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Chapter 1

Introduction & Notation

In this dissertation our main aim is the study of the asymptotics of the classical continuous and

discrete ruin probabilities of Gaussian processes and their generalizations: Parisian, sojourn, γ-

reflected and storage ruins. The classical ruin problem for Gaussian process is the computation of

the asymptotics of

P {∃t ∈ T : X(t) > u} , u→∞, (1.1)

where X(t), t ∈ T is a Gaussian process with almost surely continuous sample paths and T is

some measurable subset of the real line. Typically, in this work T is a closed finite interval, uniform

grid or positive ray of the real line, while X is a centered process with stationary increments (often

fractional Brownian motion or Brownian motion) and negative linear drift.

The asymptotic analysis of the probability in (1.1) is an important part of the extreme value theory

that applies in many fields: insurance, reinsurance, finance and physics. We refer to a list of various

applications of the extreme value theory to monograph [31], while for the particular role of the

study of the ruin probabilities for Gaussian models to [57]. Currently a lot of Gaussian ruin prob-

lems have been investigated under continuous-time setup, we refer to, e.g., [27, 49, 56, 57, 59, 60]

and references therein. In this work we mainly focus on the discrete-time settings of the ruin prob-

lem. Here we usually observe different scenarios of the asymptotic behavior of the discrete ruin

probabilities if the variance of X in (1.1) is regularly varying at infinity with index not exceeding 1.

The second aim of the thesis is the study of the Pickands constants that commonly appear in the

asymptotics of the ruin probabilities of Gaussian processes, see, e.g., [12, 30]. We devote Chapter

7 to study various properties of the discrete and continuous classical Pickands constants. Also,

throughout the dissertation we introduce numerous Pickands and Piterbarg type constants and

study their basic properties.
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In Chapter 2 we explain how to apply the double-sum method, i.e., the main technique for deriv-

ing approximations of the ruin probabilities of Gaussian processes. By this approach we solve the

classical, Parisian, sojourn and γ-reflected problems for Brownian motion discrete-time setting. To

prove our results we rely on the self-similarity and independence of the increments of Brownian mo-

tion, these properties and the discrete time setup allow us to give relatively simple rigorous proofs.

In Chapter 3 we study the aymptotics of the ruin probabilities in discrete fractional Brownian mo-

tion risk models. We observe, that discretization of time leads to different asymptotical behavior

even in some most simple and natural models. Moreover, for some cases discretization does not

allow to derive the asymptotics, there we present optimal bounds.

In Chapter 4 we study the simultaneous Parisian ruin problem for fractional Brownian motion.

Here the scenario of behavior of the ruin probability is determined by the length of the interval

needed to clarify that a Parisian ruin occurs. Also, we suggest an approach for approximation of

the numerical values of the Pickands and Piterbarg type constants appearing in the asymptotics

via Monte-Carlo simulations.

In Chapter 5 we study the sojourn ruin problem for the model introduced in the previous chapter.

The main difficulty here comparing with the problems of Chapters 3 and 4 is the less developed

instruments for approximation of the sojourn ruin.

In Chapter 6 we solve the classical discrete ruin problem for the class of Gaussian process with

stationary increments, almost surely continuous sample paths and regularly varying at infinity

variance satisfying some smoothness conditions. We generalize this problem to the ruin problem

of the suprema and infima of the corresponding storage process. In some special cases we observe

that the discrete asymptotics are exponentially smaller than their continuous counterparts; in

other case we detect the strong Piterbarg property for the storage process.

In Chapter 7 we investigate some properties of the classical discrete and continuous time Pickands

constants. First of all, we give a relatively precise upper bound for the difference between the

continuous and discrete Pickands constants with the same Hurst index. This bound is useful for

estimation of the discretization-error appearing in the approach of approximation of the continu-

ous Pickands constants introduced in [30]. Secondly, we present an explicit representation of the

classical discrete Pickands constant for Brownian motion in terms of converging series. This rep-

resentation allows us to show:

1) that the discrete Brownian motion Pickands constant is strictly decreasing with respect to the

size of the grid;
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2) the exact speed of convergence of the discrete Brownian motion Pickands constant to the cor-

responding continuous one. It is interesting, that the Riemann zeta function effects the answer.

In Chapter 8 we give alternative proofs of some results of the previous chapters. These proofs

are based on the useful properties of Brownian motion: the independence and stationarity of the

increments and self-similarity. We also avoid using special tools and rely only on well-known results.

Next, we present the basic notation throughout the thesis. The notation above is applicable for

all following chapters.

Let Φ and Φ be the distribution and survival functions of a standard Gaussian random variable,

respectively.

Standard fractional Brownian motion is a centered Gaussian process with a.s. continuous sample

paths, BH(0) = 0 and covariance function

cov(BH(t), BH(s)) =
1

2
(|t|2H + |s|2H − |t− s|2H), t, s ∈ R.

If H = 1/2, then B1/2 := B is a standard Brownian motion. Unless otherwise stated explicitly, we

suppose that B(t) is defined for t ≥ 0, while BH(t) for t ∈ R. We use abbreviations fBM and BM

for fractional Brownian motion and Brownian motion, respectively.

For any a < b ∈ R ∪ {−∞,∞} and τ ≥ 0 we set

[a, b]τ =

[a, b] ∩ τZ, τ > 0

[a, b], τ = 0.

For any η ≥ 0 we denote a discrete uniform grid by

G(η) =

{0, η, 2η, ...}, η > 0

[0,∞), η = 0.

Define the classical Pickands constant for δ ≥ 0 and H ∈ (0, 1) by

Hδ
2H = lim

S→∞

1

S
E

{
sup

t∈[0,S]δ

e
√

2BH(t)−t2H
}
.

It is known (see, e.g., [30]) that the constant above is finite and positive for any δ ≥ 0 and

H ∈ (0, 1). Let H2H := H0
2H and Hδ := Hδ

1.
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Let I(·) be the indicator function.

Let C,C1, C2,C,C1,C2, C̄, C, C̃, etc. be positive constants, that do not depend on any non-fixed

considered parameter. Their numerical values are out of importance and they can be different in

different places.

We use abbreviations "a.s.", "df(s)", "rv(s)" and "i.i.d." to mean almost surely, distribution func-

tion(s), random variable(s) and independent identically distributed, respectively.

We suppose that all stochastic processes and random variables are defined on the complete gen-

eral probability space Ω with the probability measure P. By default we assume that Ω consists of

outcomes ω.



Chapter 2

Brownian Motion Discrete-Time Models

This chapter is based on G. Jasnovidov: Approximation of Ruin Probability and Ruin Time in

Discrete Brownian Risk Models, Scandinavian Actuarial Journal, 718-735, 8, 2020.

2.1 Introduction

The classical Brownian risk model of an insurance portfolio

Ru(t) = u+ ct−B(t), t ≥ 0,

with the initial capital u > 0 and the premium rate c > 0, is a key benchmark model in risk

theory; see e.g., [39]. For any u > 0 define the ruin time

τ(u) = inf{t ≥ 0 : B(t)− ct > u}

and thus the corresponding ruin probability is given by the well-known formula (see e.g., [26])

ψ∞(u) := P {τ(u) <∞} = P
{

inf
t≥0

Ru(t) < 0

}
= e−2cu. (2.1)

In insurance practice however the ruin probability is relevant not on a continuous time scale, but

on a discrete one, due to the operational time (which is discrete). For a given discrete uniform

grid G(δ) we define the corresponding ruin probability by

ψδ,∞(u) := P
{

inf
t∈G(δ)

Ru(t) < 0

}
= P

{
sup
t∈G(δ)

(B(t)− ct) > u

}
. (2.2)

For any u > 0 it is not possible to calculate ψδ,∞(u) explicitly and no formulas are available for

the distributional characteristics of the corresponding ruin time which we shall denote by τδ(u).

A natural question when explicit formulas are lacking is how can we approximate ψδ,∞(u) and

τδ(u) for large u? Also of interest is to know what the role of δ is: does it influence the ruin

25
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probability in this classical risk model? The first question has been considered recently in [47] for

fBM risk process.

When dealing with the Brownian risk model, both the independence of increments and the self-

similarity property are crucial. In particular, those properties are the key to a rigorous and (rela-

tively) simple proof.

Our first result presented next shows that the grid plays a role only with respect to the pre-factor

specified by some constant. Specifically, that constant is well-known in the extremes of Gaussian

processes being the Pickands constant H2c2δ, where

Hη =
1

η
E

{
supt∈ηZ e

W (t)∑
t∈ηZ e

W (t)

}
=

1

η
E
{

max
t≥0,t∈ηZ

eW (t) − max
t≥η,t∈ηZ

eW (t)

}
∈ (0,∞) (2.3)

for any η > 0, with W (t) =
√

2B(t)− |t|. The first formula in (2.3) is derived in [30], whereas the

second in [13].

Theorem 2.1.1 For any δ > 0 we have

ψδ,∞(u) ∼ H2c2δψ∞(u), u→∞ (2.4)

and further for any s ∈ R

lim
u→∞

P
{
c3/2(τδ(u)− u/c)/

√
u ≤ s

∣∣∣τδ(u) <∞
}

= Φ(s). (2.5)

We note that the above results hold for the continuous case too, where the grid G(δ) is substituted

by [0,∞). For that case (2.5) follows from [38]. The approximation in (2.5) shows that the ruin

time is not affected by the density of the grid (i.e., it is independent of δ) and thus we conclude

that the grid influences only the ruin probability. This is not the case for the ruin probability

approximated in (2.4). For the Pickands constants we have, see e.g., [13, 30, 54]

H2c2δ ≤ 1 = lim
δ↓0
H2c2δ.

In particular we see that via self-similarity in the Brownian risk model the role of the grid is

coupled with the premium rate c > 0.

The objective of Section 2 is to explain in detail the main ideas and techniques adequate for

the classical Brownian risk model. Section 3 discusses the ruin probability for the γ-reflected

Brownian risk model, see also [18, 34, 35, 52]. The approximation of Parisian ruin (see [15, 16, 53])

and sojourn ruin (see [17, 21, 22]) is the topic of Section 4. Our findings show that also for those

ruin probabilities, the influence of the grid, i.e., the choice of δ concerns only the leading constant

in the asymptotic expansion being further coupled with the premium rate. Given the technical

nature of several proofs, we shall relegate them to Section 5, which is followed by an Appendix

containing auxiliary calculations.
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2.2 Approximation Techniques for Brownian Risk Model

Both the independence of increments and the self-similarity property of BM render the Brownian

risk model very tractable. In order to approximate ψδ,∞(u) for given δ > 0 we start with the

following lower bound

ψδ,∞(u) = P {∃t ∈ G(δ) : B(t) > u+ ct} ≥ P {B(utu) > u(1 + ctu)}

valid for tu such that utu ∈ G(δ) for all u large. It is clear that such tu exists and moreover

tu =
1

c
+
θu
u
∈ G(δ) (2.6)

holds for some θu ∈ [0, δ) and all large u. Consequently, by the well-known inequality (see, e.g.,

Lemma 2.1 in [56])

(1− 1

u2
)

1√
2πu

e−u
2/2 ≤ Φ(u) ≤ 1√

2πu
e−u

2/2, u > 0 (2.7)

we obtain for all large u and some positive constant C

ψδ,∞(u) ≥ Φ(
√
u/tu(1 + ctu)) ≥

C√
u
e−2cu, (2.8)

where ϕ = Φ′. Although the lower bound above is not precise enough, it is useful to localize a

short interval around

t0 := 1/c

that will lead eventually to the exact approximation of the ruin probability. Indeed, we have with

T±u = u(t0 ± u−1/2 lnu), Z(t) = B(t)− ct

for all large u and any C > 0, p < 0 (the proof is given in the Appendix)

P

{
sup

t/∈[T−u ,T
+
u ]

Z(t) > u

}
≤ Cupe−2cu. (2.9)

Since for any u > 0

P

{
sup

t∈[T−u ,T
+
u ]δ

Z(t) > u

}
≤ ψδ,∞(u) ≤ P

{
sup

t∈[T−u ,T
+
u ]δ

Z(t) > u

}
+ P

{
sup

t/∈[T−u ,T
+
u ]

Z(t) > u

}
(2.10)

by (2.8) and (2.9) we obtain that (set ∆δ(u) = [tu − u−1/2 lnu, tu + u−1/2 lnu] δ
u
)

ψδ,∞(u) ∼ P

{
sup

t∈[T−u ,T
+
u ]δ,

Z(t) > u

}
= P

{
∃t ∈ ∆δ(u) :

B(t)

1 + ct
>
√
u

}
=: Pδ(u), u→∞,

where for the last equality we used the self-similarity property of BM.

In order to approximate Pδ(u) as u→∞ a common approach is to partition ∆δ(u) in small inter-

vals and use Bonferroni inequality in order to determine the main contribution to the asymptotics.
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This idea coupled with the continuous mapping theorem is essentially due to Piterbarg, see e.g.,

[57]. In this paper we use a modified approach in order to tackle some uniformity issues which

arise in the approximations. In particular, we do not use continuous mapping theorem but rely

instead on the independence of increments and self-similarity property of BM. We illustrate below

briefly our approach.

We choose a partition ∆j,S,u,−Nu ≤ j ≤ Nu of ∆δ(u) depending on some constant S > 0 as

follows

∆j,S,u = [tu + jSu−1, tu + (j + 1)Su−1] δ
u
, Nu = bS−1 ln(u)

√
uc. (2.11)

Here b·c stands for the ceiling function. The Bonferroni inequality yields

p1(S, u) ≥ Pδ(u) ≥ p′1(S, u)− p2(S, u), (2.12)

where

p1(S, u) =
Nu∑

j=−Nu−1

pj,S,u, p′1(S, u) =
Nu−1∑
j=−Nu

pj,S,u, p2(S, u) =
∑

−Nu−1≤j<i≤Nu

pi,j;S,u,

with

pj,S,u = P
{
∃t∈∆j,S,u

B(t)

1 + ct
>
√
u

}
and pi,j;S,u = P

{
∃t∈∆i,S,u

B(t)

1 + ct
>
√
u,∃t∈∆j,S,u

B(t)

1 + ct
>
√
u

}
.

As shown in [17] [Eq. (43)] the term p2(S, u), also referred to as the double-sum term, is negligible

compared with p′1(S, u) if we let u→∞ and then S →∞.

Moreover, p1(S, u) and p′1(S, u) are asymptotically equivalent with Pδ(u), i.e.,

lim
S→∞

lim
u→∞

p1(S, u)/p′1(S, u) = lim
S→∞

lim
u→∞

p1(S, u)/Pδ(u) = 1.

The main question is therefore how to approximate p1(S, u)?

In order to answer the above question, we need to approximate each term pj,S,u as u → ∞.

Moreover, such approximation has to be uniform for all j satisfying −Nu ≤ j ≤ Nu, which is

a subtle issue solved in this paper by utilizing the independence of increments of BM and the

self-similarity property; see the proof of Theorem 2.1.1 in Section 5 and [17] for similar ideas in

the continuous time setting.

2.3 γ-Reflected Risk Model

An interesting extension of the classical Brownian risk model is that of γ-reflected Brownian

risk model introduced in [1]. The γ-reflected fBM risk model and its extensions are discussed in
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[18, 34, 35, 52]. In this section we consider the approximation of the ruin probability over a discrete

grid G(δ), δ > 0 for the γ-reflected BM model. Specifically, for γ ∈ (0, 1) we define the risk model

Rγ
u,δ(t) = u+ ct−B(t) + γ inf

s∈[0,t]δ
(B(s)− cs), t ∈ G(δ)

and the corresponding ruin time

τ̃γ(u) = inf{t ≥ 0 : Rγ
u,δ(t) < 0}, γ ∈ (0, 1).

For given δ > 0 we are interested in the ruin probability in discrete time, namely

Υγ,δ(u) := P {τ̃γ(u) <∞}

= P
{
∃t ∈ G(δ) : Rγ

u,δ(t) < 0
}

= P {∃t ∈ G(δ), s ∈ [0, t]δ : u+ ct−B(t) + γB(s)− cγs < 0}

= P {∃t ∈ G(δ), s ∈ [0, t]δ : B(t)− ct− γB(s) + cγs > u} ,

which cannot be calculated explicitly. The risk process Rγ
u,δ(t) is not Gaussian anymore, however

using the independence of the increments of BM and the self-similarity property, for any u > 0

we have with t = k − l, s = l

Υγ,δ(u) = P {∃l ≤ k ∈ G(δ) : B(k)− kc− γ(B(l)− cl) > u}

= P {∃l ≤ k ∈ G(δ) : (B(k)−B(l)) + (1− γ)B(l)− c(k − γl) > u}

= P {∃l ≤ k ∈ G(δ) : B(k − l) + (1− γ)B∗(l)− c(k − γl) > u}

= P {∃t, s ∈ G(δ) : (B(t)− ct) + (1− γ)(B∗(s)− cs) > u}

= P
{
∃t, s ∈ G(δ/u) :

B(t) + (1− γ)B∗(s)

ct+ (1− γ)cs+ 1
>
√
u

}
,

where B∗ is an independent copy of B. The above re-formulation shows that the ruin probability

concerns the supremum of the random field Z given by

Z(t, s) =
B(t) + (1− γ)B∗(s)

ct+ (1− γ)cs+ 1
, s, t ≥ 0. (2.13)

From [35] it follows, that for any η, a > 0

Paη := E

{
sup

t∈[0,∞)η

e
√

2B(t)−t(1+a)

}
∈ (0,∞).

Our next result gives the approximation of the above ruin probability as u→∞.

Theorem 2.3.1 For any δ > 0 and any γ ∈ (0, 1)

Υγ,δ(u) ∼ P
γ

1−γ
2c2(1−γ)2δH

2c2δψ∞(u), u→∞. (2.14)

We note that the basic properties of discrete Piterbarg constants are discussed in [3, 13].
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2.4 Parisian & Sojourn Ruin

2.4.1 Parisian Ruin

In this section we expand our results to the Parisian ruin. For the continuous time [53] gives an

exact formula for the Parisian ruin probability. Both finite and infinite Parisian ruin times for

continuous setup of the problem are dealt with in [15, 16].

Next, for given δ, T positive (suppose for convenience that T/δ ∈ G(δ)) define the Parisian ruin

time and probability for the discrete grid G(δ) by

τδ(u, T ) = {inf t ∈ G(δ) : sup
s∈[t,t+T ]δ

Ru(s) < 0}

and

Pδ(u, T ) = P {τδ(u, T ) <∞} ,

respectively. Our next result shows again that the grid determines the asymptotic approximation

via the constant Hη,T defined for η, T positive by

Hη,T = E


sup
t∈ηZ

inf
s∈[t,t+T ]η

e
√

2B(s)−|s|

η
∑

t∈ηZ e
√

2B(t)−|t|

 ∈ (0,∞). (2.15)

Note that if T = 0, then Hη,0 equals the Pickands constant Hη defined in (2.3). The corresponding

constant for the continuous case is introduced in [15].

Theorem 2.4.1 For any δ, T > 0

Pδ(u, T ) ∼ H2c2δ,2c2Tψ∞(u), u→∞. (2.16)

We see from the approximation above that the premium rate c influences also the leading constant

in the asymptotics.

2.4.2 Sojourn Ruin

Sojourn ruin for fBM risk model has been discussed recently in [21]. As therein, adjusted for the

discrete setup, we define the sojourn ruin time and probability by

τ kδ (u) = {inf t ∈ G(δ) : #{s ∈ [0, t]δ : B(t)− ct > u} > k}

and

Cδ(u, k) = P
{
τ kδ (u) <∞

}
,
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where k is some non-negative integer and the symbol # stands for the number of the elements of

a given set. Note in passing that Cδ(u, 0) = ψδ,∞(u). Next, for η > 0 define the constant

Bη(k) = lim
S→∞

Bη(S, k)

S
,

where for any S > 0

Bη(S, k) =

∫
R

P

η ∑
s∈[0,S]η

I(
√

2B(s)− |s|+ z > 0) > k

 e−zdz.

In view of [22] Bη(k) is positive and finite.

Theorem 2.4.2 For any non-negative integer k we have as u→∞

Cδ(u, k) ∼ B2c2δ(k)ψ∞(u). (2.17)

Remark 2.4.3 i) Defining the ruin times corresponding to Parisian and sojourn ruin, it follows

with similar arguments as in the proof of Theorem 2.1.1 that those can be approximated in the

same way as (2.5).

ii) If k = 0, then the claim in (2.17) reduces to (2.4).

2.5 Proofs

Proof of Theorem 2.1.1: As mentioned in Section 2, the negligibility of the double-sum term

follows by [17], hence the claim in (2.4) follows thus by approximating p1(S, u) as u → ∞. We

show first the approximation of pj,S,u as u → ∞ uniformly for −Nu ≤ j ≤ Nu. Note that with

u = v2 and N being a standard Gaussian rv we have the distributional representation based on

the independence of increments of BM

B(cj,S,u + t/u) =
√
cj,S,vN +B(t)/v, t ∈ [0, S], u > 0, cj,S,v = tu + jSv−2.

Recall that tu ∈ G(δ) is given by tu = 1/c + θu/u for some θu ∈ [0, δ). We have with ϕj,v the

probability density function of √cj,S,vN

pj,S,u = P
{
∃t∈∆j,S,u

: (B(t)−
√
uct) >

√
u
}

=

∫
R
P
{
∃t∈[0,S]δ : (B(t)/v − vc(cj,S,v + t/v2) > v − x|√cj,S,vN = x

}
ϕj,v(x)dx

=
1

v

∫
R
P
{
∃t∈[0,S]δ : (B(t)/v − vc(cj,S,v + t/v2) > v − (v − x/v)

}
ϕj,v(v − x/v)dx

=
1

v

∫
R
P
{
∃t∈[0,S]δ : Z(t) > x+ ccj,S,vv

2
}
ϕj,v(v − x/v)dx

=
1

v

∫
R
P
{
∃t∈[0,S]δ : Z(t) > x

}
ϕj,v(v(1 + ccj,S,v)− x/v)dx
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=
e−v

2(1+ccj,S,v)2/(2cj,S,v)

v
√

2πcj,S,v

∫
R
w(x)ω(j, S, x)dx,

where (recall Z(t) = B(t)− ct, t ≥ 0)

w(x) = P
{
∃t∈[0,S]δ : Z(t) > x

}
, ω(j, S, x) = ex(1+ccj,S,v)/cj,S,v−x2/(2cj,S,vv

2). (2.18)

Using Borell-TIS inequality (see, e.g., [50]) we have (proof is given in the Appendix)∫
R
w(x)ω(j, S, x)dx =

∫ M

−M
w(x)e2cxdx+ AM,v, (2.19)

where AM,v → 0 as u → ∞ and then M → ∞, uniformly for −Nu ≤ j ≤ Nu and S > 0. By the

monotone convergence theorem

lim
M→∞

∫ M

−M
w(x)e2cxdx =

1

2c
E

{
sup

t∈[0,S]δ

e2cB(t)−2c2t

}

=
1

2c
E

{
sup

t∈[0,S]δ

e
√

2B(2c2t)−2c2t

}
=

1

2c
E

{
sup

t∈[0,2c2S]2c2δ

e
√

2B(t)−t

}
.

In a view of the definition of discrete Pickands constants, see e.g., [12, 30]

lim
S→∞

1

2c2S
E

{
sup

t∈[0,2c2S]2c2δ

e
√

2B(t)−t

}
= H2c2δ,

with Hη defined in (2.3). Consequently, the asymptotics of p1(S, u) as u→∞ and therefore also

(2.5) follow by calculating the limit as u→∞, S →∞ of

Kv,S = e2v2ccS
Nu∑

j=−Nu−1

e−v
2(1+ccj,S,v)2/(2cj,S,v)

v
√

2πcj,S,v
.

Setting

f(t) = (1 + ct)2/2t = 1/(2t) + c+ c2t/2, f ′(t) = (−1/t2 + c2)/2, f ′′(t) = 1/t3

we have that f ′(t0) = 0 implying

f(t0 + x)− f(t0) =
f ′′(t0)

2
x2 +O(x3)

as x→ 0 with f ′′(t0) = c3. Consequently, as u→∞

Kv,S ∼
c√

2πt0

S

v

Nu∑
j=−Nu−1

e−
(
v2f(t0+(jS+θu)/v2)−v2f(t0)

)

∼ c√
2πt0

S

v

Nu∑
j=−Nu−1

e−f
′′(t0)((jS+θu)2/v2)/2
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∼ c3/2

√
2π

∫
R
e−f

′′(t0)x2/2dx = 1, (2.20)

where the last two steps follow with the same arguments as in the proof of (39) in [17]. Finally,

we have that as u→∞ and then S →∞

Pδ(u) ∼ Kv,SH2c2δe−2uc ∼ H2c2δe−2uc.

We show next (2.5). For any u > 0, s ∈ R we have

P
{
τδ(u)− utu ≤ s

√
u|τδ(u) <∞

}
=

1

ψδ,∞(u)
P
{
∃t∈[0,utu+s

√
u]δ : Z(t) > u

}
.

Considering the approximations of pj,S,u uniformly for all −Nu ≤ j ≤ N ′u with N ′u = bs
√
u/Sc

we obtain as above

lim
u→∞

1

ψδ,∞(u)
P
{
∃t∈[0,utu+s

√
u]δ : Z(t) > u

}
=

∫ s
−∞ e

−f ′′(t0)x2/2dx∫
R e
−f ′′(t0)x2/2dx

=
c3/2

√
2π

∫ s

−∞
e−c

3x2/2dx = Φ(sc3/2).

Hence

lim
u→∞

P
{

(τδ(u)− utu)/
√
u ≤ s

∣∣∣τδ(u) <∞
}

= Φ(sc3/2), s ∈ R.

Since Φ is continuous, by Dini’s theorem, the above convergence holds also substituting s by su
such that limu→∞ su = s ∈ R. Consequently, since θu ∈ [0, δ) we have also

lim
u→∞

P
{
c3/2(τδ(u)− ut0)/

√
u ≤ s

∣∣∣τδ(u) <∞
}

= Φ(s), s ∈ R.

Proof of Theorem 2.3.1. Recall that tu = t0 + θu/u = 1/c + θu/u and denote β = 1 − γ. We

analyze the variance function σ2
Z of the process Z(t, s). For any non-negative s, t we have

σ2
Z(t, s) =

t+ β2s

(ct+ βcs+ 1)2
=

t+ βs

(ct+ βcs+ 1)2
− β(1− β)s

(ct+ βcs+ 1)2
=: A(t, s)− A∗(t, s).

Note that A(t, s) depends only on t+ βs and achieves its global maxima on the line t+ βs = t0 =

1/c, while A∗(t, s) is negative for all s > 0 and equals zero for s = 0. Hence (t, s) = (1/c, 0) is the

unique global maxima of σ2
Z(t, s) and σ2

Z(1/c, 0) = 1
4c
. We define next

Dδ(u) =
{
s, t ∈ G(δ/u) : (t, s) ∈ (− lnu√

u
+ tu,

lnu√
u

+ tu)× (0,
lnu√
u

)
}
.

We have (proof see in the Appendix)

Υγ,δ(u) ∼ P
{
∃t, s ∈ Dδ(u) : Z(t, s) >

√
u
}

=: ζ(u), u→∞. (2.21)
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Let ∆i,S,u be as in (2.11) and set

p(i, j) = P
{
∃t, s ∈ ∆i,S,u ×∆∗j,S,u : (B(t)−

√
uct) + β(B∗(s)−

√
ucs) >

√
u
}
,

p(i, j; i′, j′) = P{∃t, s ∈ ∆i,S,u ×∆∗j,S,u : (B(t)−
√
uct) + β(B∗(s)−

√
ucs) >

√
u,

∃t, s ∈ ∆i′,S,u ×∆∗j′,S,u : (B(t)−
√
uct) + β(B∗(s)−

√
ucs) >

√
u}

for −Nu ≤ i ≤ Nu, 0 ≤ j ≤ Nu, fixed S > 0 and

∆∗j,S,u = [
jS

u
,
j(S + 1)

u
].

By Bonferroni inequality∑
0≤j≤Nu−1,−Nu≤i≤Nu−1

p(i, j)−
∑

0≤j,j′≤Nu,−Nu−1≤i,i′≤Nu,(i,i′)6=(j,j′)

p(i, j; i′, j′) ≤ ζ(u) ≤
∑

0≤j≤Nu,−Nu−1≤i≤Nu

p(i, j).

The term ∑
0≤j,j′≤Nu,−Nu−1≤i,i′≤Nu,(i,i′)6=(j,j′)

p(i, j; i′, j′)

is negligible by the proof of Theorem 2.1, Eq. [14] in [35] and consequently

ζ(u) ∼
∑

0≤j≤Nu,−Nu≤i≤Nu

p(i, j), u→∞.

Next, we approximate p(i, j) uniformly. Recall, that v2 = u, ci,S,v = tu + iS
v2 , ϕi,v is the density

function of √ci,S,vN and set Gj = [jS, (j + 1)S]δ. We have

p(i, j)

= P{∃(t, s) ∈ ∆i,S,u ×∆∗j,S,u : B(t)−B(ci,S,v)− c
√
u(t− ci,S,v) +B(ci,S,v)−

√
ucci,S,v

+β(B∗(s)−
√
ucs) >

√
u}

=

∫
R

P
{
∃(t, s) ∈ [0,

S

u
]δ/u ×∆∗j,S,u : B(t)−

√
uct−

√
ucci,S,v + β(B∗(s)−

√
ucs) >

√
u− x

}
ϕi,v(x)dx

=

∫
R

P
{
∃(t, s) ∈ [0, S]δ ×Gj :

B(t)

v
− vc(ci,S,v +

t

v2
) + β(

B∗(s)

v
− cs

v
) > v − x

}
ϕi,v(x)dx

=
1

v

∫
R

P
{
∃(t, s) ∈ [0, S]δ ×Gj :

B(t)

v
− vc(ci,S,v +

t

v2
) + β(

B∗(s)

v
− cs

v
) > v − (v − x

v
)

}
ϕi,v(v −

x

v
)dx

=
1

v

∫
R

P
{
∃(t, s) ∈ [0, S]δ ×Gj : B(t)− ct+ β(B∗(s)− cs) > x+ v2cci,S,v

}
ϕi,v(v −

x

v
)dx

=
1

v

∫
R

P {∃(t, s) ∈ [0, S]δ ×Gj : B(t)− ct+ β(B∗(s)− cs) > x}ϕi,v(v(1 + cci,S,v)−
x

v
)dx

=
e
−
v2(1+cci,S,v)2

2ci,S,v

v
√

2πci,S,v

∫
R

Wj(x)ω(i, S, x)dx,
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where

Wj(x) = P {∃(t, s) ∈ [0, S]δ ×Gj : B(t)− ct+ β(B∗(s)− cs) > x}

and ω(i, S, x) is defined in (2.18). By Borell-TIS inequality for all |i|, |j| ≤ Nu (proof is in the

Appendix) ∫
R

Wj(x)ω(i, S, x)dx ∼
∫
R

Wj(x)e2cxdx, u→∞. (2.22)

Next we have with G∗j = [2jc2S, 2(j + 1)c2S]2c2δ∫
R

Wj(x)e2cxdx =
1

2c

∫
R

P

{
sup

(t,s)∈[0,S]δ×Gj

(
2cB(t)− 2c2t+ β(2cB∗(s)− 2c2s)

)
> 2cx

}
e2cxd(2cx)

=
1

2c

∫
R

P

{
sup

(t,s)∈[0,S]δ×Gj

(√
2B(2c2t)− 2c2t+ β(

√
2B∗(2c2s)− 2c2s)

)
> x

}
exdx

=
1

2c
E

{
sup

(t,s)∈[0,2c2S]2c2δ×G
∗
j

exp
(√

2B(t)− t+ β(
√

2B∗(s)− s)
)}

=
1

2c
E

{
sup

t∈[0,2c2S]2c2δ

e
√

2B(t)−t

}
E

{
sup
s∈G∗j

eβ(
√

2B∗(s)−s)

}
. (2.23)

By (2.22) combined with the line above we write

ζ(u) ∼ 1

2c
E

{
sup

t∈[0,2c2S]2c2δ

e
√

2B(t)−t

}

×
∑

0≤j≤Nu

E

{
sup
s∈G∗j

eβ(
√

2B∗(s)−s)

} ∑
−Nu≤i≤Nu

e
−
v2(1+cci,S,v)2

2ci,S,v

v
√

2πci,S,v
, u→∞. (2.24)

As was shown in the proof of Theorem 2.1.1 as u→∞ and then S →∞

1

2c
E

{
sup

t∈[0,2c2S]2c2δ

e
√

2B(t)−t

} ∑
−Nu≤i≤Nu

e
−
v2(1+cci,S,v)2

2ci,S,v

v
√

2πci,S,v
∼ H2c2δe−2cu. (2.25)

We have as S →∞ (proof of the first line below is in the Appendix)

∑
0≤j≤Nu

E

{
sup
s∈G∗j

eβ(
√

2B∗(s)−s)

}
∼ E

{
sup

s∈[0,2c2S]2c2δ

eβ(
√

2B(s)−s)

}
(2.26)

=

∫
R

P

{
sup

s∈[0,2c2S]2c2δ

(√
2B(sβ2)− sβ2

β
> x

)}
exdx

=

∫
R

P

{
sup

s∈[0,2c2β2S]2c2β2δ

(√
2B(s)− s(1 +

1− β
β

)

)
> x

}
exdx
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→ P
1−β
β

2c2β2δ = P
γ

1−γ
2c2(1−γ)2δ ∈ (0,∞).

Combining the statement above with (2.24) and (2.25) we conclude

ζ(u) ∼ P
γ

1−γ
2c2(1−γ)2δH

2c2δe−2cu, u→∞

and hence by (2.21) the claim follows. �

Proof of Theorem 4.2.1. The proof is similar to that of Theorem 2.1.1 and we use similar

notation as therein. We have by (2.9)

Pδ(u, T ) ∼ P

{
sup

t∈[T−u ,T
+
u ]δ

inf
s∈[t,t+T ]δ

Z(s) > u

}
=: P̃δ(u), u→∞ (2.27)

if we show that P̃δ(u) ≥ Ce−2cu. By the self-similarity of BM

P̃δ(u) = P
{
∃t ∈ [T−u , T

+
u ]δ : ∀s ∈ [t, t+ T ]δ Z(s) > u)

}
= P

{
∃t ∈ [

T−u
u
,
T+
u

u
]δ : ∀s ∈ [t, t+

T

u
] δ
u

B(s)

1 + cs
>
√
u

}
.

