UNIL | Université de Lausanne

Unicentre
CH-1015 Lausanne
http://serval.unil.ch

Year : 2021

Ruin Probability for Discrete and Continuous Gaussian Risk
Models

Jasnovidov Grigori

Jasnovidov Grigori, 2021, Ruin Probability for Discrete and Continuous Gaussian Risk
Models

Originally published at : Thesis, University of Lausanne

Posted at the University of Lausanne Open Archive http://serval.unil.ch
Document URN : urn:nbn:ch:serval-BIB_60FB19D4FC864

Droits d'auteur

L'Université de Lausanne attire expressément l'attention des utilisateurs sur le fait que tous les
documents publiés dans I'Archive SERVAL sont protégés par le droit d'auteur, conformément a la
loi fédérale sur le droit d'auteur et les droits voisins (LDA). A ce titre, il est indispensable d'obtenir
le consentement préalable de Il'auteur et/ou de I'éditeur avant toute utilisation d'une oeuvre ou
d'une partie d'une oeuvre ne relevant pas d'une utilisation a des fins personnelles au sens de la
LDA (art. 19, al. 1 lettre a). A défaut, tout contrevenant s'expose aux sanctions prévues par cette
loi. Nous déclinons toute responsabilité en la matiére.

Copyright

The University of Lausanne expressly draws the attention of users to the fact that all documents
published in the SERVAL Archive are protected by copyright in accordance with federal law on
copyright and similar rights (LDA). Accordingly it is indispensable to obtain prior consent from the
author and/or publisher before any use of a work or part of a work for purposes other than
personal use within the meaning of LDA (art. 19, para. 1 letter a). Failure to do so will expose
offenders to the sanctions laid down by this law. We accept no liability in this respect.



UNIL | Université de Lausanne

FACULTE DES HAUTES ETUDES COMMERCIALES

DEPARTEMENT DE SCIENCES ACTUARIELLES

Ruin Probability for Discrete and Continuous
Gaussian Risk Models

THESE DE DOCTORAT
présentée a la
Faculté des Hautes Etudes Commerciales
de I'Université de Lausanne
pour l'obtention du grade de
Docteur en sciences actuarielles
par

Grigori JASNOVIDOV

Directeur de thése
Prof. Enkelejd Hashorva

Jury

Prof. Felicitas Morhart, Présidente
Prof. Frangois Dufresne, expert interne
Prof. Dmitry Zaporozhets, expert externe
Prof. Mikhail A. Lifshits, expert externe
Prof. Krzysztof Debicki, expert externe

LAUSANNE
2021






UNIL | Université de Lausanne

FACULTE DES HAUTES ETUDES COMMERCIALES

DEPARTEMENT DE SCIENCES ACTUARIELLES

Ruin Probability for Discrete and Continuous
Gaussian Risk Models

THESE DE DOCTORAT
présentée a la
Faculté des Hautes Etudes Commerciales
de I'Université de Lausanne
pour l'obtention du grade de
Docteur en sciences actuarielles
par

Grigori JASNOVIDOV

Directeur de thése
Prof. Enkelejd Hashorva

Jury

Prof. Felicitas Morhart, Présidente
Prof. Frangois Dufresne, expert interne
Prof. Dmitry Zaporozhets, expert externe
Prof. Mikhail A. Lifshits, expert externe
Prof. Krzysztof Debicki, expert externe

LAUSANNE
2021



LWL | niversie de Lawsarne

HEC Lausanne

Le Décanat
Bitiment Internaf
CH=-1015 Lausanng

IMPRIMATUR

Sans s¢ prononcer sur les opinions de l'auteur, la Faculté des Hautes Etudes
Commerciales de I'Université de Lausanne autorise l'impression de la thése de
Monsieur Grigori JASNOVIDOV, titulaire d’un master en mathématiques de
Université d'Etat de Saint-Pétersbourg, en vue de 'obtention du grade de docteur en

sriences actuarielles,
La these est intitulée :

RUIN PROBABILITY FOR DISCRETE AND CONTINUOUS
GAUSSIAN RISK MODELS

Lausanne, le 18 mai 2021

Le doven
s
f‘l
Jean-Philippe Bonardi

HEC Lausanne
Ty
Le Décanat {_ wan e = —
Tél. +41 21 692 33 40 | Fax +41 21 692 33 05 “rous S AMBA SB35
voww. hec.unil.ch | hecdoyen@unil.ch pte. mteecs) ACCRELTID IPACT =i TEM



Members of the Jury

Prof. Felicitas Morhart

President of the jury, University of Lausanne, Department of Marketing.

Prof. Enkelejd Hashorva

Thesis director, University of Lausanne, Department of Actuarial Science.

Prof. Frangois Dufresne

Internal Expert, University of Lausanne, Department of Actuarial Science.

Prof. Krzysztof Debicki

External Expert, University of Wroclaw.

Prof. Mikhail Lifshits
External Expert, St. Petersburg Department of Steklov Mathematical Institute.

Prof.Dmitry Zaporozhets
External Expert, St.Petersburg Department of Steklov Mathematical Institute.






University of Lausanne
Faculty of Business and Economics

PhD in Actuarial Science

| hereby certify that | have exarined the doctoral thesis of

Grigori JASNOVIDOV

and have found it to meet the requirements for a doctoral thesis.
All revisions that | or committee members
made during the doctoral colloguium
have been addressed to my entire satisfaction.

Signature: Date: 09/05/2021

Prof. Enkelejd HASHORVA
Thesis supervisor







University of Lausanne
Faculty of Business and Economics

PhD in Actuarial Science

| hereby certify that | have examined the doctoral thesis of
Grigori JASNOVIDOV

and have found it to meet the requirements for a doctoral thesis.
All revisions that | or committee members
made during the doctoral colloquium
have been addressed to my entire satisfaction.

Signature: 'é% Date: 8 ﬂ//fj/ 202/

Prof. Frangois DUFRESNE
Internal member of the doctoral committee

University of Lausanne



10



University of Lausanne
Faculty of Business and Economics

PhD in Actuarial Science

| hereby certify that | have examined the doctoral thesis of

Grigori JASNOVIDOV

and have found it to meet the requirements for a doctoral thesis.
All revisions that | or committee members
made during the doctoral colloquium
have been addressed to my entire satisfaction.

Signature: i J}uu)(i./éru \ ‘D}&)\,(} Date: % O[_';x ZOZ\E

Prof. Krzysztof DEBICKI
External member of the doctoral committee



12



PhD in Actuarial Science

| hereby certify that | have examined the doctoral thesis of
Grigori JASNOVIDOV

and have found it to meet the requirements for a doctoral thesis.
All revisions that | or committee members
made during the doctoral colloquium
have been addressed to my entire satisfaction.

Signature: M Date: 95 2021

=)

Prof. Mikhail LIFSHITS
External member of the doctoral committee .

University of Lausanne
Faculty of Business and Economics

PhD in Actuarial Science



14



University of Lausanne
Faculty of Business and Economics

PhD in Actuarial Science

| hereby certify that | have exarmnined the doctoral thesis of
Grigori JASNOVIDOV

and have found it to meet the requirements for a doctoral thesis.
All revisions that | or committee members
made during the doctoral collogquium
have been addressed to my entire satisfaction.

Signature: %’% Date: L’t‘»- LT l@li

Prof. Dmitry ZAPOROZHETS
External member of the doctoral committee




16



17

Acknowledgements

I would like to express my sincere gratitude to my doctoral supervisor Professor Enkelejd Hashorva,
who has been supporting me in all possible ways during the last three years. I am extremely grateful
to him for his wisdom, kindness and responsibility.

I am thankful to Professor Mikhail Lifshits who recommended me to write a PhD thesis in the
University of Lausanne. I would like to thank my co-author Professor Krzysztof Debicki, it was a
great pleasure to work with him. I am very delighted to have had a visit in Wroclaw.

Special thanks to all members of the jury for their interesting comments and ideas for improving
the thesis during the private defense. I am grateful to all my colleagues and the administration of
the University of Lausanne for their incredible professionality.

I also thank the following members of the Russian-speaking community of our University for
making my life interesting during the last period of my life. In the alphabetical order, they are:
Aleksandr Shemendyuk, Dina Finger, Nikolai Kriukov, Pavel Ievlev and Veronika Kalougina. I
am extremely thankful to Konrad Krystecki for the general help in various issues. Last but not
least I would like to thank my dear friend Anton Tselishchev for the numerous consultations in

the mathematical and functional analyses.



Contents

Introduction & Notation

Brownian Motion Discrete-Time Models

2.1 Introduction . . . . . . ...
2.2 Approximation Techniques for Brownian Risk Model . . . . . . ... ... ..
2.3 7-Reflected Risk Model . . . . . . . .. o
2.4 Parisian & Sojourn Ruin . . . . . ..o

2.4.1 Parisian Ruin . . . . . . .00

24.2 Sojourn Ruin . . . . .. ..o
2.5 Proofs . . . ..
2.6 Appendix . . ...

Simultaneous Fractional Brownian Motion Discrete-Time Ruin

3.1 Imtroduction . . . . . . . ..
3.2 Main Results . . . . . .
3.3 Proofs . . . .
34 Appendix . ...

Parisian Ruin for Insurer and Reinsurer under Quota-Share Treaty

4.1 Introduction . . . . . . . ..
4.2 Main Results . . . . . . .. o
4.3 Simulation of Piterbarg & Pickands constants . . . . . .. .. ... ... ...
4.4  Approximate Values of Pickands & Piterbarg Constants . . . . . . . . . .. ..
4.5 Proofs . . . . .
4.6 Appendix . . ...

Two-Dimensional Fractional Brownian Motion Sojourn Ruin Problem

5.1 Introduction & Preliminaries . . . . . . . . . . . ..
5.2 Main Result . . . . . . .
5.3 Proofs . . . o

21

25
25
27
28
30
30
30
31
39

45
45
46
48
25

61
61
64
66
68
71
80



19

5.4 Appendix . ... 90
Extremes of Reflecting Gaussian Processes on Discrete Grid 97
6.1 Introduction . . . . . . . . . L 97
6.2 Notation and preliminary results . . . . . .. . .. .. Lo 98
6.3 Main Results . . . . . . . . 100
6.4 Examples . . . . . . 101
6.5 Proofs . . . . . e 103
Properties of Pickands Constants 119
7.1 Imtroduction . . . . . . . . . . 119
7.2 Main Results . . . . . . . 120
7.3 Technical Lemmas . . . . . . . . . . . 121
7.4 Proofs . . . . 124
7.5 Appendix . ... 131
Alternative Proofs of Some Results 135
8.1 Proof of (2.9). . . . . . . 135
8.2 Proof of (3.18). . . . . . 136
8.3 Proof of Theorem 4.2.1, Case (2), H=1/2. . .. ... ... .. ... ....... 139

8.4 Proof of Lemma 5.4.1. . . . . . . s 141



20



Chapter 1
Introduction & Notation

In this dissertation our main aim is the study of the asymptotics of the classical continuous and
discrete ruin probabilities of Gaussian processes and their generalizations: Parisian, sojourn, ~-
reflected and storage ruins. The classical ruin problem for Gaussian process is the computation of

the asymptotics of
P{3teT:X(t)>u}, u— oo, (1.1)

where X (t), t € T is a Gaussian process with almost surely continuous sample paths and 7 is
some measurable subset of the real line. Typically, in this work 7" is a closed finite interval, uniform
grid or positive ray of the real line, while X is a centered process with stationary increments (often

fractional Brownian motion or Brownian motion) and negative linear drift.

