − 𝐯𝐯

𝑠𝑠
)

= −
𝑘𝑘𝜙𝜙3

𝜂𝜂𝑓𝑓
∇𝑝𝑝𝑓𝑓 , (11)

where ∇ is the gradient operator, k is the permeability coefficient in a porosity-dependent, Kozeny-Carman-type 
permeability expression and ηf is the fluid viscosity.

2.6. Solid Deformation

The equations for the conservation of total linear momentum (or force balance equations) of the two-phase 
mixture without inertial forces and gravity are:

∇ ⋅ 𝜎𝜎𝑖𝑖𝑖𝑖 = 0. (12)

Subscripts i and j are either 1 (representing the horizontal x-direction) or 2 (representing the vertical y-direction). 
The components of the total stress tensor of the two-phase mixture, σij, are composed of the total pressure, p, and 
the components of the total deviatoric stress tensor, τij, by the relation

𝜎𝜎𝑖𝑖𝑖𝑖 = −𝑝𝑝𝑝𝑝𝑖𝑖𝑖𝑖 + 𝜏𝜏𝑖𝑖𝑖𝑖 , (13)

with 𝐴𝐴 𝐴𝐴𝑖𝑖𝑖𝑖 being the Kronecker delta (e.g., Steeb & Renner, 2019). We assume that the contribution of fluid flow to 
the total deviatoric stress of the mixture is negligible and only consider the solid deformation in the calculation 
of the total deviatoric stress (e.g., McKenzie, 1984; Steeb & Renner, 2019). We consider a visco-plastic solid and 
the effective shear viscosity, 𝐴𝐴 𝐴𝐴𝑠𝑠 , relates the total deviatoric stress tensor components to the deviatoric strain rate 
tensor components of the solid, 𝐴𝐴 𝐴𝐴𝑖𝑖𝑖𝑖 , by the equation:

𝜏𝜏𝑖𝑖𝑖𝑖 = 2𝜂𝜂𝑠𝑠𝐷𝐷𝑖𝑖𝑖𝑖 , (14)

with

𝐷𝐷𝑖𝑖𝑖𝑖 =
1

2

(

𝜕𝜕𝜕𝜕𝑠𝑠
𝑖𝑖

𝜕𝜕𝜕𝜕𝑖𝑖

+
𝜕𝜕𝜕𝜕𝑠𝑠

𝑖𝑖

𝜕𝜕𝜕𝜕𝑖𝑖

)

− 𝛿𝛿𝑖𝑖𝑖𝑖
1

3

𝜕𝜕𝜕𝜕𝑠𝑠
𝑘𝑘

𝜕𝜕𝜕𝜕𝑘𝑘

. (15)

Some studies apply the relation τij = (1 − ϕ)2ηsDij to take into account that the solid deformation only contributes 
a part to the total deviatoric stress of the mixture (e.g., Keller et al., 2013), while other studies do not consider 
such porosity factor in the relation between total deviatoric stress of the two-phase mixture and partial deviatoric 
stress of the solid (e.g., Steeb & Renner, 2019). Here, we assume that such porosity effects are implicitly included 
in a porosity dependent ηs. The porosity dependence of ηs is motivated by studies on partially molten rocks (e.g., 
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Katz et al., 2022; Mei et al., 2002; Schmeling et al., 2012). We consider here two types of porosity dependence 
of ηs, namely an exponential and a power-law dependence (e.g., Katz et al., 2006; Mei et al., 2002; Schmeling 
et al., 2012):

𝜂𝜂𝑠𝑠 = 𝜂𝜂𝑠𝑠0 exp(−𝑎𝑎(𝜙𝜙∕𝜙𝜙0 − 1)) (16)

𝜂𝜂𝑠𝑠 = 𝜂𝜂𝑠𝑠0(𝜙𝜙0∕𝜙𝜙)
𝑛𝑛
, (17)

where ηs0 is the reference shear viscosity for a reference porosity, ϕ0, and a and n are two parameters quan-
tifying the dependence of ηs on ϕ. We further consider a von Mises yield stress, τy, to limit the maximal 
value of the deviatoric stresses. The square root of the second invariant of the deviatoric stress tensor, 

𝐴𝐴 𝐴𝐴𝐼𝐼𝐼𝐼 =

√

0.5
(

𝐴𝐴2𝑥𝑥𝑥𝑥 + 𝐴𝐴2𝑦𝑦𝑦𝑦
)

+ 𝐴𝐴2𝑥𝑥𝑦𝑦 , controls a plastic multiplier, ϑ = 1 − τy/τII. If ϑ > 0, then deviatoric stresses are 
modified using

𝜏𝜏𝑖𝑖𝑖𝑖 = (1 − 𝜗𝜗)𝜏𝜏𝑖𝑖𝑖𝑖 . (18)

We use such a stress limiter in some numerical simulations to test if it significantly impacts the simulations 
of olivine vein formation. Another reason is that this pressure-insensitive yield stress can represent any strong 
nonlinear dependence of the shear viscosity on the deviatoric stress, such as for low-temperature plasticity or 
exponential creep (e.g., Karato, 2008; Schmalholz & Fletcher, 2011; Tsenn & Carter, 1987). For such exponential 
creep, the stress increases only slightly with increasing strain rate, in contrast to the linear viscosity, ηs, for which 
stresses increase linearly with strain rate, if ϕ is constant.

Furthermore, we consider a poro-visco-elastic volumetric deformation for which the divergence of the solid 
velocity field is a function of total pressure, 𝐴𝐴 𝐴𝐴 , and 𝐴𝐴 𝐴𝐴𝑓𝑓 (e.g., Yarushina & Podladchikov, 2015):

∇ ⋅ 𝐯𝐯
𝑠𝑠 = −

1

𝐾𝐾𝑑𝑑

(

𝑑𝑑𝑑𝑑

𝑑𝑑𝑑𝑑
− 𝛼𝛼

𝑑𝑑𝑑𝑑𝑓𝑓

𝑑𝑑𝑑𝑑

)

−
𝑑𝑑 − 𝑑𝑑𝑓𝑓

(1 − 𝜙𝜙)𝜁𝜁
, (19)

where ζ is the compaction viscosity, Kd is the drained bulk modulus, and α = 1-Kd/Ks with Ks being the solid 
bulk modulus. The magnitude of ζ is linked to the magnitude of ηs and the inverse of ϕ by the equation (e.g., 
Katz, 2008; Yarushina & Podladchikov, 2015)

𝜁𝜁 = Ω4𝜂𝜂𝑠𝑠
𝜙𝜙0

𝜙𝜙
. (20)

The parameter Ω4 = ζ/ηs if ϕ = ϕ0. We use the symbol Ω4 because this parameter is one of several dimensionless 
numbers, we use later to characterize the numerical simulations. We consider visco-elastic bulk deformation 
because it can avoid unrealistically fast viscous compaction in case ζ is very small. The elasticity component 
delays the viscous compaction, and the characteristic time of the delay is controlled by a so-called Maxwell time 
that can be approximated for the applied Equation 20 by the ratio tMax = ζ/Kd. Furthermore, the poro-visco-elastic 
formulation provides the poro-elastic limit in case ζ is very large, for example, for regions with very small ϕ.

2.7. Governing System of Equations

The governing system of equations serves as the foundation for constructing the numerical algorithm that calcu-
lates the principal unknown quantities. For our model, we have 8 principal unknowns that are ρs, ρf, Xs, pf, ϕ, p, 

𝐴𝐴 𝐴𝐴𝑠𝑠𝑥𝑥 and 𝐴𝐴 𝐴𝐴𝑠𝑠𝑦𝑦 . Other quantities that need to be calculated, such as Dij, τij, and σij, can be directly calculated from the 
8 unknowns with equations presented above (see also below). The 𝐴𝐴 𝐴𝐴

𝑓𝑓
𝑥𝑥 and 𝐴𝐴 𝐴𝐴

𝑓𝑓
𝑦𝑦 do not appear as unknowns because 

we substitute Darcy's law, Equation 11, into the conservation equation for total mass, Equation 9, to eliminate 𝐴𝐴 𝐴𝐴
𝑓𝑓
𝑥𝑥 

and 𝐴𝐴 𝐴𝐴
𝑓𝑓
𝑦𝑦 as unknowns.

To determine the eight unknowns, we need eight equations. Three equations to calculate the values of ρs, ρf and 
Xs are derived from equilibrium thermodynamic calculations. The ρs, ρf and Xs are calculated with pf, using the 
results of thermodynamic calculations (Figures 3c and 3d). Hence, the three equations relating ρs, ρf, and Xs to pf 
are calculated by Perple_X and are then used during the numerical simulations. The time evolution of ρs and Xs 
is calculated with Equation 6. The remaining five governing equations are the two mass conservation Equations 9 
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and 10, Equation 19 describing volumetric deformation, and the two momentum balance Equation 12. The system 
of 8 governing equations is:

𝜌𝜌𝑓𝑓 = 𝜌𝜌
𝐸𝐸𝐸𝐸

𝑓𝑓
(𝑝𝑝𝑓𝑓 );calculated by Perple_X (21)

𝜌𝜌𝑠𝑠 = 𝜌𝜌
𝐸𝐸𝐸𝐸
𝑠𝑠 (𝑝𝑝𝑓𝑓 );calculated by Perple_X (22)

𝑋𝑋𝑠𝑠 = 𝑋𝑋
𝐸𝐸𝐸𝐸
𝑠𝑠 (𝑝𝑝𝑓𝑓 );calculated by Perple_X (23)

𝜕𝜕𝜕𝜕𝑇𝑇

𝜕𝜕𝜕𝜕
= ∇ ⋅

[

𝜕𝜕𝑓𝑓
𝑘𝑘𝑘𝑘3

𝜂𝜂𝑓𝑓
∇𝑝𝑝𝑓𝑓

]

− ∇ ⋅ (𝜕𝜕𝑇𝑇 𝐯𝐯
𝑠𝑠) (24)

𝜕𝜕

𝜕𝜕𝜕𝜕
[𝜌𝜌𝑠𝑠𝑋𝑋𝑠𝑠(1 − 𝜙𝜙)] = −∇ ⋅ [𝜌𝜌𝑠𝑠𝑋𝑋𝑠𝑠(1 − 𝜙𝜙)𝐯𝐯𝑠𝑠] (25)

∇ ⋅ 𝐯𝐯
𝑠𝑠 = −

1

𝐾𝐾𝑑𝑑

(

𝑑𝑑𝑑𝑑

𝑑𝑑𝑑𝑑
− 𝛼𝛼

𝑑𝑑𝑑𝑑𝑓𝑓

𝑑𝑑𝑑𝑑

)

−
𝑑𝑑 − 𝑑𝑑𝑓𝑓

(1 − 𝜙𝜙)𝜁𝜁
 (26)

∇ ⋅ 𝜎𝜎𝑖𝑖𝑖𝑖 = 0 (27)

Once the 𝐴𝐴 𝐴𝐴𝑠𝑠𝑥𝑥 and 𝐴𝐴 𝐴𝐴𝑠𝑠𝑦𝑦 are determined, the strain rates, Dij, are calculated with Equation 15. The ηs are calculated with 
ϕ using Equations 16 or 17. The deviatoric stresses, τij, are calculated with Equations 14, 16, and 17. The total 
stresses, σij, are then calculated with p and τij using Equation 13.