We choose the same partition ∆j,S,u, −Nu ≤ j ≤ Nu of the interval ∆u = [T
−
u

u
, T

+
u

u
] as in the proof

of Theorem 2.1.1. The Bonferroni inequality yields

p̃1(S, u) ≥ P̃δ(u) ≥ p̃′1(S, u)− p̃2(S, u), (2.28)

where

p̃1(S, u) =
Nu∑

j=−Nu−1

p̃j,S,u, p̃′1(S, u) =
Nu−1∑
j=−Nu

p̃j,S,u, p̃2(S, u) =
∑

−Nu−1≤j<i≤Nu

p̃i,j;S,u,

with

p̃j,S,u = P

{
sup

t∈∆j,S,u

inf
s∈[t,t+T

u
] δ
u

B(s)

1 + cs
>
√
u

}
and

p̃i,j;S,u = P

{
sup

t∈∆i,S,u

inf
s∈[t,t+T

u
] δ
u

B(s)

1 + cs
>
√
u, sup

t∈∆j,S,u

inf
s∈[t,t+T

u
] δ
u

B(s)

1 + cs
>
√
u

}
.

Clearly, p̃i,j;S,u ≤ pi,j;S,u and hence

p̃2(S, u) ≤ p2(S, u).

Thus, if we show that p̃1(S, u) ∼ C1e
−2cu we conclude that p̃2(S, u) is negligible. We approximate

each summand in p̃1(S, u) uniformly. As in the proof of Theorem 2.1.1 we obtain

p̃j,S,u =
e−v

2(1+ccj,S,v)2/(2cj,S,v)

v
√

2πcj,S,v

∫
R
w(T, x)ω(j, S, x)dx,
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where

w(T, x) = P

{
sup

t∈[0,S]δ

inf
s∈[t,t+T ]δ

Z(s) > x

}
and ω(j, S, x) is defined in (2.18). By Borell-TIS inequality (similarly the proof of (2.19)) it follows

that ∫
R
w(T, x)ω(j, S, x)dx→

∫
R
w(T, x)e2cxdx, u→∞.

Next we have ∫
R
w(T, x)e2cxdx =

1

2c
E

{
sup

t∈[0,S]δ

inf
s∈[t,t+T ]δ

e2cB(s)−2c2s

}

=
1

2c
E

{
sup

t∈[0,S]δ

inf
s∈[t,t+T ]δ

e
√

2B(2c2s)−2c2s

}

=
1

2c
E

{
sup

t∈[0,2c2S]2c2δ

inf
s∈[t,t+2c2T ]2c2δ

e
√

2B(s)−s

}
.

It follows with similar arguments as in [12] that as S →∞

lim
S→∞

1

2c2S
E

{
sup

t∈[0,2c2S]2c2δ

inf
s∈[t,t+2c2T ]2c2δ

e
√

2B(t)−t

}
= H2c2δ,2Tc2 ∈ (0,∞), (2.29)

where the constant H2c2δ,2Tc2 is given by (2.15). Hence by (2.20) we have

P̃δ(u) ∼ H2c2δ,2Tc2e
−2cu, u→∞

and (2.27) holds, establishing the claim. �

Proof of Theorem 2.4.2. We use below the same notation as in the previous proofs. By (2.9)

we have

Cδ(u, k) ∼ P
{

#{t(T−u , T+
u )δ : Z(t) > u} > k

}
=: ψ̂δk(u), u→∞ (2.30)

if we show that ψ̂δk(u) ≥ Ce−2cu. Using the self-similarity of BM for any u > 0

ψ̂δk(u) = P
{

#{t ∈ (− lnu√
u

+ t0, t0 +
lnu√
u

) ∩G(
δ

u
) :

B(t)

ct+ 1
>
√
u} > k

}
.

Letting

Aj,u := #{t ∈ ∆j,S,u :
B(t)

ct+ 1
>
√
u}

we have using the idea from [17]

ψ̂kδ (u) ≤ P

{
Nu∑

j=−Nu−1

Aj,u > k

}
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= P

{
Nu∑

j=−Nu−1

Aj,u > k, {there exists only one j such that Aj,u > 0}

}

+ P

{
Nu∑

j=−Nu−1

Aj,u > k, {there exists i 6= j such that Ai,u > 0 and Aj,u > 0 }

}
=: p1,k(u) + Π0(u).

On the other hand,

ψ̂δk(u) ≥ P

{
Nu−1∑
j=−Nu

Aj,u > k

}

= P

{
Nu−1∑
j=−Nu

Aj,u > k, {there exists only one j such that Aj,u > 0 }

}

+ P

{
Nu−1∑
j=−Nu

Aj,u > k, {there exists i 6= j such that Ai,u > 0 and Aj,u > 0 }

}
=: p2,k(u) + Π′0(u).

Notice, that Π0(u) and Π′0(u) are less than the double-sum term in Theorem 2.1.1. They are

negligible if we prove that p2,k(u) ∼ p1,k(u) ≥ Ce−2cu as u→∞ for some C > 0. We have

p1,k(u) =
Nu∑

j=−Nu−1

(
P {Aj,u > k} − P {Aj,u > k, ∃i 6= j : Ai,u > 0}

)
=

Nu∑
j=−Nu−1

P {Aj,u > k} −
Nu∑

j=−Nu−1

P {Aj,u > k, ∃i 6= j : Ai,u > 0} .

The last summand is less than the double-sum term in Theorem 2.1.1 and is negligible. Thus, we

need to compute the asymptotics of

Qδ,k(u) :=
Nu∑

j=−Nu

P {Aj,u > k} . (2.31)

With similar arguments as in the proof of Theorem 2.1.1

P {Aj,u > k} = P
{

#{t ∈ ∆j,S,u :
B(t)

ct+ 1
>
√
u} > k

}
=
e−v

2(1+ccj,S,v)2/(2cj,S,v)

v
√

2πcj,S,v

∫
R
wk(x)ω(j, S, x)dx,

where ω(j, S, x) is defined in (2.18) and

wk(x) = P {#{t ∈ [0, S]δ : Z(t) > x} > k} .

Similarly to the proof of (2.19) we have∫
R
wk(x)ω(j, S, x)dx→

∫
R
wk(x)e2cxdx, u→∞.
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Next ∫
R

wk(x)e2cxdx =
1

2c

∫
R

P
{

#{t ∈ [0, 2c2S]δ :
√

2B(t)− t > x} > k
}
exdx.

As shown in [22]

lim
S→∞

1

2c2S

∫
R

P
{

#{t ∈ [0, 2c2S]2c2δ :
√

2B(t)− t > x} > k
}
exdx = B2c2δ(k) ∈ (0,∞).

Consequently, by (2.20) as u→∞ and then S →∞

Qδ,k(u) ∼ cSB2c2δ(k)
Nu∑

j=−Nu

e−v
2(1+ccj,S,v)2/(2cj,S,v)

v
√

2πcj,S,v
= B2c2δ(k)e−2cuKv,S ∼ B2c2δ(k)e−2cu.

Since B2c2δ(k) ∈ (0,∞), then Qδ,k(u) ∼ ψ̂δk(u) as u→∞ implying

ψ̂δk(u) ∼ e−2cuB2c2δ(k), u→∞

and the claim follows. �

2.6 Appendix

Proof of (2.21). Recall that

Z(t, s) =
B(t) + (1− γ)B∗(s)

ct+ (1− γ)cs+ 1
, s, t ≥ 0,

where B and B∗ are independent BM. For some positive ε and large u denote

A(ε) =
(

[0,∞)× [0,∞)
)
\
(

[−ε+ tu, ε+ tu]× [0, ε]
)
,

R(ε, u) =
(

[−ε+ tu, ε+ tu]× [0, ε]
)
\
(

[− lnu√
u

+ tu,
lnu√
u

+ tu]× [0, lnu√
u

]
)
.

(2.32)

We have

P
{
∃(t, s) ∈ Dδ(u) : Z(t, s) >

√
u
}

≤ P
{
∃(t, s) ∈ G(δ/u) : Z(t, s) >

√
u
}

≤ P
{
∃(t, s) ∈ Dδ(u) : Z(t, s) >

√
u
}

+ P
{
∃(t, s) ∈ A(ε) : Z(t, s) >

√
u
}

+ P
{
∃(t, s) : R(ε, u) : Z(t, s) >

√
u
}
. (2.33)

We show next that Z(t, s) is a.s. bounded for t, s ≥ 0. According to Chapter 4, p. 31 in [59] it is

equivalent that Z(t, s) is bounded with positive probability. We have

P
{

sup
t,s≥0

Z(t, s) ≤ 1

}
= P {for all t, s ≥ 0 B(t)− ct+ (1− γ)(B∗(s)− cs) ≤ 1}
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≥ P {for all t, s ≥ 0 B(t)− ct ≤ 1/2, (1− γ)(B∗(s)− cs) ≤ 1/2}

=
(
1− P {∃t ≥ 0 : B(t)− ct > 1/2}

)(
1− P

{
∃s ≥ 0 : B∗(s)− cs > 1/2(1− γ)−1

} )
= (1− e−c)(1− e−c(1−γ)−1

) > 0,

where we used (2.1) for the last equation. Hence by Borell-TIS inequality (see [50])

P
{
∃(t, s) ∈ A(ε) : Z(t, s) >

√
u
}

= o(P
{
Z(1/c, 0) >

√
u
}

), u→∞. (2.34)

Next we shall prove that

P
{
∃(t, s) ∈ R(ε, u) : Z(t, s) >

√
u
}

= o(P
{
Z(1/c, 0) >

√
u
}

), u→∞. (2.35)

If we show that for any (t, s) ∈ R(ε, u) and for some positive constant C holds, that

σ2
Z(1/c, 0)− σ2

Z(t, s) ≥ C
ln2 u

u

we can immediately claim (2.35) by Piterbarg’s inequality (Proposition 9.2.5 in [59]). Notice that

if

i) s /∈ [0, lnu√
u

], then

σ2
Z(1/c, 0)− σ2

Z(t, s) = (A(1/c, 0)− A(t, s)) + A∗(t, s)

≥ A∗(t, s) =
sβ(1− β)

(ct+ βcs+ 1)2
≥ C

lnu√
u
≥ C

ln2 u

u
,

hence the claim follows.

ii) assume that s ∈ [0, lnu√
u

]. Setting

L(x) =
x

(cx+ 1)2
,

we have that L(x) attains its unique maxima at point x = 1/c, L′(1/c) = 0 and L′′(1/c) < 0. We

have

σ2
Z(1/c, 0)− σ2

Z(t, s) = σ2
Z(1/c, 0)− A(t, s) + A∗(t, s) ≥ σ2

Z(1/c, 0)− A(t, s) = L(1/c)− L(t+ βs).

For all (t, s) such that (t, s) ∈ R(ε, u), s ∈ [0, lnu√
u

] we have that |1/c− (t+ βs)| ≥ C lnu√
u
. Hence

L(1/c)− L(t+ βs) ≥ C|L′′(1/c)|(1/c− (t+ βs))2 ≥ C
ln2 u

u

and (2.35) holds.

Notice that for some positive constant C

P
{
∃t, s ∈ Dδ(u) : Z(t, s) >

√
u
}
≥ P

{
Z(tu, 0) >

√
u
}
≥ CP

{
Z(1/c, 0) >

√
u
}
.
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Combining the statement above with (2.33),(2.34) and (2.35) we establish (2.21). �

Proof of (2.9). Notice that

P

{
sup

t/∈[T−u ,T
+
u ]

Z(t) > u

}
≤ P

{
∃t, s ∈ A(ε) : Z(t, s) >

√
u
}

+ P
{
∃t, s ∈ R(ε, u) : Z(t, s) >

√
u
}
,

where A(ε) and R(ε, u) are defined in (2.32). Hence the claim follows by (2.34) and (2.35). �

Proof of (2.22). We shall prove that∫
R

Wj(x)e
− x2

2v2ci
+x

1+cci
ci dx =

M∫
−M

Wj(x)e2cxdx+ AM,v, (2.36)

where AM,v → 0 as u→∞ and then M →∞ uniformly for all |i|, |j| ≤ Nu. We have

∫
R

Wj(x)e
− x2

2v2ci
+x

1+cci
ci dx−

M∫
−M

Wj(x)e2cxdx

≤
∫

|x|>M

Wj(x)e
− x2

2uci
+x

1+cci
ci dx+ |

M∫
−M

Wj(x)e2cx(e
− x2

2uci
− x
u

(θu+iS)c
ci − 1)dx|

=: I1 + |I2|. (2.37)

Let u ≥M6. For any integer |i|, |j| ≤ Nu, x ∈ [−M,M ] and u large we have

|(θu + iS)cx

ci
)| ≤ CM

√
u lnu, | x

2

2ci
| ≤ CM2,

hence

|1
u

(− x
2

2ci
− (θu + iS)cx

ci
)| ≤ C

u
(M2 +M

√
u lnu) ≤ C

M4
+
CM

u2/5
≤ 1

M
.

We have by (2.23) and (2.40) that for all |j| ≤ Nu∫
R

Wj(x)e2cxdx ≤ C

and hence

|I2| ≤
1

M

M∫
−M

Wj(x)e2cxdx ≤ 1

M

∫
R

Wj(x)e2cxdx =
C

M
→ 0, M →∞. (2.38)

Next we have for large u

I1 ≤
∫

|x|>M

P {∃t ∈ [0, S], s ≥ 0 : B(t)− ct+ β(B∗(s)− cs) > x} ex
1+cci
ci dx
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≤
∫

x>M

P
{
∃t ∈ [0,

S

x
], s ≥ 0 : Z(t, s) >

√
x

}
e
x

1+cci
ci dx+

∫
x<−M

ecxdx.

We analyze behavior of σ2
Z(t, s) on the set {(t, s) ∈ [0, S

x
]× [0,∞)}. Since

σ2
Z(t, s) =

t+ β2s

(ct+ cβs+ 1)2
≤ S

x
+

β2s

(cβs+ 1)2
≤ S

x
+
β

4c

taking large enough x we can write for any fixed ε > 0 that

σ2
Z(t, s) ≤ β(1 + ε)

4c
.

Hence by Borell-TIS inequality for large x

P
{
∃t ∈ [0,

S

x
], s ≥ 0 : Z(t, s) >

√
x

}
≤ e−x

2c
β(1+2ε) .

Choosing ε such that β(1+2ε) < 1, uniformly for all |i|, |j| ≤ Nu we have with a = 2c− 2c
β(1+2ε)

< 0

I1 ≤ o(1) +

∫
|x|>M

e
x

1+cci
ci
−x 2c

β(1+2ε)dx = o(1) +

∫
|x|>M

ex(2c+o(1)− 2c
β(1+2ε)

)dx

≤ o(1) + 2

∫
|x|>M

eax → 0, M →∞. (2.39)

Combination of (2.38) and (2.39) establishes (2.36). By the monotone convergence theorem (2.36)

implies (2.22). �

Proof of (2.19). We have

∫
R
w(x)ω(j, S, x)dx−

M∫
−M

w(x)e2cxdx ≤
∫

|x|>M

w(x)ω(j, S, x)dx+ |
∫

|x|<M

w(x)(ω(j, S, x)− e2cx)|dx

=: I1 + |I2|.

Since Wj(x) ≥ w(x) we have that (I1 and I2 are defined in (2.37))

|I2| ≤ |I2|, I1 ≤ I1

implying

I1 + I2 ≤ I1 + |I2| → 0

as u→∞ and then M →∞ by (2.38) and (2.39). Thus, (2.19) is established. �

Proof of (2.26). For any j ≥ 1 we have (set bj = 2jc2S)

E

{
sup
s∈G∗j

eβ(
√

2B∗(s)−s)

}
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≤
∫
R

P

{
sup

s∈[2jc2S,2(j+1)c2S]

β(
√

2B(s)− s−
√

2B(bj) + bj) > x+ β(bj −
√

2B(bj))

}
exdx

=
1√
2πbj

∫
R

∫
R

P

{
sup

s∈[0,2c2S]

β(
√

2B(s)− s) > x+ β(bj −
√

2y)

}
exdxe

− y2

2bj dy

=
1√
2πbj

∫
R

∫
R

P

{
sup

s∈[0,2c2S]

β(
√

2B(s)− s) > x

}
ex−β(bj−

√
2y)e

− y2

2bj dxdy

=
e−βbj√

2πbj

∫
R

∫
R

P

{
sup

s∈[0,2c2S]

β(
√

2B(s)− s) > x

}
exe
− y2

2bj
+
√

2βy
dxdy

=
e−βbj√

2πbj

∫
R

P

{
sup

s∈[0,2c2S]

β(
√

2B(s)− s) > x

}
exdx

∫
R

e
− y2

2bj
+
√

2βy
dy.

Next we have by (2.1)∫
R

P

{
sup

s∈[0,2c2S]

β(
√

2B(s)− s) > x

}
exdx ≤

∫
R

P

{
sup

s∈[0,∞)

(B(s)− s

β
√

2
) >

x

β
√

2

}
exdx

= 1 +

∞∫
0

e−x/β+x ≤ C.

Since ∫
R

e
− y2

2bj
+
√

2βy
dy =

√
2πbje

β2bj ,

we have for some fixed small enough ε and large S

E

{
sup
s∈G∗j

eβ(
√

2B(s)−s)

}
≤ Ce−β(1−β)bj ≤ e−jSε. (2.40)

Thus, as S →∞

∑
1≤j≤Nu

E

{
sup
s∈G∗j

eβ(
√

2B(s)−s)

}
≤ e−εS(1 + o(1))

establishing the claim. �
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Chapter 3

Simultaneous Fractional Brownian Motion

Discrete-Time Ruin

This chapter is based on G. Jasnovidov: Simultaneous Ruin Probability for Two-Dimensional

Fractional Brownian motion risk Process over Discrete Grid, in press, Lithuanian Mathematical

Journal, 2021.

3.1 Introduction

Define two risk processes

R
(H)
i,u (t) = qiu+ cit−BH(t), i = 1, 2,

where ci, qi > 0. The discrete simultaneous ruin time and ruin probability over the infinite time

horizon are defined by

τ̄δ,H(u) = inf{t ∈ G(δ) : R
(H)
1,u (t) < 0, R

(H)
2,u (t) < 0}

and

ψ̄δ,H(u) = P {τ̄δ,H(u) <∞} , (3.1)

respectively. For positive δ the simultaneous ruin probability is of interest both for theory-oriented

studies and for applications in reinsurance (see, e.g., [45] and references therein). In this paper we

investigate only the discrete setup; the continuous problem has been already solved in [45]. For

any possible choices of positive δ and H ∈ (0, 1) it is not possible to calculate ψ̄δ,H(u) explicitly.

A natural question when lack of explicit formulas is the case, is how can we approximate ψ̄δ,H(u)

for large u. Also of interest is to know what is the role of δ, does it affects the ruin probability in

the considered risk model. Theorem 3.2.1 gives detailed answers for these questions. Our results

show that the discrete time ruin probabilities behave differently from continuous if H ≤ 1/2. We

45
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refer to [41] for some alternative proofs of the results.

Also of certain interest is the finite time horizon setup of the problem. For fixed T > 0 the

discrete simultaneous ruin probability over a finite time horizon is

ζ̄H,T (u) = P
{
∃t ∈ [0, T ] : R

(H)
1,u (t) < 0, R

(H)
2,u (t) < 0

}
. (3.2)

The corresponding discrete ruin problem over a finite time horizon is trivial, since set [0, T ]∩G(δ)

consists of finite number of elements and hence asymptotics of the large deviation is determined by

the unique maximizer of the variance of the process (this, e.g., follows immediately from Lemma

2.3 in [56] or Proposition 2.4.2 in [59]). Thus, we shall be concerned only with the continuous ruin

problem over a finite horizon. Asymptotics of ζ̄H,T (u) is discussed in Remark 3.2.5.

3.2 Main Results

First we eliminate the trends via self-similarity of fBM. For any u > 0 we have

ψ̄δ,H(u) = P {∃t ∈ G(δ) : BH(t) > q1u+ c1t, BH(t) > q2u+ c2t}

= P
{
∃t ∈ G(δ/u) :

BH(t)

max(c1t+ q1, c2t+ q2)
> u1−H

}
.

If the two lines q1 + c1t and q2 + c2t do not intersect over (0,∞), then the problem degenerates

to the one-dimensional case, which is discussed in Theorem 3.2.3. In consideration of that dealing

with ψ̄δ,H(u) we always suppose that

c1 > c2, q2 > q1. (3.3)

It turns out that the variance of BH(t)
max(c1t+q1,c2t+q2)

can achieve its unique maxima only at one of

the following points:

t1 =
Hq1

c1(1−H)
, t2 =

Hq2

c2(1−H)
, t∗ =

q2 − q1

c1 − c2

. (3.4)

It follows from (4.3) that t1 < t2. As we show later, the order between t1, t2 and t∗ determines

the asymptotics of ψ̄δ,H(u) as u→∞.

For notational simplicity we write ψ̄δ(u) instead of ψ̄δ,1/2(u). Define for some function k(t) constant

P̃kη = lim
T→∞

E

{
sup

t∈[−T,T ]η

e
√

2B(t)−|t|+k(t)

}
when the expectation above is finite and set for δ ≥ 0

dδ(t) = I(t<0)
(q2c1+c2q1−2q2c2)t

c1q2 − q1c2

+ I(t≥0)
(2c1q1−c1q2−q1c2)t

c1q2 − q1c2

− δI(t≥0)
(c1q2−q1c2)(c1−c2)

q2 − q1

.
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Define constants

C
(i)
H =

cHi q
1−H
i

HH(1−H)1−H , i = 1, 2.

The theorem below establishes the asymptotics of ψ̄δ,H(u).

Theorem 3.2.1 For δ > 0 as u→∞
1) if t∗ /∈ (t1, t2),

ψ̄δ,H(u) ∼ (
1

2
)I(t
∗=ti) ×


H2H

2
1
2−

1
2H
√
π

H1/2(1−H)1/2 (C
(i)
H u

1−H)
1
H
−1Φ(C

(i)
H u

1−H), H > 1/2

H2c2i δe−2ciqiu, H = 1/2
√

2πHH+1/2qHi u
H

δcH+1
i (1−H)H+1/2

Φ(C
(i)
H u

1−H), H < 1/2,

where i = 1 if t∗ ≤ t1 and i = 2 if t∗ ≥ t2,

2) if t∗ ∈ (t1, t2), then with DH = c1t∗+q1
(t∗)H

when H > 1/2

ψ̄δ,H(u) ∼ Φ(DHu
1−H),

when H = 1/2

P̃dδγ Φ(D1/2

√
u)(1 + o(1)) ≤ ψ̄δ(u) ≤ AP̃d0

γ Φ(D1/2

√
u)(1 + o(1)), (3.5)

where P̃dγ , P̃dδγ ∈ (0,∞) and

A = e
δ

(c1q2−c2q1)(c1q2+q1c2−2c2q2)

2(q2−q1)2 > 1, γ =
δ(c1q2 − q1c2)2

2(q2 − q1)2
, (3.6)

when H < 1/2

2e−Bu
1−H

Φ(DHu
1−H)(1 + o(1)) ≤ ψ̄δ,H(u) ≤ Φ(DHu

1−H)(1 + o(1)), (3.7)

where

B = − δw′1(t∗)w′2(t∗)

2(w′1(t∗)− w′2(t∗))
> 0, wi(t) =

(qi + cit)
2

t2H
, i = 1, 2. (3.8)

Remark 3.2.2 The bounds in (3.7) are exact. Namely, there exist two tending to infinity se-

quences {un}n∈N and {vn}n∈N such that as n→∞

ψ̄δ,H(un) ∼ Φ(DHu
1−H
n ), ψ̄δ,H(vn) ∼ 2e−Bv

1−H
n Φ(DHv

1−H
n ).

To study the asymptotics of the two-dimensional ruin probability over the infinite time horizon

crucial is the asymptotic approximation of the one-dimensional one. The asymptotics of this ruin

probability has been already studied in [47]. Since there are some inaccuracies we give the following

corrected result.
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Theorem 3.2.3 For any δ > 0 with CH = cH

HH(1−H)1−H as u→∞

P {∃t ∈ G(δ) : BH(t)− ct > u} ∼


H2H

2
1
2−

1
2H
√
π

H1/2(1−H)1/2 (CHu
1−H)1/H−1Φ(CHu

1−H), H > 1/2,

H2c2δe−2cu, H = 1/2
√

2πHH+1/2uH

δcH+1(1−H)H+1/2 Φ(CHu
1−H), H < 1/2.

(3.9)

Remark 3.2.4 If H > 1/2 the asymptotics of the discrete probabilities in Theorems 3.2.1 and

3.2.3 are the same as in the continuous case and do not depend on δ. If H = 1/2 the asymptotics

differ only in the constants. If H < 1/2 the discrete asymptotics are infinitely smaller than the

corresponding continuous. All these statements directly follow from Theorems 3.2.1, 3.2.3 and

Corollary 2 in [37] and Theorem 3.1 in [45].

Next we discuss the finite time-horizon case. Here for large u the two-dimensional ruin probabil-

ity always reduces to the one-dimensional one, that has been already studied in [10],[25]. More

precisely, we have

Remark 3.2.5 For any T > 0 with λ(u) = max(q1u+c1T,q2u+c2T )
TH

as u→∞

ζ̄H,T (u) ∼

H2H(λ(u))
1−2H
H

(1/2)(1/2H)

H
Φ(λ(u)), H < 1/2

Φ(λ(u)), H > 1/2

and

ζ̄ 1
2
,T (u) = Φ(

uqi√
T

+ ci
√
T ) + e−2ciqiuΦ(

uqi√
T
− ci
√
T ), i = 1, 2,

where i = 1 if (q1, c1) ≥ (q2, c2) in the alphabetical order and i = 2, otherwise.

3.3 Proofs

Proof of Theorem 3.2.1. Denote

Vi(t) =
BH(t)

cit+ qi
, i = 1, 2. (3.10)

Case (1). Assume that t∗ < t1. We have by the self-similarity of fBM

ψ̄δ,H(u) ≤ P
{
∃t ∈ G(δ/u) : V1(t) > u1−H} =: ψ

(1)
δ,H(u). (3.11)

Since t∗ < t1 for any 0 < ε < t1 − t∗ we have

ψ̄δ,H(u) ≥ P
{
∃t ∈ [t1 − ε, t1 + ε] δ

u
: V1(t) > u1−H , V2(t) > u1−H

}
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= P
{
∃t ∈ [t1 − ε, t1 + ε] δ

u
: V1(t) > u1−H

}
∼ ψ

(1)
δ,H(u), u→∞. (3.12)

For a detailed proof of the last line above see the Appendix. Thus, by (3.11)

ψ̄δ,H(u) ∼ ψ
(1)
δ,H(u), u→∞

and by Theorem 3.2.3 the claim is established.

Let t∗ = t1. We have

P

 sup
t∈[t∗,∞) δ

u

V1(t) > u1−H

 ≤ ψ̄δ,H(u)

≤ P

 sup
t∈[t∗,∞) δ

u

V1(t) > u1−H

+ P

 sup
t∈[0,t∗) δ

u

V2(t) > u1−H

 . (3.13)

Since t∗ is the unique maximizer of Var{V1(t)} (details are given in the Appendix)

P

 sup
t∈[t∗,∞) δ

u

V1(t) > u1−H

 ∼ 1

2
ψ

(1)
δ,H(u), H ∈ (0, 1), u→∞. (3.14)

Next we prove that

P

 sup
t∈[0,t∗) δ

u

V2(t) > u1−H

 = o(ψ
(1)
δ,H(u)), u→∞. (3.15)

Case H ≥ 1/2. As follows from Corollary 2 in [37] and Theorem 3.2.3 for H ≥ 1/2, all large u

Cψ
(1)
0,H(u) ≤ ψ

(1)
δ,H(u) ≤ ψ

(1)
0,H(u).

Hence with the same constant C as in the line above it holds that

P

 sup
t∈[0,t∗) δ

u

V2(t) > u1−H

 (ψ
(1)
δ,H(u))−1 ≤ C−1P

{
sup
t∈[0,t∗)

V2(t) > u1−H

}
(ψ

(1)
0,H(u))−1 → 0, u→∞,

where the last convergence follows from the proof of Theorem 3.1, case (4), H ≥ 1/2 in [45].

Case H < 1/2. Let θu ∈ [0, δ) be such that t∗ + θu
u
∈ G( δ

u
). Denote

tu = t∗ +
θu
u
. (3.16)

Notice that with t−u = tu − δ/u by (2.7)

P

 sup
t∈[0,t∗) δ

u

V2(t) > u1−H

 ≤ P
{
V2(t−u ) > u1−H}+ Cu sup

t∈[0,t−u−δ/u] δ
u

P
{
V2(t) > u1−H}
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= P
{
V2(t−u ) > u1−H}+ CuP

{
V2(t−u −

δ

u
) > u1−H

}
≤

(
1 + Cu exp(u1−2H δw

′
2(t∗)

2
)
)
P
{
V2(t−u ) > u1−H} ,

where w2(t) is defined in (3.8). Since H < 1/2 and w′2(t∗) < 0 it follows from (3.9) that the

expression above equals o(ψ(1)
δ,H(u)) as u → ∞ and (3.15) holds. Thus, from (3.13), (3.14) and

(3.15) it follows that

ψ̄δ,H(u) ∼ 1

2
ψ

(1)
δ,H(u), u→∞

establishing the claim by (3.9). Case t∗ ≥ t2 follows by the same arguments.

Case (2). Denote

ZH(t) =
BH(t)

max(c1t+ q1, c2t+ q2)
and σ2

H(t) = Var{ZH(t)}. (3.17)

Notice that if t∗ ∈ [t1, t2], then t∗ is the unique maximizer of σH(t). Moreover, σH(t) increases

over [0, t∗] and decreases over [t∗,∞).

Case H > 1/2. From Theorem 3.1 case (3), H > 1
2
in [45] it follows that

ψ̄δ,H(u) ≤ Φ(DHu
1−H)(1 + o(1)), u→∞.

We have (recall, tu is defined in (3.16))

ψ̄δ,H(u) = P

{
sup
t∈G( δ

u
)

ZH(t) > u1−H

}
≥ P

{
ZH(tu) > u1−H} ∼ Φ(DHu

1−H), u→∞.

Combining two statements above we establish the claim.

Case H = 1/2. For notational simplicity we write Z(t) instead of Z1/2(t). It follows from [45] and

(3.22) that with ∆ = [tu − S/u, tu + S/u] δ
u
as u→∞ and then S →∞

ψ̄δ(u) ∼ P
{
∃t ∈ ∆ : Z(t) >

√
u
}
. (3.18)

Let B∗(t) be an independent copy of BM, B∗(t) = B∗(t)− c1t, φu(x) be the probability density

function of B(utu) and define

η = q1 + c1t
∗ = q2 + c2t

∗ =
c1q2 − q1c2

c1 − c2

. (3.19)

By the self-similarity and independence of the increments of BM we have as u→∞

P
{

sup
t∈∆

Z(t) >
√
u

}
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= P{∃t̂ ∈ [utu−S, utu)δ :B(t̂) > q2u+ c2t̂

or ∃t ∈ [utu, utu+S]δ : (B(t)−B(utu)) +B(utu) > q1u+ c1t}

= P{∃t̂ ∈ [utu − S, utu)δ : B(t̂) > q2u+ c2utu + c2(t̂− utu)

or ∃t ∈ [utu, utu + S]δ : B∗(t− utu) +B(utu) > q1u+ c1utu + c1(t− utu)}

=

∫
R

φu(ηu− x)× P{∃t̂ ∈ [utu − S, utu)δ : B(t̂) > q2u+ c2utu + c2(t̂− utu)

or ∃t ∈ [utu, utu + S]δ : B∗(t− utu) + ηu− x > q1u+ c1utu + c1(t− utu)|B(utu) = ηu− x}dx

=

∫
R

P{∃t̂ ∈ [−S, 0)δ : Zu(t̂) > x+ c2θu or ∃t ∈ [0, S]δ : B∗(t)− c1t > x+ c1θu}φu(ηu− x)dx

=
e
−η2u
2tu

√
2πutu

∫
R

P
{
∃t̂ ∈ [−S, 0)δ : Zu(t̂) > x+ c2θu or ∃t ∈ [0, S]δ : B

∗
(t) > x+ c1θu

}
e
ηx
tu
− x2

2utu dx

∼ e
−η2u
2t∗

√
2πut∗

e
η2θu
2(t∗)2

− ηc2θu
t∗

∫
R

P
{
∃t̂ ∈ [−S, 0)δ : Zu(t̂)>x or∃t ∈ [0, S]δ : B

∗
(t)>x+ (c1−c2)θu

}
e
ηx
tu
− (x−c2θu)2

2utu dx,

where Zu(t̂) is an independent of B∗(t) Gaussian process with expectation and covariance defined

below:

E
{
Zu(t̂)

}
=
uq2 − x− c2θu

utu
t̂, cov(Zu(ŝ), Zu(t̂)) =

−ŝt̂
utu
− t̂, −S ≤ ŝ ≤ t̂ ≤ 0.

Since η − 2t∗c2 > 0 we have∫
R

P
{
∃t̂ ∈ [−S, 0)δ : Zu(t̂) > x or ∃t ∈ [0, S]δ : B

∗
(t) > x+ (c1 − c2)δ

}
e
ηx
tu
− (x−c2θu)2

2utu dx (3.20)

≤ e
θuη(η−2t∗c2)

2(t∗)2

∫
R

P
{
∃t̂ ∈ [−S, 0)δ : Zu(t̂) > x or ∃t ∈ [0, S]δ : B

∗
(t) > x+ (c1 − c2)θu

}
e
ηx
tu
− (x−c2θu)2

2utu dx

≤ e
δη(η−2t∗c2)

2(t∗)2

∫
R

P
{
∃t̂ ∈ [−S, 0)δ : Zu(t̂) > x or ∃t ∈ [0, S]δ : B

∗
(t) > x

}
e
ηx
tu
− (x−c2θu)2

2utu dx.