The asymptotic analysis of the probability in (1.1) is an important part of the extreme value theory
that applies in many fields: insurance, reinsurance, finance and physics. We refer to a list of various
applications of the extreme value theory to monograph [31], while for the particular role of the
study of the ruin probabilities for Gaussian models to [57]|. Currently a lot of Gaussian ruin prob-
lems have been investigated under continuous-time setup, we refer to, e.g., [27, 49, 56, 57, 59, 60|
and references therein. In this work we mainly focus on the discrete-time settings of the ruin prob-
lem. Here we usually observe different scenarios of the asymptotic behavior of the discrete ruin

probabilities if the variance of X in (1.1) is regularly varying at infinity with index not exceeding 1.

The second aim of the thesis is the study of the Pickands constants that commonly appear in the
asymptotics of the ruin probabilities of Gaussian processes, see, e.g., [12, 30]. We devote Chapter
7 to study various properties of the discrete and continuous classical Pickands constants. Also,
throughout the dissertation we introduce numerous Pickands and Piterbarg type constants and

study their basic properties.
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In Chapter 2 we explain how to apply the double-sum method, i.e., the main technique for deriv-
ing approximations of the ruin probabilities of Gaussian processes. By this approach we solve the
classical, Parisian, sojourn and ~-reflected problems for Brownian motion discrete-time setting. To
prove our results we rely on the self-similarity and independence of the increments of Brownian mo-

tion, these properties and the discrete time setup allow us to give relatively simple rigorous proofs.

In Chapter 3 we study the aymptotics of the ruin probabilities in discrete fractional Brownian mo-
tion risk models. We observe, that discretization of time leads to different asymptotical behavior
even in some most simple and natural models. Moreover, for some cases discretization does not

allow to derive the asymptotics, there we present optimal bounds.

In Chapter 4 we study the simultaneous Parisian ruin problem for fractional Brownian motion.
Here the scenario of behavior of the ruin probability is determined by the length of the interval
needed to clarify that a Parisian ruin occurs. Also, we suggest an approach for approximation of
the numerical values of the Pickands and Piterbarg type constants appearing in the asymptotics

via Monte-Carlo simulations.

In Chapter 5 we study the sojourn ruin problem for the model introduced in the previous chapter.
The main difficulty here comparing with the problems of Chapters 3 and 4 is the less developed

instruments for approximation of the sojourn ruin.

In Chapter 6 we solve the classical discrete ruin problem for the class of Gaussian process with
stationary increments, almost surely continuous sample paths and regularly varying at infinity
variance satisfying some smoothness conditions. We generalize this problem to the ruin problem
of the suprema and infima of the corresponding storage process. In some special cases we observe
that the discrete asymptotics are exponentially smaller than their continuous counterparts; in

other case we detect the strong Piterbarg property for the storage process.

In Chapter 7 we investigate some properties of the classical discrete and continuous time Pickands
constants. First of all, we give a relatively precise upper bound for the difference between the
continuous and discrete Pickands constants with the same Hurst index. This bound is useful for
estimation of the discretization-error appearing in the approach of approximation of the continu-
ous Pickands constants introduced in [30]. Secondly, we present an explicit representation of the
classical discrete Pickands constant for Brownian motion in terms of converging series. This rep-
resentation allows us to show:

1) that the discrete Brownian motion Pickands constant is strictly decreasing with respect to the

size of the grid;
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2) the exact speed of convergence of the discrete Brownian motion Pickands constant to the cor-

responding continuous one. It is interesting, that the Riemann zeta function effects the answer.

In Chapter 8 we give alternative proofs of some results of the previous chapters. These proofs
are based on the useful properties of Brownian motion: the independence and stationarity of the

increments and self-similarity. We also avoid using special tools and rely only on well-known results.

Next, we present the basic notation throughout the thesis. The notation above is applicable for

all following chapters.

Let ® and ® be the distribution and survival functions of a standard Gaussian random variable,

respectively.

Standard fractional Brownian motion is a centered Gaussian process with a.s. continuous sample

paths, By (0) = 0 and covariance function
1
cov(Bg(t), By(s)) = §(|t|2H + s — |t —s)*), t,s€R.

If H=1/2, then By, := B is a standard Brownian motion. Unless otherwise stated explicitly, we
suppose that B(t) is defined for ¢t > 0, while By (t) for t € R. We use abbreviations fBM and BM

for fractional Brownian motion and Brownian motion, respectively.

For any a <b € RU{—o00,00} and 7 > 0 we set

l[a,b) N TZ, T>0
[a7b]7 =
[a, b], T=0.

For any n > 0 we denote a discrete uniform grid by

{0,n,2n,...}, n>0
[0, 00), n=0.

G(n) =

Define the classical Pickands constant for 6 > 0 and H € (0,1) by

1
Hoy = Slim SE { sup e‘/iBH(t)_tQH} .

o0 t€[0,5]s

It is known (see, e.g., [30]) that the constant above is finite and positive for any 6 > 0 and
H € (0,1). Let Hop := HYy and HO := HS.
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Let I(-) be the indicator function.

Let C,Cy,Cy,C,Cq,Cs, C, C, 5, etc. be positive constants, that do not depend on any non-fixed
considered parameter. Their numerical values are out of importance and they can be different in

different places.

We use abbreviations "a.s.", "df(s)", "rv(s)" and "i.i.d." to mean almost surely, distribution func-

tion(s), random variable(s) and independent identically distributed, respectively.

We suppose that all stochastic processes and random variables are defined on the complete gen-
eral probability space (2 with the probability measure P. By default we assume that 2 consists of

outcomes w.



Chapter 2
Brownian Motion Discrete-Time Models

This chapter is based on G. Jasnovidov: Approximation of Ruin Probability and Ruin Time in
Discrete Brownian Risk Models, Scandinavian Actuarial Journal, 718-735, 8, 2020.

2.1 Introduction
The classical Brownian risk model of an insurance portfolio
R,(t)=u+ct—B(t), t>0,

with the initial capital v > 0 and the premium rate ¢ > 0, is a key benchmark model in risk

theory; see e.g., [39]. For any u > 0 define the ruin time
7(u) =inf{t > 0: B(t) — ct > u}

and thus the corresponding ruin probability is given by the well-known formula (see e.g., [26])

Yoo(u) :=P{7(u) < 00} =P {%rzlg R,(t) < O} =e 2, (2.1)

In insurance practice however the ruin probability is relevant not on a continuous time scale, but
on a discrete one, due to the operational time (which is discrete). For a given discrete uniform

grid G(J) we define the corresponding ruin probability by

Ps,00(u) =T {teig(fé) R,(t) < O} =P {tigg)(B(t) —ct) > u} . (2.2)

For any u > 0 it is not possible to calculate 15 (u) explicitly and no formulas are available for
the distributional characteristics of the corresponding ruin time which we shall denote by 75(u).
A natural question when explicit formulas are lacking is how can we approximate 15, (u) and

7s(u) for large u? Also of interest is to know what the role of ¢ is: does it influence the ruin

25
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probability in this classical risk model? The first question has been considered recently in [47] for
fBM risk process.

When dealing with the Brownian risk model, both the independence of increments and the self-
similarity property are crucial. In particular, those properties are the key to a rigorous and (rela-
tively) simple proof.

Our first result presented next shows that the grid plays a role only with respect to the pre-factor
specified by some constant. Specifically, that constant is well-known in the extremes of Gaussian

processes being the Pickands constant ’HQCQ‘S, where

1_ |su eV 1
H'=-E DPuenz® 4 —E<{ max e"® — max "W} € (0,00) (2.3)
n > ienz €V ® n | t>0tenz > tent

for any n > 0, with W (t) = v2B(t) — |t|. The first formula in (2.3) is derived in [30], whereas the

second in [13].

Theorem 2.1.1 For any § > 0 we have

Us o0 (1) ~ H¥ o (w),  u— 00 (2.4)
and further for any s € R
ILm P {03/2(7'5(u) —ujfc)/vu < S‘T(s(u) < oo} = d(s). (2.5)

We note that the above results hold for the continuous case too, where the grid G(¢) is substituted
by [0,00). For that case (2.5) follows from [38]. The approximation in (2.5) shows that the ruin
time is not affected by the density of the grid (i.e., it is independent of §) and thus we conclude
that the grid influences only the ruin probability. This is not the case for the ruin probability
approximated in (2.4). For the Pickands constants we have, see e.g., [13, 30, 54|

H2025 S 1 = lim H2625-
440

In particular we see that via self-similarity in the Brownian risk model the role of the grid is
coupled with the premium rate ¢ > 0.

The objective of Section 2 is to explain in detail the main ideas and techniques adequate for
the classical Brownian risk model. Section 3 discusses the ruin probability for the ~-reflected
Brownian risk model, see also [18, 34, 35, 52|. The approximation of Parisian ruin (see [15, 16, 53])
and sojourn ruin (see [17, 21, 22|) is the topic of Section 4. Our findings show that also for those
ruin probabilities, the influence of the grid, i.e., the choice of § concerns only the leading constant
in the asymptotic expansion being further coupled with the premium rate. Given the technical
nature of several proofs, we shall relegate them to Section 5, which is followed by an Appendix

containing auxiliary calculations.
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2.2 Approximation Techniques for Brownian Risk Model

Both the independence of increments and the self-similarity property of BM render the Brownian
risk model very tractable. In order to approximate s (u) for given 6 > 0 we start with the

following lower bound
Ysoo(u) =P{3t € G(0) : B(t) > u+ct} > P{B(uty,) > u(l +cty)}

valid for ¢, such that ut, € G(J) for all u large. It is clear that such ¢, exists and moreover

1 4
tu=—-+—€G( 2.6
L e o) (26)
holds for some 6, € [0,9) and all large u. Consequently, by the well-known inequality (see, e.g.,
Lemma 2.1 in [56])
1 1 — 1
(1-— e 2 < B(u) < e u>0 (2.7)

u? ) v 2mu T A 27u

we obtain for all large v and some positive constant C

Vs.00(1) > B(\/u/t,(1+ cty)) > %6_20“, (2.8)

where ¢ = ®'. Although the lower bound above is not precise enough, it is useful to localize a

short interval around
to:=1/c

that will lead eventually to the exact approximation of the ruin probability. Indeed, we have with

TF =u(ty £ u Y?Inw), Z(t) = B(t) —ct

u

for all large w and any C' > 0, p < 0 (the proof is given in the Appendix)
P sup Z(t) >up < CuPe . (2.9)
t¢[To T
Since for any u > 0
P sup  Z(t) >up < seo(u) <P sup Z(t)>up+Ps sup Z(t)>wu,p (2.10)
telTy T Is telT T ]s t¢ (T T ]

by (2.8) and (2.9) we obtain that (set As(u) = [t, — w2 Inu,t, +u=2Inu)s)

Ws.00(U) ~ IP’{ sup | Z(t) > u} = IP’{EIt € As(u) : B > \/ﬂ} =: Ps(u), u— oo,

te[Ty Tt L+t

where for the last equality we used the self-similarity property of BM.
In order to approximate Ps(u) as u — 0o a common approach is to partition As(u) in small inter-

vals and use Bonferroni inequality in order to determine the main contribution to the asymptotics.
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This idea coupled with the continuous mapping theorem is essentially due to Piterbarg, see e.g.,
[57]. In this paper we use a modified approach in order to tackle some uniformity issues which
arise in the approximations. In particular, we do not use continuous mapping theorem but rely
instead on the independence of increments and self-similarity property of BM. We illustrate below
briefly our approach.