2.8. Numerical Algorithm

We discretize the system of differential Equations 6 and 24–27 using the finite difference method on a regular 
Cartesian staggered grid. The staggering relies on second-order conservative finite differences (e.g., McKee 
et al., 2008; Patankar, 2018; Virieux, 1986). We solve the discretized form of the five Equations 24–27 for the 
unknowns pf, ϕ, p, 𝐴𝐴 𝐴𝐴𝑠𝑠𝑥𝑥 , and 𝐴𝐴 𝐴𝐴𝑠𝑠𝑦𝑦 with the accelerated pseudo-transient (PT) method in an iterative and matrix-free 
fashion (e.g., Chorin, 1997; Räss et al., 2022). We use a relaxation, or continuation, approach to handling the  vari-
ous nonlinearities, such as porosity-dependent shear viscosity and permeability within the iterative procedure 
(e.g., Räss, Duretz, & Podladchikov, 2019; Schmalholz et al., 2020; Wang et al., 2022). In our PT numerical 
algorithm, we use Equation 24 to calculate pf, Equation 25 to calculate ϕ, Equation 26 to calculate p, and the two 
momentum balance Equation 27 to calculate 𝐴𝐴 𝐴𝐴𝑠𝑠𝑥𝑥 and 𝐴𝐴 𝐴𝐴𝑠𝑠𝑦𝑦 . The differential equations used to calculate ρs, Xs and Dij 
are discretized with the same finite difference scheme and included inside the PT iteration loop so that they are 
continuously updated during the iterative solution of the five unknowns. The equations to determine τij and σij 
are also included in the PT iteration loop. Furthermore, the viscosities ηs and ζ are also continuously determined 
in the PT iteration loop due to their dependence on ϕ (Equations 16 or 17). Hence, the PT iteration loop fulfills 
two tasks at the same time: (a) the iterative calculation of the unknowns and (b) the iterative treatment of material 
nonlinearities for ηs and ζ, and for the ϕ-dependent effective permeability. All equations are solved within the 
same iteration loop and are updated iteratively with the current values of the physical quantities and material 
parameters. Therefore, after the convergence of the iterative solver, the numerical solution of the governing 
equations corresponds to a fully implicit numerical solution for a specific numerical time step (Räss et al., 2022). 
The fundamental features of the applied numerical algorithm and the iterative PT method are described in Appen-
dix A1. Furthermore, we present a numerical resolution test and a numerical accuracy test of the applied numer-
ical algorithm in Appendix A2.

3. Model Configuration, Characteristic Scales, and Dimensionless Parameters
3.1. Field Observations, Geodynamic Scenario, and Motivation for Model Configuration

In the Erro Tobbio region, the exhumed antigorite serpentinite exhibits locally metamorphic olivine veins 
(Figure 1) which indicates that the serpentinite has locally crossed the brucite-out reaction during subduction 
(Figure 2e). Before exhumation back to the surface, the antigorite serpentinite has never crossed the antigorite-out 
reaction, because this reaction would have generated peridotite (Figure 2e). Therefore, the olivine veins in the 
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exhumed antigorite serpentinites have likely formed in a relatively narrow 
ambient pressure and temperature range (Figure 2e).

For our model, we assume that the antigorite serpentinite is sheared during 
subduction (Figure 2). For simplicity, the modeled serpentinite is made only 
of antigorite and brucite. We assume that the serpentinite is mechanically 
heterogeneous. Such heterogeneity is mimicked here by a spatially hetero-
geneous porosity, described further below, which causes a heterogeneous 
viscosity (Equations 16 and 17). The serpentinite includes small regions of 
higher porosity which generates small regions of lower viscosity. Such viscos-
ity heterogeneities within a sheared viscous rock cause pressure variations 
around the regions with lower viscosity (e.g., Moulas & Schmalholz, 2020; 
Moulas et al., 2014; Schmid & Podladchikov, 2003). The pressure variations 
generate regions with smaller and higher pressure compared to the ambient 
pressure (e.g., Moulas et al., 2014). If pressure variations remain within the 
antigorite + brucite stability field and do not generate pressure below the 
reaction pressure, no metamorphic reactions occur in serpentinite (see poten-
tial prograde pressure-temperature path in Figure 3a). If the ambient pressure 
in the sheared serpentinite is close to the reaction pressure, then pressure 
variations can cause dehydration by generating pressures below the reaction 
pressure (Figure 2b). We are investigating dehydration reactions triggered by 
shearing-induced pressure variation in a scenario where ambient pressure is 
close to reaction pressure.

3.2. Model Geometry, Initial and Boundary Conditions

We consider a 2D quadratic model domain made of antigorite  +  brucite 
(Figure 4). We assume a constant temperature of 500°C for which the ther-

modynamic reaction pressure in our model is at 12.65 kbar (Figure 3). The exact temperature value is not essen-
tial for our study, because the variation of the solid and fluid densities with varying fluid pressure is similar for 
temperatures between 450 and 550°C (Figures 3a and 3b). We apply far-field simple shear for the boundary 
velocities (Figure 4). Shearing is parallel to the horizontal x-direction. The orientations of the maximum and 
minimum principal stresses, σ1 and σ3 respectively, associated with the far-field shearing are oriented at 45° to 
the shearing direction (Figure 4). We assume that pf and p are initially identical and correspond to the ambient 
pressure, pa. The ambient porosity, ϕa, is 2%, except in an elliptical region in the model center where the porosity 
exhibits a Gaussian distribution (Figure 4). The initial Gaussian distribution of the porosity is: ϕ0 = ϕa + Aϕexp[−
(x/r) 2 − (y/2r) 2]. Aϕ is the amplitude of the initial porosity perturbation and the distance r controls the width, or 
variance, of the porosity distribution (Figure 4). We apply here an elliptical form of the Gaussian distribution 
with an initial axis ratio of 2 and with the long axis either parallel to the vertical y-direction or at 45° to the verti-
cal direction (see the two blue dashed lines in Figure 4). The origin of the coordinate system is at the center of 
the elliptical region with positive coordinates indicating toward the right side and upwards (Figure 4). We will 
also present two simulations with a random initial perturbation of the porosity. The shear and bulk viscosities 
are smaller in the central region of the model due to the higher porosity. Boundary conditions for ϕ and pf are of 
Dirichlet type, with boundary values fixed to the initial ambient values.

3.3. Compaction Length, Characteristic Time, and Dimensionless Numbers

In our simulations, we always consider the same dehydration reaction and its specific thermodynamic relation 
between fluid pressure and densities (Figure 3c). Hence, we present the results for pressures and densities in 
dimensional form with physical units. To conduct a specific numerical simulation, we need to specify various 
additional model parameters (Table 1). As long as they are within a realistic range for natural conditions, these 
additional parameters, such as ambient permeability, shear viscosities, far-field shearing rate, or size of the initial 
porosity perturbation, can be arbitrary. Furthermore, our numerical results are controlled by a set of independent 
dimensionless numbers (described further below) rather than by the values of each model parameter separately. 
We use such dimensionless numbers to describe and configure our numerical simulations because: (a) The set of 

Figure 4. Sketch of the model configuration and the applied far-field 
simple shear (bottom sketch; see text for details). The initial distribution of 
the porosity is described by a 2D Gaussian distribution, having an initial 
horizontal bandwidth of 2r (graph in left middle of the sketch) and a vertical 
bandwidth of 4r. The width, w, and height of the model is 40r and the applied 
far-field shearing rate is 𝐴𝐴 𝐷𝐷𝑥𝑥𝑥𝑥 . The orientations of the maximum and minimum 
principal stresses, σ1 and σ3 respectively, associated to the far-field simple 
shearing are indicated in the bottom right.
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dimensionless numbers represents the smallest possible number of parameters to specify a numerical simulation. 
(b) The dimensionless numbers help select the most suitable model parameters for simulating dehydration veins 
(see further below). (c) The numerical results obtained from a single simulation can be scaled to a wide range 
of realistic dimensional parameters using dimensionless numbers, making them more general. We present such 
scaling in the Discussion section.

The dimensionless numbers involve a characteristic length scale, δ, and a characteristic time scale, tc. In a 
viscously deformable porous medium, the compaction of the poro-viscous medium and associated spatial varia-
tions in solid and fluid velocities occur over a characteristic length scale which is termed the compaction length 
(e.g., McKenzie, 1984). We use this compaction length as δ. Similarly, the compaction and associated porous 
fluid flow occurs over a characteristic hydraulic diffusion time scale, which we use as tc. The δ and tc are given by:

𝛿𝛿 =

√

𝑘𝑘𝑘𝑘3

𝜂𝜂𝑓𝑓

(

𝜁𝜁 (𝑘𝑘) +
4

3
𝜂𝜂𝑠𝑠(𝑘𝑘)

)

𝑡𝑡𝑐𝑐 = 𝑟𝑟2𝜂𝜂𝑓𝑓∕
(

𝑘𝑘𝑘𝑘3 𝐾𝐾𝑠𝑠

)

. (28)

In our model with porosity-dependent effective permeability, and porosity-dependent shear and compaction 
viscosities, both δ and tc depend on ϕ. The set of applied dimensionless numbers is:
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�
�
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|

|
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|
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,

 (29)

where w is the model width and 𝐴𝐴 𝐷𝐷𝑥𝑥𝑥𝑥 is the applied far-field simple shear rate (Figure  4). All dimensionless 
numbers that are dependent on the porosity are evaluated for the applied ambient porosity, ϕa = 2%. Ω1 represents 
the dimensionless δ that is normalized by r. Ω2 determines the magnitude of the shear stress resulting from the 
applied far-field simple shear compared to the ambient pressure pa. Ω3 indicates the size difference between the 
model domain and r. Ω4 indicates the magnitude of ζ compared to ηs. Ω5 scales the kinetic time to the hydraulic 
diffusion time. Ω6 scales the Maxwell time to the hydraulic diffusion time.

3.4. Configuration of the Reference Simulation S1

We configure one reference simulation, termed S1, and configure 20 additional simulations, S2 to S21, to test the 
impact of various features on the simulations. The parameters applied for the simulations are listed in Table 2.

Ω1 is a crucial parameter for the model configuration because deformation associated with compaction occurs 
over a distance that is several times larger than δ (e.g., McKenzie, 1984). For Ω1 « 0.01, compaction occurs over 
a distance much smaller than the initial porosity distribution, and it is unfeasible to numerically resolve both the 
porosity perturbation and the compaction since they occur on significantly different length scales. On the other 
hand, for Ω2 » 0.1, compaction occurs on a spatial scale larger or equal to the size of the porosity perturbation and 
it is difficult to generate significant fluid pressure perturbations within small areas around the weak region with 
increased porosity. Values for Ω1 that are in the range between 0.01 and 0.1 are, therefore, often used in simu-
lations of porosity waves (e.g., Dohmen & Schmeling, 2021; Simpson & Spiegelman, 2011). Hence, we apply 
Ω1 = 0.033 for our reference simulation (Table 2). For S1, we apply Ω2 = 0.11 so that the shear stress resulting 
from the applied far-field simple shear is approximately one order of magnitude smaller than the ambient pres-
sure. We apply Ω3 = 40 so that the model domain is significantly larger than the applied porosity perturbation. 
We use Ω4 = 2 what is supported by theoretical models and experiments (e.g., Katz et al., 2022; Yarushina & 
Podladchikov, 2015), and we apply Ω5 = 0.0025 so that the kinetic time scale is significantly faster than the 
hydraulic diffusion time scale. We further use Ω6 = 0.001 so that the visco-elastic time scale and the associated 
time for visco-elastic stress buildup is significantly faster than the hydraulic diffusion time.