We estimate the integral in the lower bound. Assume that BM is defined on R (centered Gaussian

process with cov(B(t), B(s)) = |t|+|s|−|s−t|
2

). When u→∞ covariance and expectation of Zu(t)− q2t
t∗

converge to those of BM, hence Zu(t)− q2t
t∗

converges to B(t) for t < 0 in the sense of convergence

of finite-dimensional distributions. Thus, with ζ = q2
t∗

as u→∞ (proof is given in the Appendix)

∫
R

P
{
∃t̂ ∈ [−S, 0)δ : Zu(t̂) > x or ∃t ∈ [0, S]δ : B

∗
(t) > x+ (c1 − c2)δ

}
e
ηx
tu
− (x−c2θu)2

2utu dx

∼
∫
R

P
{
∃t̂∈ [−S, 0)δ : B(t̂) + ζt̂>x or ∃t ∈ [0, S]δ : B(t)− c1t>x+ (c1−c2)δ

}
e
ηx
t∗ dx (3.21)

=: I(S).
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By the explicit formula P
{

sup
t≥0

(B(t)− ct) > x

}
= e−2cx, c, x > 0 (see [26]) we have

I(S) ≤
0∫

−∞

e
ηx
t∗ dx+

∞∫
0

(
P {∃t ≥ 0 : B(t)− ζt > x}+ P {∃t ≥ 0 : B(t)− c1t > x}

)
e
ηx
t∗ dx

=
t∗

η
+

∞∫
0

(e(−2ζ+ η
t∗ )x + e(−2c1+ η

t∗ )x)dx <∞,

provided by min(2ζt∗, 2c1t
∗) > η. Since I(S) is non-decreasing it implies lim

S→∞
I(S) ∈ (0,∞). We

have with ξ = η2

(t∗)2 and d̂δ(t) = I(t < 0) ζt
∗t
η
− I(t ≥ 0)( c1t

∗t
η

+ η(c1−c2)δ
t∗

) that

I(S)

=
t∗

η

∫
R

P
{
∃t ∈ [−S, S]δ :

η

t∗
B(t) + t

(
I(t ≤ 0)

ηζ

t∗
−I(t ≥ 0)

ηc1

t∗

)
−I(t ≥ 0)

η(c1 − c2)δ

t∗
>
ηx

t∗

}
e
ηx
t∗ d(

xη

t∗
)

=
t∗

η

∫
R

P
{
∃ξt ∈ [−ξS, ξS]ξδ : B(ξt) + ξt

(
I(t ≤ 0)

t∗ζ

η
−I(t ≥ 0)

t∗c1

η

)
−I(t ≥ 0)

η(c1 − c2)δ

t∗
> x

}
exdx

=

∫
R

P
{
∃t ∈ [−Sξ, Sξ]ξδ : B(t) + d̂δ(t) > x

}
exdx

= E

 sup
t∈[−Sξ

2
,Sξ

2
] δξ

2

e
√

2B(t)−|t|+d̂δ(2t)+|t|

 .

Since lim
S→∞

I(S) ∈ (0,∞), d̂δ(2t)+ |t| = dδ(t) and δξ
2

= γ, we have that the expression above tends

to P̃dδγ ∈ (0,∞) as S →∞. Thus, summarizing all calculations above we conclude that as u→∞
and then S →∞

P
{

sup
t∈∆

Z(t) >
√
u

}
≥ P̃dδγ Φ(D1/2

√
u)(1 + o(1)). (3.22)

For the same reasons estimating the upper bound in (3.20) we have that as u → ∞ and then

S →∞

P
{

sup
t∈∆

Z(t) >
√
u

}
≤ P̃d0

γ e
δη(η−2t∗c2)

2(t∗)2 Φ(D1/2

√
u)(1 + o(1))

and the claim is established.

Case H < 1/2. As shown in the Appendix (recall, t−u = tu − δ
u
and V1(t), V2(t) are defined in

(3.10))

ψ̄δ,H(u) ∼ P
{
V2(t−u ) > u1−H}+ P

{
V1(tu) > u1−H} , u→∞. (3.23)
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We have (recall, wi(t) = (qi+cit)
2

t2H
, i = 1, 2)

P
{
V1(tu) > u1−H} ∼ Φ(DHu

1−H) exp(−θuw
′
1(t∗)u1−2H

2
),

P
{
V2(t−u ) > u1−H} ∼ Φ(DHu

1−H) exp(−−(δ − θu)w′2(t∗)u1−2H

2
), u→∞.

Thus,

ψ̄δ,H(u) ∼ Φ(DHu
1−H)

(
exp(−θuw

′
1(t∗)

2
u1−2H) + exp(−−(δ − θu)w′2(t∗)

2
u1−2H)

)
, u→∞,

hence the claim follows from the inequality (recall, B = − δw′1(t∗)w′2(t∗)

2(w′1(t∗)−w′2(t∗))
> 0)

2e−Bu
1−2H

(1 + o(1)) ≤ exp(−θuw
′
1(t∗)

2
u1−2H) + exp(−−(δ − θu)w′2(t∗)

2
u1−2H) (3.24)

≤ 1 + o(1), u→∞

and the proof is established. �

Proof of Remark 3.2.2. Consider a sequence {un}n∈N such un →∞ and for all n t∗ ∈ G(δ/un).

From the proof of Theorem 3.2.1 case (2), H < 1/2 it follows, that

ψ̄δ,H(un) = Φ(DHu
1−H
n )(1 + o(1)), n→∞.

Next we choose a sequence {vn}n∈N such vn →∞ and for all n t∗− δw′2(t∗)

vn(w′1(t∗)−w′2(t∗))
∈ G(δ/vn). For

such sequence inequality in (3.24) becomes equality, hence

ψ̄δ,H(vn) ∼ 2e−Bv
1−H
n Φ(DHv

1−H
n ), n→∞

and the claim follows. �

Proof of Theorem 3.2.3. When H = 1
2
the assertion of the theorem follows from [40] and [47].

Case H > 1/2. For large u we have

P

{
∃t ≥ 0 : inf

s∈[t,t+u
2H−1

2H ]

(BH(s)− cs) > u

}
≤ P

{
sup
t∈G(δ)

(BH(t)− ct) > u

}
≤ P

{
sup
t≥0

(BH(t)− ct) > u

}
.

In view of Remark 3.2 in [15] the lower and the upper bounds above are asymptotically equivalent,

hence

P

{
sup
t∈G(δ)

(BH(t)− ct) > u

}
∼ P

{
sup
t≥0

(BH(t)− ct) > u

}
, u→∞.

The asymptotics of the last probability above is given, e.g., in Corollary 3.1 in [15], thus the claim

follows.
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Case H < 1/2. By the self-similarity of fBM we have

ψδ,H(u) := P {∃t ∈ G(δ) : BH(t) > u+ ct}

= P
{
∃t ∈ G(

δ

u
) :

BH(t)

1 + ct
> u1−H

}
=: P

{
∃t ∈ G(

δ

u
) : V (t) > u1−H

}
.

Note that the variance of V (t) achieves its unique maxima at t0 = H
c(1−H)

. As shown in the

Appendix

ψδ,H(u) ∼
∑
t∈I(t0)

P
{
V (t) > u1−H} , u→∞, (3.25)

where I(t0) = (−1/
√
u+ t0, 1/

√
u+ t0) δ

u
. We have with û = u1−HcH

HH(1−H)1−H as u→∞∑
t∈I(t0)

P
{
V (t) > u1−H} =

∑
t∈I(t0)

Φ(u1−H 1 + ct

tH
)

∼
∑
t∈I(t0)

1√
2πû

e−
1
2

(u1−H 1+ct

tH
)2

.

Setting fH(t) = (1+ct)2

t2H
we have f ′H(t0) = 0 and f ′′H(t0) = 2c2+2H(1−H)2H+1

H2H+1 > 0. Since fH(t) ≈
fH(t0) + (t−t0)2

2
f ′′H(t0), t ∈ I(t0) we write (a strict proof is given in the Appendix in [41])∑

t∈I(t0)

1√
2πû

e−
1
2

(u1−H 1+ct

tH
)2

=
1√
2πû

e−û
2/2

∑
t∈I(t0)

e
− 1

2
u2−2H

(
(1+ct)2

t2H
− (1+ct0)2

t2H0

)

∼ Φ(û)
∑
t∈I(t0)

e−
1
2
u2−2H f ′′H (t0)

2
(t−t0)2

, u→∞. (3.26)

Next (set F =
f ′′H(t0)

4
= c2+2H(1−H)2H+1

2H2H+1 )∑
t∈I(t0)

e−
1
2
u2−2H f ′′H (t0)

2
(t−t0)2 ∼ 2

∑
t∈(0,u−1/2)δ/u

e−Fu
2−2H t2

= 2
∑

tu1−H∈(0,u1/2−H)
δu−H

e−F (tu1−H)2

=
2uH

δ

(
δu−H

∑
t∈(0,u1/2−H)

δu−H

e−Ft
2)

∼ 2uH

δ
√
F

∞∫
0

e−Ft
2

d(
√
Ft)

=

√
πuH

δ
√
F
, u→∞.

Combining the line above with (3.26) and (3.25) we have

ψδ,H(u) ∼ Φ(
u1−HcH

HH(1−H)1−H )

√
2πHH+1/2uH

δcH+1(1−H)H+1/2
, u→∞ (3.27)
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and the claim follows. �

Proof of Remark 3.2.5. Assume, that (q1, c1) ≥ (q2, c2) in the alphabetical order, the other case

follows by the same arguments. For large u we have that q1u + c1t ≥ q2u + c2t for all t ∈ [0, T ]

implying

ζ̄H(u) = P {∃t ∈ [0, T ] : BH(t) > c1t+ q1u} .

Thus, for H = 1/2 the claim follows by [26]. For H 6= 1/2 Theorem 2.1 in [10] completes the

proof. �

3.4 Appendix

Proof of (3.12). To establish the claim, it is enough to show that

P
{
∃t /∈ [t1 − ε, t1 + ε] : V1(t) > u1−H} = o(ψ

(1)
δ,H(u)), u→∞.

We shall prove that V1(t) is a.s. bounded on [0,∞). By Chapter 4, p. 31 in [59] it is equivalent

with P {V1(t) is bounded for t ≥ 0} > 0. We have by Corollary 2 in [37]

P
{

sup
t≥0

V1(t) ≤ u

}
= 1− P

{
sup
t≥0

V1(t) > u

}
→ 1, u→∞.

Thus, V1(t) is bounded a.s. Note that the variance v(t) of V1(t) achieves its unique maxima at t1.

Denote

m = max
t∈[0,t1−ε]∪[t1+ε,∞)

v(t), M = E

{
sup

t∈[0,t1−ε]∪[t1+ε,∞)

V1(t)

}
.

By Borell-TIS inequality (see Lemma 5.3 in [45]) we have that M <∞ and for all u large enough

P
{
∃t /∈ [t1 − ε, t1 + ε] : V1(t) > u1−H} ≤ e−

(u1−H−M)2

2m .

From Theorem 3.2.3 and inequality m < v(t1) it follows that

e−
(u1−H−M)2

2m = o(ψ
(1)
δ,H(u)), u→∞

and thus (3.12) holds. �

Proof of (3.14). Assume that H < 1/2. Since t∗ = t1 is the unique maximizer of Var{V1(t)}, then
repeating the proof of Theorem 3.2.3 we obtain

P

 sup
t∈[t∗,∞) δ

u

V1(t) > u1−H

 ∼ ∑
t∈[t1,t1+1/

√
u) δ
u

P
{
V1(t) > u1−H} , u→∞.
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The method of computation of the asymptotics of the sum above is the same as in the proof of

Theorem 3.2.3, see the calculation of the analogous sum in (3.25). The difference is only in the

intervals of summation, in Theorem 3.2.3 I(t0) is symmetric about t0, while [t1, t1 + 1/
√
u) δ

u
has

only the right part. Thus, multiplier 1/2 appears before the final asymptotics.

Assume that H = 1/2. Then the claim follows from the proof of Theorem 1.1 in [40]. The index

of summation in (19) in [40] in our case will be 1 ≤ j ≤ Nu, thus, multiplier 1/2 appears before

the final asymptotics. The claim can also be established by Theorem 1, ii) in [47].

Assume that H > 1/2. As in the proof of Theorem 3.2.3, case H > 1/2 we have

P

{
∃t ≥ t∗ : inf

s∈[t,t+u
−1
2H ]

V1(t) > u1−H

}
≤ P

 sup
t∈[t∗,∞) δ

u

V1(t) > u1−H

 ≤ P

{
sup

t∈[t∗,∞)

V1(t) > u1−H

}
.

As follows from [59] the upper bound in the inequality above is equivalent with 1
2
ψ

(1)
0,H(u), u→∞

and by Theorem 2.1 in [15] the lower bound has the same asymptotics. Since for H > 1/2 (see

Theorem 3.2.3) it holds that ψ(1)
0,H(u) ∼ ψ

(1)
δ,H(u), u→∞ we obtain the claim. �

Proof of (3.21). First we show that with δ̄ = (c1 − c2)δ∫
R

P
{
∃t̂ ∈ [−S, 0)δ : Zu(t̂) > x or ∃t ∈ [0, S]δ : B

∗
(t) > x+ δ̄

}
e
ηx
tu
− (x−c2θu)2

2utu dx

=

M∫
−M

P
{
∃t̂ ∈ [−S, 0)δ : Zu(t̂) > x or ∃t ∈ [0, S]δ : B

∗
(t) > x+ δ̄

}
e
ηx
t∗ dx+BM,v,

(3.28)

where BM,v → 0 as u→∞ and then M →∞. We have

|BM,v| ≤
∣∣∣ M∫
−M

P
{
∃t̂ ∈ [−S, 0)δ : Zu(t̂) > x or ∃t ∈ [0, S]δ : B

∗
(t) > x+ δ̄

}
(e

ηx
tu
− (x−c2θu)2

2utu − e
ηx
t∗ )dx

∣∣∣
+

∫
|x|>M

P
{
∃t̂ ∈ [−S, 0)δ : Zu(t̂) > x or ∃t ∈ [0, S]δ : B

∗
(t) > x+ δ̄

}
e
ηx
tu
− (x−c2θu)2

2utu dx

=: |I1|+ I2.

Since Var{Zu(t)} is bounded and E {Zu(t)} < 0 for large u and all t ∈ [−S, 0] by Borell-TIS

inequality for x > 0 and some C > 0 we have

P

{
sup

t̂∈[−S,0)δ

Zu(t̂) > x or sup
t∈[0,S]δ

B
∗
(t) > x+ δ̄

}
≤ P

{
sup

t∈[−S,0]

(Zu(t)−E {Zu(t)}) > x

}
+ P

{
sup
t∈[0,S]

B(t) > x

}
≤ e−x

2/C .
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Thus, as u→∞

I2 ≤
∫

x>M

e−
x2

C
+ ηx
tu dx+

∫
x<−M

e
ηx
2t∗ dx→ 0, M →∞.

For u ≥M3 we have

|I1| ≤
M∫

−M

e−
x2

C
+ ηx
t∗
∣∣e− xηθu

ut∗tu
− (x−c2θu)2

2utu − 1
∣∣dx ≤ ∫

R

e−
x2

C
+ ηx
t∗ dx sup

x∈[−M,M ]

|e−
xηθu
ut∗tu

− (x−c2θu)2

2utu − 1| ≤ C

M
.

Thus, lim
M→∞

lim
u→∞

(|I1|+ I2) = 0 and (3.28) holds. Since for t ∈ [−S, 0] Zu(t) converges to B(t) + ζt

as u→∞ in the sense of convergence of finite-dimensional distributions we have

M∫
−M

P
{
∃t̂ ∈ [−S, 0)δ : Zu(t̂) > x or ∃t ∈ [0, S]δ : B

∗
(t) > x+ δ̄

}
e
ηx
t∗ dx

→
M∫

−M

P
{
∃t̂ ∈ [−S, 0)δ : B(t) + ζt̂ > x or ∃t ∈ [0, S]δ : B

∗
(t) > x+ δ̄

}
e
ηx
t∗ dx, u→∞.

By the monotone convergence theorem the expression above tends to∫
R

P
{
∃t̂ ∈ [−S, 0)δ : B(t̂) + ζt̂ > x or ∃t ∈ [0, S]δ : B(t)− c1t > x+ δ̄

}
e
ηx
t∗ dx, M →∞

and the claim is established. �

Proof of (3.23).We have by Lemma 2.3 in [56] for all large u with w = u1−H (recall, t−u = tu−δ/u)

ψ̄δ,H(u) ≥ P

{
sup

t∈{t−u ,tu}
ZH(t) > w

}
= P {V1(tu) > w}+ P

{
V2(t−u ) > w

}
− P

{
V1(tu) > w, V2(t−u ) > w

}
∼ P {V1(tu) > w}+ P

{
V2(t−u ) > w

}
, u→∞. (3.29)

Next we prove that

P {∃t ∈ G(δ/u), t ≥ t∗ : V1(t) > w} ∼ P {V1(tu) > w} , u→∞. (3.30)

Fix some ε > 0. Since σ2
H(t) is decreasing over [t∗,∞) we have by Borell-TIS inequality as u→∞

P {∃t ∈ G(δ/u), t ≥ t∗ + ε : V1(t) > w} = o(P {V1(tu) > w}). (3.31)

We have with t+u = tu + δ/u and w1(t) defined in (3.8) as u→∞

P
{
∃t ∈ G(δ/u), t+u ≤ t ≤ t∗ + ε : V1(t) > w

}
≤ Cu sup

t∈G(δ/u),t+u≤t≤t∗+ε
P {V1(t) > w}
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≤ CuP
{
V1(t+u ) > w

}
∼ CuP {V1(tu) > w} exp(−w

′
1(t∗)δ

2
w)

= o(P {V1(tu) > w}).

Combining the lines above with (3.31) we establish (3.30). By the same arguments we have

P {∃t ∈ G(δ/u), t < t∗ : V2(t) > w} ∼ P
{
V2(t−u ) > w

}
, u→∞

implying with (3.30)

ψ̄δ,H(u) ≤ P {∃t ∈ G(δ/u), t < t∗ : V2(t) > w}+ P {∃t ∈ G(δ/u), t ≥ t∗ : V1(t) > w}

=
(
P {V1(tu) > w}+ P

{
V2(t−u ) > w

} )
(1 + o(1)), u→∞.

By (3.29) and the line above we obtain the claim. �

Proof of (3.25). First we prove that with I(t0) = (− 1√
u

+ t0, t0 + 1√
u
)

P

{
sup

t∈G(δ/u)\I(t0)

V (t) > u1−H

}
= o(ψδ,H(u)), u→∞. (3.32)

Denote ε(t0) = (−ε+ t0, ε+ t0)δ/u and ε(t0) = (−ε+ t0, ε+ t0) for some ε > 0. We have

P

{
sup

t∈G(δ/u)\I(t0)

V (t) > u1−H

}
≤ P

{
sup

t∈ε(t0)\I(t0)

V (t) > u1−H

}
+ P

{
sup

t∈[0,∞)\ε(t0)

V (t) > u1−H

}
.

The second summand in the line above is negligible by Borell-TIS inequality. Notice that

P

{
sup

t∈ε(t0)\I(t0)

V (t) > u1−H

}
≤ Cu sup

t∈ε(t0)\I(t0)

P
{
V (t) > u1−H}

≤ Cu
(
P
{
V (t0 − 1/

√
u) > u1−H}+ P

{
V (t0 + 1/

√
u) > u1−H})

≤ 3CuΦ(u1−H 1 + ct0
tH0

) exp(−1

4
f ′′H(t0)u1−2H), u→∞,

recall that fH(t) = (1+ct)2

t2H
and f ′′H(t0) > 0. Hence we have

P

{
sup

t∈ε(t0)\I(t0)

V (t) > u1−H

}
= o(Φ(u1−H 1 + ct0

tH0
)), u→∞

and thus (3.32) follows from (3.27). Next by Bonferroni inequality

∑
t∈I(t0)

P
{
V (t) > u1−H}− Π(u) ≤ P

{
sup
t∈I(t0)

V (t) > u1−H

}
≤
∑
t∈I(t0)

P
{
V (t) > u1−H} , (3.33)

where

Π(u) =
∑

t1<t2∈I(t0)

P
{
V (t1) > u1−H , V (t2) > u1−H} .
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Fix some numbers t1, t2 ∈ I(t0). We have (recall, û = u1−HcH

HH(1−H)1−H )

P
{
V (t1) > u1−H , V (t2) > u1−H} ≤ P

{
ε(1)V (t1)

σH(t0)
>

u1−H

σH(t0)
,
ε(2)V (t2)

σH(t0)
>

u1−H

σH(t0)

}
=: P {W1 > û,W2 > û} ,

where numbers ε(1), ε(2) ≥ 1 are chosen such that Var{ ε
(1)V (t1)
σH(t0)

} = Var{ ε
(2)V (t2)
σH(t0)

} = 1. We have

that correlation rw of (W1,W2) has expansion

rw(t1, t2) = 1− C|t1 − t2|2H + o(|t1 − t2|2H), t1, t2 → t0

and hence for all t1, t2 ∈ I(t0) it holds that
√
|t1 − t2|2H ≥ δHu−H . Thus, by Lemma 2.3 in [56]

we have

P {W1 > û,W2 > û} ≤ Φ(û)Φ(Ĉu1−2H), u→∞

implying that for all t1, t2 ∈ I(t0)

P
{
V (t1) > u1−H , V (t2) > u1−H} ≤ Φ(û)Φ(Ĉu1−2H), u→∞.

There are less then Cu2 summands in Π(u), hence from the line above, (3.33) and (3.27) it follows

that

P

{
sup
t∈I(t0)

V (t) > u1−H

}
∼
∑
t∈I(t0)

P
{
V (t) > u1−H} , u→∞.

Thus, the claim follows by the line above combined with (3.32). �
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Chapter 4

Parisian Ruin for Insurer and Reinsurer

under Quota-Share Treaty

This chapter is based on G. Jasnovidov and A. Shemenduyk: Parisian Ruin for Insurer and Rein-

surer under Quota-Share Treaty, submitted.

4.1 Introduction

Consider the risk model defined by

R(t) = u+ ρt−X(t), t ≥ 0, (4.1)

where X(t) is a centered Gaussian risk process with a.s. continuous sample paths, ρ > 0 is the

net profit rate and u > 0 is the initial capital. This model is relevant to insurance and financial

applications, see, e.g., [31]. Some contributions (see, e.g., [2, 15, 16]), extend the classical ruin

problem to the so-called Parisian ruin problem which allows the surplus process to spend a pre-

specified time below zero before a ruin is recognized. Formally, the classical Parisian ruin time

and ruin probability for T ≥ 0 are defined by

τ(u, T ) = {inf t ≥ 0 : ∀s ∈ [t, t+ T ] R(s) < 0}

and

P {τ(u, T ) <∞} , (4.2)

respectively. As in the classical case, only forX being a BM the probability above can be calculated

explicitly (see [53]):

P {∃t ≥ 0 : ∀s ∈ [t, t+ T ] B(s)− cs > u} =
e−c

2T/2 − c
√

2πTΦ(−c
√
T )

e−c2T/2 + c
√

2πTΦ(c
√
T )

e−2cu, T ≥ 0.
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Note in passing, that the asymptotics of the Parisian ruin probability for X being a self-similar

Gaussian processes is derived in [15]. We refer to [16, 40] for other investigations of some relevant

problems.

Motivated by [45] (see also [42]), we study a model where two companies share the net losses in

proportions δ1, δ2 > 0, with δ1 + δ2 = 1, and receive the premiums at rates ρ1, ρ2 > 0, respectively.

Further, the risk process of the i-th company is defined by

Ri(t) = xi + ρit− δiB(t), t ≥ 0, i = 1, 2,

where xi > 0 is the initial capital of the i-th company. In this model both claims and net losses are

distributed between the companies, which corresponds to the proportional reinsurance dependence

of the companies. Define the simultaneous Parisian ruin time for T ≥ 0 by

τ(u, T ) = inf{t ≥ 0 : ∀s ∈ [t, t+ T ] R1(s) < 0, R2(s) < 0}.

In this paper we study the asymptotics of the simultaneous Parisian ruin probability defined by

P {τ(u, T ) <∞} , T ≥ 0.

Since the probability above does not change under a scaling of (R1, R2), it equals to

P {∃t ≥ 0 : ∀s ∈ [t, t+ T ] u1 + c1s−B(s) < 0, u2 + c2s−B(s) < 0} , T ≥ 0,

where ui = xi/δi and ci = ρi/δi, i = 1, 2. Later on, we derive the asymptotics of the probability

above as u1, u2 tend to infinity at the constant speed (i.e., u1/u2 is constant). Therefore, we let

ui = qiu be fixed constants with qi > 0, i = 1, 2 and deal with asymptotics of

PT (u) := P {∃t ≥ 0 : ∀s ∈ [t, t+ T ] B(s) > q1u+ c1s, B(s) > q2u+ c1s} , T ≥ 0

as u → ∞. Letting the initial capital tends to infinity is not just a mathematical assumption,

but also an economic requirement stated by authorities in all developed countries, see [55]. In

many countries a new insurance company is required to retain a sufficient initial capital for the

first economic period. It aims to prevents the company from the bankruptcy because of excessive

number of small claims and/or several major claims, before the premium income is able to balance

the losses and profits.

Observe that PT (u) can be rewritten as

P {∃t ≥ 0 : ∀s ∈ [t, t+ T ] B(s)−max(c1s+ q1u, c2s+ q2u) > 0} .

Thus, the two-dimensional problem may also be considered as a one-dimensional crossing problem

over a piece-wise linear barrier. If the two lines q1u + c1t and q2u + c2t do not intersect over
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(0,∞), then the problem reduces to the classical one-dimensional BM risk model, which has been

discussed in [15, 16] and thus will not be the focus of this paper. In consideration of that, we shall

assume that

c1 > c2, q2 > q1. (4.3)

Under the assumption above the lines q1u+ c1t and q2u+ c2t intersects at point ut∗ with

t∗ =
q2 − q1

c1 − c2

> 0 (4.4)

that plays a crucial role in the following. The first usual step when dealing with asymptotics of

a ruin probability of a Gaussian process is centralizing the process. In our case it can be achieved

by the self-similarity of BM:

PT (u) = P
{
∃tu ≥ 0 : inf

su∈[tu,tu+T ]
(B(su)− c1su) > q1u, inf

su∈[tu,tu+T ]
(B(su)− c2su) > q2u

}
= P

{
∃t ≥ 0 : inf

s∈[t,t+T/u]
(B(s)− (c1s+ q1)

√
u) > 0, inf

s∈[t,t+T/u]
(B(s)− (c2s+ q2)

√
u) > 0

}
= P

{
∃t ≥ 0 : inf

s∈[t,t+T/u]

B(s)

max(c1s+ q1, c2s+ q2)
>
√
u

}
.

The next step is analysis of the variance of the centered process. Note that the variance of
B(t)

max(c1t+q1,c2t+q2)
can achieve its unique maxima only at one of the following points:

t∗, t1 :=
q1

c1

, t2 :=
q2

c2

.

From (4.3) it follows that t1 < t2. As we shall see later, the order between t1, t2 and t∗ determines

the asymptotics of PT (u). Note in passing, that the variance of B(t)
max(c1t+q1,c2t+q2)

is not smooth

around t∗ if (4.3) is satisfied. This observation does not allow us to obtain the asymptotics of

PT (u) straightforwardly by using the results of [15].

Define for any L ≥ 0 and some function h : R→ R constant

FhL = E
{

sup
t∈R

inf
s∈[t,t+L]

e
√

2B(s)−|s|+h(s)

}
when the expectation above is finite. For the properties of FhL we refer to [15, 16]. Notice that Fh0
coincides with the Piterbarg constant introduced in [45]. For the properties of related Piterbarg

constants see, e.g., [14, 59].

The next theorem derives the asymptotics of PT (u) as u→∞:

Theorem 4.1.1 Assume that (4.3) holds.

1)If t∗ /∈ (t1, t2), then as u→∞

PT (u) ∼
(

1

2

)I(t∗=ti) e−c
2
i T/2 − ci

√
2πTΦ(−ci

√
T )

e−c
2
i T/2 + ci

√
2πTΦ(ci

√
T )

e−2ciqiu, (4.5)
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where i = 1 if t∗ ≤ t1 and i = 2 if t∗ ≥ t2.

2)If t∗ ∈ (t1, t2), then as u→∞

PT (u) ∼ FdT ′Φ
(

(c1q2 − c2q1)

√
q2 − q1

c1 − c2

√
u

)
,

where FdT ′ ∈ (0,∞) and

T ′ = T
(c1q2 − q1c2)2

2(c1 − c2)2
, d(s) = s

c1q2 + c2q1 − 2c2q2

c1q2 − q1c2

I(s < 0) + s
2c1q1 − c1q2 − q1c2

c1q2 − q1c2

I(s ≥ 0). (4.6)

4.2 Main Results

In classical risk theory, the surplus process of an insurance company is modeled by the compound

Poisson or the general compound renewal risk process, see, e.g., [31]. The calculation of the ruin

probabilities is of a particular interest for both theoretical and applied domains. To avoid the

technical issues and allow for dependence between claim sizes, these models are often approximated

by the risk model (4.1), driven by BH a standard fBM. Since the time spent by the surplus process

below zero may depend on u, in the following we allow T =: Tu in (4.2) to depend on u. As

mentioned in [16], for the one-dimensional Parisian ruin probability we need to control the growth

of Tu as u→∞. Namely, we impose the following condition:

lim
u→∞

Tuu
1/H−2 = T ∈ [0,∞), H ∈ (0, 1). (4.7)

Note that if H > 1/2, then Tu may grow to infinity, while if H < 1/2, then Tu approaches zero

as u tends to infinity. As we see later in Proposition 4.2.2, the condition above is necessary and

the result does not hold without it. As for BM, by the self-similarity of fBM we obtain

PTu(u) = P
{
∃t ≥ 0 : inf

s∈[t,t+Tu/u]

BH(s)

max(c1s+ q1, c2s+ q2)
> u1−H

}
.

The variance of BH(t)
max(c1t+q1,c2t+q2)

can achieve its unique maxima only at one of the following points:

t∗, t1 :=
Hq1

(1−H)c1

, t2 :=
Hq2

(1−H)c2

, . (4.8)

From (4.3) it follows that t1 < t2. Again, the order between t1, t2 and t∗ determines the asymptotics

of PTu(u). Define for H ∈ (0, 1) and T ≥ 0 Parisian Pickands constant by

F2H(T ) = lim
S→∞

1

S
E

{
sup
t∈[0,S]

inf
s∈[0,T ]

e
√

2BH(t+s)−(t+s)2H

}
.

It is shown in [15] that F2H(T ) is a finite and positive constant. Note that F2H(0) = H2H . Define

for i = 1, 2 constants

DH =
c1t∗ + q1

tH∗
, KH =

2
1
2
− 1

2H
√
π√

H(1−H)
, C(i)

H =
cHi q

1−H
i

HH(1−H)1−H , Di =
c2
i (1−H)2− 1

H

2
1

2HH2
. (4.9)
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Now we are ready to give the asymptotics of PTu(u):

Theorem 4.2.1 Assume that (4.3) holds and Tu satisfies (4.7).

1)If t∗ /∈ (t1, t2), then as u→∞

PTu(u) ∼
(

1

2

)I(t∗=ti)

×


e−c

2
i T/2−ci

√
2πTΦ(−ci

√
T )

e−c
2
i
T/2+ci

√
2πTΦ(ci

√
T )
e−2ciqiu, H = 1/2,

KHF2H(TDi)(C(i)
H u

1−H)
1
H
−1Φ(C(i)

H u
1−H), H 6= 1/2,

(4.10)

where i = 1 if t∗ ≤ t1 and i = 2 if t∗ ≥ t2.

2)If t∗ ∈ (t1, t2) and lim
u→∞

Tuu
2−1/H = 0 for H > 1/2, then

PTu(u) ∼ Φ(DHu
1−H)×


1, H > 1/2,

FdT ′ , H = 1/2,

F2H(DT )Au(1−H)(1/H−2), H < 1/2,

(4.11)

where FdT ′ ∈ (0,∞) with T ′ and d defined in (4.6) and

A =
(
|H(c1t∗ + q1)− c1t∗|−1 + |H(c2t∗ + q2)− c2t∗|−1

)tH∗ D 1
H
−1

H

2
1

2H

, D =
(c1t∗ + q1)

1
H

2
1

2H t2∗
. (4.12)

The theorem above generalizes Theorem 4.1.1 and Theorem 3.1 in [45]. Note that if T = 0, then

the result above reduces to Theorem 3.1 in [45].

As indicated in [16], it seems extremely difficult to find the exact asymptotics of the one-dimensional

Parisian ruin probability if (4.7) does not hold. The initial reason is that the ruin happens over

’too long interval’. To illustrate difficulties arising in approximation of PTu(u) in this setup we

consider a ’simple’ scenario: let Tu = T > 0 and H < 1/2. In this case we have

Proposition 4.2.2 If H < 1/2, Tu = T > 0 and t∗ ∈ (t1, t2), then

C̄Φ(DHu
1−H)e−C1,αu2−4H−C2,αu2(1−3H) ≤ PTu(u)

≤ (2 + o(1))Φ(DHu
1−H)Φ

(
u1−2H T

HDH

2tH∗

)
, (4.13)

where C̄ ∈ (0, 1) is a fixed constant that does not depend on u and

α =
T 2H

2t2H∗
, Ci,α =

αi

i
D2
H , i = 1, 2. (4.14)

Note that the proposition above expands Theorem 3.2 in [16] for fBM case.
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4.3 Simulation of Piterbarg & Pickands constants

In this section we give algorithms for simulations of Pickands and Piterbarg type constants ap-

pearing in Theorems 4.1.1 and 4.2.1 and study their properties relevant for simulations. Since the

classical Pickands constant H2H has been investigated in several contributions (see, e.g., [30]),

later on we deal with FhL and F2H(L).

Simulation of Piterbarg constant. In this subsection we always assume that

L ≥ 0 and h(s) = bs I(s < 0)− as I(s ≥ 0), s ∈ R, a, b > 0.

To simulate FhL we use the approximation

FhL ≈ E

{
sup

t∈[−M,M ]τ

inf
s∈[t,t+L]τ

e
√

2B(s)−|s|+h(s)

}
,

where M is sufficiently large and τ is sufficiently small. The approximation above has several

errors: truncation error (i.e., choice of M), discretization error (i.e., choice of τ) and simulation

error. It seems difficult to give a precise estimate of the discretization error, we refer to [30] for

discussion of such problems. To take an appropriateM and give an upper bound of the truncation

error we derive few lemmas. The first lemma provides us bounds for FhL:

Lemma 4.3.1 It holds that

2e−Lmin(a,b)Φ(
√

2L) ≤ FhL ≤ 1 +
1

a
+

1

b
− 1

a+ b+ 1
.

Note that if L = 0, then the upper bound becomes an equation (see the proof), and thus we obtain

as a product the explicit expression for the two-sided Piterbarg constant introduced in [45]:

E
{

sup
t∈R

e
√

2B(t)−|t|(1+aI(t>0)+bI(t<0))

}
= 1 +

1

a
+

1

b
− 1

a+ b+ 1
.