We choose a partition A g,, —N, < j < N, of As(u) depending on some constant S > 0 as

follows

Ajsu=[tu+jSu ™ty + (G +1)Su"s, N, =[S In(u)Vul. (2.11)

gl

Here || stands for the ceiling function. The Bonferroni inequality yields

where
Ny Ny—1
piSu) = D pisw P(Su) = Y pisw pASu)= > pigsa
j=—Ny—1 j=—Nu —Nu—1<j<i<N,
with
B(t) B(t) B(t)
iju_P{ElteAwul—l— t>\/_} and pi,j;smzp{ate&sul >\/_’ teAJS"l—i— t>\/ﬂ .

As shown in [17] [Eq. (43)] the term po(.S, u), also referred to as the double-sum term, is negligible
compared with p} (S, u) if we let v — oo and then S — occ.
Moreover, p;(S,u) and p}(S,u) are asymptotically equivalent with Ps(u), i.e.,

hm lim p1(S,u)/py(S,u) = hm lim py(S,u)/Ps(u) = 1.

S—o00 u—00 —00 U— 00

The main question is therefore how to approximate p;(S,u)?

In order to answer the above question, we need to approximate each term p;g, as u — oo.
Moreover, such approximation has to be uniform for all j satisfying —N, < j7 < N,, which is
a subtle issue solved in this paper by utilizing the independence of increments of BM and the
self-similarity property; see the proof of Theorem 2.1.1 in Section 5 and [17] for similar ideas in

the continuous time setting.

2.3 ~-Reflected Risk Model

An interesting extension of the classical Brownian risk model is that of ~-reflected Brownian

risk model introduced in [1]. The ~-reflected fBM risk model and its extensions are discussed in
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[18, 34, 35, 52]. In this section we consider the approximation of the ruin probability over a discrete

grid G(§),9 > 0 for the ~-reflected BM model. Specifically, for v € (0, 1) we define the risk model

R, s(t) =u+ct—B(t)+~ inf (B(s)—cs), teG(9)

s€[0,t]s

and the corresponding ruin time
7y (u) = inf{t > 0: R 5(t) <0}, v € (0,1).
For given § > 0 we are interested in the ruin probability in discrete time, namely

Tos(w) = P{F () < oo}
= P{3teG(9): R ,(t) <0}
= P{3teG),se€[0,t]s:u+ct—B(t)+vB(s) —cys < 0}
= P{3t e G(),s€0,t]s: B(t) —ct —yB(s)+cys > u},
which cannot be calculated explicitly. The risk process RZ} s(t) is not Gaussian anymore, however

using the independence of the increments of BM and the self-similarity property, for any u > 0

we have witht =k —1[, s =1

T,s(u) = P{3l<keG0):Bk)—kc—~y(B(l)—cl) >u}
= PEI<keG(©): (B(k) = B() + (1 =7)B() = c(k =71) > u}
= P{HI<keG0):Bk—-1)+(1—~)B*() —clk —~l) > u}

= P{3t,s € G(0): (B(t)—ct)+ (1 —v)(B*(s) — cs) > u}

_p {at, s € G(S/u) BC (fltl(l_;; )SB;(f) > \/a} ,

where B* is an independent copy of B. The above re-formulation shows that the ruin probability
concerns the supremum of the random field Z given by

B(t) + (1 —7)B*(s)
ct+(1—)es+1 "7

Z(t,s) = s,t>0. (2.13)

From [35] it follows, that for any n,a > 0

a . V2B(t)—t(14+a

Pn.—E{ sup e¥?B0) “”}E(O,oo).
t€[0,00)y

Our next result gives the approximation of the above ruin probability as u — oco.

Theorem 2.3.1 For any 6 >0 and any v € (0,1)

’Y

Lo 5(u) ~ Poaty oM tho (1), 1 — 00, (2.14)

We note that the basic properties of discrete Piterbarg constants are discussed in [3, 13].
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2.4 Parisian & Sojourn Ruin

2.4.1 Parisian Ruin

In this section we expand our results to the Parisian ruin. For the continuous time [53| gives an
exact formula for the Parisian ruin probability. Both finite and infinite Parisian ruin times for
continuous setup of the problem are dealt with in [15, 16].
Next, for given 0, T positive (suppose for convenience that 7'/§ € G(6)) define the Parisian ruin
time and probability for the discrete grid G(J) by

Ts(u, T) = {inft € G(§) : sup R,(s) <0}

s€ [t7t+T]§

and
Ps(u, T) =P{rs(u,T) < o0},

respectively. Our next result shows again that the grid determines the asymptotic approximation

via the constant H, r defined for n, T positive by

sup inf eV2B(s)-lsl

tenz sEtt+Ty
V2B(t)—|t
N tenz e’ ?PON

Hyr =E € (0, 00). (2.15)

Note that if T" = 0, then H, o equals the Pickands constant #" defined in (2.3). The corresponding

constant for the continuous case is introduced in [15].

Theorem 2.4.1 For any 6, T > 0

PJ(U, T) ~ H2025,202T¢oo(u)7 U — 00. (216)

We see from the approximation above that the premium rate ¢ influences also the leading constant

in the asymptotics.

2.4.2 Sojourn Ruin

Sojourn ruin for fBM risk model has been discussed recently in [21]. As therein, adjusted for the

discrete setup, we define the sojourn ruin time and probability by
mH(u) = {inft € G(8) : #{s € [0,t]5 : B(t) —ct > u} >k}

and

Cs(u, k) =P {75 (u) < 00},
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where k is some non-negative integer and the symbol # stands for the number of the elements of

a given set. Note in passing that Cs(u,0) = 95 (u). Next, for n > 0 define the constant

B, (k) = lim —Bn(? k>,

where for any S > 0

Bn(s,k):/ﬂb 0 S I(V2B(s) = |s| + 2 > 0) > k g e~dz.

R s€[0,5],

In view of [22] B, (k) is positive and finite.

Theorem 2.4.2 For any non-negative integer k we have as u — 0o
Cs(u, k) ~ Baps(k)theo (u). (2.17)

Remark 2.4.3 i) Defining the ruin times corresponding to Parisian and sojourn ruin, it follows
with similar arguments as in the proof of Theorem 2.1.1 that those can be approximated in the
same way as (2.5).

it) If k =0, then the claim in (2.17) reduces to (2.4).

2.5 Proofs

Proof of Theorem 2.1.1: As mentioned in Section 2, the negligibility of the double-sum term
follows by [17], hence the claim in (2.4) follows thus by approximating p;(S,u) as u — oco. We
show first the approximation of p; g, as v — oo uniformly for —N, < j < N,. Note that with
u = v? and N being a standard Gaussian rv we have the distributional representation based on

the independence of increments of BM
B(cjsu+t/u) = \/Cj5.N + B(t)/v, t€[0,5], u>0, ¢js,=t,+jSv >

Recall that ¢, € G(0) is given by t, = 1/c+ 6,/u for some 0, € [0,0). We have with ¢;, the
probability density function of ,/¢; s N

Pisu = P{3iea,q, : (B(t) = Vauct) > Vu}

= / P{Jicp.5), : (B(t)/v —ve(ejs0 + t/0°) > v — 2| /C5.N =z} ¢, (2)dx
R

1

= - /RIP’ {Bicpo.s1s 1 (B)/v —ve(cjsm +1/02) > v — (v —2/0)} j0(v — x/v)da

1
= - / P {Jicio.5), : Z(t) > &+ ccj 500" } j0(v — z/v)da
R

1
= 1 [P {Bens 200 > o} oo + ccys0) = /o)
R

v
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e~V (1+cc) s5,0)%/(2¢5,5,0)
= w(x)w(j, S, x)dz,

Vy/2TCj 50 R

where (recall Z(t) = B(t) — ct,t > 0)

2) = P{Tuesy, : Z(8) > 3}, w(j, S, ) = e 550 20y 507 (2.18)

Using Borell-TIS inequality (see, e.g., [50]) we have (proof is given in the Appendix)

/Rw(a:)w(j, S,z)dr = /M w(r)e* dr + Ap, (2.19)

M

where Ay, — 0 as u — oo and then M — oo, uniformly for —N, < j < N, and S > 0. By the

monotone convergence theorem

M
1
lim w(z)e*de = —E{ sup 2eB(t)—2e%t
M—oo | o 2¢ | tep,s15

= iE sup e\/ﬁB(202t)72c2t — iE sup e\/ﬁB(t)ft )
2¢ | velo.ls 2¢ | tef0,2¢28], 2,

In a view of the definition of discrete Pickands constants, see e.g., [12, 30]

lim E sup V2Bt L — HQCZ&’
S—oo 2¢28 {t€[072625}2025

with H" defined in (2.3). Consequently, the asymptotics of p;(S,u) as u — oo and therefore also
(2.5) follow by calculating the limit as u — 00, S — oo of

1+CCJ S, v)? /(2¢5,5.0)

21) CCS E
N1 VA/ 27TC]'7S7U

Setting

F)=Q+ct)?/2t =1/2t) +c+ )2, f'(t)=(=1/2+2)/2, f't) =1/t

we have that f'(tg) = 0 implying

f(to) o 3
flto+ ) = f(to) = 5 2+ 0(2%)
as z — 0 with f”(to) = ¢>. Consequently, as u — 0o
2
K, Fto+(iS+04) [02)—0 [ (t0))
o \/27’('750 (% ._;1
~ eI (t0)(GS+0u)? /v?) /2

iV 27Tt0 ’U —XN:
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312

-~ —f"(t0)=%/2 0 — 1 2.20
e T , .
V2T /R ( )

where the last two steps follow with the same arguments as in the proof of (39) in [17]. Finally,

we have that as © — oo and then S — o0
Pg(u) ~ KU7SH26256_QUC ~ H2026e—2uc‘

We show next (2.5). For any u > 0,s € R we have

P {7s5(u) — ut, < sv/u|rs(u) < oo} = %;W)P{Hte[(),utu-i-s\/m(s  Z(t) > u}.

Considering the approximations of p; g, uniformly for all =N, < j < N/ with N = |s\/u/S]
we obtain as above

I e /)22 B3/2 ps iy
X - —00 o —ciz/2 _ 3/2
]P’{Elte[()’utﬁsmé 2 Z(t) > u} = fR TR T Van /_OO e dxr = ®(sc™?).

li L
1m
U—r0Q wb‘po (u)

Hence

lim P{(Tg(u) — uty,)/Vu < S’Tg(U) < oo} = d(sc®?), seR.

U—00

Since ® is continuous, by Dini’s theorem, the above convergence holds also substituting s by s,

such that lim, . s, = s € R. Consequently, since 6, € [0,0) we have also

lim ]P’{c3/2(7'5(u) —uty)/Vu < S‘Tg(u) < oo} =d(s), seR.