To configure S1, we must further specify the relationships between ηs and ϕ, and between ηs and ζ. For S1, we 
apply an exponential dependence of ηs on ϕ, and we use a = 1/2.5 (Equation 16; Figure 5a). The considered vari-
ation of ηs, normalized by the viscosity for the ambient porosity, ηsa, with increasing ϕ is displayed in Figure 5a. 
For comparison, we illustrate representative values for experimentally determined shear viscosities for partially 
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molten rock as a function of porosity (experimental data is taken from the compilation of Katz et al. (2022); see 
figure caption for all references). The effective shear viscosity of a porous medium can vary by 3–4 orders of 
magnitude with a change in porosity from 2% to 25% according to experimental data. For S1, we do not consider 
the dependence of ζ on 1/ϕ, Equation 20, and only apply the relation ζ = Ω4ηs. The 1/ϕ dependence of ζ is eval-
uated in two additional simulations. After specifying the relations between ηs, ζ and ϕ we can plot the relation 
between δ/r and ϕ (Figure 5b). With increasing ϕ, values of δ/r first increase and then decrease (Figure 5b). The 
maximum value of δ/r is approximately 25 times larger than the minimum value of δ/r (Figure 5b). We apply an 
amplitude of the initial Gaussian ϕ perturbation of Aϕ = 12 so that the maximum ϕ in the model center is 24%. 
For the applied relation between ηs on ϕ, the minimum initial ηs in the model center is then approximately 100 
times smaller than ηsa (Figure 5a). The long axis of the initial Gaussian ϕ distribution is oriented 45° concerning 
the vertical y-direction so that the long axis is parallel to the maximum principal stress for the applied far-field 
simple shear (σ1 in Figure 4). We apply for S1 an ambient pressure pa = 12.75 kbar that is close to the reaction 
pressure pr = 12.65 kbar (Figures 3c and 3d). Finally, for S1 and for all additional simulations, we apply a value 
of 3 for the porosity exponent in the effective permeability, Equation  11 (e.g., Katz et  al.,  2022; Malvoisin 
et al., 2015), and we apply Kd/Ks = 0.5 so that α = 0.5, termed often the Biot-Willis coefficient, Equation 19, 
which is a representative value for porous rock (e.g., Hofmann et al., 2005).

3.5. Applied Parameters for Additional Numerical Simulations

To test the impact of various parameters on the results of S1 we performed 20 additional simulations (Table 2). To 
evaluate the impact of pa on the results we perform two additional simulations, S2 and S3 (Table 2), with higher 
values of pa. To test the impact of Ω1 on the simulation results we perform four simulations with different Ω1 for 

Simulation pa[kbar] Ω1 Ω2 Ω3 Ω4 Ω5 Ω6 ζ ∝ 1/ϕ a Compaction

S1* 12.75 0.033 0.11 40 2 0.0025 0.001 No 1/2.5 visco-elastic

S2 Higher ambient pressure: pa = 14.5 [kbar]

S3 Higher ambient pressure: pa = 13.5 [kbar]

S4 Smaller dimensionless compaction length: Ω1 = 0.012

S5 Larger dimensionless compaction length: Ω1 = 0.052

S6 Larger dimensionless compaction length: Ω1 = 0.082

S7 Larger dimensionless compaction length: Ω1 = 0.33

S8 Shear viscosity is a power-law function of porosity: n = 4

S9 Shear viscosity is a power-law function of porosity: n = 3

S10 Shear viscosity is a power-law function of porosity: n = 2

S11 Plastic yield stress: τy = 100 [MPa]

S12 Initial porosity perturbation has vertical orientation

S13 Initial porosity perturbation has vertical orientation AND plastic yield stress: τy = 100 [MPa]

S14 Initial random porosity perturbation AND τy = 100 [MPa]

S15 Viscous compaction only

S16 Compaction viscosity depends on 1/ϕ

S17 Compaction viscosity depends on 1/ϕ AND Ω4 = 20

S18 Faster kinetics: Ω5 = 2.5 × 10 −4

S19 Faster kinetics: Ω5 = 2.5 × 10 −5

S20 pa = 14.5 [kbar] AND Ω1 = 0.33

S21 Initial random porosity perturbation AND pa = 14.5 [kbar] AND Ω1 = 0.33

Note. All parameters for the reference simulation S1 are given. For the additional simulations S2 to S21, only the parameters 
that are different compared to S1 are given. *S1 has further: α = 0.5, no plastic yield stress, and oblique orientation of initial 
porosity perturbation.

Table 2 
Parameters for Performed Simulations
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the same relation between ηs and ϕ (Figure 5b; simulations S4 to S7 in Table 2). We also perform three simula-
tions for ηs with a power-law dependence on ϕ (Equation 17). We use three values for the power-law exponent, 
namely n = 2, 3, and 4 (Figures 5a and 5c), to obtain values of δ/r that are increasing, constant or decreasing, 
respectively, with increasing ϕ (Figure 5b; S8 to S10 in Table 2). For all three δ/r versus ϕ relations the values 
of Ω1 ≈ 0.035 (Figure 5b). In S11 we apply a plastic yield stress τy = 100 MPa. To evaluate the orientation of the 
initial porosity perturbation we perform S12 in which the long axis of the porosity perturbation is vertical and 
S13 which has additional τy = 100 MPa (Table 2). To test the impact of a more realistic initial porosity distribu-
tion, we perform S14 that has an initial random porosity distribution and τy = 100 MPa. S15 is identical to S1 
except that we consider viscous compaction only by setting the term multiplied by 1/Kd in Equation 19 to zero, 
that means Kd = ∞. In S16 and S17 we consider again visco-elastic compaction and consider the dependence of ζ 
on 1/ϕ (Equation 20). In S17, we apply additionally Ω4 = 20 which means that ζ is an order of magnitude larger 
than ηs compared to S1. We also test the impact of the kinetic time scale and perform simulations S18 and S19 
with a kinetic time scale that is one and two orders of magnitude faster, respectively, compared to S1. Finally, 
we perform S20 and S21 with a high ambient pressure pa = 14.5 kbar and a larger compaction length Ω1 = 0.33 
compared to S1 to evaluate simulations for conditions that are not suitable to trigger dehydration and significant 
pressure perturbations.

Figure 5. Shear viscosity and compaction length vs. porosity. (a) Applied values of ηs, normalized by the shear viscosity for 
the ambient porosity, ηsa, versus ϕ. Diamonds and circles indicate representative experimental data for the shear viscosities of 
partially molten rocks (data taken from the compilation in Katz et al. (2022), their Figure 2b, with original references given in 
the legend) (Scott & Kohlstedt, 2006). (b) Curves of normalized compaction length, δ/r, versus ϕ for shear viscosities, ηs, that 
are an exponential function of ϕ. The parameter a is always 1/2.5 (see Equation 16). (c) Curves of δ/r versus ϕ for ηs that are a 
power-law function of ϕ. The applied power-law exponents, n, are indicated in the legend (see Equation 17).
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4. Results
4.1. Overview

The result section is structured in two general parts. In the first part, we investigate the evolution of the reference 
simulation S1 and the main differences of simulations S2 to S19 compared to S1. In the second part, we focus on 
S1 to quantify the mechanisms which cause the generation and evolution of porosity during shearing and dehy-
dration. Simulations S20 and S21 are discussed in the Discussion section.

In the figures, dimensional quantities are displayed with their physical units in square braces, such as ρs[kg/m 3]. 
The horizontal, x, and vertical, y, coordinates are normalized by r and the simulation time as well as all displayed 
rates, for example, ∇⋅v s, are normalized by tc, whereby tc is calculated for the ambient porosity, ϕa. Dimensionless 
ratios are presented without any indication of units, such as x/r.

4.2. The Reference Simulation S1

The two quantities ρs and pf can vary in space and time in our model. They also appear in both the thermody-
namic relations (Figure 3) and the equations governing the hydromechanical behavior, like Equations 24–26. 
We, therefore, described first the evolution of ρs and pf for S1. During the initial stages of S1 an elongated region 
with pf < 12.7 kbar develops and inside this region is a smaller, elliptical region with pf < 12.65 kbar (Figure 6a). 
Changes of ρs due to dehydration start when pf < 12.7 kbar because the dehydration reaction in our model occurs 
over a pressure interval of 0.1 kbar (Figure 3c). Values of ρs are slightly increased within the region bound by the 
contour line for pf = 12.65 kbar, indicating the onset of dehydration and the reaction from antigorite + brucite 
to forsterite (Figure 6a). With progressive shearing the region with pf < 12.7 kbar becomes smaller and the one 

Figure 6. The reference simulation S1 (see Table 2). Panels (a–c) show color plots of solid density, ρs, at three different dimensionless model times. Time is normalized 
by tc for the ambient porosity (Equation 28). Additionally, two contour lines of the fluid pressure, pf, are indicated. Panels (d–f) show color plots of the porosity, ϕ, 
at the same three dimensionless model times as in (a–c). (g) Evolution of the maximum solid density for each numerical time step vs. the dimensionless model time. 
The model times corresponding to the three model times displayed in (a–c) are indicated on the horizontal axis. (h) Evolution of the minimum fluid pressure for each 
numerical time step vs. the dimensionless model time. (i) Evolution of the dimensionless vein length, normalized by r, vs. the dimensionless model time. The contour 
for pf = 12.65 kbar has a form like an ellipse and the vein length corresponds to the long axis of this ellipse. For clarity, the vein length is indicated with the white 
dashed line in panel (c).
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with pf < 12.65 kbar larger (Figures 6b and 6c). At the end of the simulation both contour lines for pf = 12.7 and 
12.65 kbar are essentially identical (Figure 6c). Values of ρs inside these contours have significantly increased 
to values > 3,100 kg/m 3, indicating the formation of an olivine vein (Figure 6c). The increase of ρs and the 
dehydration cause an increase of ϕ (Figures 6d–6f). The region with increasing ρs corresponds to the region with 
increasing ϕ during progressive shearing (Figures 6d–6f). The maximum values of ϕ are approximately 0.5, also 
in regions where ϕ0 was 0.02. In these regions, the porosity increased, hence, by a factor of 25 during dehydration.

A plot of the maximum value of ρs versus the progressive dimensionless time shows that ρs first significantly 
increases and then eventually reaches a constant value (Figure 6g). The presented maximum values correspond 
to the maximum values in the entire model domain at one numerical time step. The minimum value of pf in the 
model domain first decreases to a value of ∼12.55 kbar, then increases to a value of ∼12.62 kbar and then also 
reaches a constant value. To quantify the growth of the dehydration region we measure the maximum straight 
distance inside the closed contour line for pf = 12.65 kbar. The contour for pf = 12.65 kbar has a form like 
an ellipse and the measured distance corresponds, hence, to the long axis of this ellipse (white dashed line in 
Figure 6c). We refer to region inside the contour for pf = 12.65 kbar as dehydration vein and to the length of its 
long axis as vein length (Figure 6i). The vein length growths fastest during the initial stages of the simulation and 
then progressively slows down until the vein length reaches a constant value (Figure 6i). The vein growths in the 
direction parallel to the maximum principal stress imposed by the far-field shearing (σ1 direction in Figure 4).

S1 shows that dehydration vein growth is a self-limiting process in our model because the vein stops growing 
once the minimum value of pf stops changing. Concerning the testing of the process hypothesis for olivine vein 
growth due to shear-driven dehydration, S1 shows that the mechanisms and process proposed in the hypothesis 
are physically feasible in the sense that they can be predicted with a 2D HMC model. From an algorithmic point 
of view, S1 shows that the newly developed numerical HMC algorithm can capture the significant density and 
porosity variations caused by the spontaneous formation of serpentinite dehydration.