In the next lemma we focus on the truncation error:

Lemma 4.3.2 For M ≥ 0 it holds that

E

{
sup

t∈R\[−M,M ]

inf
s∈[t,t+L]

e
√

2B(s)−|s|+h(s)

}
≤ e−aM

(
1 +

1

a

)
+ e−bM

(
1 +

1

b

)
. (4.15)

Now we are ready to find an appropriate M . We have by Lemma 4.3.2 that∣∣∣∣∣FhL − E

{
sup

t∈[−M,M ]

inf
s∈[t,t+L]

e
√

2B(s)−|s|+h(s)

}∣∣∣∣∣ ≤ E

{
sup

t∈R\[−M,M ]

inf
s∈[t,t+L]

e
√

2B(s)−|s|+h(s)

}

≤ 2

(
1 +

1

min(a, b)

)
e−M min(a,b)
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and on the other hand by Lemma 4.3.1

FhL ≥ 2e−Lmin(a,b)Φ(
√

2L),

hence to obtain a good accuracy we need that(
1 +

1

min(a, b)

)
e−min(a,b)M << e−Lmin(a,b)Φ(

√
2L).

Assume for simulations that min(a, b) ≥ 1; otherwise special case min(a, b) << 1 requires a choice

of a large M implying very high level of computation capacity.

For simulations, we takeM = 7+L(3+min(a,b))
min(a,b)

providing us truncation error smaller than 3 ·10−3; we

do not need to have better accuracy since there are also the errors of discretization and simulation.

Since we cannot estimate the errors of discretization and simulation, we just take a ’small’ τ and

a ’big’ number of simulation n. The above observations give us the following algorithm:

1) take M = 7+L(3+min(a,b))
min(a,b)

, τ = 0.005 and n = 104;

2) simulate n times B(t), t ∈ [−M,M ]τ , i.e., obtain Bi(t), 1 ≤ i ≤ n;

3) compute

F̂hL :=
1

n

n∑
i=1

sup
t∈[−M,M ]τ

inf
s∈[t,t+L]τ

e
√

2Bi(s)−|s|+h(s).

Simulation of Picaknds constant. It seems difficult to simulate F2H(L) relying straightfor-

wardly on its definition. As follows from approach in [12, 30] for any η > 0 with W (t) =

B2H(t)− |t|2H

F2H(L) = E


sup
t∈R

inf
s∈[t,t+L]

eW (t)

η
∑
k∈Z

eW (kη)

 .

The merit of the representation above is that there is no limit as is in the original definition and

thus it is much easier to simulate F2H(L) by the Monte-Carlo method. The second benefit is that

there is a sum in the denominator, that can be simulated easily with a good accuracy. The only

drawback is that the sup inf in the nominator is taken on the whole real line. Thus, we approximate

F2H(L) by discrete analog of the formula above:

F2H(L) ≈ E


sup

t∈[−M,M ]τ

inf
s∈[t,t+L]τ

eW (t)

η
∑

k∈[−M,M ]η

eW (ηk)

 ,

where big M and small τ, η are appropriately chosen positive numbers. In the following lemma we

give a lower bound for F2H(L).
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Lemma 4.3.3 For any L ≥ 0 and H ∈ (0, 1) it holds that

F2H(L) ≥ Ce−L
2H

sup
n≥0.1

(
e−
√

2nLHP

{
sup
s∈[0,1]

BH(s) < n

})
.

Taking m = 1/
√

2 in the sup above we obtain a useful for large L estimate

F2H(L) ≥ Ce−L
2H−LH , L > 0

where C is some positive number that depends only on H. The following lemma provides us an

upper bound for the truncation error:

Lemma 4.3.4 For some fixed constant c′ > 0 and M,L > 0 it holds that∣∣∣∣∣∣∣F2H(L)− E


sup

t∈[−M,M ]

inf
s∈[t,t+L]

eW (t)∫
[−M,M ]

eW (t)dt


∣∣∣∣∣∣∣ ≤ e−c

′M2H

.

Based on 2 lemmas above we propose the following algorithm for simulation of F2H(L):

1) Take M = max(10L, 5), τ = η = 0.005 and n = 104;

2) simulate n times BH(t), t ∈ [−M,M ]τ , i.e., obtain B
(i)
H (t), 1 ≤ i ≤ n;

3) calculate

F̂2H(L) :=
1

n

n∑
i=1

sup
t∈[−M,M ]τ

inf
s∈[t,t+L]τ

e
√

2B
(i)
H (s)−|s|2H

η
∑

k∈[−M,M ]η

e
√

2B
(i)
H (kη)−|kη|2H

.

We give the proofs of all Lemmas above at the end of Section Proofs.

4.4 Approximate Values of Pickands & Piterbarg Constants

In this section we apply both algorithms introduced above and obtain approximate numerical

values for some particular choices of parameters. To implement our approach, we use MATLAB

software.

Piterbarg constant. We simulate several graphs of F̂hL for different choices of a and b.
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On each graph above the blue line is simulated value and the dashed lines are theoretical bounds

given in Lemma 4.3.1. We observe that the simulated values are between the theoretical bounds,

F̂hL is decreasing function and F̂hL tends to 1 + 1
a

+ 1
b
− 1

a+b+1
as L→ 0.

Pickands constant. We simulate several graphs of F̂2H(L) for different choices of H. We con-

sider BM case H = 0.5, short-range dependence case H < 0.5 and the long-range dependence case

H > 0.5. To simulate fBM we use Choleski method, (see, e.g., [29]).

BM case. Here we plot F̂1(L) and the explicit theoretical value given by

F1(L) =
e−L/4 −

√
πLΦ(−

√
L/2)

e−L/4 +
√
πLΦ(

√
L/2)

, L ≥ 0,

(see, e.g., [53]). In the graph below the blue line corresponds to the simulated value and the dashed

line represents the exact theoretical value.
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Observe the according to the picture F̂1(L) is decreasing and does not drastically differ from

F1(L). We also point out that the theoretical value is smaller than the simulated one, that goes
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in a row with intuition that a discretization increases the value of the Parisian Pickands constant;

we plot the difference between F̂1(L) and F1(L):

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

0

0.005

0.01

0.015

0.02

0.025

As seen from the plot above, our simulations do not contradict Conjecture 1 in [30], i.e., the error

of the discretization may be of order
√
τ for small τ > 0.

Short-range dependence case. Here we focus on the short-range dependent case. We consider two

particular values of H, namely 0.1 and 0.3, and plot F̂2H(L) for these values. The red line corre-

sponds to case H = 0.3 while the blue line represents case H = 0.1.
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Observe that F̂2H(L) is a strictly decreasing function of L for both values of H.
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Long-range dependence case. We take H = 0.7 and H = 0.9, and plot F̂2H(L) for these values.

The red and blue lines correspond to cases H = 0.9 and H = 0.7, respectively.
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Observe that F̂2H(L) is a strictly decreasing function of L for both values of H.

4.5 Proofs

Recall that KH , D1 and C(1)
H are defined in (4.9). The following result immediately follows from

[15, 53]:

Proposition 4.5.1 Assume that Tu satisfies (4.7). Then as u→∞

P
{

sup
t≥0

inf
[t,t+Tu]

(BH(t)− c1t) > q1u

}
∼


e−c

2
1T/2−c1

√
2πTΦ(−c1

√
T )

e−c
2
1T/2+c1

√
2πTΦ(c1

√
T )
e−2c1q1u, H = 1/2,

KHF2H(TD1)(C(1)
H u1−H)

1
H
−1Φ(C(1)

H u1−H), H 6= 1/2.

Now we are ready to present our proofs.

Proof of Theorems 4.1.1 and 4.2.1. Since Theorem 4.1.1 follows immediately from Theorem

4.2.1, thus we prove Theorem 4.2.1 only.

Case (1). Assume that t∗ < t1. Let

ψi(Tu, u) = P
{

sup
t≥0

inf
[t,t+Tu]

(BH(t)− cit) > qiu

}
, i = 1, 2.

For 0 < ε < t1 − t∗ by the self-similarity of fBM we have

ψ1(Tu, u) ≥ PTu(u) ≥ P
{
∃t ∈ (t1 − ε, t1 + ε) : inf

s∈[t,t+Tu/u]
V1(t) > u1−H , inf

s∈[t,t+Tu/u]
V2(t) > u1−H

}
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= P
{
∃t ∈ (t1 − ε, t1 + ε) : inf

s∈[t,t+Tu/u]
V1(t) > u1−H

}
,

where

Vi(t) =
BH(t)

cit+ qi
, i = 1, 2.

We have by Borel-TIS inequality, see [59] (details are in the Appendix)

ψ1(Tu, u) ∼ P
{
∃t ∈ (t1 − ε, t1 + ε) : inf

s∈[t,t+Tu/u]
V1(t) > u1−H

}
, u→∞ (4.16)

implying PTu(u) ∼ ψ1(Tu, u) as u → ∞. The asymptotics of ψ1(Tu, u) is given in Proposition

4.5.1, thus the claim follows.

Assume that t∗ = t1. We have

P

{
∃t ∈ [t1,∞) : inf

s∈[t,t+Tu
u

]
V1(s) > u1−H

}
≤ PTu(u)

≤ P

{
∃t ∈ [t1,∞) : inf

s∈[t,t+Tu
u

]
V1(s) > u1−H

}
+ P

{
∃t ∈ [0, t1] : V2(t) > u1−H} .

From the proof of Theorem 3.1, case (4) in [45] it follows that the second term in the last line

above is negligible comparing with the final asymptotics of PTu(u) given in (4.10), hence

PTu(u) ∼ P

{
∃t ∈ [t1,∞) : inf

s∈[t,t+Tu
u

]
V1(s) > u1−H

}
, u→∞.

By the same arguments as in (4.16) it follows that for ε > 0 the last probability above is equivalent

with

P
{
∃t ∈ [t1, t1 + ε] : inf

s∈[t,t+Tu/u]
V1(s) > u1−H

}
, u→∞.

Since F1(T ) =
e−T/4−

√
πTΦ(−

√
T/2)

e−T/4+
√
πTΦ(
√
T/2)

, T ≥ 0 (see [15]) applying Theorem 3.3 in [16] with parameters

in the notation therein

σ̃ =
tH1

c1t+ q1

, β1 = 2, D =
1

2t2H1
, α = 2H, A =

qH−3
1 HH−1(1−H)4−H

2cH−2
1

we obtain as u→∞

P
{
∃t ∈ [t1, t1 + ε] : inf

s∈[t,t+Tu/u]
V1(s) > u1−H

}
∼ KHF2H(TD1)(C(1)

H u1−H)
1
H
−1Φ(C(1)

H u1−H)
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and the claim is established. Case t∗ ≥ t2 follows by the same arguments.

Case (2). Define

ZH(t) =
BH(t)

max(c1t+ q1, c2t+ q2)
, t ≥ 0. (4.17)

Similarly to the proof of (4.16) we have by Borell-TIS inequality for ε > 0 as u→∞

PTu(u) = P
{
∃t ≥ 0 : inf

s∈[t,t+Tu/u]
ZH(t) > u1−H

}
∼ P

{
∃t ∈ (t∗ − ε, t∗ + ε) : inf

s∈[t,t+Tu/u]
ZH(t) > u1−H

}
=: p(u).

Assume that H < 1/2. By "the double-sum" approach, see the proofs of Theorem 3.1, Case (3)

H < 1/2 in [45] and Theorem 3.3. case i) in [16] we have as u→∞

p(u) ∼ P

{
∃t ∈ (t∗, t∗+ε) : inf

s∈[t,t+Tu
u

]
V1(t)>u1−H

}
+P

{
∃t ∈ (t∗−ε, t∗) : inf

s∈[t,t+Tu
u

]
V2(t)>u1−H

}
. (4.18)

To compute the asymptotics of each probability in the line above we apply Theorem 3.3 in [16].

For the first probability we have in the notation therein

σ̃ =
tH∗

c1t∗ + q1

, β1 = 1, D =
1

2t2H∗
, α = 2H < 1, A =

tH−1
∗ |H(c1t∗ + q1)− c1t∗|

(c1t∗ + q1)2

implying as u→∞

P

{
∃t ∈ (t∗, t∗ + ε) : inf

s∈[t,t+Tu
u

]
V1(t) > u1−H

}
∼ F2H(

(c1t∗ + q1)
1
H

2
1

2H t2∗
T )

tH∗ D
1
H
−1

H u(1−H)( 1
H
−2)

|H(c1t∗ + q1)− c1t∗|2
1

2H

Φ(DHu
1−H).

Applying again Theorem 3.3 in [16] we obtain the asymptotics of the second summand and the

claim follows by (4.18).

Assume that H = 1/2. In order to compute the asymptotics of p(u) applying Theorem 3.3 in

[16] with parameters

α = β1 = β2 = 1, A± =
q1 − c1t∗
q1 + c1t∗

, A =
q2 − c2t∗
q2 + c2t∗

, σ̃ =

√
t∗

c1t∗ + q1

, D =
1

2t∗

we obtain (d(·) and T ′ are defined in (4.6))

p(u) ∼ FdT ′Φ(D1/2

√
u), u→∞.

Assume that H > 1/2. Applying Theorem 3.3 in [16] with parameters α = 2H > 1 = β1 = β2 we

complete the proof since

p(u) ∼ Φ(DHu
1−H), u→∞.
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Proof of Proposition 4.2.2.

Lower bound. Take κ = 1− 3H and recall that α = T 2H

2t2H∗
. We have

PT (u) ≥ P
{
∀t ∈ [t∗ − T/u, t∗]V2(t) > u1−H and V2(t∗) > u1−H + αuκ

}
≥ C̄P

{
V2(t∗) > u1−H + αuκ

}
(4.19)

∼ C̄Φ(DHu
1−H)e−C1,αu1−H+κ−C2,αu2κ

, u→∞,

where C̄ is a fixed positive constant that does not depend on u and C1,α and C2,α are defined in

(4.14). Thus, to prove the lower bound we need to show (4.19). Note that (4.19) is the same as

P
{
∃t ∈ [t∗ − T/u, t∗] : V2(t) ≤ u1−H and V2(t∗) > u1−H + αuκ

}
≤ ε′P

{
V2(t∗) > u1−H + αuκ

}
,

with some ε′ > 0. The last line above is equivalent with

P
{
∃t ∈ [ut∗ − T, ut∗] : BH(t)− c2t ≤ q2u and BH(ut∗)− c2ut∗ > q2u+ bαuκ+H

}
≤ ε′P

{
BH(ut∗)− c2ut∗ > q2u+ bαuκ+H

}
,

where b = c2t∗+q2. We have with ϕu(x) the density of BH(ut∗) that the left part of the inequality

above does not exceed

P
{
∃t ∈ [ut∗ − T, ut∗] : BH(ut∗)−BH(t) > bαuκ+H and BH(ut∗) > bu

}
=

∞∫
bu

P
{
∃t ∈ [ut∗ − T, ut∗] : x−BH(t) > bαuκ+H |BH(ut∗) = x

}
ϕu(x)dx

≤
bu+1∫
bu

P
{
∃t ∈ [ut∗ − T, ut∗] : x−BH(t) > bαuκ+H |BH(ut∗) = x

}
ϕu(x)dx+

∞∫
bu+1

ϕu(x)dx.

We also have that

P {BH(ut∗)− c2ut∗ > q2u} =

∞∫
bu

ϕu(x)dx ≥
bu+1∫
bu

ϕu(x)dx.

By (2.7) we have that
∞∫

bu+1

ϕu(x)dx is negligible comparing with the last integral above. Thus, to

prove (4.19) we need to show

bu+1∫
bu

P
{
∃t ∈ [ut∗ − T, ut∗] : x−BH(t) > bαuκ+H |BH(ut∗) = x

}
ϕu(x)dx ≤ ε′

bu+1∫
bu

ϕu(x)dx, u→∞,

that follows from the inequality

sup
x∈[bu,bu+1]

P
{
∃t ∈ [ut∗ − T, ut∗] : x−BH(t) > bαuκ+H |BH(ut∗) = x

}
≤ ε′′, u→∞, (4.20)
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where ε′′ > 0 is some number. We show the line above in the Appendix, thus the lower bound

holds.

Upper bound. We have by the self-similarity of fBM

PT (u) = P
{

sup
t≥0

inf
s∈[t,t+T/u]

ZH(s) > u1−H
}
,

where ZH is defined in (4.17). For ε > 0 by Borell-TIS inequality with I(t∗) = (−u−ε+ t∗, t∗+u−ε)

we have

P

{
sup
t/∈I(t∗)

inf
s∈[t,t+T/u]

ZH(s) > u1−H

}
≤ P

{
sup
t/∈I(t∗)

ZH(t) > u1−H

}
≤ Φ

(
DHu

1−H) e−u2−2H−2ε

, u→∞,

that is asymptotically smaller than the lower bound in (4.13) for sufficiently small ε. Thus, we

shall focus on estimation of

q(u) := P

{
sup
t∈I(t∗)

inf
s∈[t,t+T/u]

ZH(s) > u1−H

}
.

Denote z2(t) = Var{ZH(t)} and ZH(t) = ZH(t)/z(t). By Lemma 2.3 in [56] we have with M =

max(z(t), z(t+ T/u)) (note, 1/M ≥ DH)

q(u) ≤ P
{
∃t ∈ I(t∗) : ZH(t) > u1−H , ZH(t+ T/u) > u1−H}

= P
{
∃t ∈ I(t∗) : ZH(t) > u1−H/z(t), ZH(t+ T/u) > u1−H/z(t+ T/u)

}
≤ P

{
∃t ∈ I(t∗) : ZH(t) > u1−H/M,ZH(t+ T/u) > u1−H/M

}
≤ 2(1 + o(1))Φ

(
u1−H

M

)
Φ

(
u1−H

M

√
1− r(t, t+ T/u)

1 + r(t, t+ T/u)

)

≤ 2(1 + o(1))Φ

(
u1−H

M

)
Φ

(
DHu

1−H

√
1− r(t, t+ T/u)

2

)
, (4.21)

where r is the correlation function of ZH . Since r(t, s) = corr(BH(t), BH(s)) we have for all

t ∈ I(t∗)

1− r(t, t+ T/u) =
T 2H

2t2H∗
u−2H +O

(
u−2H(|t− t∗|+ |t+ T/u− t∗|) + u−2

)
, u→∞

implying

DHu
1−H

√
1− r(t, t+ T/u)

2
= u1−2H T

HDH

2tH∗
+O(u1−2H(|t− t∗|+ |t+ T/u− t∗|) + u−1), u→∞.

Thus, by (2.7) we obtain as u→∞

Φ

(
DHu

1−H

√
1− r(t, t+ T/u)

2

)
≤ Φ

(
u1−2H T

HDH

2tH∗

)
eCu

2−4H(|t−t∗|+|t+T/u−t∗|). (4.22)
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Next we have as u→∞ for some C1 > 0

Φ

(
u1−H

M

)
∼ Φ(DHu

1−H)e−C1u2−2H(|t−t∗|+|t+T/u−t∗|)

and by (4.22) we have for all t ∈ I(t∗) and large u

Φ

(
u1−H

M

)
Φ

(
DHu

1−H

√
1− r(t, t+ T/u)

2

)

≤ Φ
(
DHu

1−H)Φ

(
u1−2H T

HDH

2tH∗

)
e(Cu2−4H−C1u2−2H)(|t−t∗|+|t+T/u−t∗|)

and the claim follows from the line above and (4.21). �

Proof of Lemma 4.3.1. Lower bound. We have

sup
t∈R

inf
s∈[t,t+L]

e
√

2B(s)−|s|+h(s) ≥ inf
s∈[0,L]

e
√

2B(s)−(1+a)s ≥ e−(1+a)L inf
s∈[0,L]

e
√

2B(s) d
= e−(1+a)Le

− sup
s∈[0,L]

√
2B(s)

,

where the symbol ’ d=’ means equality in distribution between two rvs. Taking expectations of

both sides in the line above we obtain

FhL ≥ e−L(1+a)E
{
e
− sup
s∈[0,L]

√
2B(s)

}
and our next step is to calculate the expectation above. It is known (see, e.g., Chapter 11.1 in

[59]) that

P

{
sup
s∈[0,L]

√
2B(s) > x

}
= 2P

{√
2B(L) > x

}
= 2Φ

(
x√
2L

)
, x > 0

hence we obtain that e−x
2/4L
√
πL

, x > 0 is the density of sup
s∈[0,L]

√
2B(s). Thus, we have

E
{
e
− sup
s∈[0,L]

√
2B(s)

}
=

∞∫
0

e−x
e−x

2/4L

√
πL

dx =
eL√
πL

∞∫
0

e
−( x

2
√
L

+
√
L)2

dx =
2eL√
π

∞∫
√
L

e−z
2

dz = 2eLΦ(
√

2L),

and combining all calculations above we obtain

FhL ≥ 2e−LaΦ(
√

2L), L ≥ 0.

On the other hand, we have

sup
t∈R

inf
s∈[t,t+L]

e
√

2B(s)−|s|+h(s) ≥ inf
s∈[−L,0]

e
√

2B(s)−(1+b)|s| d= inf
s∈[0,L]

e
√

2B(s)−(1+b)s

and estimating inf
s∈[0,L]

e
√

2B(s)−(1+b)s as above we have FhL ≥ 2e−LbΦ(
√

2L), L ≥ 0, that completes

the proof of the lower bound.
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Upper bound. Note that FhL ≤ F0
L and hence since a BM has independent branches for positive

and negative time we have with B∗ an independent BM

FL2H ≤ E
{

sup
t∈R

e
√

2B(t)−h(t)

}
= E

{
max

(
sup
t≥0

e
√

2B(t)−(a+1)t, sup
t≤0

e
√

2B(t)−(b+1)|t|
)}

= E
{

max

(
sup
t≥0

e
√

2B(t)−(a+1)t, sup
t≥0

e
√

2B∗(t)−(b+1)t

)}
= E

{
emax(ξa,ξb)

}
,

where ξa and ξb are exponential rvs with survival functions e−(a+1)x and e−(b+1)x, respectively,

see [26]. Since ξa and ξb have exponential distributions the last expectation above can be easily

calculated and we have finally

E
{
emax(ξa,ξb)

}
= 1 +

1

a
+

1

b
− 1

a+ b+ 1

and the claim follows. �

Proof of Lemma 4.3.2. First we have

E

{
sup

t∈R\[−M,M ]

inf
s∈[t,t+L]

e
√

2B(s)−|s|+h(s)

}
≤ E

{
sup

s∈[M,∞)

e
√

2B(s)−(a+1)s

}
+ E

{
sup

s∈(−∞,−M ]

e
√

2B(s)−(b+1)|s|

}
.

Later on, we shall work with the first expectation above. We have

E

{
sup

s∈[M,∞)

e
√

2B(s)−(1+a)s

}

=

∫
R

exP

{
sup

s∈[M,∞)

(
√

2B(s)− (1 + a)s) > x

}
dx

=

∫
R

exP

{
sup

s∈[M,∞)

(
√

2(B(s)−B(M))− (1 + a)(s−M)) > x+M(1 + a)−
√

2B(M)

}
dx.

Since a BM has independent increments we have with B∗ an independent BM that the last

integral above equals∫
R

exP

{
sup

s∈[0,∞)

(
√

2B(s)− (1 + a)s) > x+M(1 + a)−
√

2MB∗(1)

}
dx

=
1√
2π

∫
R

∫
R

exe−z
2/2P

{
sup

s∈[0,∞)

(
√

2B(s)− (1 + a)s) > x+M(1 + a)−
√

2Mz

}
dxdz.
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We know that P
{

sup
t≥0

(B(t)− ct) > x

}
= min(1, e−2cx) for c > 0 and x ∈ R, thus the expression

above equals
1√
2π

∫
R

∫
R

ex−z
2/2 min(1, e−(1+a)(x+M(1+a)−

√
2Mz))dxdz

=
1√
2π

∫
R

∞∫
(1+a)M+x√

2M

ex−z
2/2dzdx+

1√
2π

∫
R

(1+a)M+x√
2M∫

−∞

ex−z
2/2−(1+a)(x+M(1+a)−

√
2Mz)dzdx

=

∫
R

exΦ(
(1 + a)M + x√

2M
)dx+

1√
2π

∫
R

e−ax

(1+a)M+x√
2M∫

−∞

e−
(z−
√

2M(1+a))2

2 dzdx

=

∫
R

exΦ(
(1 + a)M + x√

2M
)dx+

1√
2π

∫
R

e−ax

−(1+a)M+x√
2M∫

−∞

e−
z2

2 dzdx

=

∫
R

exΦ(
(1 + a)M + x√

2M
)dx+

∫
R

e−axΦ(
−(1 + a)M + x√

2M
)dx.

Integrating the first integral above by parts we have∫
R

exΦ(
(1 + a)M + x√

2M
)dx = −

∫
R

(
Φ(

(1 + a)M + x√
2M

)
)′
exdx

=
1√

2π
√

2M

∫
R

e−
((1+a)M+x)2

4M exdx

=
e−aM√
2π
√

2M

∫
R

e−
((a−1)M+x)2

4M dx

= e−aM .

For the second integral we have similarly∫
R

e−axΦ(
−(1 + a)M + x√

2M
)dx = −1

a

∫
R

Φ
(−(1 + a)M + x√

2M

)′
e−axdx

=
1

a

1√
2π
√

2M

∫
R

e−
(−(1+a)M+x)2

4M
−axdx

=
e−aM

a
√

2π
√

2M

∫
R

e−
((1−a)M+x)2

4M dx

=
e−aM

a
.

Summarizing all calculations above we obtain

E

{
sup

t∈[M,∞)

e
√

2B(t)−(1+a)t

}
= e−aM

(
1 +

1

a

)
.
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By the same approach and the symmetry of BM around zero we have

E

{
sup

t∈(−∞,−M ]

e
√

2B(t)−(1+b)|t|

}
= e−bM

(
1 +

1

b

)
and hence combining both equations above with the first inequality in the proof we obtain the

claim. �

Proof of Lemma 4.3.3. From [30] it follows that for any L ≥ 0

F2H(L) = E


sup
t∈R

inf
s∈[t,t+L]

eW (s)∫
R
eW (t)dt

 . (4.23)

Observe that sup
t∈R

inf
s∈[t,t+L]

eW (s) ≥ inf
s∈[0,L]

eW (s), hence

F2H(L) ≥ E


inf

s∈[0,L]
eW (s)∫

R
eW (t)dt

 ≥ e−L
2HE

e
−
√

2 sup
s∈[0,L]

BH(s)∫
R
eW (t)dt

 .

Let ξ = sup
s∈[0,L]

BH(s), (Ω,P) be the probability space where BH is defined and Ωm = {ω ∈ Ω :

ξ(ω) < m} for m > 0. The last expectation above equals

E

 e−
√

2ξ∫
R
eW (t)dt

 =

∫
Ω

e−
√

2ξ(ω)∫
R
e
√

2BH(t,ω)−|t|2Hdt
dP(ω)

≥
∫

Ωm

e−
√

2ξ(ω)∫
R
e
√

2BH(t,ω)−|t|2Hdt
dP(ω)

≥ P {Ωm} e−
√

2m

∫
Ωm

1∫
R
eW (t)dt

dP(ω).

Taking m = nLH we obtain that the last line above equals

P

{
sup
s∈[0,L]

BH(s) < nLH

}
e−
√

2nLH
∫

Ωm

1∫
R
eW (t)dt

dP(ω) = P

{
sup
s∈[0,1]

BH(s) < n

}
e−
√

2nLH
∫

Ωm

1∫
R
eW (t)dt

dP(ω).

Since uniformly for all n, L > 1/10 it holds that P {Ωm} > C, we have that with some C̄ > 0

that does not depend on L ∫
Ωm

1∫
R
eW (t)dt

dP(ω) ≥ C̄.

Combining the lines above we have uniformly for n, L > 1/10 that

E

 e−
√

2ξ∫
R
eW (t)dt

 ≥ C̄P

{
sup
s∈[0,1]

BH(s) < n

}
e−
√

2nLH .
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Since the inequality above holds for all large L, it holds also for all L ≥ 0, maybe with different

positive constant C̄, this completes the proof. �

Proof of Lemma 4.3.4. By (4.23) we have that

∣∣∣F2H(L)− E


sup

t∈[−M,M ]

inf
s∈[t,t+L]

eW (s)∫
[−M,M ]

eW (t)dt


∣∣∣

=
∣∣∣(E


sup
t∈R

inf
s∈[t,t+L]

eW (s)∫
R
eW (t)dt

− E


sup

t∈[−M,M ]

inf
s∈[t,t+L]

eW (s)∫
R
eW (t)dt


)

+
(
E


sup

t∈[−M,M ]

inf
s∈[t,t+L]

eW (s)∫
R
eW (t)dt

− E


sup

t∈[−M,M ]

inf
s∈[t,t+L]

eW (s)∫
[−M,M ]

eW (t)dt


)∣∣∣

≤ E


sup

t∈R\[−M,M ]

eW (t)∫
R
eW (t)dt

+ E

 sup
t∈[−M,M ]

eW (t)

∫
R\[−M,M ]

eW (t)dt∫
R
eW (t)dt

∫
[−M,M ]

eW (t)dt

 .

As follows from Section 4 in [30], the last line above does not exceed e−c′M2H
, and the claim holds.

�

4.6 Appendix

Proof of (4.16). To establish the claim we need to show, that

P
{
∃t ∈ R\[t1 − ε, t1 + ε] : inf

s∈[t,t+T/u]
V1(s) > u1−H

}
= o(ψ1(Tu, u)), u→∞.

Applying Borell-TIS inequality (see, e.g., [59]) we have as u→∞

P
{
∃t ∈ R\[t1 − ε, t1 + ε] : inf

s∈[t,t+T/u]
V1(s) > u1−H

}
≤ P

{
∃t ∈ R\[t1 − ε, t1 + ε] : V1(t) > u1−H}

≤ e−
(u1−H−M)2

2m2 ,

where

M = E

{
sup

∃t∈R\[t1−ε,t1+ε]

V1(t)

}
<∞, m2 = max

∃t∈R\[t1−ε,t1+ε]
Var{V1(t)}.

Since Var{V1(t)} achieves its unique maxima at t1 we obtain by (2.7) that

e−
(u1−H−M)2

2m2 = o(P
{
V1(t1) < u1−H}), u→∞

and the claim follows from the asymptotics of ψ1(Tu, u) given in Proposition 4.5.1. �
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Proof of (4.20). Define Xx,u(t) = x − BH(t)|BH(ut∗) = x, t ∈ [ut∗ − T, u]. To calculate the

covariance and expectation of Xx,u we use the formulas

cov((B,C)|A = x) = cov(B,C)− cov(A,B) cov(A,C)

Var{A}
and E {B|A = x} = x · cov(A,B)

Var{A}
,

where A,B and C are centered Gaussian rvs and x ∈ R. We have for x ∈ [bu, bu + 1] and

t, s ∈ [ut∗ − T, ut∗] with v = ut∗, y = 1− t
v
and z = 1− s

v
as u→∞

cov(Xx,u(t), Xx,u(s))

=
t2H + s2H − |t− s|2H

2
− (t2H + v2H − |t− v|2H)(s2H + v2H − |s− v|2H)

4v2H

=
v2H

4

(
2(
t

v
)2H + 2(

s

v
)2H − 2| t

v
− s

v
|2H − ((

t

v
)2H + 1− | t

v
− 1|2H)((

s

v
)2H + 1− |s

v
− 1|2H)

)
=

v2H

4

(
2(1− y)2H + 2(1− z)2H − 2|y − z|2H−((1− y)2H + 1− y2H)((1− z)2H + 1− z2H)

)
=

v2H

4

(
2− 4Hy + 2− 4Hz +O(y2 + z2)− 2|y − z|2H

− (2− 2Hy − y2H +O(y2))(2− 2Hz − z2H +O(z2))
)

=
v2H

4

(
2y2H + 2z2H − 2|y − z|2H +O(y2 + z2 + z2Hy2H)

)
= (1 + o(1))

(ut∗ − t)2H + (ut∗ − s)2H − |t− s|2H

2
. (4.24)

For the expectation we have as u→∞

E {Xx,u(t)} = x(1− v2H + t2H − |v − t|2H

2v2H
) =

x

2
(1− (t/v)2H + (1− t/v)2H)

≤ 1

2
(bu+ 1)(1− (1− y)2H + y2H)

≤ (bu/2 + 1)(1− 1 + 2Hy − o(y) + y2H)

≤ Hbuy +
1

2
buy2H + o(1).

From the line above it follows that for some C∗ > 0, H < 1/2, x ∈ [bu, bu+1] and t ∈ [ut∗−T, ut∗]

E {Xx,u(t)} ≤ C∗ +
u1−2Hb

2t2H∗
(ut∗ − t)2H .

We have

sup
x∈[bu,bu+1]

P
{
∃t ∈ [ut∗ − T, ut∗] : Xx,u(t) > uH+καb

}
= sup

x∈[bu,bu+1]

P
{
∃t ∈ [ut∗ − T, ut∗] : Xx,u(t)− E {Xx,u(t)} > uH+καb− E {Xx,u(t)}

}
≤ P {∃t ∈ [0, T ] : Yu(t) + f(t) > 0} ,

where Yu(t) = Xx,u(ut∗−T + t)−E {Xx,u(ut∗ − T + t)} , t ∈ [0, T ] and f(t) is the linear function

such that f(T ) = C1 and f(0) = −C∗ < 0. Next we have by (4.24) for all large u and t, s ∈ [0, T ]

E
{

(Yu(t)+f(t)−Yu(s)−f(s))2
}
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= E
{

(Yu(t)− Yu(s))2
}

+ C(t− s)2

≤ C1

(
(ut∗−t)2H+(ut∗ − s)2H−(ut∗ − t)2H−(ut∗ − s)2H+|t− s|2H

)
+C(t− s)2

≤ 2|t− s|2H .

Thus, by Proposition 9.2.4 in [59] the family Yu(t)+f(t), u > 0, t ∈ [0, T ] is tight in B(C([0, T ])).

As follows from (4.24), it holds that {Yu(t) + f(t)}t∈[0,T ] converges to {BH(t) + f(t)}t∈[0,T ] in the

sense of convergence of finite-dimensional distributions as u → ∞. Thus, by Theorems 4 and 5

in Chapter 5 in [8] the tightness and convergence of finite-dimensional distributions imply weak

convergence

{Yu(t) + f(t)}t∈[0,T ] ⇒ {B(t) + f(t)}t∈[0,T ].

Since the functional F (g) = sup
t∈[0,T ]

g(t) is continuous in the uniform metric we obtain

P {∃t ∈ [0, T ] : Yu(t) + f(t) > 0} → P {∃t ∈ [0, T ] : BH(t) + f(t) > 0} , u→∞.