U—00

Proof of Theorem 2.3.1. Recall that ¢, =ty + 6,/u = 1/¢ + 0, /u and denote § =1 — . We

analyze the variance function 0% of the process Z(t, s). For any non-negative s, we have

ot prs t+ fs B(1—p)s .
ozt 5) = (ct+Bes+1)2 (ct+PBes+1)2 (ct+ fes+1)2 At 5) = A7(1 9).

Note that A(t, s) depends only on ¢t + s and achieves its global maxima on the line t + s = ¢y =
1/c, while A*(t, s) is negative for all s > 0 and equals zero for s = 0. Hence (¢,s) = (1/¢,0) is the

unique global maxima of 0%(t, s) and 0%(1/¢,0) = +. We define next

Inu Inu lnu)}

Ds(u) = {s,t €GO/ (1:5) € (= +tay =+ 1) x (0, =

We have (proof see in the Appendix)

T, s(u) ~P{3t,s € Ds(u) : Z(t,s) > Vu} = ((u), u— oo. (2.21)
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Let A; g, be as in (2.11) and set

p(i,j) =P{3t,s € Njgu x Al g, 1 (B(t) — Vuct) + B(B*(s) — Vucs) > u},
p(i,j;z 7)) =P{3t,s € Ajsu x Al g, : (B(t) — Vuct) + B(B*(s) — Vucs) > Vu,
Jt,s € Ay g X Afy g, 1 (B(t) — Vuct) + B(B*(s) — Vucs) > /u}

for —N, <i<N,, 0< 5 <N, fixed S >0 and

" 3s j(S+1)
A]Su - [77 T]

By Bonferroni inequality
> p(i, j)— > p(i, j; ', §") < ¢(u) < > p(i, j)-
0<j<Nu—1,—Ny <i<Ny—1 0<,j' < Nuwy— Nu— 1<, < Nuy (3,17) £ (o5 0<j <Nu,—Ny—1<i<Ny,
The term
> p(i, j; i, J')
0<4,5" SNu,—Nu—1<,i" <Ny, (3,8 ) #(5,5")

is negligible by the proof of Theorem 2.1, Eq. [14] in [35] and consequently

¢u) ~ > p(i,5), u— oo.

0<J<Ny,—Ny<i<Ny
Next, we approximate p(i, j) uniformly. Recall, that v* = u, ¢; 5, = t, + f}—g, ¢i v 1s the density
function of /¢; 5, N and set G; = [jS, (j + 1)S]s. We have

p(i, j)
= ]P{H(t, 8) S A@S’u X A;Su : (t) — B(Ci,SﬂJ — C\/ﬂ(t — Ci,S,"u) + B(Ci,SﬂJ — \/ECC@SW
+B(B"(s) — Vucs) > v/u}
- /IF’ {El(t, s) €0, 5]5/u X Af g, B(t) = Vuct — Vucei s, + B(B*(s) — Vues) > Vu — x} iv(z)dx

R
- /P {El(t7 $) €10, 8] x G- BzEt) —veleise+ %) - B(B*U(S) B CU_S) >0 — x} Pi(r)dx
R

- %/P{H(t, s) €[0,5]; x Gy Bit) —ve(eisp + %) +ﬁ(%<s) - %) >0—(v— %)} 1o — %)da:

R
- %/P{H(t’8> € [0, 8] x Gy B(t) — et + B(B"(s) — ¢s) > x + v’ccisn } pio(v — %)dx

R
= %/P{3<t73) S [0, S](S X Gj : B(t) —ct+ ﬁ(B*(s) — CS) > x} %,v(v(l + CCi,S,v) _ %)d:lj‘

R

2(1+cclsv)

20151}
= dzx,
CRY 27TC'LS'U /W )
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where
W;(x) =P{3(t,s) € [0,5]s x G : B(t) — ct + S(B*(s) — cs) > z}

and w(i, S, ) is defined in (2.18). By Borell-TIS inequality for all |i|,|j| < N, (proof is in the
Appendix)

/V[/j(x)w(i,s,x)dxw /Wj(ZL‘)edeCL’, U — 0. (2.22)
R R

Next we have with G = (2525, 2(5 + 1)c2S)ae25

1
/Wj(x)GQC‘”dx = — [P sup (2¢B(t) — 2¢*t 4+ B(2c¢B*(s) — 2¢%s)) > 2cx p *d(2cx)
2c (t,5)€[0,5]5 G
R R
1
= — [P sup V2B(2c%t) — 2¢% + B(V2B*(2c%s) — 2025)) > x petdr
2c J (t,5)€[0,5]5 %G

= iIE‘, { sup exp (\/§B(t) —t+ ﬁ(ﬁB*(S) - 5)) }

2¢ (t,8)€[0,2¢2S], 25 X G
1 *

= —_E sup V2Bt \ sup BV2B*(s)=s) | (2.23)
2c t€[0,2¢25], 255 €6

By (2.22) combined with the line above we write

1
C(u) ~ Q_CE{ sup eﬁB“)‘t}

t€[0,2¢25],,24

_ U2<1+Cgi,5,v)2
2¢; 8w

. e
X Z E { sup ?(V2B (8)5)} Z ——, u— 0. (2.24)
0<j<N.  \*€Y) NN, VV2TCisw

As was shown in the proof of Theorem 2.1.1 as u — oo and then S — oo

v2(1+cci’s’v)2

1 e 2Ci,S,v 2
—E sup e‘/iB(t)*t — A O (2.25)
2c {te[o,2c2512626 Nu;igNu U/ 27TC¢,S,U

We have as S — oo (proof of the first line below is in the Appendix)

Z E { sup 66(\/53*(3)8)} ~ E { sup eﬁ(ﬁB(s)s)} (2.26)
s€|l

0<j<Ny SGG; 0,2023}%26

1@{ sup <\/§B(352) - 3762 > g;> } evdx

5€[0,2¢25], 25

]P’{ sup (\/EB(S) —s(1+ ﬂ)) > x} e*d

86[07262625}252626 ﬂ
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1-5 ol
1—

5 i
— P262525 o 20221—y)25 € (0’ OO)

Combining the statement above with (2.24) and (2.25) we conclude

ol

— 25 —
C(u) ~ P2162Z1,7)25H26 66 2cu7 U = 00

and hence by (2.21) the claim follows. O

Proof of Theorem 4.2.1. The proof is similar to that of Theorem 2.1.1 and we use similar

notation as therein. We have by (2.9)

Ps(u, T) ~ ]P’{ sup inf  Z(s) > U} =: Ps(u), u— o0 (2.27)

te[Ts T s s€t,t+T]s
if we show that Py(u) > Ce2*. By the self-similarity of BM
Bs(u) = P{3te[T;,

_ IP’{EIL‘ =
u

We choose the same partition A; g, —N, < j < N, of the interval A, = [TT_, %] as in the proof

eft,t+T)s Z(s) > u)}
B(s) - \/ﬂ}

T
v t,t
] 56[ + ]%1—1—03

T ls :
+
C
u

of Theorem 2.1.1. The Bonferroni inequality yields

Pi(S,u) > Py(u) > 7S, u) — Pa(S, w), (2.28)
where
N, Ny—1
> Bise S w) =Y Bisa BSu= > Pisw
Jj=—Nu—1 Jj=—Nu —Ny—1<j<i<Ny
with
- B
Djsu =P 4 sup 1nf () > Vu
teA; 5. s€ltt+L]s 1+ ¢S
and

B B
Dijisu = P{ sup inf (5) > /u, sup inf (5)

ted s, s€ltt+T]s I+ecs ted, s, €l L] s I+es

> u }
Clearly, pi j.su < Pij.s. and hence
P2(S,u) < pa(S,u).

Thus, if we show that p;(S,u) ~ Cre™ 2" we conclude that po(S,u) is negligible. We approximate

each summand in p; (S, u) uniformly. As in the proof of Theorem 2.1.1 we obtain

6*02(1+CC]',S,U)2/(2C]',S,1J)

Pisu =
V\/2T0C} 50 R

w(T, x)w(y, S, x)dx
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where

w(T,x) = ]P’{ sup inf  Z(s) > x}

t€[0,5]5 SELI+T]s

and w(j, S, x) is defined in (2.18). By Borell-TIS inequality (similarly the proof of (2.19)) it follows
that

/w(T,x)w(j, S,a:)dx—)/w(T,x)ezcxdx, U — 00.
R R

Next we have

1|

/w(T, 2)e*®dr = —E{ sup inf 2B
R Cc tE[O,S]5 SG[t,t—‘rT][;

= E{ sup inf eﬂB(QCQS)_%%}

1|

C | te[o,8)s s€ltt+Tls

1
= —K { sup inf e‘/iB(s)_S} .

2c t6[072625]2625 Se[t,t+202T]2625

It follows with similar arguments as in [12] that as S — oo

lim E su inf eV2BO Y — Y o5 orer € 0,00), 2.29
500 2¢25 {t€[0,2022]2626 SE[LE+2c2T) 0 225272 € ( ) (2.29)

where the constant Hae2597c2 is given by (2.15). Hence by (2.20) we have
ﬁg(u) ~ 7—[202572%26_20“, U — 00

and (2.27) holds, establishing the claim. O

Proof of Theorem 2.4.2. We use below the same notation as in the previous proofs. By (2.9)

we have

Cs(u, k) ~ PLH{(T, TH)s: Z(t) > u} > k} = 4(u), u— oo (2.30)

u U

if we show that ¢ (u) > Ce=2*. Using the self-similarity of BM for any u > 0

B () =P{#{te B S LI MNG >k}.

Letting

2 vy

A, =#{t e Aig,:
s = 1 bS]

we have using the idea from [17]

Ny
PEu) < ]P’{ > Aj,u>k;}
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Ny
= ]P’{ Z A, > k, {there exists only one j such that A4;, > 0}}

Jj=—Ny—1

Ny
+ IP’{ Z A;. >k, {there exists i # j such that A;, > 0 and A4;, >0 }}

j=—Nu—1
= pl,k(u) -+ H()(U)

On the other hand,
Nu—1
P(u) > IP{ > A k}
J=—Nuy
Nu—1
= ]P{ Z A;., >k, {there exists only one j such that A4;, >0 }}

Jj=—Nu

Nu—1
+ IP{ Z A, >k, {there exists ¢ # j such that A4;, >0 and A;, >0 }}

j=—Ny
=: pox(u)+ Ij(u).

Notice, that IIp(u) and IIj(u) are less than the double-sum term in Theorem 2.1.1. They are

negligible if we prove that psx(u) ~ pyx(u) > Ce 2 as u — oo for some C' > 0. We have

Ny,
pa) = >0 (P{Aju >k} —P{Aj > k34 Ay > 0})
j=—N,—1
Ny Ny,
= Y P{Au>kl— Y P{Aj>kJi#j: A >0}
j=—Ny—1 j=—Ny—1

The last summand is less than the double-sum term in Theorem 2.1.1 and is negligible. Thus, we

need to compute the asymptotics of

Ny

Qsr(u) = > P{A;, >k}, (2.31)

j:_Nu

With similar arguments as in the proof of Theorem 2.1.1

B(t) 671’2(1+ch757v)2/(20j,s,v)

P> k) =B { {1 € Aysus ok > v} >k = T T [yt s

where w(j, S, x) is defined in (2.18) and
wi(z) =P{#{t €[0,5]s: Z(t) > x} > k}.
Similarly to the proof of (2.19) we have

/wk(x)w(j, S,x)dxr — / wy(7)e**dr,  u — oo.
R R
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Next
1
/wk( )e*“dr = 2—/ #{t €[0,2¢*S)5 : V2B(t) — t > x} > k} e“dx.
R R

As shown in [22]

lim

1
S 92 G /P {#{t € [0,2¢°S)pe2s : V2B(t) —t > x} > k‘} e“dxr = Baes(k) € (0, 00).

R

Consequently, by (2.20) as u — oo and then S — oo

(u) (k) %: vt (e 5.0)2/(205,5.0)
Qd,k u) ~ 0882025 k

~

Since By2s5(k) € (0,00), then Qs (u) ~ ¥ (u) as u — oo implying

== [52625(]{7)6_26“[(@75 ~ 82025(]{3)6_2(:“.