4.3. Impact of Ambient Pressure on Dehydration Vein Formation, S2 and S3

Simulations S2 and S3 are identical to S1 except that pa = 14.5 and 13.5 kbar, respectively (Table 2). For S2, 
pf does not decrease below 12.7 kbar in the model domain (Figures 7a–7d). During significant simple shearing, 
the initial ϕ perturbation is sheared and rotated (see red porosity contours in Figures 7a–7d) and pf perturbations 
are always present around the region with higher ϕ (Figures 7a–7d). No vein-like structure with increased ϕ, 
oriented parallel to σ1, develops in the model when no dehydration reaction takes place. For S3, pf decreases 
locally below 12.7 kbar after some shearing (black contour lines in Figures 7f–7h) and two separate, elongated 
regions with decreased pf and increased ϕ develop (Figures 7f–7h). ϕ in these regions is increased with respect 
to ϕa (change of red contour line in Figures 7e–7h). However, no single continuous, vein-like region develops 
(Figure 7h). For comparison, we show the evolution of the same quantities for S1. For S1, a single elongated 
region with pf < 12.7 kbar develops in which ϕ is increased with respect to ϕa (Figures 7i–7l). The results show 
that if no dehydration reaction takes place, no elongated, or vein-like, region with increased ϕ develops. Also, for 
the applied model configuration, pa of 13.5 kbar is sufficiently close to the reaction pressure of 12.65 kbar so that 
shear-driven perturbations in pf can trigger dehydration (Figure 7).

4.4. Impact of Compaction Length, S4, S7 to S10

S4 and S7 are identical to S1 (with Ω1 = 0.033) except that Ω1 = 0.012 and 0.33, respectively (Table 2; results of 
S5 and S6 will be presented in Figure 12). For S4, two elongated, separate regions with ρs > 3,100 kg/m 3 develop 
during shearing, indicating the reaction from serpentinite to olivine (Figures 8a–8d). S4 was run until it failed to 
converge, which was caused by extremely sharp spatial gradients in material properties and deformation around 
the two vein tips. The sharp gradients are related to the applied value of Ω1, resulting in a compaction length 
approximately three times shorter than for S1. This causes sharper deformation gradients on a smaller length 
scale. For comparison, for S1 one continuous elongated region with ρs > 3,100 kg/m 3 develops (Figures 8e–8h), 
showing the formation of an olivine vein. For S7 with Ω1 = 0.33, also one continuous elongated region with 
increased values of ρs develops, but maximum values of ρs only reach approximately 2,940 kg/m 3 (Figures 8i–8l).

With S8 to S10 we test the impact of a power-law dependence of ηs on ϕ, Equation 17, and the correspondingly 
different relation between δ/r and ϕ (Figures 5a and 5c). For S8, the power-law exponent n = 4 and values of δ/r 
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monotonously decrease with increasing ϕ (Figure 5c). In S8, an elongated region with increased ρs and decreased 
pf develops (Figures 9a–9d). However, S8 generates maximum values of only ρs = 2,765 kg/m 3 and no finite 
region develops that is bounded everywhere by sharp gradients in ρs, like in S1 (Figure 8h). In contrast, the region 
with increased values of ρs continuously grows until it reaches the model boundaries. For S9, n = 3 and values of 
δ/r are constant with increasing ϕ. Like in S8, an elongated region with increased ρs and decreased pf develops 
(Figures 9e–9h). Maximum values of ρs only reach values of 2,865 kg/m 3. A region with increased values of ρs 
continuously grows until it reaches the model boundaries, like for S8. For S10, n = 2 and values of δ/r monoto-
nously increase with increasing ϕ (Figure 5c). Maximum values of ρs reach 3,015 kg/m 3, but like in S8 and S9 the 
region with increased ρs always grows until the model boundaries and it exhibits strong gradients of ρs. Hence, in 
contrast to S1, no olivine veins of finite size, with homogeneous values of ρs and with ρs > 3,100 kg/m 3 form in 
S8 to S10. Therefore, an exponential relation between ηs and ϕ is more suitable to form olivine dehydration veins 
compared to a power-law relation. Such an exponential relation is also typically used in melt migration studies 
(e.g., Katz et al., 2006; Schmeling et al., 2012) and supported by laboratory experiments (Figure 5a).

4.5. Impact of Plasticity and Initial Porosity Perturbation, S11 to S14

In regions with constant ϕ, ηs is also constant and the modeled poro-viscous medium flows like a linear 
viscous fluid. To test the impact of significant nonlinear flow, we apply a pressure-insensitive yield stress, τy, 

Figure 7. Color plots showing the evolution of fluid pressure, pf, with progressive simple shearing for three values of the ambient pressure, pa. Time displayed in 
panels is dimensionless and normalized by tc for the ambient porosity (Equation 28). Panels (a–d) show results of simulation S2 for pa of 14.5 kbar, (e–h) of S3 for pa 
of 13.5 kbar and (i–l) of S1 for pa of 12.75 kbar. Red contours indicate porosity, ϕ, and black contours pf (see legend). For better comparison, the color scale is the same 
for all panels. Applied parameters in the simulations are given in Table 2.
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corresponding to a von Mises type yield criterion (Equation 18). S11 is identical to S1 except the application of 
a yield stress τy = 100 MPa (Figures 10a–10d). Without application of τy, the maximum deviatoric stresses in S1 
are approximately 150 MPa. Overall, S11 evolves similarly to S1, but with shorter vein length (Figures 10a–10d). 
The application of a yield stress, τy, and the associated nonlinear viscous flow, or creep, does, hence, not signifi-
cantly impact the formation of olivine veins.

In S12 we rotate the initial orientation of ϕ by 45° so that the long axis of the elliptical ϕ perturbation is vertical 
(Figures 4 and 10e); all other parameters are identical compared to S1. Like for S1, for S12 a vein-like region with 
ρs > 3,100 kg/m 3 forms and grows in direction to the maximum compressive principal stress (Figures 10e−10h). 
S13 is identical to S12 but with the application of τy = 100 MPa (Figures 10i–10l). The application of τy does also 
not significantly impact the olivine vein formation but causes a shorter vein length, like in S11.

In S14, we apply initially a random ϕ perturbation and τy = 100 MPa to test whether olivine veins also develop 
for more realistic ϕ perturbations and nonlinear creep (Figure 11). We generated the initial ϕ distribution with the 
random field generator presented in Räss, Kolyukhin, and Minakov (2019). With progressive shearing, several 
vein-like regions with ρs > 3,100 kg/m 3 (Figures 11a–11d) and ϕ > 0.4 (Figures 11e−11h) develop. The long 
axes of these veins are oriented parallel to σ1 and the veins have in several regions an en échelon arrangement. The 
values of τII are smallest inside the veins due to the low, porosity-dependent ηs. Due to this porosity dependence 
of ηs, the magnitudes of τII are very heterogeneous throughout the model (Figures 11i–11l). The area-averaged 
value of τII in the model for each time step is a proxy for the area-averaged shear strength and effective viscosity 

Figure 8. Color plots showing the evolution of solid density, ρs, with progressive simple shearing for simulations S4 (a–d), S1 (e–h) and S7 (i–l) having different 
values of Ω1 that are indicated to the left of each row of subplots. Applied model parameters are given in Table 2. The shear viscosity has an exponential dependence on 
porosity (Figure 5a). Time displayed in panels is dimensionless and normalized by tc for the ambient porosity (Equation 28). Red contours indicate porosity, ϕ, of 0.15 
and black contours indicate fluid pressure, pf, at 12.7 kbar (see legend).
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of the model domain, if a constant far-field shearing rate is applied, as done here. The increase of the areas with 
smaller τII with progressive shearing (Figures 11i–11l) indicates, hence, a decrease of the average viscosity and, 
consequently, a weakening of the rock unit represented by the model domain.

In summary, the simulations S11 to S14 with different initial ϕ perturbations and nonlinear creep, modeled here 
in a simple way by the application of τy, show that the geometry of the initial ϕ perturbation and the type of flow 
law for the solid deformation do not significantly impact the dehydration and olivine vein formation. Also, olivine 
veins are formed in our model for more realistic model configurations considering random initial ϕ perturbations.

4.6. Impact of Compaction Viscosity, S15 to S17, and Kinetics, S18 and S19

We show the results of S15 to S19 in a single figure due to their similar evolution to S1 (Figure 12). For 
completeness, we also show results for S5 (Ω1 = 0.052) and S6 (Ω1 = 0.082). We show the temporal evolu-
tion of maximum values of ρs, of minimum values of pf and of the vein length (Figure 12). All simulations 
show only small to moderate differences in the final vein length (Figure 12a), but the same final values for 
minimum pf and maximum ρs (Figures 12b and 12c). The results for S15 with viscous compaction are like 
the results for S1 indicating that the elastic component of the visco-elastic compaction has a minor impact 
for the considered model. In S16, ζ depends on 1/ϕ. The final vein length is slightly larger compared to S1 
(Figure 12a), the minimum pf of the entire simulation is a bit smaller compared to S1 and reached earlier 
(Figure 12b), whereas the evolution of maximum ρs is like in S1 (Figure 12c). In S17, ζ depends also on 1/ϕ 

Figure 9. Color plots showing the evolution of solid density, ρs, with progressive simple shearing for a shear viscosity with power-law dependence on porosity 
(Figure 5a). Results are displayed for simulations S8 (a–d), S9 (e–h), and S10 (i–l) having different values of the power-law exponent, n, that are indicated to the left 
of each row of subplots. Applied model parameters are given in Table 2. Time displayed in panels is dimensionless and normalized by tc for the ambient porosity 
(Equation 28). Red contours indicate porosity, ϕ, of 0.05 and black contours indicate fluid pressure, pf, at 12.7 kbar (see legend).
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and by applying Ω4 = 20 we additionally made ζ one order of magnitude larger compared to S1. For S17, the 
final vein length is slightly shorter compared to S1 (Figure 12a), the minimum pf of the entire simulation is 
also a bit smaller compared to S1 but reached later (Figure 12b), and the evolution of maximum ρs is again 
like in S1 (Figure 12c). S16 and S17 show that the dependence of ζ on 1/ϕ and the initial magnitude of ζ do 
not significantly impact the formation of olivine veins caused by dehydration, at least for the parameter range 
considered here.

In S18 and S19 we decreased the kinetic time, tkin, by one and two orders of magnitude, respectively, compared 
to S1. Results of S19 are like results of S18 indicating that S19 represents the case of infinitely fast kinetics 
because reducing tkin even more would not change the results considerably. S19 represents, hence, a simulation 
with negligible reaction kinetics. Due to the significantly faster kinetics, maximum ρs grow faster compared to S1 
(Figure 12c). This faster density change causes faster dehydration and associated faster volume increase which 
in turn increases pf compared to S1. Therefore, S18 and S19 show a higher minimum pf compared to S1 and the 
minimum pf decreases below 12.65 kbar later compared to S1 (Figure 12b). Therefore, also the vein growth starts 
later in S18 and S19 compared to S1 (Figure 12a).

S5 and S6 have intermediate compaction lengths between the ones of S1 and S7. In S5 and S6 the Ω1 is larger 
compared to S1 and, hence, the growth of the vein length and of maximum ρs is significantly slower. Neverthe-
less, in both S5 and S6 the minimum pf and the maximum ρs reach the same final values as all other simulations.