Thus, to prove the claim it is enough to show that

P {∃t ∈ [0, T ] : BH(t) + f(t) > 0} < 1. (4.25)

We have for some large m with l(s) the density of BH(T )

P

{
sup
t∈[0,T ]

(BH(t) + f(t)) < 0

}

≥ P

{
sup
t∈[0,T ]

(BH(t) + f(t)) < 0 and BH(T ) < −m

}

=

−m∫
−∞

P

{
sup
t∈[0,T ]

(BH(t) + f(t)) < 0|BH(T ) = s

}
l(s)ds. (4.26)

Define process B̃s(t) = BH(t) + f(t)|BH(T ) = s, t ∈ [0, T ]. We have for s < −m and t ∈ [0, T ]

E
{
B̃s(t)

}
= f(t) + s

t2H + T 2H − |T − t|2H

2T 2H
< −C1/2,

Var{B̃s(t)} = t2H − (T 2H + t2H − |t− s|2H)2

4T 2H
< C2

and thus

P

{
sup
t∈[0,T ]

(BH(t) + f(t)) < 0|BH(T ) = s

}
≥ P

{
sup
t∈[0,T ]

(
B̃s(t)− E

{
B̃s(t)

})
< C1/2

}
.

The last probability above is positive for any s < −m, see Chapters 10 and 11 in [51] and hence

the integral in (4.26) is positive implying

P

{
sup
t∈[0,T ]

(BH(t) + f(t)) < 0

}
> 0.

Consequently (4.25) holds and the claim is established. �



Chapter 5

Two-Dimensional Fractional Brownian

Motion Sojourn Ruin Problem

This chapter is based on G. Jasnovidov: Simultaneous Sojourn Fractional Brownian Motion Ruin,

in progress, 2021.

5.1 Introduction & Preliminaries

Consider the risk model defined by

R(t) = u+ ρt−X(t), t ≥ 0, ρ, u > 0, (5.1)

where X(t) is a centered Gaussian risk process with a.s. continuous sample paths. This model

is very important for the theoretical and applied studies, we refer to Chapters 2, 3 and 4 and

references therein for a list of possible applications. Some contributions (see, e.g., [21, 44]), extend

the classical ruin problem to the sojourn ruin problem. Formally, the sojourn ruin time and ruin

probability are defined by

τ(u, Tu) =
{

inf t ≥ 0 :

t∫
0

I(R(s) < 0)ds > Tu

}
and

P {τ(u, Tu) <∞} , (5.2)

where Tu ≥ 0 is a measurable function of u. As in the classical case, only for X being a BM the

probability above can be calculated explicitly (see [21])

P


∞∫

0

I(B(s)− cs > u) > T

 ds =
(

2(1 + c2T )Φ(c
√
T )− c

√
2T√
π
e
−c2T

2

)
e−2cu, c > 0, T, u ≥ 0.

83
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Motivated by [45] (see also [42, 43]), we study a generalization of the main problem in [45] for the

sojourn ruin, i.e., we shall study the asymptotics of

CTu := P


∞∫

0

(BH(s)− c1s > q1u,BH(s)− c2s > q2u)ds > Tu

 ,

as u → ∞. In order to prevent the problem for degenerating to the one-dimensional sojourn

problem by the same reasons as in Chapter 4 we assume that

c1 > c2 > 0, q2 > q1 > 0. (5.3)

As in Chapter 4 by the self-similarity of fBM we obtain

CTu(u) = P


∞∫

0

I
( BH(t)

max(c1t+ q1, c2t+ q2)
> u1−H

)
dt > Tu/u

 .

The variance of the process above can achieve its unique maxima only at one of the following

points:

t∗, t1 :=
Hq1

(1−H)c1

, t2 :=
Hq2

(1−H)c2

. (5.4)

From (5.3) it follows that t1 < t2. As we shall see later, the order between t1, t2 and t∗ determines

the asymptotics of CTu . As mentioned in [16], for the one-dimensional Parisian ruin probability

we need to control the growth of Tu as u→∞. Namely, we impose the following condition:

lim
u→∞

Tuu
1/H−2 = T ∈ [0,∞), H ∈ (0, 1). (5.5)

Define for some function h and K ≥ 0 constant

BhK =

∫
R

P


∞∫

−∞

I
(√

2B(s)− |s|+ h(s) > x
)
ds > K

 exdx

when the integral above is finite and Berman’s constant by

B2H(x) = lim
S→∞

1

S

∫
R

P


S∫

0

I(
√

2BH(t)− t2H + z > 0)dt > x

 e−zdz, x ≥ 0.

It is known (see, e.g., [21]) that B2H(x) ∈ (0,∞) for all x ≥ 0; we refer to [21] and references

therein for the properties of relevant Berman’s constants.
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5.2 Main Result

Define for i = 1, 2

DH =
c1t∗ + q1

tH∗
, KH =

2
1
2
− 1

2H
√
π√

H(1−H)
, C(i)

H =
cHi q

1−H
i

HH(1−H)1−H , Di =
c2
i (1−H)2− 1

H

2
1

2HH2
. (5.6)

Now we are ready to give the asymptotics of CTu(u):

Theorem 5.2.1 Assume that (5.3) holds and Tu satisfies (5.5).

1)If t∗ /∈ (t1, t2), then as u→∞

CTu(u) ∼ (
1

2
)I(t∗=ti) ×


(

2(1 + c2
iT )Φ(ci

√
T )− ci

√
2T√
π
e
−c2i T

2

)
e−2ciqiu, H = 1/2

KHB2H(TDi)(C(i)
H u

1−H)
1
H
−1Φ(C(i)

H u
1−H), H 6= 1/2,

(5.7)

where i = 1 if t∗ ≤ t1 and i = 2 if t∗ ≥ t2.

2) If t∗ ∈ (t1, t2) and lim
u→∞

Tuu
2−1/H = 0 for H > 1/2, then as u→∞

CTu(u) ∼ Φ(DHu
1−H)×


1, H > 1/2

BdT ′ , H = 1/2

B2H(DT )Au(1−H)(1/H−2), H < 1/2,

(5.8)

where FdT ′ ∈ (0,∞),

T ′ = T
(c1q2 − q1c2)2

2(c1 − c2)2
, d(s) = s

c1q2 + c2q1 − 2c2q2

c1q2 − q1c2

I(s < 0) + s
2c1q1 − c1q2 − q1c2

c1q2 − q1c2

I(s ≥ 0) (5.9)

and

A =
(
|H(c1t∗ + q1)− c1t∗|−1 + |H(c2t∗ + q2)− c2t∗|−1

)tH∗ D 1
H
−1

H

2
1

2H

, D =
(c1t∗ + q1)

1
H

2
1

2H t2∗
. (5.10)

The theorem above generalizes Theorem 3.1 in [45]: if T = 0, then the result above reduces to

Theorem 3.1 in [45].

As indicated in [16], it seems extremely difficult to find the exact asymptotics of the one-dimensional

Parisian ruin probability if (5.5) does not hold. To illustrate difficulties arising in approximation

of CTu(u) in this case we give

Proposition 5.2.2 If H < 1/2, Tu = T > 0 and t∗ ∈ (t1, t2), then

C̄Φ(DHu
1−H)e−C1,αu2−4H−C2,αu2(1−3H) ≤ CTu(u)

≤ (2 + o(1))Φ(DHu
1−H)Φ

(
u1−2H T

HDH

2tH∗

)
, (5.11)

where C̄ ∈ (0, 1) is a fixed constant that does not depend on u and

α =
T 2H

2t2H∗
, Ci,α =

αi

i
D2
H , i = 1, 2. (5.12)
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5.3 Proofs

Recall that KH , D1 and C(1)
H are defined in (5.6). A proof of the proposition below is given in the

Appendix.

Proposition 5.3.1 Assume that Tu satisfies (5.5). Then as u→∞

P


∞∫

0

I(BH(t)−c1t>q1u)dt>Tu

∼

(

2(1 + c2
1T )Φ(c1

√
T )− c1

√
2T√
π
e
−c21T

2

)
e−2c1q1u, H = 1/2,

KHB2H(TD1)(C(1)
H u1−H)

1
H
−1Φ(C(1)

H u1−H), H 6= 1/2.

Proof of Theorem 5.2.1. Case (1). Assume that t∗ < t1. Let

Vi(t) =
BH(t)

cit+ qi
and ψi(Tu, u) = P


∞∫

0

I(BH(t)− cit > qiu)ds > Tu

 , i = 1, 2.

For 0 < ε < t1 − t∗ by the self-similarity of fBM we have

ψ1(Tu, u) ≥ CTu(u) ≥ P


t1+ε∫
t1−ε

I(V1(t) > u1−H , V2(t) > u1−H)dt > Tu/u


= P


t1+ε∫
t1−ε

I(V1(t) > u1−H)dt > Tu/u

 .

We have by Borel-TIS inequality, see [59] (details are in the Appendix)

ψ1(Tu, u) ∼ P


t1+ε∫
t1−ε

I(V1(t) > u1−H)ds > Tu/u

 , u→∞ (5.13)

implying CTu(u) ∼ ψ1(Tu, u) as u → ∞. The asymptotics of ψ1(Tu, u) is given in Proposition

5.3.1, thus the claim follows.

Assume that t∗ = t1. We have

P


∞∫
t1

I(V1(s) > u1−H)ds > Tu

 ≤ CTu(u)

≤ P


∞∫
t1

I(V1(s) > u1−H)ds > Tu

+ P
{
∃t∈ [0, t1] : V2(t)>u1−H} .

From the proof of Theorem 3.1, case (4) in [45] it follows that the second term in the last line

above is negligible comparing with the final asymptotics of CTu(u) given in (5.7), hence

CTu(u) ∼ P


∞∫
t1

I(V1(s) > u1−H)ds > Tu

 , u→∞.



87

Since t1 is the unique maxima of Var{V1(t)} from the proof of Theorem 2.1, case i) in [21] we have

P


∞∫
t1

I(V1(t) > u1−H)dt > Tu/u

 ∼ 1

2
P


∞∫

0

I(V1(t) > u1−H)dt > Tu/u


=

1

2
P


∞∫

0

I(BH(t)− c1t > q1u)dt > Tu

 , u→∞.

The asymptotics of the last probability above is given in Proposition 5.3.1 establishing the claim.

Case t∗ ≥ t2 follows by the same arguments.

Case (2). Assume that H > 1/2. We have by Theorem 2.1 in [43] and Theorem 3.1 in [45] with

RTu(u) = P {∃t ≥ 0 : BH(t)− c1t > q1u,BH(t)− c2t > q2u} ,

PTu(u) = P
{
∃t ≥ 0 : inf

s∈[t,t+Tu]
(BH(s)− c1s) > q1u, inf

s∈[t,t+Tu]
(BH(s)− c2s) > q2u

}
that

Φ(DHu
1−H) ∼ PTu(u) ≤ CTu(u) ≤ RTu(u) ∼ Φ(DHu

1−H), u→∞,

and the claim follows.

Assume that H = 1/2. First let (5.5) holds with Tu = T > 0. We have as u → ∞ and then

S →∞ (proof is in the Appendix)

CTu(u) ∼ P


ut∗+S∫
ut∗−S

I
(
B(s)− c1s > q1u,B(s)− c2s > q2u

)
ds > T

 := κS(u). (5.14)

Next with φu the density of B(ut∗), η = c1t∗ + q1 = c2t∗ + q2 and η∗ = η/t∗ − c2 = q2/t∗ we have

κS(u)

=

∫
R

P

(
ut∗∫

ut∗−S

I(B(s)− c2s > q2u)ds+

ut∗+S∫
ut∗

I(B(s)− c1s > q1u)ds > T
)
|B(ut∗) = ηu− x

φu(ηu− x)dx

=

∫
R

P
{( ut∗∫

ut∗−S

I(B(s)− c2s > q2u)ds

+

ut∗+S∫
ut∗

I(B(s)−B(ut∗)− c1(s− ut∗)− c1ut∗ > q1u− ηu+ x)ds > T
)
|B(ut∗) = ηu− x

}
φu(ηu− x)dx

=

∫
R

P

(
ut∗∫

ut∗−S

I(B(s)− c2s > q2u)ds+

S∫
0

I(B∗(s)− c1s > x)ds > T
)
|B(ut∗) = ηu− x

φu(ηu− x)dx
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=
e−

η2u
2t∗

√
2πut∗

∫
R

P


0∫

−S

I
(
Zu(s) + η∗s > x

)
ds+

S∫
0

I(B∗(s)− c1s > x)ds > T

 e
ηx
t∗
− x2

2ut∗ dx,

where Zu(t) is a Gaussian process with expectation and covariance defined below (s ≤ t ≤ 0):

E {Zu(t)} =
−x
ut∗

t, cov(Zu(s), Zu(t)) =
−st
ut∗
− t. (5.15)

Since Zu(t) converges to BM in the sense of convergence finite-dimension distributions for any

fixed x ∈ R as u→∞ we have (details are in the Appendix)

∫
R

P


0∫

−S

I
(
Zu(s) + η∗s > x

)
ds+

S∫
0

I(B∗(s)− c1s > x)ds > T

 e
ηx
t∗
− x2

2ut∗ dx

∼
∫
R

P


0∫

−S

I
(
B(s) + η∗s > x

)
ds+

S∫
0

I(B∗(s)− c1s > x)ds > T

 e
ηx
t∗ dx (5.16)

=: K(S).

We have by the formula P {∃t ≥ 0 : B(t)− ct > x} = e−2cx, c, x > 0 (see, e.g., [26])

K(S) ≤
∞∫

0

(
P {∃s < 0 : B(s) + η∗s > x}+ P {∃s ≥ 0 : B∗(s)− c1s > x}

)
e
ηx
t∗ dx+

0∫
−∞

e
ηx
t∗ dx

=

∞∫
0

(
e(−2η∗+η/t∗)x + e(−2c1+η/t∗)x

)
dx+ t∗/η <∞

provided by t∗ ∈ (t1, t2). Since K(S) is an increasing function and lim
S→∞

K(S) < ∞ we have as

S →∞

K(S) →
∫
R

P


∞∫

0

I
(
B(s)− η∗s > x

)
ds+

∞∫
0

I(B∗(s)− c1s > x)ds > T

 e
ηx
t∗ dx

=
t∗
η

∫
R

P


∞∫

0

I
(
B(s)− η∗t∗

η
s > x

)
ds+

∞∫
0

I(B∗(s)−
c1t∗
η
s > x)ds >

η2T

t2∗

 exdx

=

∫
R

P


∞∫

−∞

I
(√

2B(s)− |s|+ d(s) > x
)
ds >

η2T

2t2∗

 exdx

=
t∗
η
BdT ′ ∈ (0,∞),

where T ′ and d(s) are defined in (5.9). Finally, combining (5.16) with the line above we have as

u→∞ and then S →∞

κS(u) ∼ BdT ′Φ(D1/2

√
u)
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and by (5.14) the claim follows. If (5.5) holds with Tu = 0, then we obtain the claim immediately

by Theorem 3.1 in [45] and observation that Bd0 coincides with the corresponding Piterbarg con-

stant introduced in [45].

Now assume that (5.5) holds with any possible Tu. If (5.5) holds with T > 0, then for large u and

any ε > 0 it holds that C(1+ε)T (u) ≤ CTu(u) ≤ C(1−ε)T (u) and hence

(1 + o(1))BdT ′(1+ε)Φ(D1/2

√
u) ≤ CTu(u) ≤ BdT ′(1−ε)Φ(D1/2

√
u)(1 + o(1)).

By Lemma 4.1 in [21] Bdx is a continuous function with respect to x and thus letting ε → 0 we

obtain the claim. If (5.5) holds with T = 0, then for large u and any ε > 0 we have

BdεΦ(D1/2

√
u) ≤ CTu(u) ≤ Bd0Φ(D1/2

√
u)

and again letting ε→ 0 we obtain the claim by continuity of Bd(·).

Assume that H < 1/2. First we have with δu = u2H−2 ln2 u as u→∞ (proof is in Appendix)

CTu(u) ∼ P


ut∗∫

ut∗−uδu

I(BH(t)− c2t > q2u)dt > Tu

+ P


ut∗+uδu∫
ut∗

I(BH(t)− c1t > q1u)dt > Tu


=: g1(u) + g2(u). (5.17)

Assume that (5.5) holds with T > 0. Using the approach from [21] we have

g2(u) = P


δuT

−1
u u∫

0

IM(u)

( BH(ut∗ + tTu)

u(q1 + c1t∗) + c1tTu
M(u)

)
dt > 1


=: P


δuT

−1
u u∫

0

IM(u)(Z
(1)
u (t))dt > 1


= P


δuT

−1
u uK1∫
0

IM(u)(Z
(1)
u (tK−1

1 ))dt > K1


=: P


δuT

−1
u uK1∫
0

IM(u)(Z
(2)
u (t))dt > K1

 ,

where Ia(b) = I(b > a), a, b ∈ R and

K1 =
TD1/H

H

2
1

2H t∗
, M(u) = inf

t∈[t∗,∞)

u(c1t+ q1)

Var{BH(ut)}
= DHu

1−H .
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For variance σ2

Z
(2)
u

(t) and correlation r
Z

(2)
u

(s, t) of Z(2)
u for t, s ∈ [0, δuT

−1
u uK1] it holds that

1− σ
Z

(2)
u

(t) =
2

1
2H tH∗ D

1−1/H
H |q1H − (1−H)c1t∗|

(q1 + c1t∗)2
tu1−1/H +O(t2u2(1−1/H)),

1− r
Z

(2)
u

(s, t) = D−2
H u2H−2|t− s|2H +O(u2H−2|t− s|2Hδu).

Now we apply Theorem 2.1 in [21]. We have that all conditions of the theorem are fulfilled with

parameters

ω(x) = x, ←−ω (x) = x, β = 1, g(u) =
2

1
2H tH∗ D

1−1/H
H |q1H − (1−H)c1t∗|

(q1 + c1t∗)2
u1−1/H ,

ηϕ(t) = BH(t), σ2
η(t) = t2H , ∆(u) = 1, ϕ = 1,

n(u) = DHu
1−H , a1(u) = 0, a2(u) = δuT

−1
u uK1, γ = 0, x1 = 0, x2 =∞, y1 = 0, y2 =∞, x = K1,

θ(u) = u(1/H−2)(1−H)D−1+1/H
H |q1H − (1−H)c1t∗|−1tH∗ 2−

1
2H ,

and thus as u→∞

g2(u) = P


δuT

−1
u uK1∫
0

IM(u)(Z
(2)
u (t))dt > K1

 ∼ B2H(
TD

1
H
H

2
1

2H t∗
)u( 1

H
−2)(1−H) tH∗ D

−1+1/H
H

2
1

2H |q1H − (1−H)c1t∗|
Φ(DHu

1−H).

Similarly we obtain

g1(u) ∼ B2H(
TD1/H

H

2
1

2H t∗
)u(1/H−2)(1−H) tH∗ D

−1+1/H
H

2
1

2H |q2H − (1−H)c2t∗|
Φ(DHu

1−H), u→∞

and the claim follows if in (5.5) T > 0. Now let (5.5) holds with T = 0. Since PTu(u) ≤ CTu(u) ≤
RTu(u) we obtain the claim by Theorem 2.1 in [43] and Theorem 3.1 in [45]. �

Proof of Proposition 5.2.2. The proof of this proposition is the same as the proof of Proposition

2.2 in [43], thus we refer to [43] for the proof. �

5.4 Appendix

Proof of (5.13). To establish the claim we need to show that

P


t1+ε∫
t1−ε

I(V1(s) > u1−H)ds > Tu/u

 = o(ψ1(Tu, u)), u→∞.

Applying Borell-TIS inequality (see, e.g., [59]) we have as u→∞

P


∫

[0,∞)\[t1−ε,t1+ε]

I(V1(s) > u1−H)ds > Tu/u

 ≤ P
{
∃t ∈ [0,∞)\[t1 − ε, t1 + ε] : V1(t) > u1−H}
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≤ e−
(u1−H−M)2

2m2 ,

where

M = E

{
sup

∃t∈[0,∞)\[t1−ε,t1+ε]

V1(t)

}
<∞, m2 = max

∃t∈[0,∞)\[t1−ε,t1+ε]
Var{V1(t)}.

Since Var{V1(t)} achieves its unique maxima at t1 we obtain by (2.7) that

e−
(u1−H−M)2

2m2 = o(P
{
V1(t1) < u1−H}), u→∞

and the claim follows from the asymptotics of ψ1(Tu, u) given in Proposition 5.13. �

Proof of (5.14). To prove the claim it is enough to show that as u→∞ and then S →∞

P


∫

[0,∞)\[ut∗−S,ut∗+S]

I(B(t)− c1t > q1u,B(t)− c2t > q2u)dt > T

 = o(CTu(u)), u→∞.

We have that the probability above does not exceed

P {∃t ∈ [0,∞)\[ut∗ − S, ut∗ + S] : B(t)− c1t > q1u,B(t)− c2t > q2u} .

From the proof of Theorem 3.1 in [45], Case (3) and the final asymptotics of CTu(u) given in (5.8)

it follows that the expression above equals o(CTu(u)), as u→∞ and then S →∞. �

Proof of (5.16). Define

G(u, x) = P


0∫

−S

I
(
Zu(s) + η∗s > x

)
ds+

S∫
0

I(B∗(s)− c1s > x)ds > T

 .

First we show that ∫
R

G(u, x)e
ηx
t∗
− x2

2ut∗ dx =

M∫
−M

G(u, x)e
ηx
t∗ dx+ AM,u, (5.18)

where AM,u → 0 as u→∞ and then M →∞. We have

|AM,u| = |
∫
R

G(u, x)e
ηx
t∗
− x2

2ut∗ dx−
M∫

−M

G(u, x)e
ηx
t∗ dx|

≤ |
M∫

−M

G(u, x)(e
ηx
t∗
− x2

2ut∗ − e
ηx
t∗ )dx|+

∫
|x|>M

G(u, x)e
ηx
t∗ dx

=: |I1|+ I2.
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Since the variance of Zu (see (5.15)) converges to those of BM we have by Borell-TIS inequality

for x > 0, large u and some C > 0

G(u, x) ≤ P {∃t ∈ [−S, 0) : (Zu(t) + η∗t) > x}+ P {∃t ∈ [0, S] : (B∗(t)− c1t) > x}

≤ P {∃t ∈ [−S, 0] : (Zu(t)− E {Zu(t)}) > x}+ P {∃t ∈ [0, S] : B∗(t) > x} (5.19)

≤ e−x
2/C .

Let u > M4. For x ∈ [−M,M ] it holds that 1 − e−
x2

2ut∗ ≤ x2

2ut∗
≤ 1

M
and hence for u > M4 by

(5.19) we have as M →∞

|I1| ≤
0∫

−M

e
ηx
t∗ (1− e−

x2

2ut∗ )dx+

M∫
0

e−x
2/C+ ηx

t∗ (1− e−
x2

2ut∗ )dx ≤ 1

M

( 0∫
−∞

e
ηx
t∗ +

∞∫
0

e−x
2/C+ ηx

t∗

)
→ 0.

For I2 we have

I2 ≤
−M∫
−∞

e
ηx
t∗ dx+

∞∫
M

e−x
2/Ce

ηx
t∗ dx→ 0, M →∞,

hence (5.18) holds. Next we show that

G(u, x) → P


0∫

−S

I
(
B(s) + η∗s > x

)
ds+

S∫
0

I(B∗(s)− c1s > x)ds > T

 , u→∞

that is equivalent with

lim
u→∞

P


S∫

−S

I
(
Xu(s) > x

)
ds > T

 = P


S∫

−S

I
(
B(s) + k(s) > x

)
ds > T

 ,

where k(s) = I(s < 0)η∗s− I(s ≥ 0)c1s and

Xu(t) = (Zu(t) + η∗t)I(t < 0) + (B∗(t)− c1t)I(t ≥ 0).

We have for large u

E
{

(Xu(t)−Xu(s))
2
}

=


|t− s|+ |t− s|2 t, s ≥ 0

− (s−t)2

ut∗
+ |t− s|+ x2(t−s)2

u2t2∗
− 2x(t−s)2η∗

ut∗
+ η2

∗(t− s)2 t, s ≤ 0

|t− s| − s2

ut∗
+ x2s2

u2t2∗
− 2xs(η∗s+c1t)

ut∗
+ (η∗s+ c1t)

2 s < 0 < t

implying for all u large enough, some C > 0 and t, s ∈ [−S, S + T ]

E
{

(Xu(t)−Xu(s))
2
}
≤ C|t− s|.

Next, by Proposition 9.2.4 in [59] the family Xu(t), u > 0, t ∈ [−S, S+T ] is tight in B(C([−S, S+

T ])) (Borell σ-algebra in the space of the continuous functions on [−S, S + T ] generated by the
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cylindric sets).

As follows from (5.15), Zu(t) converges to B(t) in the sense of convergence finite-dimensional

distributions as u → ∞, t ∈ [−S, S + T ]. Thus, by Theorems 4 and 5 in Chapter 5 in [8] the

tightness and convergence of finite-dimensional distributions imply weak convergence

Xu(t)⇒ B(t) + k(t) =: W (t), t ∈ [−S, S + T ].

By Theorem 11 (Skorohod), Chapter 5 in [8] there exists a probability space Ω, where all random

processes have the same distributions, while weak convergence becomes convergence almost sure.

Thus, we assume that Xu(t) → W (t) a.s. as u → ∞ as elements of C[−S, S] space with the

uniform metric. We shall prove that for all x ∈ R

P

 lim
u→∞

S∫
−S

I(Xu(t) > x)dt =

S∫
−S

I(W (t) > x)dt

 = 1. (5.20)

Fix x ∈ R. We shall show that as u→∞ with probability 1

µΛ{t ∈ [−S, S] :Xu(ω, t)>x>W (ω, t)}+µΛ{t ∈ [−S, S] :W (ω, t)>x>Xu(ω, t)} → 0, (5.21)

where µΛ is the Lebesgue measure. Since for any fixed ε > 0 for large u and t ∈ [−S, S] with

probability one |W (t)−Xu(t)| < ε we have that

µΛ{t ∈ [−S, S] : Xu(ω, t) > x > W (ω, t)}+ µΛ{t ∈ [−S, S] : W (ω, t) > x > Xu(ω, t)}

≤ µΛ{t ∈ [−S, S] : W (ω, t) ∈ [−ε+ x, ε+ x]}.

Thus, (5.21) holds if

P
{

lim
ε→0

µΛ{t ∈ [−S, S] : W (t) ∈ [−ε+ x, x+ ε]} = 0
}

= 1. (5.22)

Consider the subset Ω∗ ⊂ Ω consisting of all ω∗ such that

lim
ε→0

µΛ{t ∈ [−S, S] : W (ω∗, t) ∈ [−ε+ x, x+ ε]} > 0.

Then for each ω∗ there exists the set A(ω∗) ⊂ [−S, S] such that µΛ{A(ω∗)} > 0 and for t ∈ A(ω∗)

it holds that W (ω∗, t) = x. Thus,

P {Ω∗} = P {µΛ{t ∈ [−S, S] : W (t) = x} > 0} ,

the right side of the equation above equals 0 by Lemma 5.4.1 below. Hence we conclude that (5.22)

holds, consequently (5.21) and (5.20) are true. Since convergence almost sure implies convergence

in distribution we have by (5.20) that for any fixed x ∈ R

lim
u→∞

P


S∫

−S

I(Xu(t) > x)dt > T

 = P


S∫

−S

I(W (t) > x)dt > T

 .
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By the dominated convergence theorem we obtain

M∫
−M

G(u, x)e
ηx
t∗ dx→

M∫
−M

P


0∫

−S

I
(
B(s) + η∗s > x

)
ds+

S∫
0

I(B∗(s)− c1s > x)ds > T

 e
ηx
t∗ dx, u→∞.

Thus, the claim follows from the line above and (5.18). �

Lemma 5.4.1 For any c > 0 and x ∈ R

P {µΛ{t ∈ [0,∞) : B(t)− ct = x} > 0} = 0. (5.23)

Proof of Lemma 5.4.1. Let for some fixed x ∈ R the assertion of the lemma does not hold.

Thus, ξx =
∞∫
0

I(B(t) − ct > x)dt does not have a continuous df. That contradicts to the explicit

expression of the df of ξx given in formula (3), p. 261 in [5]. �

Proof of (5.17). We have by the proof of Theorem 3.1 in [45], Case (3) and the final asymptotics

of CTu(u) given in (5.8)

P


∫

[0,∞)\[ut∗−uδu,ut∗+uδu]

I(BH(t)− c1t > q1u,BH(t)− c2t > q2u)dt > Tu


≤ P {∃t ∈ [0,∞)\[ut∗ − uδu, ut∗ + uδu] : BH(t)− c1t > q1u,BH(t)− c2t > q2u}

= o(CTu(u)), u→∞

and hence

P


∫

[ut∗−uδu,ut∗+uδu]

I(BH(t)− c1t > q1u,BH(t)− c2t > q2u)dt > Tu

 ∼ CTu(u), u→∞.

The last probability above is equivalent with g1(u) + g2(u) as u → ∞, this observation follows

from the application of the double-sum method, see the proofs of Theorem 3.1, Case (3) H < 1/2

in [45] and Theorem 2.1 in [21] case i). �

Proof of Proposition 5.3.1. If H = 1/2, then an equality takes place, see [21], Eq. [5].

Assume that H 6= 1/2. First let (5.5) holds with T > 0. We have for c > 0 with M̃(u) =

u1−H cH

(1−H)1−HHH (recall, Ia(b) = I(b > a), a, b ∈ R)

hTu(u) := P


∞∫

0

I(BH(t)−ct > u)dt > Tu


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= P

u(u
1
H
−2 c

2(1−H)2− 1
H

2
1

2HH2
)

∞∫
0

IM̃(u)(
BH(tu)M̃(u)

u(1 + ct)
)dt > T

c2(1−H)2− 1
H

2
1

2HH2

 .

Next we apply Theorem 3.1 in [21] to calculate the asymptotics of the last probability above as

u→∞. For the parameters in the notation therein we have

α0 = α∞ = H, σ(t) = tH , ←−σ (t) = t
1
H , t∗ =

H

c(1−H)
, A =

cH

HH(1−H)1−H , x = T
c2(1−H)2− 1

H

2
1

2HH2

B =
c2+H(1−H)2+H

HH+1
, M(u) = u1−H cH

(1−H)1−HHH
, v(u) = u

1
H
−2 c

2(1−H)2− 1
H

2
1

2HH2
.

and hence we obtain

hTu(u) ∼ KHB2H(TD)(CHu
1−H)

1
H
−1Φ(CHu

1−H), u→∞, (5.24)

where

CH =
cH

HH(1−H)1−H and D = 2−
1

2H c2H−2(1−H)2−1/H .

Assume that (5.5) holds with T = 0. For ε > 0 for all large u we have hεu1/H−2(u) ≤ hTu(u) ≤ h0(u)

and thus

KHB2H(εD)(CHu
1−H)

1
H
−1Φ(CHu

1−H) ≤ hTu(u) ≤ KHB2H(0)(CHu
1−H)

1
H
−1.

Since B2H(·) is a continuous function (Lemma 4.1 in [21]) letting ε→ 0 we obtain (5.24) for any

Tu satisfying (5.5). Replacing in (5.24) u and c by q1u and c1 we obtain the claim. �
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Chapter 6

Extremes of Reflecting Gaussian Processes

on Discrete Grid

This chapter is based on K. Dȩbicki and G. Jasnovidov: Extremes of reflecting Gaussian processes

on discrete Grid, in progress, 2021.

6.1 Introduction

For X(t), t ≥ 0 a centered Gaussian process with a.s. continuous sample paths, stationary incre-

ments and variance function σ2(t) := Var (X(t)) such that σ2(0) = 0, consider the reflected (at 0)

process

Q̂X(t) = X(t)− ct+ max

(
Q̂X(0),− inf

s∈[0,t]
(X(s)− cs)

)
, t ≥ 0, (6.1)

where c > 0. The motivation for the investigation of properties of Q̂X(t) stems from its relation

with the solution of the Skorokhod problems and their applications to queueing theory, ruin theory

and financial mathematics. In particular, the behavior of the buffer content in a fluid queueing

model fed by X and emptied at rate c evolves according to (6.1).

Distributional properties of the unique stationary solution of (6.1), which has the following rep-

resentation

QX(t) = sup
t≤s

(X(s)−X(t)− c(s− t)) , (6.2)

were intensively analyzed in, e.g., [11, 27, 36, 37]. The extremes of (6.2) were investigated in

[19, 20, 58].

From the point of view of the stochastic modelling, discrete-time models frequently appear to be

more natural. However, despite of its relevance in modelling of, e.g., queueing systems, much less

is known on distributional properties of the discrete counterpart of (6.2), i.e.,

Qδ,X(t) = sup
s∈[t,∞)∩Gδ

(
X(s)−X(t)− c(s− t)

)
, t ∈ Gδ. (6.3)

97
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A notable exception is a recent work [42], where the exact asymptotics of P {Qδ,BH (0) > u}, as
u→∞, was derived for H ∈ (0, 1).

In this contribution we extend the findings of [40, 42, 47] to a more general class of Gaussian

processes with stationary increments and derive the exact asymptotics of

ψsup
T,δ (u) := P

{
sup

t∈[0,T ]δ

Qδ,X(t) > u

}
, ψinf

T,δ(u) := P
{

inf
t∈[0,T ]δ

Qδ,X(t) > u

}
, (6.4)

as u→∞, for T > 0 and δ > 0, complementing results for continuous time given in [19, 58].

It appears that the influence of the grid size δ in (6.4) strongly depends on

ϕ := lim
u→∞

σ2(u)

u
∈ [0,∞],

leading to three scenarios: ϕ = 0, ϕ ∈ (0,∞) and ϕ = ∞. The case ϕ = ∞ leads to the same

asymptotics as its continuous-time counterpart, which reflects the long-range dependance property

of X when its variance σ2 is superlinear.

6.2 Notation and preliminary results

Let X(t), t ∈ R be a centered Gaussian process with stationary increments, as introduced in Sec-

tion 6.1. Suppose that

A: σ2 is regularly varying at∞ with index 2α ∈ (0, 2) and σ2(t) is twice continuously differentiable

for any t ∈ (0,∞). Further, the first and second derivatives of σ2 are ultimately monotone;

B: σ2 satisfies

ϕ := lim
u→∞

σ2(u)

u
∈ [0,∞];

Note that if α < 1/2, then ϕ = 0 and if α > 1/2, then ϕ = ∞. If α = 1/2, then ϕ can be either

0, ∞ or finite and positive constant.