ﬁg(u) ~ 6_20u82025(k5>, U — 00

and the claim follows. O

2.6 Appendix

Proof of (2.21). Recall that

B(t) + (1 —7)B*(s)
Z(t5) = ct+(1—v)es+1 "7

s, t >0,

where B and B* are independent BM. For some positive € and large u denote

Ale) = (10,00) x [0,00) )\ ([=2 + b, + 1] x [0,€]), o)
Rleuw) = ([=2+tuz +ta] x [0,6] )\ (=22 + tu, 22 + 1] x [0,22]).
We have
P{3(t,s) € Ds(u) : Z(t,s) > Vu}
< P{3(t,s) € G(6/u) : Z(t,s) > Vu}
< P{3(t,s) € Ds(u) : Z(t,s) > Vu} +P{3(t,s) € Ale) : Z(t,s) > Vu}
+ P{3(t,s): R(e,u): Z(t,s) > Vu}. (2.33)

We show next that Z(t, s) is a.s. bounded for ¢,s > 0. According to Chapter 4, p. 31 in [59] it is
equivalent that Z(¢, s) is bounded with positive probability. We have

]P’{sup Z(t,s) < 1} = P{forallt,s >0 B(t) —ct+ (1 —v)(B*(s) —cs) < 1}

t,s>0
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> P{forallt,s >0 B(t) —ct <1/2,(1 —7)(B*(s) —cs) < 1/2}

= (1-P{3t>0:B(t)—ct>1/2})(1-P{3s>0: B*(s) —cs > 1/2(1 — v

= (1—e )1 —e =" >0,
where we used (2.1) for the last equation. Hence by Borell-TIS inequality (see [50])

P{3(t,s) € A(e) : Z(t,s) > Vu} =o(P{Z(1/c,0) > Vu}), u— oc. (2.34)

Next we shall prove that
P{3(t,s) € R(e,u) : Z(t,s) > Vu} =o(P{Z(1/c,0) > Vu}), u— oco. (2.35)

If we show that for any (¢,s) € R(e,u) and for some positive constant C' holds, that

2

1
o%(1/c,0) — o (t,s) > C “u“

we can immediately claim (2.35) by Piterbarg’s inequality (Proposition 9.2.5 in [59]). Notice that
if
i) s ¢ 10, lnTZ], then

02(1/c,0) — o%(t,s) = (A(1/c,0) — A(t,s)) + A*(t, s)

BL-F) | mu e

z Ahs) = (ct+PBes+1)2 —  Vu u

hence the claim follows.
i) assume that s € [0, ln“] Setting

T

L(z) = m;

we have that L(x) attains its unique maxima at point x = 1/¢, L'(1/c¢) = 0 and L"(1/c) < 0. We

have

05(1/c,0) — o5(t,s) = 05(1/c,0) — A(t, s) + A*(t,s) > 05(1/c,0) — A(t,s) = L(1/c) — L(t + 3s).

For all (¢, s) such that (¢,s) € R(e,u), s € [0, IHTZ] we have that |1/c — (t + 8s)| > C’lnTZ. Hence

2

L(1/e) — L{t + Bs) > CIL"(1/e)|(1/e — (¢t + fs))? > O

u

and (2.35) holds.

Notice that for some positive constant C'

P{3t,s € Ds(u) : Z(t,s) > Vu} >P{Z(t,,0) > Vu} > CP{Z(1/c,0) > u}.

')
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Combining the statement above with (2.33),(2.34) and (2.35) we establish (2.21).

Proof of (2.9). Notice that

]P{ sup Z(t) >u} <P{3t,s€ Ale): Z(t,s) > Vu} +P{3t,s € R(g,u) : Z(t,s) > Vu},

t¢(Tu T
where A(e) and R(e,u) are defined in (2.32). Hence the claim follows by (2.34) and (2.35). O
Proof of (2.22). We shall prove that

M
_ 22 +m1+cci 9 S
/VVj(x)e 2%, e g = /Wj(ac)e “dr + Apro, (2.36)
R M
where Ay, — 0 as u — oo and then M — oo uniformly for all |i|, |j| < N,. We have
M
_ m2 +x1+cci
/I/Vj(x)e 2wie; 1T e (g — / W;(z)e*dx
R M
M
22 | e 9 _ 2% _z (ButiS)e
< Wi(z)e 2w i dr 4| | Wiz)e™™(e 2w e« —1)dx|
||>M -M
= I+, (2.37)
Let uw > M®. For any integer |i|, |j| < Ny, z € [-M, M] and u large we have
0, + 1S 2
ButiS)ery — onratn, o < oM,
i Ci
hence
1, 22 (0, +1iS)cx C cC CM 1
S W)y M Myang) < — 4 o <
‘u( 2¢; G )‘_u< + \/ﬁnu)_M4+u2/5_M
We have by (2.23) and (2.40) that for all |j| < N,
/Wj(x)e%xdx <C
R
and hence
M
yTy<1/W()Md<1/W()Md C 0, M- oo (2.38)
— (z)e*dr < — (z)e"de = — . .
=M ) “M ) M T
M R
Next we have for large u
l+ccy

T, < /IP’{EIte[O,S],szo:B(t)—ct+B(B*(s)—cs)>x}ex e

|| >M
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S xl+cci

< /IP’{EIte[O,—],SZO:Z(t,s)>\/E}e i dx + / e“dr.

T
x>M r<—M

a%(t, s) =

t+ 3% S 3% S
(ct+cBs+1)2 ~ x T

taking large enough = we can write for any fixed € > 0 that

o%(t.s) < 5%—?5).

Hence by Borell-TIS inequality for large x
S _p2c
P{Ht c€0,=],s>0:Z(t,s) > \/E} < e TAUT
T

Choosing ¢ such that 5(142¢) < 1, uniformly for all |i|,|j| < N, we have with a = 2¢— ﬁ <0

1+cci

I, <o(l)+ / e TRy = o(1) + / e Ceto =5tz gy
|=[>M || > M

< o(1)+2 / ¢ 50, Moo, (2.39)
|z|>M

Combination of (2.38) and (2.39) establishes (2.36). By the monotone convergence theorem (2.36)
implies (2.22). O

Proof of (2.19). We have

[ wte)oti.5,2)d - f w@eds < [ wESade ] [ u)wi S - s
M |z|>M || <M

= ]1 + |]2|
Since W;(x) > w(z) we have that (I; and I, are defined in (2.37))
LI <|L|, L<I

implying
Il—|—12 §71+‘72| — 0

as u — oo and then M — oo by (2.38) and (2.39). Thus, (2.19) is established. O

Proof of (2.26). For any j > 1 we have (set b; = 2jc*S)

E { sup eﬁ(ﬂB*(s)s)}

B
SEGj
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P{ S 5@5MQ—S—VQMQ%HW>$+B@1w@B@D}&M

2
_ Y
} e“dre *%dy

1
= //IP’ sup  B(V2B(s) — s) >z + B(b; — V2y)
27Tbj 2on s€[0,2¢25]
1 s
= //IP’ sup  B(V2B(s) —s) > x =0 =V 73, dxdy
27Tbj 2y s€[0,2¢2 8]
e P — 38y
= //IP sup  [B(V2B(s) —s) >z p e i dxdy
27Tbj J s€[0,2¢2 5]
—6b; 2
= /IP’ sup  B(V2B(s) —s) >z e””dx/e 2”J+\/§ﬁydy.
27b; J 5€[0,2¢29] 2

Next we have by (2.1)

!p

IN

——

sup  B(V2B(s) —s) > JJ} e’dx

5€[0,2¢29]

/ {009

_6%?>Eﬁ}&“

— 1+ [ cc
0

Since

3/2 2
/e_%j+ﬂﬁydy = \/2mb;e’
R
we have for some fixed small enough ¢ and large S

E {Sup 65(\/53(8)—8)} < CePA=0B)b; < oIS
SGG;

Thus, as S — oo

Z E { sup eﬁ(ﬁB(s)s)} < e (1 + o(1))
1<j<Nuy

B
SEGj

establishing the claim.

(2.40)
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Chapter 3

Simultaneous Fractional Brownian Motion

Discrete-Time Ruin

This chapter is based on G. Jasnovidov: Simultaneous Ruin Probability for Two-Dimensional
Fractional Brownian motion risk Process over Discrete Grid, in press, Lithuanian Mathematical
Journal, 2021.

3.1 Introduction

Define two risk processes
R (t) = qu+ et — Bu(t), i=1,2,
where ¢;,q; > 0. The discrete simultaneous ruin time and ruin probability over the infinite time

horizon are defined by
Tou(u) = inf{t € G(8) : RV (1) <0, RYD (1) < 0}
and
Vs, (u) =P {75 u(u) < oo}, (3.1)

respectively. For positive ¢ the simultaneous ruin probability is of interest both for theory-oriented
studies and for applications in reinsurance (see, e.g., [45] and references therein). In this paper we
investigate only the discrete setup; the continuous problem has been already solved in [45]. For
any possible choices of positive § and H € (0,1) it is not possible to calculate 15 g (u) explicitly.
A natural question when lack of explicit formulas is the case, is how can we approximate @57 a(u)
for large u. Also of interest is to know what is the role of d, does it affects the ruin probability in
the considered risk model. Theorem 3.2.1 gives detailed answers for these questions. Our results

show that the discrete time ruin probabilities behave differently from continuous if H < 1/2. We

45
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refer to [41] for some alternative proofs of the results.

Also of certain interest is the finite time horizon setup of the problem. For fixed T" > 0 the

discrete simultaneous ruin probability over a finite time horizon is
éﬁﬂuyzp{me[QTLJﬁ?@)<0J§?@)<o}. (3.2)

The corresponding discrete ruin problem over a finite time horizon is trivial, since set [0, T]NG(0)
consists of finite number of elements and hence asymptotics of the large deviation is determined by
the unique maximizer of the variance of the process (this, e.g., follows immediately from Lemma
2.3 in [56] or Proposition 2.4.2 in [59]). Thus, we shall be concerned only with the continuous ruin

problem over a finite horizon. Asymptotics of (zr(u) is discussed in Remark 3.2.5.