Figure 10. Color plots showing the evolution of solid density, ρs, with progressive simple shearing for simulations S11 (a–d), S12 (e–h), and S13 (i–l). S11 and S13 
consider a yield stress, indicated to the left of each row of subplots, and S12 and S13 have an initial porosity perturbation that is rotated 45° compared to S11 (see 
red contours in panels (a, e, and i)). Applied model parameters are given in Table 2. The shear viscosity has an exponential dependence on porosity (Figure 5a). Time 
displayed in panels is dimensionless and normalized by tc for the ambient porosity (Equation 28). Red contours indicate porosity, ϕ, of 0.1 and black contours indicate 
fluid pressure, pf, at 12.7 kbar (see legend).
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4.7. Mechanisms of Porosity Generation

In the presented simulations, the modeled dehydration reaction, the porous fluid flow, and the solid deformation 
can affect the generation and evolution of ϕ. However, which mechanisms exactly produce ϕ and their relative 
importance is unclear. One reason is that in our coupled HMC model, most quantities, such as densities, fluid 
pressure, or fluid velocities, vary in space and time. We, therefore, first investigate the evolution of several 
quantities for S1. Due to the point symmetry of the vein formation with respect to the coordinate origin, we only 
show the upper, left half of the vein (Figure 13). The divergence of the solid velocity, 𝐴𝐴 ∇ ⋅ 𝐯𝐯

𝑠𝑠 = 𝜕𝜕𝜕𝜕𝑠𝑠𝑥𝑥∕𝜕𝜕𝑥𝑥 + 𝜕𝜕𝜕𝜕𝑠𝑠𝑦𝑦∕𝜕𝜕𝑦𝑦 , 
indicates a volumetric change associated with dehydration vein formation (Figure 13). A positive value of ∇⋅v s 
indicates volume increase, or dilation (bordeaux colors in Figure 13). The solid velocities indicate mainly the 
applied far-field simple shear (black arrows in Figure 13), with some deviations around the dehydrating region. 
The fluid velocities (blue arrows in Figure 13) are completely different compared to the solid velocities. For the 
first time step, fluid flow only occurs in the central region where the porosity, and hence permeability, is high 
(Figure 13a). During dehydration vein formation, fluid flow mainly is localized along the boundaries of the veins 
which are characterized by higher values of ∇⋅v s (Figures 13b–13d). The fluid velocities indicate fluid flow from 
the boundary of the dehydrating region toward the center of the vein (Figures 13b–13d). For the first time step, 

Figure 11. Results for simulation S14 with an initial random porosity distribution and a yield stress of 100 MPa. Applied model parameters are given in 
Table 2. Panels (a–d) shows time evolution of solid density, (e–h) of porosity and (i–l) of the square root of the second invariant of the deviatoric stress tensor, 

𝐴𝐴 𝐴𝐴𝐼𝐼𝐼𝐼 =

√

0.5
(

𝐴𝐴2𝑥𝑥𝑥𝑥 + 𝐴𝐴2𝑦𝑦𝑦𝑦
)

+ 𝐴𝐴2𝑥𝑥𝑦𝑦 . Time displayed in panels is dimensionless and normalized by tc for the ambient porosity (Equation 28). The shear viscosity has an 
exponential dependence on porosity (Figure 5a).
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the ϕ distribution indicates the initial, oblique Gaussian geometry (blue contour in Figure 13). With progressive 
deformation and vein formation, the region with higher ϕ grows in direction parallel to the dehydration vein. 
At the beginning of shearing, there is a small region with pf < 12.7 kbar (red contours in Figure 13a) and this 
region is growing in a direction parallel to the vein. The region with ρs > 2,700 kg/m 3 (dashed gray contours in 
Figures 13b–13d) also increases in direction parallel to the vein. In the early stages of shearing, nowhere in the 
model ρs > 2,700 kg/m 3 since there are no contours for ρs = 2,700 kg/m 3 (Figure 13a).

To quantify the relative contribution of the mechanisms controlling the temporal variation of ϕ, we post-process 
our numerical results (i.e., calculate values from saved numerical results). We quantify the mass transfer rate, Γ, 
associated with the dehydration reaction, which can be expressed by (using Equation 7):

Γ = −
𝑑𝑑(𝜌𝜌𝑠𝑠(1 − 𝜙𝜙))

𝑑𝑑𝑑𝑑
− 𝜌𝜌𝑠𝑠(1 − 𝜙𝜙)∇ ⋅ 𝐯𝐯

𝑠𝑠. (30)

Note that in Equation 30 the material time derivative (d/dt, including the advection term, v s∇⋅[ρs(1 − ϕ)]) is 
used and, hence, the divergence term is different compared to Equation 7. Therefore, Equation 30 represents an 
approximation of Γ since the advective term is not taken into account, here for simplicity of the post-processing. 
Equation 30 can be modified to yield:

Γ = 𝜌𝜌𝑠𝑠
𝑑𝑑𝑑𝑑

𝑑𝑑𝑑𝑑
− 𝜌𝜌𝑠𝑠(1 − 𝑑𝑑)∇ ⋅ 𝐯𝐯

𝑠𝑠 − (1 − 𝑑𝑑)
𝑑𝑑𝜌𝜌𝑠𝑠

𝑑𝑑𝑑𝑑
 (31)

Importantly, in our HMC model Γ depends on the time derivative of ρs. This is not the case for HMC models 
assuming constant densities (e.g., Katz,  2008; their Equation 22). Equation  31 can be further rearranged to 
provide an expression for the temporal variation of the porosity:

1

(1 − 𝜙𝜙)

𝑑𝑑𝜙𝜙

𝑑𝑑𝑑𝑑
= ∇ ⋅ 𝐯𝐯

𝑠𝑠 +
1

𝜌𝜌𝑠𝑠

𝑑𝑑𝜌𝜌𝑠𝑠

𝑑𝑑𝑑𝑑
+

Γ

𝜌𝜌𝑠𝑠(1 − 𝜙𝜙)
 (32)

Equation 32 shows that the temporal variation of the porosity is controlled by three mechanisms: (a) volu-
metric deformation of the solid (i.e., divergence of solid velocity field; first term on right-hand side of Equa-
tion 32), (b) temporal variation of solid density (second term) and (c) mass transfer of H2O from the solid 

Figure 12. Time evolution of (a) dimensionless vein length, normalized by r, (b) minimum fluid pressure, and (c) maximum solid density, for the eight simulations 
indicated in the legend. Applied model parameters for the simulations are given in Table 2. Time displayed in panels is dimensionless and normalized by tc for the 
ambient porosity (Equation 28).
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to the fluid phase associated with the dehydration reaction (third term). We display the spatial distribution 
of the four terms in Equation 32 for S1 at a dimensionless time of 0.0036 (Figure 14). All four terms repre-
sent rates, have units of 1/s, such as the unit of solid volumetric deformation rate ∇⋅v s, and are normalized 
by multiplying with tc for ϕa. The rate of ϕ, quantified by the term on the left-hand side of Equation 32, is 
positive and largest in the region of increased ϕ, indicating an increase of ϕ with time (Figure 14a). The 
sum of the three terms on the right-hand side of Equation 32 provides essentially the same result as the term 
on the left-hand side of Equation 32, indicating the accuracy of Equation 32 (Figures 14a and 14b). The 
magnitudes of the relative contributions of solid volumetric deformation (Figure 14c), solid density varia-
tion (Figure 14d) and mass transfer (Figure 14e) to the temporal variation of porosity are different, because 
the magnitudes of these three terms are different (Figures 14c–14e).

To investigate the temporal variation of the relative importance of solid volumetric deformation rate, solid density 
rate and mass transfer rate on the rate of ϕ, we record the maximum value of each rate for each numerical time 
step and plot these maximum rates versus the dimensionless model time (Figure 15). Solid density and mass 

Figure 13. Evolution of the dehydration vein for the reference simulation S1. Applied model parameters are given in Table 2. 
Time displayed in panels is dimensionless and normalized by tc for the ambient porosity (Equation 28). The colormaps show 
the dimensionless divergence of the solid velocity, the blue arrows show the fluid velocity field, and the black arrows show 
the solid velocity field. The red contour indicates fluid pressure, pf = 12.7 kbar, whereby values of pf are always smaller 
inside the contour. The blue contour indicates porosity, ϕ = 0.12, whereby values of ϕ are always larger inside the contour. 
The dashed gray contour indicates solid density ρs = 2,700 kg/m 3, whereby values of ρs are always larger inside the contour. 
There are no solid density contours in panel (a) because all densities are <2,700 kg/m 3.
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transfer rates overall decrease during the model evolution (Figure 15). The rate of solid volume change first 
increases and then decreases again (Figure 15). In summary, the results for S1 indicate that the rate of solid 
density change has the strongest and the rate of solid volume change the smallest contribution to ϕ generation. 
However, the rate of solid volume change has a nonnegligible contribution to ϕ generation.

Figure 14. The three mechanisms that control the temporal porosity variation (see Equation 32) for the reference simulation S1 at a dimensionless time of 0.0036. 
Panel (a) shows the colormap of the quantity displayed in the legend for (a), which represents the porosity rate, panel (b) shows the colormap of the quantity displayed 
in the legend for (b), panel (c) shows the colormap of the quantity displayed in the legend for (c), which represents the rate of solid volumetric deformation, panel (d) 
shows the colormap of the quantity displayed in the legend for (d), which represents the rate of solid density variation, and panel (e) shows the colormap of the quantity 
displayed in the legend for (e), which represents the rate of mass transfer. All displayed terms represent dimensionless rates which are normalized by tc for the ambient 
porosity (Equation 28). Symbols are explained in Table 1 and applied model parameters are given in Table 2.

Figure 15. Time evolution of the maximum (per each time step) values of the rate of solid volume change (quantity labeled 
C in Figure 14), rate of solid density change (quantity labeled D in Figure 14) and rate of mass transfer (quantity labeled E in 
Figure 14). Results correspond to the reference simulation S1 (see Table 2). Time is dimensionless and normalized by tc for 
the ambient porosity (Equation 28). The vertical dashed line indicates the time for which results are displayed in Figure 14.
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5. Discussion
5.1. Shear-Driven Dehydration and Olivine Vein Formation

Field observations have led previous authors to hypothesize that en échelon metamorphic olivine veins are caused 
by shear deformation, but this hypothesis has not been tested with a HMC model. Our simulations show that it is 
hydrologically, mechanically, and chemically possible to form olivine veins by dehydration reactions which are 
triggered during ductile shearing of serpentinite. A thermodynamic reaction, such as the dehydration reaction 
considered here, is typically controlled by a narrow zone in pressure-temperature space (e.g., Figures 2e and 3). 
In isothermal models, such as the one presented here, the reaction occurs, therefore, across a narrow pressure 
range (Figure 3c). In our model, we assume that the fluid pressure, pf, controls the reaction which is supported by 
theoretical and experimental studies (e.g., Dahlen, 1992; Llana-Fúnez et al., 2012). The pf is initially homogene-
ous and everywhere in the model domain within the serpentinite stability field, and represents the ambient fluid 
pressure, pa. Only if pa is close to the reaction pressure and if the shear-driven pf perturbations are significant, 
then pf can decrease locally below the reaction pressure during shearing and trigger the dehydration reaction 
(Figure 7). For our model configuration, pa of 13.5 kbar is close enough to trigger dehydration for a reaction 
pressure of 12.65 kbar (pressure difference of 0.85 kbar; Figure 7). Assuming an average density of the overly-
ing rock of 3,000 kg/m 3 for this pressure difference, the dehydration can be triggered when the rocks are within 
a vertical distance of approximately 2.5–3 km to the depth at which the reaction would occur with respect to a 
lithostatic pressure.