C: if ϕ = 0 and α = 1
2
, then for κ =

√
c inf
t∈{δ,2δ,...}

σ(t)− ε, with sufficiently small ε > 0,

σ(u) ≤ κ

√
u

ln1/4 u
, u→∞. (6.5)

ConditionsA and B are satisfied for a wide class of Gaussian processes with stationary increments,

including family of fractional Brownian motions and integrated stationary Gaussian processes; see

Section 6.4 for details. We note that condition B already appeared in [27], where it was observed

that the form of the asymptotic behavior, as u → ∞, of P {QX(0) > u} introduced in (6.2) is

determined by the value of ϕ. It appears that cases where σ2 is asymptotically close to a linear

function need particularly precise analysis, for which condition C is a tractable assumption.
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Let

Hξ(M) = E
{

sup
t∈M

e
√

2ξ(t)−Var(ξ(t))

}
∈ (0,∞), Hinf

ξ (M) = E
{

inf
t∈M

e
√

2ξ(t)−Var(ξ(t))

}
∈ (0,∞), (6.6)

where M is a compact subset of R and ξ(t), t ∈ R is a Gaussian field with stationary increments

and a.s. continuous sample paths. Define Pickands constant by

Hδ
ξ = lim

S→∞

Hξ([0, S] ∩ δZ)

S
, δ ≥ 0,

where we set δZ = R if δ = 0. From [11] it follows that H0
ξ ∈ (0,∞) under A and some additional

smoothness conditions on ξ, while for δ > 0 we prove in Lemma 6.5.4 that it is sufficient to suppose

that ξ satisfies A to claim that Hδ
ξ ∈ (0,∞). Later on, for δ = 0 we simply write Hξ instead of

H0
ξ .

The following result from [27][Proposition 2] (see also [20] [Theorems 3.1-3.3]) will be a useful

reference to the new results presented in the next section. Let←−σ (t), t ≥ 0 stands for the asymptotic

inverse function of σ, i.e., ←−σ (x) = inf{y ∈ [0,∞) : f(y) > x} (for details and properties of the

asymptotic inverse functions see, e.g., [49]) and let

t∗ =
α

c(1− α)
, m(u) = inf

t>0

u(1 + ct)

σ(ut)
, ∆(u) =


←−σ
(√

2σ2(ut∗)
u(1+ct∗)

)
, ϕ /∈ (0,∞)

1, ϕ ∈ (0,∞).
(6.7)

Let for X such that ϕ ∈ (0,∞),

η(t) =
c
√

2

ϕ
X(t), t ≥ 0. (6.8)

As shown in [27][Proposition 2], if σ2 is regularly varying at 0 with index 2α0 ∈ (0, 2] and A is

satisfied, then the following result holds:

P {QX(0) > u} ∼ f(u)Φ(m(u))×


HBα , ϕ =∞

Hη, ϕ ∈ (0,∞)

HBα0
, ϕ = 0

, u→∞, (6.9)

where

f(u) =

√
2πA

B

u

m(u)∆(u)
, A =

1

(1− α)tα∗
, B =

α

tα+2
∗

. (6.10)

The following result establishes the asymptotics of P {Qδ,X(0) > u} for δ > 0 as u → ∞. It

generalizes the findings of [42, 47].

Theorem 6.2.1 Let X(t), t ≥ 0 be a centered Gaussian process with continuous trajectories and

stationary increments satisfying A, B, C. Then, for δ > 0, as u→∞, it holds that

P {Qδ,X(0) > u} ∼ Φ(m(u))×


√

2παu
δc(1−α)3/2m(u)

, ϕ = 0

Hδ
ηf(u), ϕ ∈ (0,∞)

HBαf(u), ϕ =∞.

(6.11)
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Remarks 6.2.2 Comparing the asymptotics in (6.9) and (6.11) we have under A-C and the

smooth conditions on σ2 necessary for (6.9), with C̃ =
Hδη
Hη ∈ (0, 1)

lim
u→∞

P {Qδ,X(0) > u}
P {QX(0) > u}

=


0, ϕ = 0,

C̃, ϕ ∈ (0,∞),

1, ϕ =∞.

6.3 Main Results

In this section we derive the exact asymptotics of

ψsup
T,δ (u) := P

{
sup

t∈[0,T ]δ

Qδ,X(t) > u

}
, ψinf

T,δ(u) := P
{

inf
t∈[0,T ]δ

Qδ,X(t) > u

}
, (6.12)

as u→∞, for T > 0 and δ > 0.

Theorem 6.3.1 Let X(t), t ≥ 0 be a centered Gaussian process with continuous trajectories and

stationary increments satisfying A-C. Then for δ > 0 as u→∞ it holds that

ψsup
T,δ (u) ∼ Φ(m(u))×


(1 + [T

δ
])

√
2παu

δc(1−α)3/2m(u)
, ϕ = 0

Hη([0, T ]δ)Hδ
ηf(u), ϕ ∈ (0,∞)

HBαf(u), ϕ =∞.

Theorem 6.3.2 Let X(t), t ≥ 0 be a centered Gaussian process with continuous trajectories and

stationary increments satisfying A-C. Then for δ > 0 as u→∞ it holds that

ψinf
T,δ(u) ∼ f(u)Φ(m(u))×

Hinf
η ([0, T ]δ)Hδ

η, ϕ ∈ (0,∞)

HBα , ϕ =∞.

If ϕ = 0, then for the non-degenerated scenario (when set [0, T ]δ consists of more than 1 element,

i.e., for T ≥ δ) it seems difficult to derive even logarithmic asymptotics of ψinf
T,δ(u). One can argue

that ψinf
T,δ(u) is exponentially smaller than P {Qδ,X(0) > u} in this case, as u → ∞. We have the

following proposition giving an upper bound for ψinf
T,δ(u).

Proposition 6.3.3 If ϕ = 0 and for some small ε > 0

σ(u) ≤
√
u

ln1/4+ε u
, u→∞, (6.13)

then for T ≥ δ with any C̃ < 1+ct∗
2t2α∗

sup
t∈[0,T ]δ

σ(t) it holds that

ψinf
T,δ(u) ≤ Φ(m(u))Φ(C̃

u

σ2(u)
), u→∞.
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All our results hold without additional smoothness assumptions in contrary to the continuous

time case studied in [20, 27]. Intuition behind absence of known behavior σ2 around zero is that

one can consider a random process on a discrete grid with step δ > 0 as a sequence of correlated

Gaussian random variables. The covariance of the sequence is determined only by its values on

the grid, hence assumptions concerning behavior of σ at 0 are not necessary.

Remarks 6.3.4 Comparing the asymptotics in Theorems 6.2.1, 6.3.1 and 6.3.2 for case ϕ = ∞
we observe the so-called strong Piterbarg property for the storage process:

ψsup
T,δ (u) ∼ P {Qδ,X(0) > u} ∼ ψinf

T,δ(u), T ≥ 0, u→∞.

The statement above agrees with Theorem 1 in [19].

Remarks 6.3.5 If ϕ = 0, α = 1/2 in the theorem above and (6.5) does not hold, then from the

proof it follows that (6.11) reduces to the upper bound.

6.4 Examples

Fractional Brownian motion. Let

CH =
cH

HH(1−H)1−H , DH =

√
2πHH+1/2

cH+1(1−H)H+1/2
, EH =

2
1
2
− 1

2H
√
π

H1/2(1−H)1/2
.

Applying Theorems 6.2.1, 6.3.1 and 6.3.2 for X being a standard fBM we obtain the following

results:

Corollary 6.4.1 As u→∞ it holds that

P {Qδ,BH (0) > u} ∼


DHu

H

δ
Φ(CHu

1−H), H < 1/2

H2c2δ
B1/2

e−2cu, H = 1/2

HBHEH(CHu
1−H)1/H−1Φ(CHu

1−H), H > 1/2.

Corollary 6.4.2 For T, δ > 0 as u→∞ it holds that

P

{
sup

t∈[0,T ]δ

Qδ,BH (t) > u

}
∼


(1 + [T

δ
])DHu

H

δ
Φ(CHu

1−H), H < 1/2

HB1/2
([0, 2c2T ]2c2δ)H2c2δ

B1/2
e−2cu, H = 1/2

HBHEH(CHu
1−H)1/H−1Φ(CHu

1−H), H > 1/2.

Corollary 6.4.3 For T, δ > 0 as u→∞ it holds that

P
{

inf
t∈[0,T ]δ

Qδ,BH (t) > u

}
∼

Hinf
B1/2

([0, 2c2T ]2c2δ)H2c2δ
B1/2

e−2cu, H = 1/2

HBHEH(CHu
1−H)1/H−1Φ(CHu

1−H), H > 1/2.
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Note that Corollary 6.4.1 intersects with the results in [40, 42, 47] while Corollaries 6.4.2 and 6.4.3

are discrete counterparts of Theorems 5-7 in [58] and Theorem 1 in [19], respectively.

Gaussian integrated process of SRD and LRD type. For a stationary centered Gaussian

process with a.s. continuous sample paths ζ(s), s ≥ 0 define the integrated process by

Z(t) =

t∫
0

ζ(s)ds, t ≥ 0. (6.14)

This process is also Gaussian, has a.s. continuous sample paths and stationary increments. In

what follows we consider two classes of processes Z, which differ by property of the correlation

function R(t) := E {ζ(0)ζ(t)} of ζ as t→∞.

SRD case. Following, e.g., [11] (see also [24]), we impose the following conditions on the cor-

relation of ζ:

R1: R(t) ∈ C([0,∞)), lim
t→∞

tR(t) = 0;

R2:
t∫

0

R(s)ds > 0 for all t ∈ (0,∞];

R3:
∞∫
0

t2|R(t)|dt <∞.

The above assertions imply the existence of the first and second derivatives of σ2
Z(t) = V ar(Z(t))

and establish the asymptotic behavior of σ2
Z(t) at ∞ (see e.g., Remark 6.1 in [11]):

σ2
Z(t) =

2

G
t− 2D + o(t−1), t→∞,

where G = 1/
∞∫
0

R(t)dt and D =
∞∫
0

tR(t)dt. Thus, σ2
Z satisfies A with α = 1/2 and applying

Theorems 6.2.1, 6.3.1 and 6.3.2 for scenario ϕ ∈ (0,∞) we have

Corollary 6.4.4 If Z(t) is an integrated process defined in (6.14) and R(t) satisfies R1-R3, then

for T ≥ 0 and δ > 0 as u→∞

P {Qδ,Z(0) > u} ∼ AHδ
ξe
−cGu,

P

{
sup

t∈[0,T ]δ

Qδ,Z(t) > u

}
∼ AHξ([0, T ]δ)Hδ

ξe
−cGu,

P
{

inf
t∈[0,T ]δ

Qδ,Z(t) > u

}
∼ AHinf

ξ ([0, T ]δ)Hδ
ξe
−cGu,

where A = 1

c2Gec2G2D
and ξ(t) = cGZ(t)/

√
2.

Note that the first asymptotics in Corollary 6.4.4 differs from its continuous-time analog (Theorem

5.1 in [11]) only by the corresponding Pickands constants.
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LRD case. Following, e.g., [27, 36] we characterize LRD case by the following assumptions on

R(t):

L1: R(t) is a continuous strictly positive function for t ≥ 0;

L2: R(t) is regularly varying at ∞ with index 2α− 2, α ∈ (1/2, 1).

Under the above assumptions, by Karamata’s theorem, σ2
Z is regularly varying at ∞ with index

2α. Since 2α > 1 we are in ϕ = ∞ scenario. Hence, applying Theorems 6.2.1, 6.3.1 and 6.3.2 we

immediately obtain the following result.

Corollary 6.4.5 If Z(t) is an integrated process defined in (6.14) and R(t) satisfies L1-L2, then

as u→∞ it holds that

P
{

inf
t∈[0,T ]δ

Qδ,Z(t) > u

}
∼ P {Qδ,Z(0) > u} ∼ P

{
sup

t∈[0,T ]δ

Qδ,Z(t) > u

}
∼ HB2αf(u)Ψ(m(u)),

where m(u) and f(u) are defined in (6.7) and (6.10), respectively. In this setup of the problem

we observe that the strong Piterbarg’s property holds.

6.5 Proofs

In this section we give proofs of all results. Hereafter, denote by X := X√
V ar(X)

for any nontrivial

random variable X. For any u > 0 we have

P {Qδ,X(0) > u} = P
{

sup
t∈Gδ

(X(t)− ct) > u

}
= P

{
sup
t∈Gδ/u

Xu(t) > m(u)

}
,

where m(u) is defined in (6.7) and

Xu(t) =
X(ut)

u(1 + ct)
m(u).

Denote by σ2
Xu

the variance function of Xu(t), t ≥ 0. In the next lemma we focus on asymptotic

properties of the variance and correlation functions of Xu(t); we refer to, e.g., [20] for the proof.

Lemma 6.5.1 Suppose that A is satisfied. For u large enough the maximizer tu of σXu is unique

and tu → t∗ = α
c(1−α)

as u→∞. Moreover, for δu > 0 satisfying lim
u→∞

δu = 0 (A, B are defined in

(6.10))

lim
u→∞

sup
t∈(tu−δu,tu+δu)\{tu}

∣∣∣∣∣ 1− σXu(t)
B
2A

(t− tu)2
− 1

∣∣∣∣∣ = 0

and (recall, σ2 is the variance of X)

lim
u→∞

sup
s 6=t,s,t∈(tu−δu,tu+δu)

∣∣∣∣∣1− Cor (X(us), X(ut))
σ2(u|s−t|)
2σ2(ut∗)

− 1

∣∣∣∣∣ = 0.
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By Lemma 6.5.1 we have that tu is the unique minimizer of u(1+ct)
σ(ut)

for large u and hence by Potter’s

theorem (Theorem 1.5.6 in [4]) we obtain useful in the following proofs asymptotics of m(u)

m(u) =
u(1 + ctu)

σ(utu)
∼ u(1 + ct∗)

σ(ut∗)
· σ(ut∗)

σ(utu)
∼ u(1 + ct∗)

tα∗σ(u)
, u→∞. (6.15)

Observe that

ψsup
T,δ (u) = P

{
sup

t∈[0,T/u]δ/u,t≤s∈Gδ/u
Zu(t, s) > m(u)

}
,

where

Zu(t, s) =
X(us)−X(ut)

u(1 + c(s− t))
m(u). (6.16)

Notice that for the variance σ2
Zu

of Zu it holds, that σ2
Zu

(s, t) = σ2
Xu

(s− t) and for correlation rZu
we have for δu > 0 satisfying limu→∞ δu = 0 (Lemma 5.4. in [20])

lim
u→∞

sup
|t−t1|<δu,s−t,s1−t1∈(−δu+tu,tu+δu),(s,t)6=(s1,t1)

∣∣∣ 1− rZu(s, t, s1, t1)
σ2(u|s−s1|)+σ2(u|t−t1|)

2σ2(ut∗)

− 1
∣∣∣ = 0. (6.17)

To the rest of the paper we suppose that

δu =

u−1/2 lnu, ϕ <∞

u−1 ln(u)σ(u), ϕ =∞

and set

I(tu) = G δ
u

⋂
(−δu + tu, tu + δu)

for u > 0. The following lemma allow us to extract the main area contributing in the asymptotics

of ψsup
T,δ (u), ψinf

T,δ(u) and P {Mδ > u} as u→∞:

Lemma 6.5.2 For any T ≥ 0 it holds, that as u→∞

ψsup
T,δ (u) ∼ P

{
sup

t∈[0,T/u]δ/u,s∈I(tu)

Zu(t, s) > m(u)

}

ψinf
T,δ(u) ∼ P

{
inf

t∈[0,T/u]δ/u,s∈I(tu)
Zu(t, s) > m(u)

}
.

The lemma below allows us to give upper bounds for the double-sum terms appearing in case

ϕ = 0 in Theorems 6.2.1 and 6.3.2.

Lemma 6.5.3 Assume that ϕ = 0. Then uniformly for t 6= s ∈ I(tu) and all large u with some

ε > 0 it holds that

P {Xu(t) > m(u), Xu(s) > m(u)} ≤ u−1/2−εΦ(m(u)).
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In the next lemma we prove that the discrete Pickands constant appearing in Theorems 6.2.1,

6.3.1 and 6.3.2 is well defined, positive and finite.

Lemma 6.5.4 For any δ ≥ 0 and η a centered Gaussian process with stationary increments, a.s.

continuous sample paths and variance satisfying A it holds, that

lim
S→∞

Hη({0, δ, ..., S})
S

= Hδ
η ∈ (0,∞). (6.18)

We give the proofs of Lemmas 6.5.2, 6.5.3 and 6.5.4 at the end of this section. Now we are ready

to prove main findings of this contribution.

Proof of Theorem 6.2.1: Taking T = 0 in Lemma 6.5.2 we obtain that

P {QδX (0) > u} ∼ P

{
sup
t∈I(tu)

Xu(t) > m(u)

}
, u→∞. (6.19)

Next we consider 3 cases: case i) when ϕ = 0, case ii) when ϕ ∈ (0,∞) and case iii) when ϕ =∞.

Case i). We have by Bonferroni inequality

∑
t∈I(tu)

P {Xu(t) > m(u)} ≥ P

{
sup
t∈I(tu)

Xu(t) > m(u)

}
(6.20)

≥
∑
t∈I(tu)

P {Xu(t) > m(u)} −
∑

t 6=s∈I(tu)

P {Xu(t) > m(u), Xu(s) > m(u)} .

There are less then Cu ln2 u summands in the double-sum above, hence by Lemma 6.5.3 we have∑
t6=s∈I(tu)

P {Xu(t) > m(u), Xu(s) > m(u)} ≤ C ln2(u)u1/2−ε′Φ(m(u)), u→∞. (6.21)

Next we focus on calculation of the single sum in (6.20). Since by Lemma 6.5.1 sup
t∈I(tu)

|σXu(t)−1| →

0 as u→∞ (2.7) implies as u→∞∑
t∈I(tu)

P {Xu(t) > m(u)} =
∑
t∈I(tu)

Φ(
m(u)

σXu(t)
)

∼
∑
t∈I(tu)

σXu(t)√
2πm(u)

e
− m2(u)

2σ2
Xu

(t)

∼ e−
m2(u)

2

√
2πm(u)

∑
t∈I(tu)

e
− m2(u)

2σ2
Xu

(t)
+
m2(u)

2

∼ Φ(m(u))
∑
t∈I(tu)

e
−m

2(u)
2

(1−σ2
Xu

(t))

σ2
Xu

(t) .
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By Lemma 6.5.1 we have that as u→∞ the last sum above is equivalent to∑
t∈I(tu)

e−m
2(u) B

2A
(t−tu)2

=
∑

t∈(− lnu√
u
, lnu√

u
)δ/u

e−m
2(u) B

2A
t2

=
u

δm(u)

(δm(u)

u

∑
t∈(−m(u) lnu√

u
,
m(u) lnu√

u
)δm(u)/u

e−
B
2A
t2
)

∼ u

δm(u)

∫
R

e−
B
2A
t2dt, u→∞ (6.22)

=
u

δm(u)

√
2πA

B

=
u

δm(u)

√
2πα

c(1− α)3/2
,

where the asymptotic equivalence in (6.22) holds since by (6.15) δm(u)
u
→ 0 and m(u) lnu√

u
→∞ as

u→∞. Thus, ∑
t∈I(tu)

P {Xu(t) > m(u)} ∼
√

2παuΦ(m(u))

δc(1− α)3/2m(u)
, u→∞ (6.23)

and hence by (6.15),(6.20) and (6.21) we have that

P

{
sup
t∈I(tu)

Xu(t) > m(u)

}
∼
√

2παuΦ(m(u))

δc(1− α)3/2m(u)
, u→∞

and the claim follows by (6.19).

Cases ii-iii). For any fixed u > 0 and S ∈ {0, δ, 2δ, ...} denote

Nu = d uδu
S∆(u)

e, tj =
∆(u)jS

u
, ∆j,S,u = [tu + tj, tu + tj+1]δ/u, j ∈ [−Nu − 1, Nu],

where d·e is the ceiling function. We have by Bonferroni inequality that

∑
−Nu≤j≤Nu−1

pj,S,u −
∑

−Nu−1≤i 6=j≤Nu

pi,j;S,u ≤ P

{
sup
t∈I(tu)

Xu(t) > m(u)

}
≤

∑
−Nu−1≤j≤Nu

pj,S,u, (6.24)

where

pj,S,u = P

{
sup

t∈∆j,S,u

Xu(t) > m(u)

}
and pi,j;S,u = P

{
sup

t∈∆j,S,u

Xu(t) > m(u), sup
t∈∆i,S,u

Xu(t) > m(u)

}
.

By [20] we have that the double-sum term above is o(P {Mδ > u}) as u → ∞. Hence from the

asymptotics of
∑

−Nu≤j≤Nu−1

pj,S,u given in (6.25) and (6.26) later on we obtain that the double-sum

term is negligible and hence as u→∞ and then S →∞

P

{
sup
t∈I(tu)

Xu(t) > m(u)

}
∼

∑
−Nu≤j≤Nu

pj,S,u
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and we need to calculate the asymptotics of the sum above. That can be done via uniform ap-

proximation of pj,S,u for all −Nu − 1 ≤ j ≤ Nu. As shown for cases ii) and iii) separately below.

In case ii) we have ∆(u) = 1, Nu = d
√
u lnu
S
e, tj = jS

u
and ∆j,S,u = [tu + tj, tu + tj+1]. We have by

Lemma 6.5.1 for any ε > 0, 0 ≤ j ≤ Nu for all u large enough with m−j (u) = m(u)

1−(1−ε) B
2A

( jS
u

)2

pj,S,u = P
{
∃t ∈ ∆j,S,u : Xu(t) >

m(u)

σu(t)

}
≤ P

{
∃t ∈ ∆j,S,u : Xu(t) >

m(u)

1− (1− ε) B
2A

(t− tu)2

}

≤ P

{
sup

t∈∆j,S,u

Xu(t) > m−j (u)

}

≤ P

{
sup

t∈[0,S]δ

X
′
u(t) > m−j (u)

}
,

where X ′u(t), t ∈ [0, S] is some centered Gaussian process with unit variance and correlation

satisfying 1 − rX′u(t, s) ∼ σ2(|t−s|)
2σ2(ut∗)

, u → ∞ t, s ∈ [0, S]. By Lemma 1 in [19] the last probability

above as u → ∞ is equivalent to Hη′({0, δ, ..., S})Φ(m−j (u)), where η′ is a centered Gaussian

process with stationary increments, a.s. continuous sample paths and variance (asymptotics of

m(u) is given in (6.15))

σ2
η′(t) = lim

u→∞

m2(u)

2σ2(ut∗)
σ2(t) = lim

u→∞

u2(1 + ct∗)
2

2t∗σ2(ut∗)σ2(u)
σ2(t) =

2c2

ϕ2
σ2(t).

Note that η′ and η defined in (6.8) have the same distributions. Thus,∑
0≤j≤Nu

pj,S,u ≤ Hη({0, δ, ..., S})
∑

0≤j≤Nu

Φ(m−j (u)), u→∞.

Next as u→∞ (set C− = (1−ε)B
2A

) similarly to case i) we have∑
0≤j≤Nu

Φ(m−j (u))

Φ(m(u))
∼

∑
0≤j≤Nu

e
−m

2(u)
2

( 1

(1−C−(
jS
u )2)2

−1)

∼
∑

0≤j≤Nu

e−
m2(u)

2
2C−( jS

u
)2

=
∑

Sm(u)
u
∈[0,

NuSm(u)
u

]Sm(u)
u

e−C−(
jSm(u)

u
)2

=
u

Sm(u)

(Sm(u)

u

∑
t∈[0,

m(u) lnu√
u

]Sm(u)
u

e−C−t
2
)
.

Since by (6.15) u
Sm(u)

→ 0 and m(u) lnu√
u
→∞ as u→∞ we have that the sum above converges to

∞∫
0

e−C−t
2
dt =

√
π

2
√
C−

as u → ∞. Similar calculation can be done for j < 0, hence summarizing all
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calculations above we have as u→∞ and then S →∞∑
−Nu≤j≤Nu

pj,S,u ≤ Hη({0, δ, ..., S})
uΦ(m(u))

Sm(u)

√
π√
C−

.

By Lemma 6.5.4 Hη({0,δ,...,S})
S

→ Hδ
η ∈ (0,∞) as S →∞ , hence letting S →∞ we have∑

−Nu≤j≤Nu

pj,S,u ≤ Hδ
η

uΦ(m(u))

m(u)

√
π√
C−

(1 + o(1)), u→∞.

By the same arguments we have the lower bound∑
−Nu≤j≤Nu

pj,S,u ≥ Hδ
η

uΦ(m(u))

m(u)

√
π√
C+

(1 + o(1)), u→∞,

with C+ = (1+ε)B
2A

. Hence letting ε→ 0 we have that as S →∞ and then u→∞

∑
−Nu≤j≤Nu

pj,S,u ∼ Hδ
η

u

m(u)

√
2πA

B
Φ(m(u)). (6.25)

For case iii) we note that ∆(u), Nu → ∞ and ∆(u)/u → 0 as u → ∞. We have with mk(u) =
m(u)

1−C+|tk|2
, −Nu ≤ k ≤ Nu for large S, u

pk,S,u ≥ P

{
sup

t∈[tk,tk+1]δ/u

Xu(t) > mk(u)

}
≥ P

 sup
t∈[tk,tk+1] ∆(u)

u
δ[ε1∆(u)]

∆(u)

Xu(t) > mk(u)


≥ P

 sup
t∈[0,S− δ[ε1∆(u)]

∆(u)
] δ[ε1∆(u)]

∆(u)

Y ′u(t) > mk(u)


≥ P

{
sup

t∈[0,S(1−ε2)]δε1

Y ′u(t
[∆(u)ε1]

∆(u)ε1

) > mk(u)

}

= P

{
sup

t∈[0,S(1−ε2)]δε1

Yu(t) > mk(u)

}
, u→∞,

where ε1, ε2 are any small positive numbers and Yu(t), Y ′u(t) are some centered Gaussian processes

with unit variances and correlation functions having expansions as u→∞

rYu(t, s) = 1− σ2(∆(u))|t− s|2α

2σ2(u)t2α∗
+ o(

σ2(∆(u))|t− s|2α

σ2(u)
),

rY ′u(t, s) = 1− σ2(∆(u))|t− s|2α

2σ2(u)t2α∗
+ o(

σ2(∆(u))|t− s|2α

σ2(u)
).

Next by Lemma 5.1 in [20] with (in their notation) index set K consisting of 1 element and

g(u) = mk(u), θ(u, s, t) = |t− s|2α, V = Bα, σV (t) = |t|2α
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we have uniformly for −Nu ≤ k ≤ Nu

P

{
sup

t∈[0,(1−ε2)S]δε1

Yu(t) > mk(u)

}
∼ HBα([0, S(1− ε2)]δε1)Φ(mk(u)), u→∞.

Thus, for large S as u→∞∑
−Nu≤k≤Nu

pk,S,u ≥ HBα([0, (1− ε2)S]δε1)
∑

−Nu≤k≤Nu

Φ(mk(u))(1 + o(1)).

Next we calculate the sum above. Similarly to cases i-ii) we have as u→∞ with Ĉ+ = C+(1+ct∗)2

(t∗)2α

and lu = S∆(u)
σ(u)

→ 0

Nu∑
k=−Nu

Φ(mk(u))

Φ(m(u))
∼

Nu∑
k=−Nu

e
−m

2(u)
2

( 1

(1−C+t
2
k

)2
−1)

∼
Nu∑

k=−Nu

e−C+m2(u)t2k

∼

σ(u) lnu
S∆(u)∑

k=−σ(u) lnu
S∆(u)

e
−C+(1+ct∗)2

t2α∗
(
kS∆(u)
σ(u)

)2

=
∑

klu∈(− lnu,lnu)lu

e−Ĉ+(klu)2

=
1

lu

(
lu

∑
t∈(− lnu,lnu)lu

e−Ĉ+t2
)
.

Since lu → 0 as u→∞ the expression in the parentheses above converges as u→∞ to∫
R

e−Ĉ+t2dt =

√
π√
Ĉ+

=

√
2Aπ

B

tα∗
1 + ct∗

1√
1 + ε

.

Thus, summarizing the calculations above we have as u→∞ for large S∑
−Nu≤k≤Nu

pk,S,u ≥
1√

1 + ε

1

S
HBα([0, (1− ε2)S]δε1)Φ(m(u))

σ(u)

∆(u)

√
2Aπ

B

tα∗
1 + ct∗

(1 + o(1)).

Letting S → ∞ then ε2 → 0 and then ε1 → 0 in view of Lemma 12.2.7 ii) and Remark 12.2.10

in [49] we obtain 1
S
HBα([0, (1− ε2)S]δε1)→ HBα . Letting then ε→ 0 we obtain the lower bound

∑
−Nu≤k≤Nu

pk,S,u ≥ HBαΦ(m(u))
σ(u)

∆(u)

√
2Aπ

B

tα∗
1 + ct∗

(1 + o(1)), u→∞. (6.26)

Similarly to the calculation of the lower bound we have for −Nu ≤ k ≤ Nu and ε > 0 with

m−k (u) = m(u)
1−C−|tk|2

(recall, C− = B(1−ε)
2A

) as u→∞ and then S →∞

pk,S,u ≤ HBα([0, S])Φ(m−k (u))(1 + o(1)).
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Summing pk,S,u and letting S →∞ as above we have the upper bound∑
−Nu≤k≤Nu

pk,S,u ≤
1√

1− ε
HBαΦ(m(u))

σ(u)

∆(u)

√
2Aπ

B

tα∗
1 + ct∗

(1 + o(1)), u→∞.

Letting ε→ 0 we obtain the right side in (6.26), thus the claim is established. �

Proof of Theorem 6.3.1. By Lemma 6.5.2 we have

ψsup
T,δ (u) ∼ P

{
sup

t∈[0,T/u]δ/u,s−t∈I(tu)

Zu(t, s) > m(u)

}
, u→∞. (6.27)

As in the proof of Theorem (6.2.1) next we consider three cases: case i) when ϕ = 0, case ii) when

ϕ ∈ (0,∞) and case iii) when ϕ =∞.

Case i). First we have by Bonferroni inequality

∑
t∈[0,T

u
] δ
u

∑
s∈I(tu)

P {Zu(t, s) > m(u)} ≥ P

 sup
t∈[0,T

u
] δ
u
,s∈I(tu)

Zu(t, s) > m(u)


≥

∑
t∈[0,T

u
] δ
u

∑
s∈I(tu)

P {Zu(t, s) > m(u)}

−
∑

t∈[0,T
u

] δ
u

∑
s1,s2∈I(tu)

s1 6=s2

P {Zu(t, s1), Zu(t, s2) > m(u)} .

For the double-sum above we have∑
t∈[0,T

u
] δ
u

∑
s1,s2∈I(tu)

s1 6=s2

P {Zu(t, s1), Zu(t, s2) > m(u)}

≤ (1 + [
T

δ
]) sup
t∈[0,T

u
] δ
u

∑
s1,s2∈I(tu)

s1 6=s2

P {Xu(s1 − t), Xu(s2 − t) > m(u)}

≤ C(1 + [
T

δ
]) ln2(u)u1/2−ε′Φ(m(u)), (6.28)

where the last inequality above follows from (6.21). For the asymptotics of the single sum we have∑
t∈[0,T

u
] δ
u

∑
s∈I(tu)

P {Zu(t, s) > m(u)} =
∑

t∈[0,T
u

] δ
u

∑
s∈I(tu)

P {Xu(s− t) > m(u)}

∼ (1 + [
T

δ
])
∑

τ∈I(tu)

P {Xu(τ) > m(u)} , u→∞.

The last sum above was calculated in the proof of Theorem 6.2.1, hence∑
t∈[0,T

u
] δ
u

∑
s1 6=s2∈I(tu)

P {Zu(t, s) > m(u)} ∼ (1 + [
T

δ
])

√
2παuΦ(m(u))

δc(1− α)3/2m(u)
, u→∞.
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By the line above combined with (6.28) we obtain

P

 sup
t∈[0,T

u
] δ
u
,s∈I(tu)

Zu(t, s) > m(u)

 ∼ (1 + [
T

δ
])

√
2παuΦ(m(u))

δc(1− α)3/2m(u)
, u→∞

and the claim follows by (6.27).

Case ii). With the notation of Theorem 6.2.1 we have by Bonferroni inequality for u > 0

Nu∑
j=−Nu

qj,S,u ≥ P

 sup
t∈[0,T

u
] δ
u
,s∈I(tu)

Zu(t, s) > m(u)

 ≥
Nu∑

j=−Nu

qj,S,u −
∑

−Nu≤i<j≤Nu

qi,j;S,u,

where

qj,S,u = P

 sup
t∈[0,T

u
] δ
u
,s∈∆j,S,u

Zu(t, s) > m(u)


and

qi,j;S,u = P

{
∃t ∈ [0,

T

u
] δ
u

: sup
s∈∆j,S,u

Zu(t, s) > m(u), sup
s∈∆i,S,u

Zu(t, s) > m(u)

}
.

By [20] we have that the double-sum term above is o(P {Mδ > u}) as u → ∞. Hence from the

asymptotics of
Nu∑

j=−Nu
qj,S,u given in Theorem 6.3.1 we obtain that the double-sum term is negligible

and hence as u→∞ and then S →∞

P

 sup
t∈[0,T

u
] δ
u
,s∈I(tu)

Zu(t, s) > m(u)

 ∼
Nu∑

j=−Nu

qj,S,u

and we need to calculate the asymptotics of the sum above. Next we uniformly approximate

each summand in the sum above. For ε > 0, j ≥ 1, S > T and u large enough we have (recall,

m−j−1(u) = m(u)

1−(1−ε) B
2A

(
(j−1)S
u

)2
)

qj,S,u = P
{
∃(t, s)∈ [0,

T

u
]δ/u×∆j,S,u :Zu(t, s) >

m(u)

σu(s− t)

}
≤ P

{
∃(t, s)∈ [0,

T

u
]δ/u×∆j,S,u :Zu(t, s)>

m(u)

1−(1− ε) B
2A

(s−t−tu)2

}

≤ P

{
sup

t∈[0,T ]δ,s∈[0,S]δ

Z
′
u(t, s) >

m(u)

1− C−( (j−1)S
u

)2

}

= P

{
sup

t∈[0,T ]δ,s∈[0,S]δ

Z
′
u(t, s) > m−j−1(u)

}
,
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where Z ′u(t, s) is some centered Gaussian process with unit variance and correlation rZ′u having

an expansion

1− rZ′u(t, s, t1, s1) ∼ σ(|s− s1|)2 + σ2(|t− t1|)
2σ2(ut∗)

, (t, s) ∈ [0, T ]× [0, S], u→∞. (6.29)

Applying Lemma 5.1 in [20] with parameters (with X(1), X(2) being independent copies of X)

Φ = sup, θ(u, s, t) =
2c2

ϕ2
(σ2(|s− s1|) + σ2(|t− t1|)), V (t, s) =

√
2c

ϕ
(X(1)(t) +X(2)(s))

we have

P

{
sup

t∈[0,T ]δ,s∈[0,S]δ

Z
′
u(t, s) > m−j−1(u)

}
∼ HV (t,s)([0, T ]δ × [0, S]δ)Φ(m−j−1(u)).

Since X(1)(t) and X(2)(s) are independent we have

HV (t,s)([0, T ]δ × [0, S]δ) = H√2c
ϕ
X

([0, T ]δ)H√2c
ϕ
X

([0, S]δ).