3.2 Main Results

First we eliminate the trends via self-similarity of fBM. For any u > 0 we have

V.1 (w) P{3t € G(J) : By(t) > qiu+ c1t, Bg(t) > quu + cot}

= P<IteG(/u): Bult) >yl
max(cit + qu, ot + ¢2)

If the two lines g1 + ¢1t and gy + ot do not intersect over (0, 00), then the problem degenerates
to the one-dimensional case, which is discussed in Theorem 3.2.3. In consideration of that dealing

with 95 r(u) we always suppose that

C1 > C2, G2 > Q1. (3.3)

B (t)

It turns out that the variance of
max(c1t+q1,cat+qe

j can achieve its unique maxima only at one of

the following points:

Hq Hq,

« 42—
="t =
Cl(l—H) 2

t =2 .
! Cg(l—H) C1 — Co

(3.4)

It follows from (4.3) that ¢; < t5. As we show later, the order between t1,t, and t* determines

the asymptotics of 95 ;7 (u) as u — oco.

For notational simplicity we write 1s(u) instead of ¥, /2(u). Define for some function k(t) constant

PE = lim ]E{ sup e‘/iB(t)_“Jrk(t)}
te|

n T—00 _T’TL7
when the expectation above is finite and set for 6 > 0

Q201+ Caq1 —2qaCa)t +HI(E>0) (2c11 —c1ga—qiea)t _ 5l(t>0) <61QQ_QICQ)(01_02).

C1q2 — q1C2 C1q2 — 1C2 2 —q1

ds(t) = I(t<0)



Define constants
H 1-H

() _ G 9 s
Cy = HI( — B)H 1=1,2.

The theorem below establishes the asymptotics of 15 g (u).

Theorem 3.2.1 Ford >0 asu — oo

1) if t* ¢ (t1,ta),

HQH]—]?/Z(l?—H]—}/I/?(C(Z e H)% 5(0}?1&71{), H>1/2

- 1 gy

Gar(u) ~ ()T § pdbe2m, H=1/2
VorHHF 20y H = (5) 1
56514-1(1,]1)?{4-1/2(1)(0;{)“1 H)? H < 1/2>

where 1 =1 if t* <ty and i =2 if t* > to,
2) if t* € (t1,t3), then with Dy = Cl(z% when H > 1/2
¢5H( ) (DHU H)7

when H =1/2

PLB(D12v/) (1 + 0(1)) < ds(u) < APLB(D/23/u)(1+ (1)),

where ﬁg,ﬁg“ € (0,00) and

(c192—c2a1)(c192+91¢2—2¢292) Sle )2
A= 65 2(a2—q1)? >1 _ ( 192 — 1 2)
7 2 3
(2 —q1)

when H < 1/2

2P B (Dpu ) (14 0(1) < P (u) < B(Dyu ) (1+ o(1)),

where

_ oup()ws(tY) (g tat)?
B= T ) )] 0, wilt)="Tgg— i=12

47

(3.5)

(3.8)

Remark 3.2.2 The bounds in (3.7) are exact. Namely, there exist two tending to infinity se-

quences {uy, fnen and {vy, tnen such that as n — oo

_ __ _ 1—H—
Vs (tn) ~ Dpuy ™), Usu(v,) ~ 2e P " 0(Dyo, ).

To study the asymptotics of the two-dimensional ruin probability over the infinite time horizon

crucial is the asymptotic approximation of the one-dimensional one. The asymptotics of this ruin

probability has been already studied in [47]. Since there are some inaccuracies we give the following

corrected result.
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Theorem 3.2.3 For any 6 > 0 with Cyg = 7 as U — 00

CH
HA(I-H)'—

1 —
HQH—H?Z(fHH’I/2<CHu HYUHAAG (O, H > 1/2,

P{3t € G(0) : Bu(t) — ct > u} ~ § H2*g—2eu, H=1/2(3.9)
VerH T Pl B (Cput =), H<1/2.

5CH+1(1,H)H+1/2

Remark 3.2.4 If H > 1/2 the asymptotics of the discrete probabilities in Theorems 3.2.1 and
3.2.8 are the same as in the continuous case and do not depend on §. If H = 1/2 the asymptotics
differ only in the constants. If H < 1/2 the discrete asymptotics are infinitely smaller than the
corresponding continuous. All these statements directly follow from Theorems 3.2.1, 3.2.3 and
Corollary 2 in [37] and Theorem 3.1 in [}5].

Next we discuss the finite time-horizon case. Here for large u the two-dimensional ruin probabil-
ity always reduces to the one-dimensional one, that has been already studied in [10],[25]. More

precisely, we have

Remark 3.2.5 For any T > 0 with \(u) = max(qlwfflg’m“ﬂ) as u — 0o

oy o | P L) T BB OW), <172
o D(A(u)), H>1/2

and

=, Ug; —2c;q;u g %

where i =1 if (q1,c1) > (qa, c2) in the alphabetical order and i = 2, otherwise.

E _Ciﬁ)a 1= 1727

3.3 Proofs

Proof of Theorem 3.2.1. Denote

Byt
Vi(t) = H(), i=1,2. (3.10)
cit—l-qi

Case (1). Assume that t* < t;. We have by the self-similarity of {BM

Gor(u) SP{3t € G(5/u) : Vi(t) > u! ™1} = ¢} (w). (3.11)

Since t* < t; for any 0 < € < t; — t* we have

bsu(u) > P {Ht € [t — ety +els V(D) > ul™H Va(t) > ulfH}
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]P{ate b— et +els VA > HI}
~ Yih),  u— oo (3.12)
For a detailed proof of the last line above see the Appendix. Thus, by (3.11)
Vs () ~ wg}[){(u), U — 00

and by Theorem 3.2.3 the claim is established.
Let t* = ¢;. We have

P{ sup Vi(t) > H < sn(u)

teft*,00) 5
u

< P sup Vi(t) >u'™" 5 +P{ sup Vo(t) > 3. (3.13)

teft*,00) s te[0,t*) s
u u

Since t* is the unique maximizer of Var{Vj(¢)} (details are given in the Appendix)

1
P sup Vi(t) >u' 3 ~ étbéll){(u), He(0,1), u— . (3.14)

teft*,00) 5

u

Next we prove that

P{ osup Va(t) >u'™ % = o(zﬁ((;lgl(u)), U — 0. (3.15)

tef0,t*) s

u

Case H > 1/2. As follows from Corollary 2 in [37] and Theorem 3.2.3 for H > 1/2, all large u

Oy () < i (u) < il (w).

Hence with the same constant C' as in the line above it holds that

P sup Va(t) >u'™? (w((;}l)i,(u))_l < C’_lIP’{ sup Va(t) > ul_H} (wé’ll)q(u))_l — 0, u— o0,

te[0,t*) 5 te[0,t%)
u

where the last convergence follows from the proof of Theorem 3.1, case (4), H > 1/2 in [45].
Case H < 1/2. Let 6, € [0,6) be such that t* + % € G(2). Denote

0
ty ="+ —. 1
+ " (3.16)

Notice that with t;, =t, — §/u by (2.7)

Pq sup Vo) >u'™™3 < P{Wh(t))>u""}+Cu sup P{V(t)>u""}

te[0,t*) 5 te[0,ty —0/u] 5
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= P{V(t) > u' )+ CuP {Vg(tu — %) > ulH}

< (14 Cu exp(ule%))P {Va(t,) > w1},

where wy(t) is defined in (3.8). Since H < 1/2 and w)(t*) < 0 it follows from (3.9) that the
expression above equals o(wg};(u)) as u — oo and (3.15) holds. Thus, from (3.13), (3.14) and
(3.15) it follows that

- 1
Gon(u) ~ SUip(u), w0

establishing the claim by (3.9). Case t* > t5 follows by the same arguments.

Case (2). Denote

Zu(t) = max(cltin(i)CQt S and 0% (1) = Var{Zu (1)}, (3.17)

Notice that if t* € [t1, %3], then t* is the unique maximizer of oy (t). Moreover, oy (t) increases

over [0,t*] and decreases over [t*, co).

Case H > 1/2. From Theorem 3.1 case (3), H >  in [45] it follows that
1557H(u) < E(DHuliH)(l + 0(1))7 U — OQ.

We have (recall, t, is defined in (3.16))
Usr(u) = P{ sup Zp(t) > Ul_H} >P{Zy(t,) >u'""} ~2Dyu'"), u— .
teG(2)

Combining two statements above we establish the claim.

Case H = 1/2. For notational simplicity we write Z(t) instead of Z;5(t). It follows from [45] and
(3.22) that with A = [t, — S/u,t, + S/u]s as u — oo and then S — oo

Us(u) ~P{3t € A: Z(t) > Vu} . (3.18)

Let B*(t) be an independent copy of BM, B (t) = B*(t) — c1t, ¢u(x) be the probability density
function of B(ut,) and define

C1q2 — q1C2 (3 19)

nN=q+at' =q@+ct"=
C1 — Co

By the self-similarity and independence of the increments of BM we have as u — oo

teA

P {sup Z(t) > \/ﬂ}
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= P{3t € [ut,—S,ut,)s: B(t) > qou + cot
or 3t € [ut,, ut,+S5]s: (B(t) — B(ut,)) + B(ut,) > q1u + cit}
= P{3f € [ut, — S,uty)s : B(t) > qu + cout, + co(t — uty)
or 3t € [ut,,ut, + S|s : B*(t — ut,) + B(ut,) > qu + crut, + c1(t — uty,)}

= /gbu(nu — ) x P{3t € [ut, — S,uty)s : B(t) > qou + cout, + co(t — ut,,)

or 3t € [ut,,ut, + S5 : B*(t — ut,) + nu — = > qu + cyuty, + c1(t — ut,)|B(ut,) = nu — x}dz
= /IP’{EIf € [~5,0)5 : Zy(t) >z + cofl, or It € [0,5]5 : B*(t) — 1t > x + 10, }pu(nu — x)dw

N VIR, J P{3i € [-5,0): Zu(l) >+ o or H € [0,8)s: B'(1) > w+ 0 f e e
U

e zt* 720y 77029u ~ —x nz _ (z—cobu)?
~ /IP’ (3 €[-5,0)5: Zu(H)>x 0r3t €[0,5]s - B (1) > + (e - } e~ T
U *

R

where Z,(f) is an independent of B” (t) Gaussian process with expectation and covariance defined

below:

E{Zu(f)}ZUQ2_x_C20uf . -5t .

ut,
Since n — 2t*cy > 0 we have

ne _ (z— C29u>

/P{er [—5,0)s : Zy() >z or It €[0,S]s: B (t) >+ (¢ — 02)6} et 2utudx (3.20)

R
Bun(n—2t*cy) . ne_ (2=cobu)®
< e 2)? /IP{EItE[ S,0)s : Zy(t) > x or 3t €[0,5]s : ()>m+(01—02)9u}etu_ 2utu (o
R
Sn(n—=2t"co) ~ —x ne _ (z— 629u)
< S /]P’ (3t [-5,0)5: Zu() >z or 3t € [0.5)5: B'(1) > 2} e~ 58 a
R

We estimate the integral in the lower bound. Assume that BM is defined on R (centered Gaussian

process with cov(B(t), B(s)) = M) When u — oo covariance and expectation of Z, (t) — %2t

converge to those of BM, hence Z,(t) — 2% converges to B(t) for ¢t < 0 in the sense of convergence

t*
of finite-dimensional distributions. Thus, with { = % as u — oo (proof is given in the Appendix)

ne _ (z—cpbu)?