Our model for shear-driven dehydration is distinct from other published models of similar dehydration reactions 
(e.g., Huber et al., 2022; Malvoisin et al., 2015; Schmalholz et al., 2020). This is because those models employ 
an initially heterogeneous distribution of pf, where the initial values of pf already correspond to the stability fields 
on both sides of the reaction (e.g., Huber et al., 2022; Malvoisin et al., 2015; Schmalholz et al., 2020). Therefore, 
the initial condition in these models guarantees that the initial pf will trigger the dehydration reaction. In contrast, 
in our model the evolution of a heterogeneous pf distribution is simulated (Figure 6). Whether this evolving pf 
distribution can trigger dehydration and eventually generate an olivine vein, depends on the applied value of pa 
and model parameters, such as the applied relation between δ/r and ϕ (Figures 7–9). Only if the fluid pressure 
decreases locally below the reaction pressure, an olivine vein can form. Consequently, our model predicts that 
mechanical deformation is a potential mechanism for the formation of dehydration veins. An alternative possi-
bility for triggering local dehydration, is an initially heterogeneous chemical composition of the serpentinite. 
For example, some regions in the serpentinite having brucite would dehydrate while other regions exclusively 
composed of antigorite would not dehydrate (e.g., Plümper et al., 2017). Such chemical mechanism does not 
require any solid deformation. However, for such a mechanism the orientation of the olivine veins is entirely 
controlled by the initial chemical composition. The specific en échelon geometry of olivine veins is most likely 
not caused by initial chemical heterogeneity in a non-deforming rock, especially since these veins are formed in 
a strongly sheared antigorite serpentinite.

Field data show that in the Erro Tobbio region the olivine in the studied veins is indeed metamorphic olivine, 
which is also supported by geochemical studies (e.g., Peters et al., 2020). Furthermore, in all presented simula-
tions, the formation of dehydration veins is not a run-away process, but a self-limiting process (Figures 6 and 12). 
Hence, the simulation with initial random porosity perturbation shows the formation of several veins with similar 
length, which stop growing after some amount of shear (Figure 11). The simulation does not show the formation 
of a single vein which grows across the entire model domain (Figure 11). The formation of many veins of similar 
size and orientation, and the absence of few, large veins agree with natural observations (Figure 1). Therefore, 
based on published geochemical studies, structural observations, and our modeling results, we propose that the 
formation of observed olivine veins was the result of a coupled deformation-reaction process that accelerated 
mineral dehydration along orientations, controlled by the local stress field in the sheared serpentinite. Similar 
veins made of metamorphic olivine have been described from subducted serpentinite, such as in the Zermatt-Saas 
unit in the Central Alps (e.g., Kempf et al., 2020).

5.2. Scaling to Dimensional Parameters

We assume now particular values for the model parameters and discuss the applicability and consequences of 
the applied dimensionless numbers, Equation 29 and Table 2, for the natural situation. We assume ηs = 10 17 Pa·s. 
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Despite the importance of serpentinite, its rheology at lithospheric-scale pressure and temperature conditions 
remains not well constrained (e.g., E. C. David et  al.,  2018; Hirauchi et  al.,  2020, and references therein). 
However, for the ambient pressure and temperature conditions considered here, viscosities of serpentinite of 
approximately 10 17  Pa·s seem feasible based on experimental studies (e.g., Chernak & Hirth,  2010; Hilairet 
et al., 2007). We further assume ηf = 10 −3 Pa·s, ϕa = 0.02 and r = 10 cm. Applied values of Ω1 range between 
0.012 and 0.33 and we mainly applied Ω4 = ζ/ηs = 2 (Table 2). For the values assumed above, values of Ω1 
between 0.012 and 0.33 require values for the product 𝐴𝐴 𝐴𝐴𝐴𝐴3

𝑎𝑎 , which represents the ambient permeability, approx-
imately between 4  ×  10 −27 and 3  ×  10 −24  m 2, respectively. Note, that we could have also used the permea-
bility formulation 𝐴𝐴 𝐴𝐴𝐴𝐴3 = 𝐴𝐴𝐴𝐴3

𝑎𝑎(𝐴𝐴∕𝐴𝐴𝑎𝑎)
3
= 𝐴𝐴0(𝐴𝐴∕𝐴𝐴𝑎𝑎)

3 and then k0 would represent the ambient permeability. Such 
values for 𝐴𝐴 𝐴𝐴𝐴𝐴3

𝑎𝑎 indicate that the serpentinite should be essentially impermeable in the regions where the olivine 
veins  form. Experimental studies suggest that serpentinite permeability decreases exponentially with depth and is 
in the order of 10 −23 and 10 −21 m 2 at a depth of 7 km below seafloor (e.g., Hatakeyama et al., 2017). Permeabili-
ties at much greater depth and ambient pressure, as the 12.75 kbar ambient pressure considered here, could hence 
be smaller than 10 −23 m 2. The extrapolation of Hatakeyama et al. (2017) (their Equation 1), for their serpentinite 
termed Sengen-03, suggests a permeability of 10 −26 m 2 already for a confining pressure of approximately 6 kbar. 
Therefore, permeabilities between 10 −24 and 10 −26 m 2, or in other words an effectively impermeable serpentinite 
as required in our models, is not unrealistic for natural serpentinite under a confining pressure of approximately 
12.75 kbar and the assumed temperature of 500°C. Furthermore, ηs could have potentially been smaller than 
10 17 Pa·s during significant shearing, for example, due to a strongly nonlinear deformation behavior as mimicked 
here with a pressure-insensitive yield stress, so that required values for 𝐴𝐴 𝐴𝐴𝐴𝐴3

𝑎𝑎 could also have been larger than 
10 −24 m 2, keeping values of Ω1 the same.

For Ω2 we applied a value of 0.11 which requires a value of 𝐴𝐴 𝐷𝐷𝑥𝑥𝑥𝑥 of approximately 10 −9 s −1. For a typical subduc-
tion velocity of 3 cm/yr, a shear zone must be 1 m thick so that a relative shear velocity across the shear zone 
generates a shearing rate of 10 −9 s −1. Such strain rate and ηs = 10 17 Pa·s generates a shear stress in the order of 
100 MPa. We also applied a yield stress in some simulations to limit shear stresses to 100 MPa (Figures 10a–10d 
and 11). Such shear stresses agree with recent studies that estimate shear stresses between 40 and 160 MPa at 
subduction interfaces (e.g., England, 2018; England & Smye, 2023). Fast shearing rates of 10 −9 s −1 are presum-
ably more likely achieved during aseismic slow slip events, whereby shearing velocities are larger than a few 
centimeters per year. For example, typical slip velocities associated with long term slow slip events are between 
35 and 70 cm/yr (1–2 mm/day; see review of Behr and Bürgmann (2021), and references therein) and for such 
faster slip velocities strain rates of 10 −9 s −1 are achievable in shear zones with thicknesses of up to approximately 
20 m.

For the parameters assumed above, for 𝐴𝐴 𝐴𝐴𝐴𝐴3
𝑎𝑎  = 10 −25 m 2 and for a typical solid bulk modulus Ks = 10 11 Pa, the 

characteristic time (tc, Equation 28) for ϕa is approximately 30 years. The typical dimensionless time at which 
simulations reached a steady-state, where minimum values of pf and maximum values of ρs stopped changing 
considerably, is approximately 0.025 (Figure 12). This dimensionless time corresponds then to a natural duration 
of approximately 10 months. For 𝐴𝐴 𝐴𝐴𝐴𝐴3

𝑎𝑎  = 10 −24 m 2, the duration is approximately 1 month. The applied value of 
Ω5 = tkin/tc = 0.0025 means that the characteristic kinetic time should be at least one order of magnitude shorter 
than the typical time, or duration, of the vein formation. This means that the kinetic time should be shorter than 
1 or 0.1 months (3 days) for values of 𝐴𝐴 𝐴𝐴𝐴𝐴3

𝑎𝑎 of 10 −25 m 2 or 10 −24 m 2, respectively. For values of ζ = 2·10 17 Pa·s 
and Kd = Ks/2 = 5·10 10 Pa, the visco-elastic Maxwell time, tMax = ζ/Kd, is approximately 1.5 months. The value 
of Ω6 = tMax/tc is then 0.004 if tc is calculated with 𝐴𝐴 𝐴𝐴𝐴𝐴3

𝑎𝑎  = 10 −25 m 2. This value is close to the applied value of 
Ω6 = 0.001 (Table 2).

In summary, the scaling shows that the applied dimensionless parameters are applicable to a natural situation of 
shear-driven olivine vein formation, where serpentinite is effectively impermeable and shear deformation is fast, 
potentially resulting from aseismic slow slip events.

In future studies, we aim to potentially elaborate the applied dimensionless parameters and characteristic scales. 
For example, the reaction and porous flow is controlled in our model by the amplitude of the fluid pressure 
perturbation. A systematic analysis might reveal the parameters that control both the maximum amplitude and 
the quasi-steady-state amplitude of the fluid pressure perturbation (Figure  12b). Also, we aim to eventually 
determine another characteristic time scale that enables to collapse the different curves of maximum solid density 
versus time onto a single characteristic curve (Figure 12c).
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5.3. Shear-Driven High-Porosity Fluid Bands Without Dehydration

In S2 with pa  =  14.5  kbar, in which no dehydration reaction occurs (Figures  7a–7d), one might expect the 
formation of elongated regions with increased ϕ due to a process similar to the process that forms localized 
melt bands during simple shearing of partially molten rock (e.g., Holtzman et  al.,  2003; Katz et  al.,  2006; 
Spiegelman, 2003; Stevenson, 1989). However, in the simulation with pa = 14.5 kbar no such bands with high ϕ 
formed (Figures 7a–7d). One reason might be that the characteristic time scale of fluid flow, tc, is too short with 
respect to the duration of shearing, because the final dimensionless time of the simulation with pa = 14.5 kbar is 
0.176 (Figure 7d). This means that tc is approximately a factor of 5 longer than the duration of the simulation. To 
test the impact of tc, we performed simulation S20 with pa = 14.5 kbar and with a value of 𝐴𝐴 𝐴𝐴𝐴𝐴3

𝑎𝑎 that is 100 times 
larger compared to S1. Therefore, tc in S20 is 100 times shorter compared to S1 and the corresponding Ω1 is 10 
times larger, namely Ω1 = 0.33 (Figures 16a–16d). For such values of tc and Ω1, the simulation shows indeed the 
formation of an elongated region with high ϕ which is oriented parallel to the orientation of σ1 (Figures 16a–16d). 
We also performed simulation S21 with an initially random perturbation, with pa = 14.5 kbar, and for the same 
values of tc and Ω1 = 0.33 as for S20. S21 also shows the formation of elongated regions of high ϕ, oriented 
parallel to σ1 (Figures 16e−16h). For S20 and S21, the final dimensionless time is >1, indicating that tc is shorter 
than the duration of shearing so that significant fluid flow can occur during the shearing. S20 and S21 show that 
during shearing of serpentinite without reaction, that is during the formation of serpentinite mylonites, elon-
gated high-porosity regions, with lower shear viscosity can form. The formation of such elongated high-porosity 
regions could have been one mechanism causing the formation of shear bands in the antigorite serpentinite which 
are frequently observed in the Erro Tobbio region (e.g., Hermann et al., 2000; Scambelluri et al., 1995). Once 
pa will become close to the reaction pressure, due to continued burial, these high-porosity, low-viscosity fluid 
bands might then have favored the generation of olivine veins, similar to our simulations with an oblique initial 
Gaussian ϕ distribution.