Finally, for ε > 0, j ≥ 1, S > T and u large we have

P

{
sup

t∈[0,T
u

]δ/u,s∈∆j,S,u

Zu(t, s) > m(u)

}
≤ H√2c

ϕ
X

([0, T ]δ)H√2c
ϕ
X

([0, S]δ)Φ(m−j−1(u))(1 + o(1)).

The rest of the proof is the same as in Theorem 6.2.1 case ii), thus the claim is established. �

Case iii). By Theorem 6.2.1 we have

ψsup
T,δ (u) ≥ P {Mδ > u} ∼ HBαf(u)Φ(m(u)), u→∞.

By (6.27) we have

ψsup
T,δ (u) ≤ P

{
sup

t∈[0,T/u],s−t∈(−δu+tu,tu+δu)

Zu(t, s) > m(u)

}
(1 + o(1)), u→∞.

From the proof of Theorem 3.1 in [20] it follows that the last probability above does not exceed

(1 + o(1))HBαf(u)Φ(m(u)), u→∞. Combining both bounds above we obtain the claim. �

Proof of Theorem 6.3.2. Assume that ϕ ∈ (0,∞). First by Lemma 6.5.2 we have

ψinf
T,δ(u) ∼ P

{
inf

t∈[0,T
u

]δ/u

sup
s∈I(tu)

Zu(t, s) > m(u)

}
, u→∞.

With notation of Theorem 6.2.1 in view of the final asymptotics of ψinf
δ,T (u) given in Theorem 6.3.2

repeating the proof of Theorem 6.3.1 we have as u→∞ and then S →∞

P

{
inf

t∈[0,T
u

]δ/u

sup
s∈I(tu)

Zu(t, s) > m(u)

}
∼

Nu∑
j=−Nu

P

{
inf

t∈[0,T
u

]δ/u

sup
s∈∆j,S,u

Zu(t, s) > m(u)

}
.
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Next we uniformly approximate each summand in the sum above. For ε > 0, j ≥ 1, S > T and u

large enough similarly to the proof of Theorem 6.3.1 we obtain (recall,m−j−1(u) = m(u)

1−(1−ε) B
2A

(
(j−1)S
u

)2
)

P

{
inf

t∈[0,T
u

]δ/u

sup
s∈∆j,S,u

Zu(t, s) > m(u)

}
≤ P

{
inf

t∈[0,T ]δ
sup

s∈[0,S]δ

Z
′
u(t, s) > m−j−1(u)

}
,

where Z ′u(t, s) is a centered Gaussian process with unit variance and correlation satisfying (6.29).

Applying Lemma 5.1 in [20] with parameters (with X(1), X(2) being independent copies of X)

Φ = inf sup, θ(u, s, t) =
2c2

ϕ2
(σ2(|s− s1|) + σ2(|t− t1|)), V (t, s) =

√
2c

ϕ
(X(1)(t) +X(2)(s))

we have as u→∞

P

{
inf

t∈[0,T ]δ
sup

s∈[0,S]δ

Z
′
u(t, s) > m−j−1(u)

}
∼ E

{
inf

t∈[0,T ]δ
sup

s∈[0,S]δ

e
√

2V (t,s)−Var(V (t,s))

}
Φ(m−j−1(u)).

Since X(1)(t) and X(2)(s) are independent we have

E

{
inf

t∈[0,T ]δ
sup

s∈[0,S]δ

e
√

2V (t,s)−Var(V (t,s))

}
= Hinf√

2c
ϕ
X

([0, T ]δ)H√2c
ϕ
X

([0, S]δ).

Thus, as u→∞

P

{
inf

t∈[0,T
u

]δ/u

sup
s∈∆j,S,u

Zu(t, s) > m(u)

}
≤ Hinf√

2c
ϕ
X

([0, T ]δ)H√2c
ϕ
X

([0, S]δ)Φ(m−j−1(u)).

The rest of the proof is the same as in Theorem 6.2.1, thus the claim is established.

Assume that ϕ = ∞. Let R(s, t) = X(s) − X(t) − c(s − t), t, s ≥ 0. Using the idea from

[19], (the next equation after (2)) we write

ψinf
T,δ(u)

ψsup
T,δ (u)

= P

{
inf

t∈[0,T ]δ
sup

t≤s∈Gδ
R(s, t) > u

∣∣∣ sup
t∈[0,T ]δ

sup
t≤s∈Gδ

R(s, t) > u

}

≥ 1−
∑

t∈[0,T ]δ

1−
P
{

sup
t≤s∈Gδ

R(s, t) > u

}
P

{
sup

a∈[0,T ]δ

sup
a≤b∈Gδ

R(a, b) > u

}
 .

By Theorems 6.2.1 and 6.3.1 we have that the right part of the expression above tends to 1 as

u→∞. Thus, we have ψinf
T,δ(u) ∼ ψsup

T,δ (u) ∼ HBαf(u)Φ(m(u)), u→∞ and the claim follows. �

Proof of Proposition 6.3.3. Since T ≥ δ with any K ∈ [δ, T ]δ, a ∈ (0, t∗), b > 0 and J(tu) =

[−a+ tu, tu + b] we have

ψinf
δ,T (u) ≤ ψinf

δ,K(u)
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≤ P
{
∃s1, s2 ∈ J(tu) ∩G δ

u
: Zu(0, s1) > m(u), Zu(

K

u
, s2) > m(u)

}
+P {∃s /∈ J(tu) : Zu(0, s) > m(u)}

=: p1(u) + p2(u).

Estimation of p1(u). Fix some s1, s2 ∈ J(tu) ∩G δ
u
and let (W1,W2) = (Zu(0, s1), Zu(

K
u
, s2)). We

have that (W1,W2) is a centered Gaussian vector with V ar(W1), V ar(W2) ≤ 1 and correlation

rWu(s1, s2) satisfying (see (6.17))

1− rWu(s1, s2) ≥ σ2(u|s1 − s2|) + σ2(K)

2σ2(ut∗)
(1 + o(1)) ≥ (1 + o(1))

σ2(K)

2t2α∗ σ
2(u)

, s1, s2 ∈ J(tu).

Thus, by Lemma 2.3 in [56]

Φ(m(u))−1P {W1 > m(u),W2(u) > m(u)} ≤ 3Φ
(
m(u)

√
1− rWu(s1, s2)

2

)
= 3Φ

(
(1 + o(1))

σ(K)m(u)

2tα∗σ(u)

)
= 3Φ

(
(1 + o(1))

σ(K)(1 + ct∗)u

2t2α∗ σ
2(u)

)
.

Note that ϕ = 0 implies u
σ2(u)

→∞ as u→∞. Thus, since there are less than Cu2 ln2 u points in

(J(tu) ∩G δ
u
)× (J(tu) ∩G δ

u
) we have with any CK < σ(K)(1+ct∗)

2t2α∗
by (6.13) as u→∞

p1(u) ≤ Cu2(ln2 u) · 3Φ(m(u))Φ
(

(1 + o(1))
σ(K)(1 + ct∗)u

2t2α∗ σ
2(u)

)
≤ Φ(m(u))Φ

(
CK

u

σ2(u)

)
.

Estimation of p2(u). Since Zu(0, s)
d
= Xu(s), s ≥ 0, it follows from the estimation of R1(u) and

R2(u) in the proof of Lemma 6.5.2 (see (6.32) and (6.33), respectively) that for appropriately

chosen a ∈ (0, t∗), b > 0 and small ε > 0

p2(u) ≤ P {∃s ∈ [0, a] : Xu(s) > m(u)}+P {∃s ∈ [t∗ + b,∞) : Xu(s) > m(u)} ≤ Φ(m(u))Ce−
m2(u)

u2ε .

Combing this inequality with the upper bound of p1(u) we obtain that for any K ∈ [δ, T ]δ it holds

that

ψinf
δ,T (u) ≤ Φ(m(u))Φ

(
CK

u

σ2(u)

)
, u→∞

and taking the supremum with respect to K we obtain the claim. �

Proof of Corollary 6.4.4. First we give a proof of the first statement. Since Z(t) is a Gaussian

process with stationary increments, a.s. sample paths and variance satisfying A applying Theorem

6.2.1 with parameters

ϕ = lim
u→∞

σ2
ζ (u)

u
=

2

G
∈ (0,∞), α = 1/2, t∗ = 1/c, ∆(u) = 1, A = 2

√
C, D = c2

√
c/2,
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m(u) =
√

2Gc
√
u+

c3/2G3/2D√
2

u−1/2 + o(u−1/2), f(u) =
2
√
π

c
√
cG

√
u+O(u−1), η(t) =

cG√
2
Z(t)

we have Φ(m(u)) ∼ e−ucG−c
2G2D 1

2
√
πGcu

, u→∞ implying

P {∃t ∈ [0,∞) : Z(t)− ct > u} ∼ Hδ
cGZ(t)/

√
2

1

c2G
e−ucG−c

2G2D, u→∞

and the first claim follows. Applying Theorems 6.3.1 and 6.3.2 with the same parameters we

obtain the second and third claims, respectively. �

Proof of Lemma 6.5.2. First we show the first claim. We have

P

 sup
t∈[0,T

u
] δ
u

sup
s∈I(tu)

Zu(t, s) > m(u)


≤ ψsup

δ,T (u) (6.30)

≤ P

 sup
t∈[0,T

u
] δ
u

sup
s∈I(tu)

Zu(t, s) > m(u)

+ P

 sup
t∈[0,T

u
] δ
u

sup
s∈(G δ

u
\I(tu))

Zu(t, s) > m(u)

 .

Our first aim is to show that

P

 sup
t∈[0,T

u
] δ
u

sup
s∈(G δ

u
\I(tu))

Zu(t, s) > m(u)

 = o(Φ(m(u))), u→∞. (6.31)

Since for any fixed 0 ≤ t ≤ s random variables Zu(t, s) and Xu(s− t) have the same distributions

we have with I ′(tu) = (− δu
2

+ t∗,
δu
2

+ t∗) ∩Gδ/u

P

{
sup

t∈[0,T/u]δ/u

sup
s∈(Gδ/u\I(tu))

Zu(t, s) > m(u)

}
≤

∑
t∈[0,T/u]δ/u

P

{
sup

s∈(Gδ/u\I(tu))

Zu(t, s) > m(u)

}

=
∑

t∈[0,T/u]δ/u

P

{
sup

s∈(Gδ/u\I(tu))

Xu(s− t) > m(u)

}

≤ (1 + [
T

δ
])P

{
sup

s∈(Gδ/u\I′(tu))

Xu(s) > m(u)

}
.

We have that for any chosen small ε and large M the last probability above does not exceed∑
t∈(G δ

u
\I′(tu))

P {Xu(t) > m(u)}

=
∑

t∈(Gδ/u\I′(tu))

Φ(
m(u)

σXu(t)
)

≤ 2Φ(m(u))
( ∑
t∈[0,ε] δ

u

e
−m

2(u)
2

( 1

σ2
Xu

(t)
−1)

+
∑

t∈[M,∞) δ
u

e
−m

2(u)
2

( 1

σ2
Xu

(t)
−1)

+
∑

t∈([ε,M ] δ
u
\I′(tu))

e
−m

2(u)
2

( 1

σ2
Xu

(t)
−1))
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=: 2Φ(m(u))(R1(u) +R2(u) +R3(u)).

Thus, to establish (6.31) we need to prove that R1(u)+R2(u)+R3(u)→ 0 as u→∞. By Lemma

6.5.1 tu is unique for large u and we have

σXu(t) =
σ(ut)

u(1 + ct)
m(u) =

σ(ut)

σ(utu)

1 + ctu
1 + ct

.

Estimation of R1(u). We have for all large u and t ∈ [0, ε]δ/u

σXu(t) ≤ C
σ(ut)

σ(utu)
.

i) Assume that ut ≥ lnu. Then with h being a slowly varying at ∞ function and 0 < ε < α by

Potter’s theorem (Theorem 1.5.6 in [4]) we have

σ(ut)

σ(utu)
= (

t

tu
)α
h(ut)

h(utu)
≤ Ctα(

tu
t

)ε ≤ Ctα−ε.

ii) Assume that ut < lnu. Since t ∈ [0, ε]δ/u we have ut ≥ δ for t 6= 0. Then for ε ∈ (0, α) and

large u
σ(ut)

σ(utu)
≤ u−(α−ε) sup

t∈[δ,lnu]

σ(t) ≤ u−(α−ε) lnu.

Combining the above inequalities we have that for sufficiently small ε and for all t ∈ [0, ε]δ/u

uniformly for large u it holds that 1
σ2
Xu

(t)
− 1 ≥ 2. Thus, for small enough ε > 0

R1(u) ≤ Cue−m2(u) → 0, u→∞. (6.32)

Estimation of R2(u). By Potter’s theorem we have for M large enough and 0 < ε′ < 1− α

σ(ut)

σ(utu)
≤ C(

t

tu
)α+ε′ .

Since tu → t∗ as u→∞ we have for some small ε > 0

σXu(t) ≤ C
tα+ε′

1 + ct
≤ t−ε,

hence for all t > M uniformly for u large it holds that 1
σ2
Xu

(t)
− 1 ≥ 2tε. Choosing M large enough

and ε sufficiently small we have as u→∞

R2(u) ≤
∑

t∈[M,∞)δ/u

e−t
εm2(u) =

∑
t∈[M,∞)δ

e−t
ε m

2(u)
uε ≤ Ce−

m2(u)
uε → 0. (6.33)

Estimation of R3(u). We have by Lemma 6.5.1 that with some C > 0

1− σXu(t) ≥ C(t− tu)2, t ∈ [ε,M ]

and hence by (6.15) for t ∈ [ε,M ] δ
u
\I(tu) it holds that

m2(u)(
1

σ2
Xu

(t)
− 1) ≥ m2(u)(1− σXu(t)) ≥ C(t− tu)2m2(u) ≥ C ln2 u.
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Thus, for t ∈ [ε,M ] δ
u
\I(tu) it holds that e−

m2(u)
2

( 1

σ2
u(t)
−1) ≤ u−C lnu, and we obtain

R3(u) ≤ uC1u
−C2 lnu → 0, u→∞.

Combining the estimate above with (6.32) and (6.33) obtain (6.31). It follows from the calculations

in Theorem 6.3.1 that

P

 sup
t∈[0,T

u
] δ
u

sup
s∈I(tu)

Zu(t, s) > m(u)

 ≥ Φ(m(u)), u→∞

and the first claim follows by (6.30) and (6.31).

Next we show the second statement of the lemma. Again, by Bonferroni inequality we have

P

{
inf

t∈[0,T
u

] δ
u

sup
s∈I(tu)

Zu(t, s) > m(u)

}
≤ ψinf

δ,T (u)

≤ P

{
inf

t∈[0,T
u

] δ
u

sup
s∈I(tu)

Zu(t, s) > m(u)

}
+ P

 inf
t∈[0,T

u
] δ
u

sup
s∈(G δ

u
\I(tu))

Zu(t, s) > m(u)

 .

It follows from the calculations in Theorem 6.3.1 that

P

{
inf

t∈[0,T
u

] δ
u

sup
s∈I(tu)

Zu(t, s) > m(u)

}
≥ Φ(m(u)), u→∞

and by (6.31) we obtain that

P

 inf
t∈[0,T

u
] δ
u

sup
s∈(G δ

u
\I(tu))

Zu(t, s) > m(u)

 = o(Φ(m(u))), u→∞.

Combining both statements above we obtain the second claim of the lemma. �

Proof of Lemma 6.5.3. Fix some t 6= s ∈ I(tu). Since σXu(t), σXu(s) ≤ 1 we have by Lemma

2.3 in [56] with ru(t, s) = Corr(Xu(t), Xu(s))

P {Xu(t) > m(u), Xu(s) > m(u)} ≤ P
{
Xu(t) > m(u), Xu(s) > m(u)

}
≤ Φ(m(u))Φ

(
m(u)

√
1− ru(t, s)

2

)
.

If α < 1/2, then by Lemma 6.5.1 as u→∞ for some ε > 0 it holds that m(u)
√

1−ru(t,s)
2

≥ uε and

thus uniformly for t 6= s ∈ I(tu)

Φ(m(u)

√
1− ru(t, s)

2
) ≤ e−

1
3
u2ε

, u→∞. (6.34)
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If α = 1/2, then t∗ = 1/c and by Lemma 6.5.1 and (6.5) we have that for some ε′ > 0 as u→∞

m2(u)

2

1− ru(t, s)
2

∼ u2(1 + ct∗)
2σ2(u|s− t|)

8σ4(ut∗)
∼ u2c2σ2(u|s− t|)

2σ4(u)
≥ (1/2 + ε′) lnu

implying as u→∞

Φ(m(u)

√
1− ru(t, s)

2
) ≤ u−1/2−ε′ .

Combining the line above with (6.34) we obtain the claim. �

Proof of Lemma 6.5.4. Let a = Kδ, where K is a large natural number that we shall choose

later on. By the proofs of Theorem 15 and Lemma 16 in [23] we have with σ2
η being the variance

of η that

lim inf
S→∞

Hη({0, a, 2a, ..., S})
S

≥ 1

a

(
1− 2

a

∞∫
0

e−
σ2
η(t)

4 dt
)
.

We have that for all u large enough σ2
η(t) ≥ Ct implying that

∞∫
0

e−
σ2
η(t)

4 dt <∞. Choosing sufficiently

large K we have

lim inf
S→∞

Hη({0, δ, 2δ, ..., S})
S

≥ lim inf
S→∞

Hη({0, a, 2a, ..., S})
S

≥ 1

a
· 1

2
> 0.

Next we prove that for I(S) := Hη({0,δ,2δ,...,S)}
S

it holds that for large S ∈ Gδ

I(S) ≥ I(S + δ). (6.35)

We have

(S + δ)I(S + δ) ≤ E

{
sup

t∈{0,δ,...,S}
e
√

2η(t)−σ2
η(t)

}
+ E

{
e
√

2η(S+δ)−σ2
η(S+δ)

}
F (S + δ)

= SI(S) + F (S + δ),

where F (M) = P

{
argmax
t∈{0,δ,...,M}

(
√

2η(t)− σ2
η(t)) = M

}
for M ∈ Gδ. Thus, to claim (6.35) we need

to show that for large S

δI(S) ≥ F (S + δ). (6.36)

Since lim inf
S→∞

I(S) > 0, we have that δI(S) > ε for all S and some positive ε, but on the other

hand as S →∞ it holds that

F (S + δ) ≤ P
{√

2η(S + δ)− σ2
η(S + δ) ≥

√
2η(0)− σ2

η(0)
}

= P
{√

2η(S + δ)− σ2
η(S + δ) ≥ 0

}
→ 0,

consequently (6.36) holds and hence I(S) is non-increasing for large S. Thus, lim
S→∞

I(S) ∈ (0,∞)

and the claim holds. �



Chapter 7

Properties of Pickands Constants

In this chapter we give new results on Pickands-type constants.

7.1 Introduction

The classical Pickands constant H2H plays an important role in the theory of Gaussian process

and appears in many asymptotics of the ruin probabilities, see, e.g., [59]. However, the exact value

of the classical Pickands constant is known only for H = 1/2. Thus, naturally arises the question

of approximation of the classical Pickands constants. The main difficulty in approximation of H2H

by using the classical definition is the limit. The other technical issue is simulation of fBM on

continuous interval [0, S].

In practice, H2H is approximated by the discrete Pickands constant. It is known, see [12], that

lim
δ→0
Hδ

2H = H2H . Therefore, to approximate H2H we need to answer two main questions:

Q1: How to approximate/simulate Hδ
2H?

Q2: What is the error of discretization, i.e., what is the speed of convergence of H2H −Hδ
2H to 0

as δ → 0?

The first question is answered in [30], the approximation involves an alternative representation of

Hδ
2H without limit. We also give Lemma 7.2.5 that may help to estimate an error of simulation in

approach of [30].

For the second question, the following conjecture is formulated in [30]:

Conjecture 7.1.1 It holds that

AH := lim
δ→0

H2H −Hδ
2H

δH
∈ (0,∞).
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We think that the above conjecture is true, but it seems very difficult to prove it for H 6= 1/2. In

Theorem 7.2.1 we give a relatively precise upper bound for H2H −Hδ
2H and all small δ > 0, while

in Theorem 7.2.2 we prove the conjecture for H = 1/2 and calculate A1/2 explicitly.

The question of speed of convergence of the discrete Pickands constants to continuous ones is

related to the estimation of

sup
t∈[0,1]

BH(t)− sup
t∈[0,1]δ

BH(t).

as δ → 0. We refer to [6, 7] for the interesting analysis of the expression above. For BM case, (i.e.,

when H = 1/2) we refer to [28] for the survey of the known results for the current moment.

7.2 Main Results

The theorem below gives an upper bound for H2H −Hδ
2H for all small δ.

Theorem 7.2.1 It holds that for H ∈ (0, 1) and all sufficiently small δ > 0

H2H −Hδ
2H ≤ −CδH ln δ.

Next we focus on BM case. We start with the theorem providing us an alternative representation

of Hδ.

Theorem 7.2.2 For any δ > 0 it holds that

Hδ =
(
δ exp(2

∞∑
k=1

Φ(
√
δk/2)

k
)
)−1

. (7.1)

The theorem above follows by Lemma 5.16 and Remark 5.17 in [46], in Section 7.4 we present an

alternative proof. Differentiating the formula above with respect to δ we obtain

Corollary 7.2.3 Hδ is a strictly decreasing function with respect to δ for all δ ≥ 0.

Now we can prove Conjecture 7.1.1 for H = 1/2 relying on Theorem 7.2.2 and calculate A1/2.

Theorem 7.2.4 It holds with ζ being the Euler-Riemann zeta function that

lim
δ→0

H1 −Hδ
1√

δ
= −ζ(1/2)√

π
> 0.

It is interesting, that the constant − ζ(1/2)√
π

is the limit in the theorem above. This constant ap-

pears in many problems concerning the difference between supremum of BM on a continuous and

discrete grids, see [28].
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Next we present a lemma establishing tail properties of the rv appearing in the Dieker’s represen-

tation of the classical Pickands constant, see Proposition 1 in [30]. Namely,

H2H = E


sup
t∈R

e(
√

2BH(t)−|t|2H)∫
R
e
√

2BH(t)−|t|2Hdt

 =: E {ξH} ∈ (0,∞). (7.2)

Since this representation is useful for approximations of H2H via Monte-Carlo simulations (see

[30]) it is worth to know the heaviness of tail of ξH . In the following lemma we prove that ξH has

a light tail.

Lemma 7.2.5 For any large x with ξH defined in (7.2) it holds that

P {ξH > x} ≤ e−C ln2 x.

7.3 Technical Lemmas

In this section we present and prove four lemmas needed for our proof of Theorem 7.2.1. Let

Z(t) =
√

2B2H(t)− |t|2H , t ∈ R.

The first lemma allows us to estimate the difference between the continuous and discrete time

supremum on a finite interval.

Lemma 7.3.1 For sufficiently small δ > 0 it holds that

P

{
sup
t∈[0,1]

Z(t)− sup
t∈[0,1]δ

Z(t) < −δH ln δ

}
≥ 1− e−C ln2 δ.

Proof of Lemma 7.3.1. Note that for any b > 0 it holds that

P

{
sup
t∈[0,1]

Z(t)− sup
t∈[0,1]δ

Z(t) > b

}
≤ P

(
∃t ∈ [0, 1]δ, s ∈ [t, t+ δ] : Z(s)− Z(t) > b

)
≤

∑
t∈[0,1]δ

P {∃s ∈ [t, t+ δ] : Z(s)− Z(t) > b}

=
∑
t∈[0,1]δ

P
{
∃s ∈ [t, t+ δ] :

√
2(BH(s)−BH(t))− s2H + t2H > b

}
.

Since for any considered s, t in the sum above it holds, that −s2H + t2H ≤ 0, the last sum above

does not exceed ∑
t∈[0,1]δ

P
{
∃s ∈ [t, t+ δ] :

√
2(BH(s)−BH(t)) > b

}
.
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Next, by the stationarity of increments of fBM we have∑
t∈[0,1]δ

P
{
∃s ∈ [t, t+ δ] :

√
2(BH(s)−BH(t)) > b

}
≤ 1

δ
P
{
∃t ∈ [0, δ] :

√
2BH(t) > b

}
=

1

δ
P
{
∃t ∈ [0, 1] :

√
2BH(t) > bδ−H

}
.

Taking b = −δH ln δ we finally have for sufficiently small δ

P

{
sup
t∈[0,1]

Z(t)− sup
t∈[0,1]δ

Z(t) > −δH ln δ

}
≤ 1

δ
P
{
∃t ∈ [0, 1] : BH(t) > − ln δ√

2

}
≤ e−C ln2 δ,

where the last line above follows from Borell-TIS inequality (see [50]). Rewriting the statement

above we have

P

{
sup
t∈[0,1]

Z(t)− sup
t∈[0,1]δ

Z(t) < −δH ln δ

}
≥ 1− e−C ln2 δ

and the claim follows. �

Lemma 7.3.2 For any large x it holds that

P

{
sup
t∈[0,1]

eZ(t) > x

}
≤ e−C ln2 x.

Proof of Lemma 7.3.2. Observe that

P

{
sup
t∈[0,1]

eZ(t) > x

}
= P

{
sup
t∈[0,1]

(
√

2BH(t)− t2H) > lnx

}
≤ P

{
sup
t∈[0,1]

BH(t) > lnx/
√

2

}
≤ e−C ln2 x,

where the last line follows by Borell-TIS inequality. �

The following lemma provides us a crucial bound for H2H −Hδ
2H .

Lemma 7.3.3 For sufficiently small δ > 0 it holds that

H2H −Hδ
2H ≤ 2

(
E

{
sup
t∈[0,1]

eZ(t)

}
− E

{
sup
t∈[0,1]δ

eZ(t)

})
.

Proof of Lemma 7.3.3. As follows from the proof of Theorem 1 in [33], the first equation on

p.12 with cδ = [1/δ]δ ([·] is the integer part) it holds that

H2H −Hδ
2H ≤ c−1

δ E

{
sup
t∈[0,cδ]

eZ(t) − sup
t∈[0,cδ]δ

eZ(t)

}

≤ 2E

{
sup
t∈[0,cδ]

eZ(t) − sup
t∈[0,cδ]δ

eZ(t)

}
≤ 2E

{
sup
t∈[0,1]

eZ(t) − sup
t∈[0,1]δ

eZ(t)

}
and the claim follows. �

The next lemma is a general observation on properties of a random variable with a light tail.
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Lemma 7.3.4 For any p > 0, non-negative rv ξ such that P {ξ > x} ≤ e−C ln2 x and Nδ ⊂ Ω such

that P {Nδ} ≤ e−C ln2 δ it holds that∫
Nδ

ξ(w)dP(w) ≤ δp, δ → 0.

Proof of Lemma 7.3.4. We have∫
Nδ

ξ(ω)dP(ω) = E {I(ω ∈ Nδ)ξ(ω)}

≤ E {ξ(ω)I(ξ(ω) > aδ)} ,

where a > 0 is such number that P {ξ > aδ} = e−C ln2 δ. Next with any p > 0 for sufficiently small

δ > 0 we have

E {ξ(ω)I(ξ > aδ)} =

∞∫
0

P {ξI(ξ > aδ) > x} dx

=

aδ∫
0

P {ξI(ξ > aδ) > x} dx+

∞∫
aδ

P {ξI(ξ > aδ) > x} dx

≤ aδP {ξ > aδ}+

∞∫
aδ

P {ξ > x} dx.

Since P {ξ > x} is a decreasing function with respect to x for the integral above we have

∞∫
aδ

P {ξ > x} dx =
∞∑
k=1

(k+1)aδ∫
kaδ

P {ξ > x} dx

≤ aδ

∞∑
k=1

P {ξ > kaδ} .

By the lines above in order to prove the lemma it is sufficient to show that for any p > 0 uniformly

for small δ it holds that

aδ

∞∑
k=1

P {ξ > kaδ} < δp (7.3)

We have that

aδ

∞∑
k=1

P {ξ > kaδ} ≤ aδ

( aδ/δ∑
k=1

P {ξ > aδ}+
∞∑

k=aδ/δ

e−C ln2 k
)

≤ a2
δ

δ
P {ξ > aδ}+ aδ

∞∑
k=aδ/δ

e−C ln2 k.
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For the sum above we have
∞∑

k=aδ/δ

e−C ln2 k ≤ e−C ln2(aδ/δ) = o(δp), δ → 0

and hence to prove (7.3) it is sufficient to show that

a2
δ

δ
P {ξ > aδ} = o(δp), δ → 0. (7.4)

By the choice of aδ we have

a2
δ

δ
P {ξ > aδ} ≤

a2
δ

δ
e−C ln2 δ

and thus (7.4) does not follow from the line above only if aδ > eC ln2 δ. In this case (7.4) follows

by the assertion that P {ξ > x} ≥ e−C ln2 x and the claim is established. �

7.4 Proofs

Now we are ready to perform our proofs.

Proof of Theorem 7.2.1. Set λ = sup
t∈[0,1]

Z(t) and λδ = sup
t∈[0,1]δ

Z(t). We have by Lemma 7.3.3

H2H −Hδ
2H ≤ 2E

{
eλ − eλδ

}
= 2E

{
eλδ
(
eλ−λδ − 1

)}
.

Let Aδ ⊂ Ω consists of ω ∈ Ω such that λ − λδ ≤ −δH ln δ and Bδ = Ω\Aδ. We have for small

δ > 0

E
{
eλδ
(
eλ−λδ − 1

)}
=

∫
Aδ

eλδ
(
eλ−λδ − 1

)
dP(w) +

∫
Bδ

eλδ
(
eλ−λδ − 1

)
dP(w)

≤ 2

∫
Aδ

eλδ
(
λ− λδ

)
dP(w) +

∫
Bδ

(eλ − eλδ)dP(w)

≤ 2 sup
ω∈Aδ

(
λ− λδ

)∫
Aδ

eλdP(w) +

∫
Bδ

eλdP(w)

≤ −2δH ln δ

∫
Ω

eλdP(w) +

∫
Bδ

eλdP(w)

≤ −CδH ln δ +

∫
Bδ

eλdP(w),

where the second line from the end follows by Lemma 7.3.1. By Lemma 7.3.2 eλ satisfies conditions

of Lemma 7.3.4 and hence we have∫
Bδ

eλdP(w) = o(δH), δ → 0.
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and the claim follows. �

Proof of Theorem 7.2.2. We shall compute the asymptotics of

ψδ(u) := P {∃t ∈ G(δ) : B(t)− ct > u} , u→∞

in two different ways and then compare the answers.

First approach. In [40, 47] it is shown that

ψδ(u) ∼ H2c2δe
−2cu, u→∞. (7.5)

Second approach. Let

Xt = B(δΠ(t))− cδΠ(t), t ≥ 0,

where Π(t) is a standard Poisson process with intensity 1 and δ > 0. Since a trajectory of Π(t), t ≥
0 with probability one is {0, 1, 2, ...} we have for all u > 0

ψδ(u) = P {∃t ≥ 0 : Xt > u} ,

and later on we focus on the computation of the right side in the line above. Since Xt, t ≥ 0 is a

Lévy process we have by Theorem 8.2 in [26]

P {∃t ≥ 0 : Xt > u} ∼ e−ωu
1

ωk(0, 0)

1

l′(0,−ω)
,

where the definitions of ω, k(a, v) and l′(0,−ω) are given in p.116: third line in paragraph

"General case", p.37: (3.10) and p.117 in [26], respectively. In our case ω > 0 solves the equation

E
{
eωN (−cδ,δ)} = 1 implying ω = 2c. Next we calculate k(0, a). For Ft(x) be the df of Xt we have

Ft(x) = e−t
t0

0!
P {B(0)− 0 ∗ c < x}+ e−t

t1

1!
P {B(δ)− δc < x}+ e−t

t2

2!
P {B(2δ)− 2δc < x}+ ..., x ∈ R.

Differentiating we obtain the density gt(x)

gt(x) = e−t
(

t1

1!
√
δ
φ(
x+ δc√

δ
) +

t2

2!
√

2δ
φ(
x+ 2δc√

2δ
) + ...

)
, x ∈ R,

where φ is the density of a standard Gaussian rv. To compute
∞∫

0

∞∫
0

1

t
(e−t − e−ax)gt(x)dxdt

we calculate this integral for each summand in gt(x).

∞∫
0

∞∫
0

1

t
(e−t − e−ax)e−t tk

k!
√
δk
φ(
x+ kδc√

δk
)dxdt
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=

∞∫
0

e−2t t
k−1

k!
√
δk
dt

∞∫
0

φ(
x+ δkc√

δk
)dx−

∞∫
0

1

t
e−t

tk

k!
√
δk
dt

∞∫
0

φ(
x+ δkc√

δk
)e−axdx

=
1

k2k

∞∫
0

e−2t (2t)k−1

(k − 1)!
d(2t)

∞∫
0

φ(
x+ δkc√

δk
)d(

x√
δk

)−
∞∫

0

e−t
tk−1

k!
dt

∞∫
0

φ(
x+ δkc√

δk
)e
−a
√
δk x√

δkd(
x√
δk

)

=
1

k2k
Φ(c
√
δk)− 1

k

∞∫
0

φ(z + c
√
δk)e−a

√
δkzdz

=
1

k2k
Φ(c
√
δk)− 1

k

1√
2π

∞∫
0

e−
1
2

(
(z+(c+a)

√
δk)2+c2δk−kδ(c+a)2

)
dz

=
1

k2k
Φ(c
√
δk)− 1

k
Φ((c+ a)

√
δk)e

δk(a2+2ac)
2 .

Since
n∑
k=1

1
t
(e−t−e−ax)e−t tk

k!
√
δk
φ(x+kδc√

δk
) converges uniformly to

∞∑
k=1

1
t
(e−t−e−ax)e−t tk

k!
√
δk
φ(x+kδc√

δk
), x, t ≥

0 as n→∞ we can change the order of integration and summation and write

k(0, a) = exp
( ∞∑
k=1

(1

k
Φ((c+ a)

√
δk)e

δk(a2+2ac)
2 − 1

k2k
Φ(c
√
δk)
))
.

Thus, we obtain

k(0, 0) = exp
( ∞∑
k=1

Φ(c
√
δk)

2k − 1

k2k

)
. (7.6)

Next we have

l(0, a) =
1

k(0, a)
= exp

(
−
∞∑
k=1

1

k
Φ((c+ a)

√
δk)e

δk(a2+2ac)
2

)
exp

( ∞∑
k=1

1

k2k
Φ(c
√
δk)
)
.