/IP’{HEE[ 5,005 Zu(l) > or 3t € [0,8]5: B(1) > o+ (e — en)s e
R
~ /IP) {3te [-5,0)s : B(f) + (t>z or 3t € [0,5]5: B(t) — cit >z + (c1—2)8 } et dr (3.21)

=: HIQ(S).

dx,
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By the explicit formula P {sup(B(t) —ct) > x} =e 2 ¢,z >0 (see |26]) we have
>0

0 00

1(5) < / e’Zi”dx+/ (P3t=0:B(t)~Ct>a} +P{A = 0: B() — it > 2} )eFda
—00 0
= Dy [t oty < o
n

0

provided by min(QCt* 2¢1t*) > 1. Since ( ) is non-decreasing it implies lim I(S) € (0,00). We

have with (t*)Q and ds(t) = I(t < O) (t > O)(clt L4 "(Cl c2)d) that
1(S)
t* — )8 e
- E/P{Ht €[-5,9)s: tﬁ*B(t) +t<]1(t < O)ﬁ— (t > 0)”;1) I(t > O)M > ’Z—‘”} ewd@—f)
R
- - /IP’ {agt € [~€8,€S)es : B(€t) + ft(]l(t < O)t:f—]l(t > O)t*ncl> It > O)M > a:} e*dz

R
— /p{ate — S, €5 - B()+cf5(t)>m}exdx
R

_E sup  eV2BO-lt+ds@n

tel- 55 s
2
Since Slim 1(S) € (0,00), ds(2t) + |t| = ds(t) and %5 = ~, we have that the expression above tends
—00

to ﬁﬁ‘f‘s € (0,00) as S — oo. Thus, summarizing all calculations above we conclude that as u — oo

and then S — oo

P{sup 2(0) > Vit ) 2 PEBD. 2y (1 + ol1). (3.22)
teA
For the same reasons estimating the upper bound in (3.20) we have that as u — oo and then
S — o0
~ on(n—2t"cy)
]P{sup Z(t) > \/ﬁ} < Ploe 20 : D (D 2v/u)(1 + 0o(1))
teA

and the claim is established.

Case H < 1/2. As shown in the Appendix (recall, t; = ¢, — 2 and V;(t), Va(t) are defined in
(3.10))

Vsu(u) ~ P{Va(ty) >u'" "} +P{Vi(t,) > u'""}, u— o0 (3.23)
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We have (recall, w;(t) = (qi:;f}'t)Q, i=1,2)

0, w] (t*)u1*2H
2 )7

—(6 = fuwy(t)u' ="

P{Vi(t.) >u'""} ~ ®(Dyu'")exp(—

P{Va(t,) > u'""} ~ B(Dyu'")exp(—

Thus,

&S,H(U) ~ E(DHUI—H) <exp(_9uw;(t*)u1—2H) + eXp(—_((S — eg)wé(t*)ul—QH)) 7 u — 00,

Swf (£ )ws ()

hence the claim follows from the inequality (recall, B = ~ Sl () el )
1 2

> 0)

2€—Bu1—2H(1 n 0(1)) < eXp(—euwé(t*) u1_2H) + exp(— _(5 — %L)w/?(t*)ul_ﬂl) (3.24)

< 1+40(1), u— o0

and the proof is established. O

Proof of Remark 3.2.2. Consider a sequence {uy }nen such u, — oo and for all n t* € G(6/u,,).
From the proof of Theorem 3.2.1 case (2), H < 1/2 it follows, that

Vo, (un) = ®(Dgul ") (1+0(1)), n— oco.

Next we choose a sequence {v,, },en such v, — 0o and for all n t* — % € G(6/v,). For
n 1 2

such sequence inequality in (3.24) becomes equality, hence
Vo1 (V) ~ 26’3”’11_}15(]]);1@;’[{), n — oo

and the claim follows. O

Proof of Theorem 3.2.3. When H = 1 the assertion of the theorem follows from [40] and [47].
Case H > 1/2. For large u we have

]P’{EItZO: inf  (Bu(s) —cs) >u} SIP’{ sup (Bg(t) — ct) >u} SIP){sup(BH(t)—ct) > u

teG(9) 120

2H -1
sE[t,t+u 2H |

In view of Remark 3.2 in [15] the lower and the upper bounds above are asymptotically equivalent,

hence

teG(9) t>0

IP’{ sup (By(t) —ct) > u} ~P {sup(BH(t) —ct) > u} , U — 00.

The asymptotics of the last probability above is given, e.g., in Corollary 3.1 in [15], thus the claim

follows.

b
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Case H < 1/2. By the self-similarity of fBM we have

Yom(u) = P{3t e G(0): Bu(t) >u+ct}
B
= P{Ht € G(é) all) | ul—H}
u 1+4ct
o
= P {Elt € G(a) V(t) > ul_H} .
Note that the variance of V(t) achieves its unique maxima at ¢, = (1 ) . As shown in the
Appendix
Ys.u(u) ~ Z P{V(t)>u""}, u— oo, (3.25)
tel(to)
ul—H H

where I(to) = (—=1/v/u +to,1/y/u+to)s. We have with 4 = 7g—5m as u — 00

S PV e} = 3 6(ulﬂ$)

tel(to) tel(to)

1 H 1+ct)2
~ X

tcl(to) 27ru

202+2H(1_H)2H+1

Setting fu(t) = (1:;_015)2 we have f;(tg) = 0 and ff;(ty) = T > 0. Since fy(t) ~
fu(to) + W 7 (to), t € I(ty) we write (a strict proof is given in the Appendix in [41])

. 1 u2—2H (1+et)?  (14ctg)?
Z P 1ty R o~ /2 Z e ( 2f g )
tEI 27Tu 27T tEI to)
— . 1u2- 2HfH(t0>
~ O(a) E e (t=10)® 4y o0, (3.26)
tel(to)
. f}}(to) o 62+2H(1—H)2H+1
Next (set ['= “ = = ST
1"
t
Z @_%“272HfH2( 0>(t—to)2 ~ 9 Z e—FuQ*QHt2
tel(to) te(0,u=1/2)s/,

_ 2 Z e*F(tul_H)Q

tul—HE(O,u1/2*H)6u_H

H
= ZUT (5u*H Z eiFtQ)

te(0,ul/2-H)

2uH i _ 2
6\/Fo/e d(V'Ft)

H
SVF
Combining the line above with (3.26) and (3.25) we have
B ul—HoH VorHH2H
Vo (1) ~ (=7 F) AT H11/2°
HH(1—H) ScHA1(1 — H)H+Y

su—H

u — 00 (3.27)
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and the claim follows. O

Proof of Remark 3.2.5. Assume, that (¢1,¢1) > (ge, c2) in the alphabetical order, the other case
follows by the same arguments. For large u we have that qiu + ¢1t > gou + cot for all ¢ € [0, T
implying

Cu(u) =P {3t € [0,T]: By(t) > ert + qru} .

Thus, for H = 1/2 the claim follows by [26]. For H # 1/2 Theorem 2.1 in [10] completes the
proof. O

3.4 Appendix

Proof of (3.12). To establish the claim, it is enough to show that
P{3t ¢ [ty — et +e] - Vit) > u T} = oy} (u),  u— oo

We shall prove that Vi () is a.s. bounded on [0, 00). By Chapter 4, p. 31 in [59] it is equivalent
with P{Vi(¢) is bounded for ¢ > 0} > 0. We have by Corollary 2 in [37]

P{sule(t)gu} = 1—P{sup\/1(t)>u}—>1, U — 00.

t>0 >0

Thus, V;(¢) is bounded a.s. Note that the variance v(t) of Vi(t) achieves its unique maxima at .

Denote

m = max v(t), M:E{ sup Vl(t)}.
te] )

te[0,t1 —e|U[t14¢,00) 0,t1 —e]U[t1+¢€,00
By Borell-T1IS inequality (see Lemma 5.3 in [45]) we have that M < oo and for all u large enough

(wl—H _ )2

P{3t¢[ti—etit+el:Vi(t)>u'""} <e ™ m
From Theorem 3.2.3 and inequality m < v(t1) it follows that
(wl=H _ )2 (1)

e 7 =o(hy(u), u— oo

and thus (3.12) holds. O

Proof of (3.14). Assume that H < 1/2. Since t* = ¢; is the unique maximizer of Var{V;(t)}, then
repeating the proof of Theorem 3.2.3 we obtain

P sup Vi(t) >u't 3 ~ Z P{Vi(t) >u" "}, uw— .

teltre0)s tety,ti+1/va) s
u
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The method of computation of the asymptotics of the sum above is the same as in the proof of
Theorem 3.2.3, see the calculation of the analogous sum in (3.25). The difference is only in the
intervals of summation, in Theorem 3.2.3 I(t() is symmetric about ¢, while [t;,¢; + 1/y/u)s has
only the right part. Thus, multiplier 1/2 appears before the final asymptotics. u

Assume that H = 1/2. Then the claim follows from the proof of Theorem 1.1 in [40]|. The index
of summation in (19) in [40] in our case will be 1 < j < N, thus, multiplier 1/2 appears before
the final asymptotics. The claim can also be established by Theorem 1, ii) in [47].

Assume that H > 1/2. As in the proof of Theorem 3.2.3, case H > 1/2 we have

IF’{Elt >¢*:  inf  Vi(t) > H} <P sup Vi(t) >u'H ) < IP’{ sup Vi(t) > ulH}.

SE[t t+u2H] te[t*,oo)% te[t*po)

As follows from [59] the upper bound in the inequality above is equivalent with %wég(u), U — 00
and by Theorem 2.1 in [15] the lower bound has the same asymptotics. Since for H > 1/2 (see
Theorem 3.2.3) it holds that 1/)(1) (u) ~ gll){(u), u — oo we obtain the claim. O

Proof of (3.21). First we show that with § = (¢; — ¢3)d

nT (2—52911.)2

/P{er[so) Z,(0) > wor 3t e [0,8];: B(0) > w48 ek~ HH

RM (3.28)

:/P{HEE[SO) Z,() > wor 3t € [0,.8];: B(1) > 2 +8} eFdr + By,

-M

where By, — 0 as u — oo and then M — oo. We have

M
Baro| < ’/P{er[ S,0)s : Zu(f) > z or 3t € [0, 55 - (t)>x+5}(e?§ S o) da
—M

nz  (z—cpbu)?

+ / IP’{EIEE[ S,0)s: Zy(t) >z or I €10,5]s : ()>x+g}eg—de
|x|>M
= |Il|+[2

Since Var{Z,(t)} is bounded and E{Z,(¢t)} < 0 for large u and all ¢ € [-S,0] by Borell-TIS

inequality for z > 0 and some C' > 0 we have

IF’{ sup Z,(f) > x or sup B (t) > x—|—5} < IP’{ sup (Z,(t)—E{Z,(t)}) > x} +IP’{ sup B(t) >

t€[-5,0)5 t€[0,5]s t€[—S,0] t€[0,5]

< e—acz/C

d
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Thus, as u — oo

OC2 x xT
I, < /e_CJ“Zudx—l— / e;ti*dx—>0, M — oo.

x>M r<—M
For u > M3 we have
M
znb (33*029114)2 2 0z no (;87020u)2 C
|Il| S / C+t* e ut* tt 2uty, — 1}611’ S /e_zc""t*dl' sup |e ut*t:i 2uty — 1| S —
x€[—M,M] M
-M R

Thus, llm lim (|1;] 4 I3) = 0 and (3.28) holds. Since for t € [-S,0] Z,(t) converges to B(t) + (t

M —00 u—00
as u — oo in the sense of convergence of finite-dimensional distributions we have

M

/P{ﬂfe[sm Z(0) > wor3te [0, B(t) > x +5} e dr

M
— / P{er [—S,0)5 : B(t)+ ¢t >z or 3t €[0,5]5: B (t) > x—}—g} erdr, u— 0.