Figure 16. Formation of localized, high-porosity fluid bands without dehydration reaction for simulations S20 and S21 (see Table 2). Color plots show porosity, ϕ. 
Time is dimensionless and normalized by tc, blue contours indicate ϕ = 0.15 and orange contours indicate viscosities of ηs/ηsa = 1/40. Panels (a–d) show color plots 
of ϕ for the simulation S20. Red arrows indicate fluid velocity. Panels (e–h) show the simulation S21. The total area within the orange contour lines is increasing with 
time, indicating an effective weakening of the model domain due to the increase in areas with ηs/ηsa < 1/40. Regions with high ϕ become elongated and parallel to the 
orientation of σ1 (see Figure 4).
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5.4. Simplifications

The modeled process involves the coupling of a metamorphic reaction, significant density changes, porous 
fluid flow and rock deformation. Therefore, the studied process and the applied HMC model are already quite 
complex. On the other hand, we simplified each of the hydraulic, mechanical, and chemical processes to develop 
a mathematical model that is still transparent and relatively easy to solve numerically.

For the hydraulic process, we consider a standard Darcy flow model with an isotropic permeability that has a 
cubic dependence on ϕ (kϕ 3). The exponent of ϕ can also differ from 3 and values between 1 and 25 have been 
reported (e.g., C. David et al., 1994). Furthermore, this exponent can also vary during a compaction process (e.g., 
Hommel et al., 2018), the porosity-permeability relations could be more complex (e.g., Costa, 2006; Hommel 
et al., 2018) and/or the porosity-permeability relation could also be spatially variable in the serpentinite. There-
fore, there is considerable uncertainty concerning the natural porosity-permeability relation in the serpentinite, 
especially at 12.75 kbar and 500°C ambient pressure and temperature, respectively.

For the mechanical shearing process, we consider a flow law in which the shear viscosity is only a function of 
porosity. In a natural serpentinite with constant porosity, the relationship between deviatoric stress and strain rate 
could be nonlinear due to an effective shear viscosity that depends on the stress magnitude, the mineral grain size, 
and the chemical composition. Such nonlinearity can be mathematically represented by a power-law relationship 
between deviatoric stress, τ, and strain rate, D, of the form τ m ≈ D (e.g., Montesi & Zuber, 2002). If m » 1, then 
τ increases insignificantly with increasing D. To test the impact of such nonlinear stress-strain rate relationships, 
we have also performed simulations with a pressure-insensitive yield stress, in which stress remains constant for 
increasing strain rate and which represents a considerably nonlinear flow law for m » 1. Concerning the effec-
tive shear viscosities: During olivine vein formation, ρs changes continuously from ρs for serpentinite to ρs for 
olivine indicating a transient transformation from antigorite + brucite to forsterite (Figure 12c). Furthermore, in 
modeled regions with ρs > 3,000 kg/m 3, values of ϕ > 0.4 (Figure 11). In nature, the fluid is likely distributed 
along mineral grain boundaries and we assume that a mixture of grains, transforming from antigorite + brucite 
to forsterite, and fluid with ϕ > 0.4 has a low effective shear viscosity. An individual, fully transformed forsterite 
grain has a much larger shear viscosity and could potentially also deform in a frictional-plastic manner at 500°C. 
Moreover, we apply a constant value of a for the exponential relationship between ηs and ϕ (Equation 16) over the 
entire ϕ range between 0.02 and ∼0.5. However, a could also vary with ϕ, especially for higher values of ϕ > 0.2.

For the chemical process, we consider for simplicity a fixed chemical composition for which forsterite + water 
results from dehydration of antigorite + brucite + a small amount of free water. We consider this small amount 
of free water simply to be able to apply the governing two-phase equations for solid-fluid mixtures in the entire 
model domain and to calculate thermodynamically the fluid density in the stability field of antigorite + brucite 
(Figure 3c). Natural chemical compositions, in for example, the Erro-Tobbio unit, are more complex and feature 
a higher chemical variability as considered in our model. However, the main aim of our study is to investi-
gate  the  fundamental coupling between dehydration reactions, density changes, fluid flow and rock deformation, 
justifying the use of a simplified MSH system. A more elaborated system would be the FMASH system which 
also considers aluminum, Al, and iron, Fe (e.g., Padrón-Navarta et al., 2013). One effect of the FMASH system, 
applied to our isothermal model, would be that both brucite and olivine could be stable at the same pressure 
over  a range of pressure, within a so-called divariant field (e.g., Padrón-Navarta et al., 2013). Consequently, the 
H2O liberation would not be controlled by a specific pressure but would rather occur over a pressure interval. 
Such a pressure interval is already considered in our model because the modeled reaction does not occur sharply 
at one specific fluid pressure, but over an interval between 12.6 and 12.7 kbar. Considering a FMASH system 
would allow to constrain this pressure interval better. Furthermore, our model suggests that natural areas of 
serpentinite dehydration, consisting of olivine and water, are mechanically weak due to their high, up to 0.5, 
porosity, and water content as proposed by Hermann et al. (2000). After the formation of the dehydration veins, 
the water eventually escapes the dehydration region, so that finally only olivine is left in the veins.

5.5. Potential Applications to Deep-Seated Slow Slip and Tremor

The presented model could potentially be applied to investigate fluid-related processes causing episodic tremor 
and slow slip events (ETS; e.g., Behr & Bürgmann, 2021; Peng & Gomberg, 2010). Despite the lack of consen-
sus on the inter-relationships between dehydration, fluid flow, critical stress and ETS, the coincidence of the 
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location of low-frequency earthquakes to regions with high Vp/Vs ratios requires the consideration of fluid flow 
and dehydration in these settings (e.g., Behr & Bürgmann, 2021; Burlini et al., 2009; Kato et al., 2010; Shelly 
et al., 2007; Van Avendonk et al., 2010). For example, Van Avendonk et al. (2010) infer a zone of very high Vp/
Vs of 6 at the top of the subducting Cocos slab between 35 and 55 km depth, lying downdip of the seismogenic 
zone. They propose that these high Vp/Vs ratios are due to several-meter thick shear zones under high pore 
pressure and that the hydrous pore fluids were generated by prograde dehydration reactions. The 35–55  km 
depth range with inferred high Vp/Vs ratios corresponds to the depth range and ambient pressure considered 
in our model. In addition, the correlation of rapid-tremor migration to pore-pressure waves suggests that this 
coincidence can be explained by the coupled processes of dehydration, fault weakening and tremor migration 
(Cruz-Atienza et al., 2018). Thus, the formation of fluid-filled veins, as modeled here, can be correlated to the 
transient weakening that is inferred in regions of dehydration. Furthermore, the dehydration reaction, generating 
olivine-fluid bearing veins, and the subsequent fluid escape, leaving behind olivine-only veins, will cause a 
viscosity inversion: when significant fluid is present in the olivine bearing veins, then the effective viscosity of 
the olivine-fluid veins is smaller than the viscosity of the serpentinite; but once the fluid has escaped the veins 
the effective viscosity of the olivine-only veins is larger than the viscosity of the serpentinite. Such viscosity vari-
ation and inversion likely strongly impact the spatial and temporal distribution of stresses. We predict that, under 
the presence of a general anisotropic stress field, the vein formation will lead to an increase of the anisotropic 
effective viscosity of the subducted mantle rocks because of the different effective viscosities of serpentinite and 
olivine + fluid assemblages. When the fluid is completely drained from these veins, the anisotropy and viscosity 
contrast between olivine and serpentinite will be permanent.

6. Conclusions
We developed a 2D hydro-mechanical-chemical model to study the formation of olivine veins caused by the dehy-
dration of serpentinite during ductile deformation. The model considers the reaction antigorite + brucite = fors-
terite  +  water and the significant changes in solid density resulting from this reaction. The model predicts 
shear-driven formation of olivine dehydration veins and, hence, supports the hypothesis of shear-driven forma-
tion of metamorphic olivine veins in the antigorite serpentinites of the Erro Tobbio unit (Figure 1).

The fluid and total pressures are initially homogeneous in the model and correspond to the serpentinite stabil-
ity field. The applied model, hence, does not a priori prescribe that dehydration takes place. In contrast, the 
model can predict the self-consistent generation of fluid pressure perturbations during shearing of mechanically 
heterogeneous serpentinite, which spontaneously trigger the dehydration reaction and cause the formation of 
olivine veins. The modeled veins consist of a weak forsterite-water mixture and grow in a direction parallel to 
the maximum principal stress which is controlled by the applied far-field simple shear. The modeled growth of 
dehydration veins is not an unstable, or runaway, process, but a self-limiting process because minimum values of 
fluid pressure and the vein length eventually reach a steady state.

The applied initial porosity geometry, a pressure-insensitive yield strength, mimicking a strongly stress depend-
ent effective viscosity, an elastic component of compaction, the dependence of the compaction viscosity on 
the inverse of porosity and reaction kinetics have a minor impact on olivine vein formation in our simulations. 
Conversely, the applied ambient fluid pressure and the relationship between compaction length and porosity have 
a strong impact. For the applied model configuration, a shear viscosity with exponential dependence on porosity 
provides a compaction length which first increases and subsequently decreases with increasing porosity and is 
suitable for the formation of olivine veins.

The rate of porosity generation during dehydration is controlled by the rates of three mechanisms: the rate of solid 
volumetric change, the rate of solid density change and the rate of reactive mass transfer. All three mechanisms 
contribute to the porosity generation during shearing. In the performed simulations, the rate of solid density 
change had the strongest and the rate of solid volumetric change the weakest impact on porosity generation.

Olivine veins are observed in several high-pressure serpentinites in the Western Alps and Liguria. The modeled 
veins have a similar orientation as natural en échelon olivine veins in serpentinite mylonite. The self-limiting 
feature of the modeled vein growth might also explain the natural observation of many smaller olivine veins 
and the absence of few large olivine veins. Furthermore, the presented model can explain transient weakening 
and the generation of mechanical anisotropy during dehydration when the elongated, parallel, and high-porosity 
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veins consist of a fluid-olivine mixture. The eventual escape of the fluids will cause a viscosity and anisotropy 
inversion since olivine-only veins are stronger than serpentinite. Such transient weakening, anisotropy gener-
ation and viscosity inversion may be important processes during slow slip and tremor observed at subduction 
zones. Rescaling of the model results to natural conditions suggests that the natural serpentinite should have 
been effectively impermeable, with ambient permeabilities smaller than approximately 10 −24 m 2, during olivine 
vein formation and the shearing rate should have been in the order of 10 −9 s −1, presumably during periods of 
slow slip.