We show in the Appendix that

∂

∂a

(
exp

(
−
∞∑
k=1

1

k
Φ((c+ a)

√
δk)e

δk(a2+2ac)
2

))
|a=−ω = cδ exp(

∞∑
k=1

1

k
Φ(c
√
δk)) (7.7)

and hence

l′(0, a)|a=−ω = cδ exp(
∞∑
k=1

1

k
Φ(c
√
δk)) exp

( ∞∑
k=1

1

k2k
Φ(c
√
δk)
)
.

Hence by (7.6) and the line above

ωk(0, 0)l(0,−ω)′ = 2c2δ exp(
∞∑
k=1

Φ(c
√
δk)

k
) exp

( ∞∑
k=1

1

k2k
Φ(c
√
δk)
)

exp
( ∞∑
k=1

Φ(c
√
δk)

2k − 1

k2k

)
= 2c2δ exp(2

∞∑
k=1

Φ(c
√
δk)

k
).
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Finally we have

P {∃t ≥ 0 : Xt > u} ∼ e−2cu
(

2c2δ exp(2
∞∑
k=1

Φ(c
√
δk)

k
)
)−1

, u→∞.

Since ψδ(u) = P {∃t ≥ 0 : Xt > u} by (7.5) we obtain

H2c2δ =
(

2c2δ exp(2
∞∑
k=1

Φ(c
√
δk)

k
)
)−1

.

Putting η = 2c2δ in the formula above we obtain the claim. �

Proof of Corollary 7.2.3. First we show that v(η) = η exp(2
∞∑
k=1

Φ(
√
ηk/2)

k
) is an increasing

function for η > 0. We have for any 0 < a < b and η ∈ [a, b]

v′(η) = exp(2
∞∑
k=1

Φ(
√

ηk
2

)

k
)
(

1− 2η
∞∑
k=1

φ(
√

ηk
2

)

k

√
k√
2

1

2
√
η

)
(7.8)

= exp(2
∞∑
k=1

Φ(
√

ηk
2

)

k
)
(

1−
√
η

2
√
π

∞∑
k=1

e−
ηk
4

√
k

)
,

justification of the differentiating in (7.8) is in the Appendix. We have

√
η

2
√
π

∞∑
k=1

e−
ηk
4

√
k
<

1√
π

√
η

4

∞∫
0

e−
ηz
4 z−1/2dz =

1√
π

∞∫
0

e−
ηz
4 (
ηz

4
)−1/2d(

ηz

4
) =

1√
π

Γ(1/2) = 1

and we obtain by (7.8) that v′(η) > 0 for any η > 0. Thus, Hη is decreasing for η > 0, and since

by the classical definition H0 > Hη for any η > 0 we obtain the claim. �

Proof of Theorem 7.2.4. Since H0 = 1 (see, e.g., [26]) by Theorem 7.2.2 we obtain that

A := lim
η→0

H0 −Hη√
η

= lim
η→0

1− 1/v(η)
√
η

,

where (recall) v(η) = η exp(2
∞∑
k=1

Φ(
√
ηk/2)

k
). Since Hη = v(η)−1 → 1 as η → 0 (see, e.g., [30]) we

conclude that lim
η→0

v(η) = 1 and hence

A = lim
η→0

v(η)− 1
√
η

.

Implementing the L’Hôpital’s rule we obtain by (7.8)

A = lim
η→0

v′(η)

1/(2
√
η)

= 2 lim
η→0

(√
η exp(2

∞∑
k=1

Φ(
√

ηk
2

)

k
)
(

1−
√
η

2
√
π

∞∑
k=1

e−
ηk
4

√
k

))
.
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Note that by the definition of v(η) observation that lim
η→0

v(η) = 1 implies

√
η exp(2

∞∑
k=1

Φ(
√

ηk
2

)

k
) ∼ 1
√
η
, η → 0

and hence

A = lim
η→0

2
√
η

(
1−

√
η

2
√
π

∞∑
k=1

e−
ηk
4

√
k

))
.

Let x =
√
η/2, thus

A = lim
x→0

1

x

(
1− x√

π

∞∑
k=1

e−x
2

√
k

))
= lim

x→0

1

x

(
1− x√

π
Li 1

2
(e−x

2

)
)
,

where Li 1
2
is the polylogarithm function, see, e.g., [9]. As follows from equation (9.3) in [62]

lim
x→0

1

x

(
1− x√

π
Li 1

2
(e−x

2

)
)

= lim
x→0

1

x

(
1− x√

π

(
Γ(1/2)(x2)−1/2 + ζ(1/2) +

∞∑
k=1

ζ(1/2− k)
(−x2)k

k!

))
=

ζ(1/2)√
π
− 1√

π
lim
x→0

( ∞∑
k=1

ζ(1/2− k)
x2k(−1)k

k!

)
.

Thus, to prove the claim is it enough to show that

lim
x→0

∞∑
k=1

ζ(1/2− k)
x2k(−1)k

k!
= 0. (7.9)

By the Riemann functional equation (equation (2.3) in [32]) and observation that ζ(s) is strictly

decreasing for real s > 1 we have for any natural number k

|ζ(1/2− k)| ≤ 21/2−kπ−1/2−kΓ(1/2 + k)ζ(1/2 + k)

≤ 2−kΓ(k + 1)ζ(3/2)

=
ζ(3/2)k!

2k
.

Thus, for |x| < 1 we have

∣∣∣ ∞∑
k=1

ζ(1/2− k)
x2k(−1)k

k!

∣∣∣ ≤ x2

∞∑
k=1

|ζ(1/2− k)|
k!

≤ x2ζ(3/2)
∞∑
k=1

2−k = ζ(3/2)x2

and (7.9) follows, this completes the proof. �
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Proof of Lemma 7.2.5. We have for any M > 0

P

 e
sup
t∈R

Z(t)∫
R
eZ(t)dt

> x

 = P

e
sup

t∈[−M,M ]
Z(t)∫

R
eZ(t)dt

> x and Z(t) achieves its maxima at t ∈ [−M,M ]


+ P

e
sup

t∈R\[−M,M ]
Z(t)∫

R
eZ(t)dt

> x and Z(t) achieves its maxima at t ∈ R\[−M,M ]


≤ P

e
sup

t∈[−M,M ]
Z(t)∫

R
eZ(t)dt

> x

+ P {∃t ∈ R\[−M,M ] : Z(t) > 0}

≤ P

 e
sup

t∈[−M,M ]
Z(t)∫

[−M,M ]

eZ(t)dt
> x

+ 2P {∃t ≥M : Z(t) > 0}

=: p1(M,x) + p2(M). (7.10)

Estimation of p2(M). We have for all M ≥ 1

p2(M) ≤
∞∑
k=1

P
{
∃t ∈ [kM, (k + 1)M ] :

√
2BH(t)− t2H > 0

}
=

∞∑
k=1

P
{
∃t ∈ [1, 1 +

1

k
] :
√

2BH(t)(kM)H > (kM)2Ht2H
}

≤
∞∑
k=1

P
{
∃t ∈ [1, 2] :

√
2BH(t) > (kM)H

}
≤

∞∑
k=1

Ce−
(kM)2H

10

≤ Ce−
M2H

10

and hence for any M ≥ 1 we have

p2(M) ≤ Ce−
M2H

10 . (7.11)

Estimation of p1(M,x). Observe that for any sufficiently large M

p1(M,x) ≤ P


M−1∑
k=−M

e
sup

t∈[k,k+1]
Z(t)

M−1∑
k=−M

∫
[k,k+1]

eZ(t)dt

> x

 =: P


M−1∑
k=−M

ak(ω)

M−1∑
k=−M

bk(ω)

> x

 .

Since event
M−1∑
k=−M

ak(ω)

M−1∑
k=−M

bk(ω)

> x
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implies that for some k ∈ [−M,M − 1]1 event

ak(ω)/bk(ω) > x

happens, we have

P


M−1∑
k=−M

ak(ω)

M−1∑
k=−M

bk(ω)

> x

 ≤
M−1∑
k=−M

P
{
ak(ω)

bk(ω)
> x

}
≤ 2M sup

k∈[−M,M ]

P


sup

t∈[k,k+1]

eZ(t)∫
[k,k+1]

eZ(t)dt
> x


and thus we obtain that

p1(M,x) ≤ 2M sup
k∈[−M,M ]

P


sup

t∈[k,k+1]

eZ(t)∫
[k,k+1]

eZ(t)dt
> x

 .

Since ex, x ∈ R is a convex function we have by the Jensen’s inequality∫
[k,k+1]

eZ(t)dt ≥ exp
( ∫

[k,k+1]

Z(t)dt
)

implying

P


sup

t∈[k,k+1]

eZ(t)∫
[k,k+1]

eZ(t)dt
> x

 ≤ P

 e
sup

t∈[k,k+1]
Z(t)

exp(
∫

[k,k+1]

Z(t)dt)
> x


= P

 sup
t∈[k,k+1]

Z(t)−
∫

[k,k+1]

Z(t)dt > lnx


= P


∫

[k,k+1]

(
sup

t∈[k,k+1]

Z(t)− Z(s)
)
ds > lnx


≤ P {∃t, s ∈ [k, k + 1] : Z(t)− Z(s) > lnx}

≤ P

∃t, s ∈ [k, k + 1] : BH(t)−BH(s) >

lnx− sup
t,s∈[k,k+1]

(|t|2H − |s|2H)

√
2


≤ P

{
∃t ∈ [0, 1] : BH(t) >

lnx− CM2H−1

√
2

}
Thus, for all sufficiently large M

p1(M,x) ≤ 2MP
{
∃t ∈ [0, 1] : BH(t) >

lnx− CM2H−1

√
2

}
and combining the statement above with (7.10) and (7.11) we have

P


sup

t∈[k,k+1]

eZ(t)∫
R
eZ(t)dt

> x

 ≤ C̃e−
M2H

10 + 2MP
{
∃t ∈ [0, 1] : BH(t) >

lnx− CM2H−1

√
2

}
.
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Assume that H ≤ 1/2. Then choosing M = x in the inequality above we have for all large x

P


sup

t∈[k,k+1]

eZ(t)∫
R
eZ(t)dt

> x

 ≤ e−C ln2 x

Assume that H > 1/2. Taking M = C ′(lnx)
1

2H−1 with sufficiently small C ′ > 0 we obtain

P


sup

t∈[k,k+1]

eZ(t)∫
R
eZ(t)dt

> x

 ≤ C̃e−C
′′(lnx)

2 H
2H−1

+ e−C ln2 x ≤ e−C ln2 x

and the claim follows. �

7.5 Appendix

Proof of (7.7). By the definition of derivative we have

L :=
∂

∂a

(
lim
n→∞

exp
(
−

n∑
k=1

1

k
Φ((c+ a)

√
δk)e

δk(a2+2ac)
2

))
|a=−2c

= lim
∆→0

( 1

∆

(
lim
n→∞

exp
(
−

n∑
k=1

1

k
Φ((∆− c)

√
δk)e

−δk(2c−∆)∆
2

)
− lim

n→∞
exp

(
−

n∑
k=1

1

k
Φ(−c

√
δk)
)))

.

Since
n∑
k=1

1
k
Φ(−c

√
δk) ≥ 1

2

n∑
k=1

1
k
≥ lnn

2
we have

lim
n→∞

exp
(
−

n∑
k=1

1

k
Φ(−c

√
δk)
)
≤ lim

n→∞
n−1/2 = 0.

Thus, since Φ(x) = 1− Φ(−x), x ∈ R we have

L = lim
∆→0

( 1

∆
lim
n→∞

exp
(
−

n∑
k=1

1

k
Φ((∆− c)

√
δk)e

−δk(2c−∆)∆
2

))
= lim

∆→0

( 1

∆
lim
n→∞

(
exp

(
−

n∑
k=1

1

k
e
−δk(2c−∆)∆

2

)
exp

( n∑
k=1

1

k
Φ((c−∆)

√
δk)e

−δk(2c−∆)∆
2

)))
= lim

∆→0

( 1

∆
lim
n→∞

(
exp

(
−

n∑
k=1

1

k
e
−δk(2c−∆)∆

2

)))
× lim

∆→0

(
lim
n→∞

exp
( n∑
k=1

1

k
Φ((c−∆)

√
δk)e

−δk(2c−∆)∆
2

))
=: L1 × L2,

if L1 and L2 are finite limits, that we shall show later on. Note that for any A > 0 by Taylor’s

formula
∞∑
k=1

e−kA

k
= − ln(1− e−A) and hence

L1 = lim
∆→0

( 1

∆
exp

(
ln(1− e

−δ(2c−∆)∆
2 )

))
= lim

∆→0

1− e
−δ(2c−∆)∆

2

∆
= δc ∈ (0,∞).
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Since for any small ∆ > 0

n∑
k=1

1

k
Φ((c−∆)

√
δk)e

−δk(2c−∆)∆
2 ≤

n∑
k=1

Φ(c
√
δk/2) ≤

n∑
k=1

e−c
2δk/8 <

1

1− e−c2δ/8

we have that

L2 = exp
(

lim
∆→0

∞∑
k=1

1

k
Φ((c−∆)

√
δk)e

−δk(2c−∆)∆
2

)
∈ (0,∞).

Next we focus on the expression in the exponent above. We have

∞∑
k=1

1

k
Φ((c−∆)

√
δk)e

−δk(2c−∆)∆
2 =

1√
∆∑

k=1

1

k
Φ((c−∆)

√
δk)e

−δk(2c−∆)∆
2 +

∞∑
k= 1√

∆

1

k
Φ((c−∆)

√
δk)e

−δk(2c−∆)∆
2

=: S1 + S2.

For S2 we have

S2 ≤
∞∑

k= 1√
∆

Φ(c
√
δk/2) ≤ Ce−c

2δ
√

∆/8. (7.12)

Next we have for k ≤ 1/
√

∆

|Φ((c−∆)
√
δk)− Φ(c

√
δk)| ≤ C∆

√
k ≤ C

√
∆, |1− e

−δk(2c−∆)∆
2 | ≤ Ck∆ ≤ C

√
∆

implying

1

k
|Φ((c−∆)

√
δk)e

−δk(2c−∆)∆
2 − Φ(c

√
δk)| ≤ C

√
∆/k.

Hence

|S1 −

1√
∆∑

k=1

1

k
Φ(c
√
δk)| ≤ C

√
∆

1√
∆∑

k=1

1

k
≤ C
√

∆ ln ∆.

We have by the line above and (7.12)

|
∞∑
k=1

1

k
Φ((c−∆)

√
δk)e

−δk(2c−∆)∆
2 −

1√
∆∑

k=1

1

k
Φ(c
√
δk)| ≤ C

√
∆ ln ∆

and hence letting ∆→ 0 we obtain L2 = exp(
∞∑
k=1

1
k
Φ(c
√
δk)). Finally we have

L = L1 × L2 = cδ exp(
∞∑
k=1

1

k
Φ(c
√
δk)).

�
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Proof of (7.8). To prove the claim we need to show that for any 0 < a < b we can differentiate

f(z) =
∞∑
k=1

Φ(z
√
k), z ∈ [a, b]

by terms, i.e., switch order of differentiation and integration. According to paragraph 3.1 p. 385

in [48] it is enough to show that with fn(z) =
n∑
k=1

Φ(z
√
k), z ∈ [a, b]

1) exists z0 ∈ [a, b] such that the sequence {fn(z0)}n∈N converges to a finite limit,

2) f ′n(z), z ∈ [a, b] converge uniformly to some function.

The first condition holds since Φ(x) < e−x
2/2 for x > 0. For the second condition we need to prove

that uniformly for all z ∈ [a, b] it holds that
∞∑

k=n+1

f ′k(z)→ 0 as n→∞. We have

∞∑
k=n+1

f ′k(z) =
∞∑

k=n+1

φ(z
√
k)√
k

=
∞∑

k=n+1

e−z
2k/2

√
2πk

≤ Ce−na
2/2 → 0, n→∞

and the claim holds.
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Chapter 8

Alternative Proofs of Some Results

In this chapter we give alternative proofs of some results of the previous chapters.

8.1 Proof of (2.9).

We give an elementary proof based on some elegant properties of BM. We use the independence of

the increments property and the explicit formulas for ruin probability over a finite and the infinite

horizons.

Observe that for any u > 0

P

{
sup

t/∈[T−u ,T
+
u ]

Z(t) > u

}
≤ P

{
sup

t∈[0,T−u ]

Z(t) > u

}
+ P

{
sup

t∈[T+
u ,∞)

Z(t) > u

}
=: p1(u) + p2(u).

Estimation of p1(u). By the following explicit expression of the ruin probability over a finite

horizon (see [26])

P

{
sup
t∈[0,T ]

(B(t)− ct) > u

}
= Φ

(
u√
T

+ c
√
T

)
+ e−2cuΦ

(
u√
T
− c
√
T

)
, T, c, u > 0 (8.1)

and (2.7) we obtain that

p1(u) ≤ e−2cu−C ln2 u, u→∞.

Estimation of p2(u). Using the independence of the increments of BM and that Z(T+
u ) is a Gaussian

rv with mean −cT+
u and variance T+

u we have

p2(u) =

∫
R

P

{
sup
t≥T+

u

[(Z(t)− Z(T+
u )) + x] > u

∣∣∣Z(T+
u ) = x

}
dFu(x)
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=

∫
R

P

{
sup
t≥T+

u

Z(t− T+
u ) > u− x

}
dFu(x)

=
1√

2πT+
u

∫
R

P
{

sup
t≥0

Z(t) > u− x
}
e
− (x+cT+

u )2

2T+
u dx

=
1√

2πT+
u

u∫
−∞

e−2cue2cxe
− (x+cT+

u )2

2T+
u dx+

1√
2πT+

u

∞∫
u

e
− (x+cT+

u )2

2T+
u dx

= Φ(
u+ cT+

u√
T+
u

) + e−2cuΦ(
u− cT+

u√
T+
u

),

where Fu is the df of Z(T+
u ). By (2.7) for all large u the expression above does not exceed

e−2cu−C ln2 u, thus we conclude that

p2(u) ≤ e−2cu−C ln2 u.

Combining both estimates above we obtain that as u→∞

P

{
sup

t/∈[T−u ,T
+
u ]

Z(t) > u

}
≤ e−2cu−C ln2 u

and since e−C ln2 u decreases faster than any power function as u→∞ we obtain the claim. �

8.2 Proof of (3.18).

Here we present an elementary proof of (3.18) based on the independence of the increments of BM.

We have by Borell-TIS inequality that

ψ̄δ(u) ∼ P
{
∃t ∈ [t∗ − lnu√

u
, t∗ +

lnu√
u

] δ
u

: Z(t) >
√
u

}
, u→∞, (8.2)

for details see proof of (3.12) in Appendix in Chapter 3. Next for any fixed S, u > 0 we consider

the intervals

∆j,S,u = [tu + jSu−1, tu + (j + 1)Su−1] δ
u
, −Nu ≤ j ≤ Nu,

where Nu = bS−1 ln(u)
√
uc and b·c is the ceiling function. Let

pj,S,u = P

{
sup

t∈∆j,S,u

B(t)

c1t+ q1

>
√
u

}
for j ≥ 0, pj,S,u = P

{
sup

t∈∆j,S,u

B(t)

c2t+ q2

>
√
u

}
for j < 0.

Note that ∆ = ∆−1

⋃
∆0. We have

P
{

sup
t∈∆

Z(t) >
√
u

}
≤ P

{
∃t ∈ [t∗ − lnu√

u
, t∗ +

lnu√
u

] δ
u

: Z(t) >
√
u

}
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≤
−2∑

j=−Nu

pj,S,u +
Nu∑
j=1

pj,S,u + P
{

sup
t∈∆

Z(t) >
√
u

}
(8.3)

and thus to prove the claim we need to derive a sufficiently accurate asymptotic upper bound for

the sums in the line above.

Approximation of
Nu∑
j=1

pj,S,u. We have

pj,S,u = P

{
sup

t∈∆j,S,u

B(t)

c1t+ q1

>
√
u

}
= P

{
sup

t∈∆j,S,u

(B(t)−
√
αµt) >

√
α

}
,

where
√
α = q1

√
u and µ =

c1

q1

.

By the independence of the increments of BM with α = v2, cj,S,v = tu + jSv−2, Ŝ = Sq2
1, δ̂ = δq2

1

and ϕv,j the df of √cj,S,vN we have

pj,S,u

= P
{
∃t∈∆j,S,u

: (B(t)−
√
αµt) >

√
α
}

= P
{
∃t ∈ [tu +

jS

u
, tu +

(j + 1)S

u
] δ
u

: B(t)−B(cj,S,v)−
√
αµ(t− cj,S,v) +B(cj,S,v)−

√
αµcj,S,v >

√
α

}
=

∫
R

P
{
∃t ∈ [0,

S

u
] δ
u

: B(t)−
√
αµt−

√
αµcj,S,v >

√
α− x|√cj,S,vN = x

}
ϕv,j(x)dx

=

∫
R

P
{
∃tv2 ∈ [0, Sq2

1]q2
1δ

:
B(tv2)

v
−
√
αµtv2

v2
−
√
αµcj,S,v >

√
α− x

}
ϕv,j(x)dx

=

∫
R
P
{
∃t ∈ [0, Ŝ]δ̂ : (B(t)/v − vµ(cj,S,v + t/v2) > v − x

}
ϕv,j(x)dx

=
1

v

∫
R
P
{
∃t ∈ [0, Ŝ]δ̂ : (B(t)/v − vµ(cj,S,v + t/v2) > v − (v − x/v)

}
ϕv,j(v − x/v)dx

=
1

v

∫
R
P
{
∃t ∈ [0, Ŝ]δ̂ : (B(t)− µt) > x+ µcj,S,vv

2
}
ϕv,j(v − x/v)dx

=
1

v

∫
R
P
{
∃t ∈ [0, Ŝ]δ̂ : (B(t)− µt) > x

}
ϕv,j(v(1 + µcj,S,v)− x/v)dx

=
e−v

2(1+µcj,S,v)2/(2cj,S,v)

v
√

2πcj,S,v

∫
R
P
{
∃t ∈ [0, Ŝ]δ̂ : (B(t)− µt) > x

}
ex(1+µcj,S,v)/cj,S,v−x2/(2cj,S,vv

2)dx.

By the same arguments as in the proof of Theorem 2.1.1 in Chapter 2 we have with χ = 1+µt∗

t∗
as

u→∞ ∫
R

P
{
∃t∈[0,Ŝ]δ̂

: (B(t)− µt) > x
}
ex(1+µcj,S,v)/cj,S,v−x2/(2cj,S,vv

2)dx

∼
∫
R

P
{
∃t ∈ [0, Ŝ]δ̂ : (B(t)− µt) > x

}
eχxdx
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=: J(S).

Clearly, J(S) is a non-decreasing function and

J(S) ≤
0∫

−∞

eχxdx+

∞∫
0

P {∃t ≥ 0 : B(t)− µt > x} eχxdx =
1

χ
+

∞∫
0

e(−2µ+χ)xdx <∞,

provided that χ
µ
< 2, which follows from t1 < t∗. Thus, we have that

lim
S→∞

J(S) ∈ (0,∞).

Hence we have as u→∞ and then S →∞
Nu∑
j=1

pj,S,u ≤ C
1

v

Nu∑
j=1

e
−v2(1+µcj,S,v)2

2cj,S,v =
C

v
e
−v2(1+µt∗)2

2t∗

Nu∑
j=1

e
−v2(

(1+µcj,S,v)2

2cj,S,v
− (1+µt∗)2

2t∗ )
.

Setting

a(t) = (1 + µt)2/2t = 1/(2t) + µ+ µ2t/2, a′(t) = (−1/t2 + µ2)/2

we have a(t∗ + x) ≥ a(t∗) + 1
2
xa′(t∗) as x → +0. Since jS/u for 1 ≤ j ≤ Nu uniformly tends to

+0 as u→∞ we have
Nu∑
j=1

e
−v2(

(1+µcj,S,v)2

2cj,S,v
− (1+µt∗)2

2t∗ ) ≤
Nu∑
j=1

e−
v2a′(t∗)

2
( θu+jS

u
), u→∞.

We have with ω = a′(t∗)q2
1/2 > 0

Nu∑
j=1

e−v
2a′(t∗)( θu+jS

u
) = e−ωθu

Nu∑
j=1

e−jSω ≤ Ce−ωS, S →∞.

In the light of the calculations above, we have
Nu∑
j=1

pj,S,u ≤ C
1

v
e
−v2(1+µt∗)2

2t∗ e−ωS ≤ CΦ(D1/2

√
u)e−ωS.

Similarly we obtain that
−2∑

j=−Nu

pj,S,u ≤ Φ(D1/2

√
u)e−CS.

Combining both bounds above we have
Nu∑
j=1

pj,S,u +
−2∑

j=−Nu

pj,S,u ≤ Φ(D1/2

√
u)e−CS

and letting S → ∞ we obtain in view of bounds for P
{

sup
t∈∆

Z(t) >
√
u

}
given in (3.22) that as

u→∞ and then S →∞
Nu∑
j=1

pj,S,u +
−2∑

j=−Nu

pj,S,u = o

(
P
{

sup
t∈∆

Z(t) >
√
u

})
.

Thus, the claim follows by the line above, (8.2) and (8.3).



139

8.3 Proof of Theorem 4.2.1, Case (2), H = 1/2.

Here we give a proof of Theorem 4.2.1, Case (2), H = 1/2 using the independence of the incre-

ments of BM. The proof is based on the same ideas as the proof of Theorem 5.2.1.

By the same arguments as in the proof of Theorem 5.2.1 we have as u→∞ and then S →∞

p(u) ∼ P

{
∃t ∈ ∆ : inf

s∈[t,t+T
u

]
Z(s) >

√
u

}
=: pS(u), (8.4)

where ∆ = [−S/u+ t∗, t∗ + S/u]. Denote

∆1 = [−S + ut∗,−T + ut∗), ∆2 = [−T + ut∗, ut∗), ∆3 = [ut∗, ut∗ + S].

Let φu(x) be the density of B(ut∗) and B∗ be an independent copy of the same BM. For S > T

with

η = c1t∗ + q1 = c2t∗ + q2 =
c1q2 − c2q1

c1 − c2

, η∗ =
η

t∗
− c2 =

q2(c1 − c2)

q2 − q1

, B2(s) = B(s)− c2s

we have

pS(u)

= P
{
∃t ∈ [−S + ut∗, ut∗ + S] : inf

s∈[t,t+T ]
(B(s)−max(c1s+ q1u, c2s+ q2u)) > 0

}
= P

{
∃t1 ∈ ∆1 : inf

s∈[t1,t1+T ]
B2(s) > q2u

or ∃t2 ∈ ∆2 : inf
s∈[t2,ut∗]

B2(s) > q2u, inf
s∈[ut∗,t2+T ]

(B(s)−B(ut∗)− c1s) > q1u−B(ut∗)

or ∃t3 ∈ ∆3 : inf
s∈[t3,t3+T ]

(B(s)−B(ut∗)− c1s) > q1u−B(ut∗)
}

=

∫
R

φu(ηu− x)× P
{
∃t1 ∈ ∆1 : inf

s∈[t1,t1+T ]
B2(s) > q2u

or ∃t2 ∈ ∆2 : inf
s∈[t2,ut∗]

B2(s) > q2u, inf
s∈[ut∗,t2+T ]

(B∗(s− ut∗)− c1(s− ut∗)− c1t∗u) > q1u− (ηu− x)

or ∃t3 ∈ ∆3 : inf
s∈[t3,t3+T ]

(B∗(s− ut∗)− c1(s− ut∗)− c1t∗u) > q1u− (ηu− x)|B(ut∗) = ηu− x
}
dx

=

∫
R

φu(ηu− x)× P
{
∃t1 ∈ ∆1 : inf

s∈[t1,t1+T ]
B2(s) > q2u

or ∃t2 ∈ ∆2 : inf
s∈[t2,ut∗]

B2(s) > q2u, inf
s∈[0,t2+T−ut∗]

(B∗(s)− c1s) > x

or ∃t3 ∈ ∆3 : inf
s∈[t3−ut∗,t3+T−ut∗]

(B∗(s)− c1s) > x|B(ut∗) = ηu− x
}
dx

=
e−

η2u
2t∗

√
2πut∗

∫
R

P
{
∃t1 ∈ [−S,−T ) : inf

s∈[t1,t1+T ]
(Zu(s) + η∗s) > x

or ∃t2 ∈ [−T, 0) : inf
s∈[t2,0]

(Zu(s) + η∗s) > x, inf
s∈[0,t2+T ]

(B∗(s)− c1s) > x
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or ∃t3 ∈ [0, S] : inf
s∈[t3,t3+T ]

(B∗(s)− c1s) > x
}
e
ηx
t∗
− x2

2ut∗ dx,

=:
e−

η2u
2t∗

√
2πut∗

∫
R

G(u, x)e
ηx
t∗
− x2

2ut∗ dx,

where Zu(t) is a Gaussian process with expectation and covariance defined by

E {Zu(t)} =
−x
ut∗

t, cov(Zu(s), Zu(t)) =
−st
ut∗
− t, s ≤ t ≤ 0.

Next, since Zu weakly converges to BM (this is shown in the proof of Theorem 5.2.1) and by the

independence of B(x) and B(y) for x > 0 > y we write as u→∞∫
R

G(u, x)e
ηx
t∗
− x2

2ut∗ dx ∼
∫
R

P
{
∃t1 ∈ [−S,−T ) : inf

s∈[t1,t1+T ]
(B(s) + η∗s) > x (8.5)

or ∃t2 ∈ [−T, 0) : inf
s∈[t2,0]

(B(s) + η∗s) > x, inf
s∈[0,t2+T ]

(B(s)− c1s) > x

or ∃t3 ∈ [0, S] : inf
s∈[t3,t3+T ]

(B(s)− c1s) > x
}
e
ηx
t∗ dx

=: I(S).

From the proof of Theorem 2.1, Case (2), H = 1/2 in [42] we have that lim
S→∞

I(S) ∈ (0,∞).

Denote

θ =
η2

t2∗
, k(s) = η∗sI(s < 0)− c1sI(s ≥ 0), k̂(s) =

t∗
η
k(s).

We have

I(S) =

∫
R

P
{
∃t ∈ [−S, S] : inf

s∈[t,t+T ]
(B(s) + k(s)) > x

}
e
ηx
t∗ dx

=
t∗
η

∫
R

P
{
∃t ∈ [−S, S] : inf

s∈[t,t+T ]

(
B(

sη2

t2∗
) +

t∗
η
k(
sη2

t2∗
)
)
> x

}
exdx

=
t∗
η

∫
R

P

{
sup

t∈[−θS,θS]

inf
s∈[t,t+θT ]

(B(s) + k̂(s)) > x

}
exdx

=
t∗
η

∫
R

P

{
sup

t∈[−θS/2,θS/2]

inf
s∈[t,t+θT/2]

(
√

2B(s)− |s|+ k̂(2s) + |s|) > x

}
exdx

=
t∗
η
E

{
sup

t∈[−θS/2,θS/2]

inf
s∈[t,t+θT/2]

e
√

2B(s)−|s|+d(s)

}
,

recall that d(s) is defined in (4.6). Thus, we have that

I(S)→ t∗
η
E
{

sup
t∈R

inf
s∈[t,t+θT/2]

e
√

2B(s)−|s|+d(s)

}
=
t∗
η
Hd
θT/2 ∈ (0,∞), S →∞.
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Finally combining (8.5) with the line above we have that as u→∞ and then S →∞

pS(u) ∼ e−
η2u
2t∗

√
2πut∗

t∗
η
Hd
θT/2 ∼ Φ(D1/2

√
u)Hd

T ′ ,

hence the claim follows by (8.4).

8.4 Proof of Lemma 5.4.1.

Here we present an elementary proof of Lemma 5.4.1 that does not require specific knowledge

about the distribution of
∞∫
0

I(B(t) − ct > x)dt. The key-properties for our proof is the indepen-

dence and stationarity of the increments of BM.

Denote for 0 ≤ a ≤ b

f([a, b]) = P {∃x ∈ R : µΛ{t ∈ [a, b] : B(t)− ct = x} > 0} , f(S) := f([0, S]), S ≥ 0.

We shall prove that

f(S) = 1− e−kS, k ∈ [0,∞]. (8.6)

We have for any 0 ≤ a < b with N being a Gaussian rv independent of B with variance a and

zero expectation

f([a, b]) = P {∃x ∈ R : µΛ{t ∈ [a, b] : B(t)− ct = x} > 0}

= P {∃x ∈ R : µΛ{t ∈ [a, b] : B(t)−B(a)− c(t− a) +B(a) = x+ ac} > 0}

= P {∃x ∈ R : µΛ{t ∈ [0, b− a] : B(t)− ct+N = x+ ac} > 0}

= P {∃y ∈ R : µΛ{t ∈ [0, b− a] : B(t)− ct = y} > 0}

= f(b− a).

By the inclusion-exclusion principle for any 0 ≤ a < c < b it holds, that

f([a, b]) = 1− (1− f([a, c]))(1− f([c, b])).

By the last two equations above it follows, that for any S1, S2 > 0

f(S1 + S2) = 1− (1− f(S1))(1− f(S2)). (8.7)

Since f(S) is non-decreasing and non-negative, then exists lim
S→0

f(S) ≥ 0.
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i) Assume that lim
S→0

f(S) = ε > 0. Then by (8.7) we have that for any n ∈ N

f(S) = 1− (1− f(
S

n
))n ≥ 1− (1− ε)n → 1, n→∞,

hence f(S) = 1 for all S > 0 and (8.6) holds for k =∞.

ii) Assume that lim
S→0

f(S) = 0. We have that f(S) is continuous: by (8.7) for any ε > 0

f(S + ε)− f(S) = 1− (1− f(S))(1− f(ε))− f(S) = f(ε)− f(S)f(ε) ≤ f(ε)→ 0, ε→ 0.

Denote g(S) = 1− f(S). Then we have that 0 ≤ g(S) ≤ 1 is a continuous function and by (8.7)

g(S1 + S2) = g(S1)g(S2), S1, S2 > 0.

By Chapter 8, exercise 6 in [61] this yields that g(S) = e−kS for k ∈ [0,∞] and (8.6) holds.

Assume, that the assertion of the lemma does not hold. Then by (8.6) we have

lim
S→∞

f(S) = 1.

We have for S > 1 and some family of positive numbers AS,x such that AS1,x ≤ AS2,x for S1 < S2

with A0 = A1,x > 0

f(S) = P {µΛ{t :∈ [0, S] : B(t)− ct = x} = AS,x > 0}

≤ P


S∫

0

I(B(t)− ct ≥ x)dt ≥ AS,x


≤ P


∞∫

0

I(B(t)− ct ≥ x)dt ≥ A0

 .

Thus, for S ≥ 1

f(S) ≤ P


∞∫

0

I(B(t)− ct ≥ x)dt ≥ A0

 , c, A0 > 0, x ∈ R.

The probability above is strictly less than one, that contradicts lim
S→∞

f(S) = 1. �
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