Appendix A
A1. Numerical Algorithm

To determine the unknowns pf, p, ϕ, 𝐴𝐴 𝐴𝐴𝑠𝑠𝑥𝑥 and 𝐴𝐴 𝐴𝐴𝑠𝑠𝑦𝑦 we employ the iterative accelerated PT method (Räss et al., 2022) 
using a finite difference discretization on a regular Cartesian staggered grid, described in Schmalholz et al. (2020). 
For example, Equation 10 is used to solve for ϕ. Therefore, a PT derivative of ϕ, written as 𝐴𝐴 Δ𝑃𝑃𝑃𝑃 𝜙𝜙∕Δ𝑡𝑡𝑃𝑃𝑃𝑃𝜑𝜑  , is added 
to the left-hand side of Equation 10, which yields

Δ𝑃𝑃𝑃𝑃 𝜙𝜙

Δ𝑡𝑡𝑃𝑃𝑃𝑃𝜑𝜑
=

𝜕𝜕

𝜕𝜕𝑡𝑡
[𝜌𝜌𝑋𝑋(1 − 𝜙𝜙)] + ∇ ⋅ [𝜌𝜌𝑋𝑋(1 − 𝜙𝜙)𝐯𝐯𝑠𝑠]. (A1)

Within a PT iteration loop the value of 𝐴𝐴 𝐴𝐴 is iteratively updated and the value of 𝐴𝐴 Δ𝑃𝑃𝑃𝑃 𝜙𝜙∕Δ𝑡𝑡𝑃𝑃𝑃𝑃𝜑𝜑  converges toward 
zero during the iterations. The iterations are stopped once the value of 𝐴𝐴 Δ𝑃𝑃𝑃𝑃 𝜙𝜙∕Δ𝑡𝑡𝑃𝑃𝑃𝑃𝜑𝜑  is smaller than a specified 
tolerance value. This tolerance value corresponds to the residual of the numerically solved PDE (see also Halter 
et al., 2022). The unknowns 𝐴𝐴 𝐴𝐴𝑓𝑓 , 𝐴𝐴 𝐴𝐴 , 𝐴𝐴 𝐴𝐴𝑠𝑠𝑥𝑥 and 𝐴𝐴 𝐴𝐴𝑠𝑠𝑦𝑦 are determined with the same PT method within the same iteration 
loop. The system of PT equations is:

Δ𝑃𝑃𝑃𝑃 𝑝𝑝𝑓𝑓

Δ𝑡𝑡𝑃𝑃𝑃𝑃
𝑝𝑝𝑓𝑓

= −
𝜕𝜕𝜕𝜕𝑃𝑃

𝜕𝜕𝑡𝑡
+ ∇ ⋅

[

𝜕𝜕𝑓𝑓
𝑘𝑘𝑘𝑘3

𝜂𝜂𝑓𝑓
∇𝑝𝑝𝑓𝑓

]

− ∇ ⋅ (𝜕𝜕𝑃𝑃 𝐯𝐯
𝑠𝑠)

Δ𝑃𝑃𝑃𝑃 𝑘𝑘

Δ𝑡𝑡𝑃𝑃𝑃𝑃𝜑𝜑
=

𝜕𝜕

𝜕𝜕𝑡𝑡
[𝜕𝜕𝑠𝑠𝑋𝑋𝑠𝑠(1 − 𝑘𝑘)] + ∇ ⋅ [𝜕𝜕𝑠𝑠𝑋𝑋𝑠𝑠(1 − 𝑘𝑘)𝐯𝐯𝑠𝑠]

Δ𝑃𝑃𝑃𝑃 𝑣𝑣𝑠𝑠
𝑖𝑖

Δ𝑡𝑡𝑃𝑃𝑃𝑃𝑣𝑣
= ∇ ⋅ 𝜎𝜎𝑖𝑖𝑖𝑖

Δ𝑃𝑃𝑃𝑃 𝑝𝑝

Δ𝑡𝑡𝑃𝑃𝑃𝑃𝑝𝑝
= −∇ ⋅ 𝐯𝐯

𝑠𝑠 −
1

𝐾𝐾𝑑𝑑

(

𝑑𝑑𝑝𝑝

𝑑𝑑𝑡𝑡
− 𝛼𝛼

𝑑𝑑𝑝𝑝𝑓𝑓

𝑑𝑑𝑡𝑡

)

−
𝑝𝑝 − 𝑝𝑝𝑓𝑓

(1 − 𝑘𝑘)𝜁𝜁

. (A2)

To discretize the physical time derivatives, such as ∂ρT/∂t, we employ a “physical” time step, Δt. The applied 
values of Δt and of the PT, Δt PT, time steps are typically:

Δ𝑡𝑡 = 4 × 10
−6 𝑟𝑟2𝜂𝜂𝑓𝑓

𝑘𝑘𝑘𝑘3
𝑎𝑎 𝐾𝐾𝑠𝑠

Δ𝑡𝑡𝑃𝑃𝑃𝑃
𝑘𝑘

= Δ𝑡𝑡

Δ𝑡𝑡𝑃𝑃𝑃𝑃
𝑝𝑝𝑓𝑓

= 𝐶𝐶𝑝𝑝𝑓𝑓

max (Δ𝑥𝑥𝑥Δ𝑦𝑦)
2

max

(

𝑘𝑘𝑘𝑘3𝐾𝐾𝑠𝑠

𝜂𝜂𝑓𝑓

)

Δ𝑡𝑡𝑃𝑃𝑃𝑃𝑣𝑣 = 𝐶𝐶𝑣𝑣

max (Δ𝑥𝑥𝑥Δ𝑦𝑦)
2

max(𝜂𝜂𝑠𝑠)

Δ𝑡𝑡𝑃𝑃𝑃𝑃𝑝𝑝 = 𝐶𝐶𝑝𝑝

max(𝜂𝜂𝑠𝑠)Δ𝑥𝑥

𝑤𝑤

 (A3)

where Δx and Δy are horizontal and vertical numerical grid spacing, respectively, and the values of the factors Cpf, 
Cv, and Cp can vary for different simulations, mainly to reduce the number of required PT iteration loops. More 
information concerning the choice of such PT time steps can be found in Räss et al. (2022) and Wang et al. (2022). 
Upon convergence, these iterations provide results which are equivalent to results of a numerical-implicit method, 
since the gradients of the numerical variables are updated in each iteration.

 21699356, 2023, 11, D
ow

nloaded from
 https://agupubs.onlinelibrary.w

iley.com
/doi/10.1029/2023JB

026985 by Schw
eizerische A

kadem
ie D

er, W
iley O

nline L
ibrary on [13/03/2024]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



Journal of Geophysical Research: Solid Earth

SCHMALHOLZ ET AL.

10.1029/2023JB026985

31 of 37

For reasons of numerical efficiency, we approximate the thermodynamic relations of the densities and mass frac-
tions with the fluid pressure, obtained with Gibbs free-energy minimization, with analytical functions (Figures 3c 
and 3d):

𝜌𝜌𝑓𝑓 = 1194 × ln

(

𝑝𝑝𝑓𝑓

𝑝𝑝𝑖𝑖𝑖𝑖𝑖𝑖
+ 1

)1∕3.5

𝜌𝜌
𝐸𝐸𝐸𝐸
𝑠𝑠 = −tanh

(

600 ×
𝑝𝑝𝑓𝑓 − 𝑝𝑝𝑅𝑅

𝑝𝑝𝑖𝑖𝑖𝑖𝑖𝑖

)

× 323.32 + 2848 +

(

𝑝𝑝𝑓𝑓

𝑝𝑝𝑖𝑖𝑖𝑖𝑖𝑖
− 0.0078

)

× 30.4762

𝑋𝑋
𝐸𝐸𝐸𝐸
𝑠𝑠 = −tanh

(

600 ×
𝑝𝑝𝑓𝑓 − 𝑝𝑝𝑅𝑅

𝑝𝑝𝑖𝑖𝑖𝑖𝑖𝑖

)

× 0.1292 + 0.8707

 (A4)

where pR is the reaction pressure, here 12.65 kbar. We use the functions above in the numerical algorithm to 
calculate densities and mass fraction from the current fluid pressure. We provide a general overview, in the form 
of a simple flowchart, of the structure of the numerical algorithm and the order of the governing equations in 
which they are solved within the iteration loop in Figure A1.

Figure A1. Simplified flow chart of the applied numerical algorithm and the order of the equations in which they are solved 
inside the pseudo-transient (PT) iteration loop. The PT iteration loop calculates the unknowns and simultaneously treats the 
various nonlinearities, such as porosity-dependent shear viscosity and permeability. The time loop calculates the evolution of 
the unknows with time. Symbols are explained in Table 1.
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A2. Numerical Resolution and Accuracy Test

We present here the results of a numerical resolution and accuracy test. Such tests are essential to determine whether 
the evolution of the dehydrating region is independent of (a) the employed numerical resolution and (b) the 
applied tolerance to exit the PT iteration loop. We performed the simulation S1 with the following different 
numerical resolutions: 300 × 300, 500 × 500, 700 × 700, 900 × 900 and 1,100 × 1,100 grid points (Figure A2). 
For a dimensionless model time of 0.0152, the ratio of the maximum porosity in the model domain divided 
by the maximum porosity for a simulation with 1,100 × 1,100 grid points is plotted versus the corresponding 
resolution for simulations with different resolution (Figure A2a). Similar ratios are plotted for the minimum 
fluid pressure in the model domain and the average value of the fluid velocity. The higher the resolution, the 
less the three ratios vary, indicating the convergence of the numerical results upon increasing numerical resolu-
tion. The differences for the minimum fluid pressure are so small (see Figure A2b) that they are hardly visible. 
The evolution of the minimum fluid pressure in the model domain with time is shown for different numerical 
resolutions (Figure A2b). With larger numerical resolution, the temporal evolution of the minimum fluid pres-
sure varies less, indicating again the convergence of the numerical results for increasing numerical resolution. 
Finally, the spatial distribution of pf at a dimensionless time of 0.0152 is displayed for three different resolutions 

Figure A2. Numerical resolution test for the reference simulation S1. (a) For a dimensionless model time of 0.0152, the ratio of the maximum porosity in the model 
domain divided by the maximum porosity for a simulation with a resolution of 1,100 × 1,100 grid points is plotted vs. the corresponding resolution for simulations with 
different resolution. Similar ratios are plotted for the minimum fluid pressure in the model domain and the mean value of the fluid velocity. The larger the resolution, 
the less the three ratios vary. (b) Evolution of minimum fluid pressure in the model domain with time for different numerical resolutions (see legend). With larger 
resolution, the evolution of fluid pressure varies less. Panels (c–e): At a dimensionless model time of 0.0152, the colormap of the fluid pressure is displayed for three 
different resolutions (see numbers in panel titles). Two contour lines of fluid pressure are displayed for better comparability. A resolution of 900 × 900 was applied in 
the simulations presented in the main text.
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(Figures A2c–A2e). For numerical resolutions of 300 × 300, 700 × 700, and 900 × 900 the contours of pf are 
smooth and the colormaps of pf are similar (Figures A2c–A2e). The numerical resolution test shows that the 
applied numerical model provides results which converge for increasing numerical resolution and are, hence, 
not dependent on the numerical resolution. For the presented numerical simulations, a numerical resolution of 
900 × 900 was applied.

We also present a test for the numerical accuracy of the applied iterative PT solver. If the partial differential 
equations are solved correctly, then the left-hand sides of Equation A2 are zero. However, since these equations 
are solved with numerical approximations, the value of the left-hand side of the numerical form of Equation A2 
is not exactly equal to zero. The deviation from zero is typically called a residual. During the iterative solu-
tion, iterations are performed until all residuals at all numerical grid points for all equations decrease below a 
certain tolerance value. We calculated the first time step for simulation S1 for different values of the tolerance 
(Figure A3). We choose three representative quantities to test their change with a change of the tolerance. These 
quantities are the minimum fluid pressure in the model domain, the maximal total pressure in the model domain 
and the maximal value of the second invariant of the deviatoric stress tensor (Figure A3). All three quantities 
stop changing once the tolerance decreases below a value of 10 −6. The results presented in Figure A3 show 
the convergence of the results with decreasing tolerance. A tolerance of 10 −6 was applied in the presented 
simulations.

Figure A3. Numerical accuracy test for the reference simulation S1 after the first numerical time step. (a) The minimum value of the fluid pressure in the model 
domain vs. the applied tolerance of the iterative pseudo-transient solver. (b) Maximum value of total pressure vs. tolerance. (c) Maximum value of second invariant of 
deviatoric stress tensor versus tolerance. Once the tolerance is equal or smaller than 10 −6 the three numerical values do not change anymore. A tolerance of 10 −6 was 
used in the presented simulations.
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