By the monotone convergence theorem the expression above tends to

/]P’{Elfe [—S,0)5: B(f) + ¢t >z or 3t € [O,S]g:B(t)—clt>:v+5}e%fdx, M —
R

and the claim is established. O

Proof of (3.23). We have by Lemma 2.3 in |56] for all large u with w = u'~# (recall, t, = t,—d/u)

Vsm(u) > IP’{ sup ZH(t)>w}

tefty tu}
= P{Vi(t,) > w} +P{Va(t;) > w} —P{Vi(t.) > w,Va(t,) > w}
~ P{Vi(t,) > w} +P{V(t;) > w}, u— ooc. (3.29)
Next we prove that
P{3t e G(6/u),t >t : Vi(t) > w} ~ P{Vi(t,) > w}, u— oc. (3.30)

Fix some ¢ > 0. Since 0% (t) is decreasing over [t*, 00) we have by Borell-TIS inequality as u — oo

P{3t € G(0/u),t >t +e:Vi(t) > w} = o(P{Vi(t,) > w}). (3.31)
We have with ¢ = t, + 0 /u and w;(t) defined in (3.8) as u — oo

P{3t e G(6/u),tf <t <t'+e:Vi(t)>w} < Cu sup P{Vi(t) > w}

tEG(8/u),th <t<t*+e
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< C’uIP’{Vl(t;’) > w}

~ CuP{Vi(t,) > w} exp(—@

= o(P{Vi(t,) > w}).

w)

Combining the lines above with (3.31) we establish (3.30). By the same arguments we have

P{3t € G(6/u), t <t*: Va(t) > w} ~P{Va(t;) >w}, u— o0

implying with (3.30)

Vsr(u) < P{3teG(6/u),t <t*:Vo(t) >w}+P{I G /u),t >t :Vi(t) >w}

= (P{Vi(t,) > w} +P{Vi(t;) > w})(1 +0(1)), u— o0

By (3.29) and the line above we obtain the claim.

Proof of (3.25). First we prove that with I(¢y) = (—\/ia +to, to + \/La)

P{ sup  V(t) > ulH} =o(¢Ysu(u)), u— 0.

teG(§/u)\I(to)

Denote e(tg) = (—¢ +to, € + to)s/u and E(ty) = (—¢ + to, € + to) for some € > 0. We have

(3.32)

P sup V() >utHTH <P sup V() >u"HL 4+ P sup V() >u"H Y.
teG(3/u)\I(to) tee(to)\I(to) t€]0,00)\E(t0)

The second summand in the line above is negligible by Borell-TIS inequality. Notice that

]P’{ sup  V(t) > ul_H} < Cu sup P{V(t)>u'""}
tee(to)\(to) tee(to)\I(to)

< Cu(P{V(to—1/vu) > u' ™} + P{V (ko + 1/vu) > u'™""})

— 1+ct 1
< 3Cud(u'™ ;LHC O)exp(—z Y (to)u' "), u — oo,

0

recall that fg(t) = “j;ff and f7;(to) > 0. Hence we have

1—H1 -+ Cto

7 ), u— 0
)

IP{ sup  V(t) > ul_H} = o(®(u

tee(to)\I(to)
and thus (3.32) follows from (3.27). Next by Bonferroni inequality
> P{V(t)>u1_H}—H(u)§]P’{sup V(t) > u! } S P{V() > u"},
teI(to) tel(to) teI(to)

where

D)= >  P{V(t)>u""" V() >u"}.

t1<t2€l(to)

(3.33)
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Fix some numbers t1,ty € I(ty). We have (recall, & = %)

- . OV (1)) u = @V (ty) ut—H
]P{V(tl) >Uu ,V(tg) > U }

< > , >
B { op(te) — oulte) ou(te) ~ ou(to)
= P{Wl>fb,W2>'LAL},

where numbers ¢, £ > 1 are chosen such that Var{a()v—tl)} Var{%} = 1. We have

that correlation r,, of (W7, W5) has expansion
T’w(tl,tg) =1- O|t1 — t2|2H + O(|t1 — t2|2H)7 tl, t2 — to

and hence for all ¢,y € I(ty) it holds that \/|t; — t5[2 > §7u=H. Thus, by Lemma 2.3 in [56]

we have
P{W, > a4, Ws > 0} < ®(0)®(Cu' 7)), u— o
implying that for all t1,ts € I(ty)
P{V(t:) >u""" V() >u'""} <d(a YB(Cut~#), 4 — 0.

There are less then Cu? summands in I1(u), hence from the line above, (3.33) and (3.27) it follows
that

P{supV(t)> } Y P{V(E)>u "}, u— oo

tEI(to) tEI tO

Thus, the claim follows by the line above combined with (3.32). O
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Chapter 4

Parisian Ruin for Insurer and Reilnsurer

under Quota-Share Treaty

This chapter is based on G. Jasnovidov and A. Shemenduyk: Parisian Ruin for Insurer and Rein-

surer under Quota-Share Treaty, submitted.

4.1 Introduction
Consider the risk model defined by
R(t)=u+pt —X(t), ¢>0, (4.1)

where X (t) is a centered Gaussian risk process with a.s. continuous sample paths, p > 0 is the
net profit rate and v > 0 is the initial capital. This model is relevant to insurance and financial
applications, see, e.g., [31]. Some contributions (see, e.g., [2, 15, 16]), extend the classical ruin
problem to the so-called Parisian ruin problem which allows the surplus process to spend a pre-
specified time below zero before a ruin is recognized. Formally, the classical Parisian ruin time

and ruin probability for T" > 0 are defined by
T(u, T) ={inft > 0:Vs € [t,t +T] R(s) < 0}
and
P{r(u,T) < oo}, (4.2)

respectively. As in the classical case, only for X being a BM the probability above can be calculated
explicitly (see [53]):

G*CQT/Q — c\/ﬁ‘b(—cﬁ) —2cu
(& )
—PT/2 4 2RO (v T)

P{3t>0:Vse[t,t+T] B(s)—cs>u} = T>0.

61
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Note in passing, that the asymptotics of the Parisian ruin probability for X being a self-similar
Gaussian processes is derived in [15]. We refer to [16, 40| for other investigations of some relevant

problems.

Motivated by [45] (see also |42]), we study a model where two companies share the net losses in
proportions 41, 02 > 0, with d; + o = 1, and receive the premiums at rates py, po > 0, respectively.

Further, the risk process of the i-th company is defined by

where x; > 0 is the initial capital of the i-th company. In this model both claims and net losses are
distributed between the companies, which corresponds to the proportional reinsurance dependence

of the companies. Define the simultaneous Parisian ruin time for 7" > 0 by
T(u,T) =1inf{t > 0:Vs € [t,t +T] Ri(s) <0, Ra(s) < 0}.
In this paper we study the asymptotics of the simultaneous Parisian ruin probability defined by
P{r(u,T) < o0}, T >0.
Since the probability above does not change under a scaling of (R;, R»), it equals to
P{3t>0:Vse[t,t+T] u+c1s— B(s) < 0,us +cos — B(s) <0}, T >0,

where u; = x;/6; and ¢; = p;/d;, i = 1,2. Later on, we derive the asymptotics of the probability
above as uy,us tend to infinity at the constant speed (i.e., u3/ug is constant). Therefore, we let

u; = q;u be fixed constants with ¢; > 0, ¢ = 1,2 and deal with asymptotics of
Pr(u) =P{3t>0:Vse[t,t+T] B(s) > qu+cis,B(s) > pu+csp, T>0

as u — 0o. Letting the initial capital tends to infinity is not just a mathematical assumption,
but also an economic requirement stated by authorities in all developed countries, see [55]. In
many countries a new insurance company is required to retain a sufficient initial capital for the
first economic period. It aims to prevents the company from the bankruptcy because of excessive
number of small claims and /or several major claims, before the premium income is able to balance

the losses and profits.

Observe that Pr(u) can be rewritten as
P{3t>0:Vs € [t,t+T] B(s) — max(c1s + q1u, cas + qou) > 0} .

Thus, the two-dimensional problem may also be considered as a one-dimensional crossing problem

over a piece-wise linear barrier. If the two lines gqiu + ¢t and gou + cot do not intersect over
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(0, 00), then the problem reduces to the classical one-dimensional BM risk model, which has been
discussed in 15, 16] and thus will not be the focus of this paper. In consideration of that, we shall

assume that
1> Co, Qo > (. (4.3)

Under the assumption above the lines ¢yu + ¢1t and gou + cot intersects at point ut, with

q2 — 1
1 —C2

te =

>0 (4.4)

that plays a crucial role in the following. The first usual step when dealing with asymptotics of
a ruin probability of a Gaussian process is centralizing the process. In our case it can be achieved
by the self-similarity of BM:

Pr(u) = P {Eltu >0: inf (B(su) —cisu) > quu, inf  (B(su) — cosu) > un}

su€tu,tu+T) su€tu,tu+T)

= IP’{EIt >0: inf (B(s) = (158 +q@)vu) >0, inf (B(s) — (c25 + q2)Vu) > O}

SE[tt+T/u) s€[t,t+T/u]
B(s
= PSIHt>0: inf (5) >Vup.
SE€[t,t+T/u] max(cls + q1,C28 + qQ)
The next step is analysis of the variance of the centered process. Note that the variance of

B(t)
max(c1t+q1,cat+q2)

can achieve its unique maxima only at one of the following points:

t*, Zl = ﬂ, zg = @

C1 Co

From (4.3) it follows that #; < 5. As we shall see later, the order between t1, t; and ¢, determines
B()

max(c1t+q1,c2t+q2)

the asymptotics of Pr(u). Note in passing, that the variance of is not smooth
around t, if (4.3) is satisfied. This observation does not allow us to obtain the asymptotics of

Pr(u) straightforwardly by using the results of [15].

Define for any L > 0 and some function A : R — R constant

FP=EJ{sup inf eV/2B(s)—lsl+h(s)
teR SE[tt+L]
when the expectation above is finite. For the properties of F7 we refer to [15, 16]. Notice that F

coincides with the Piterbarg constant introduced in [45]. For the properties of related Piterbarg

constants see, e.g., [14, 59].

The next theorem derives the asymptotics of Pr(u) as u — oc:

Theorem 4.1.1 Assume that (4.3) holds.
DIf t, & (t1,t3), then as u — oo

1>H(t*:ti) e~ T2 — /20T O (—c;V/T) —2ciq;u
e 147

Prlu) ~ (5 e=T/2 4 ¢/ 2rT®(c;/T) ’ (45)
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where 1 =1 if t, <t; andi =2 if t, > ts.
2)If t, € (t1,12), then as u — oo

Pr(u) ~ Ff,® ((016]2 — C2q1) zz —a \/E) ;

17— C2
where FY, € (0,00) and

(c1g2 — quea)? d(s) = RElE + caqr — 202(]211(3 <0)+ 3201611 —C1q2 — q1C2

T =T 5
2(c1 — ) C1q2 — 1C2 €192 — q1C2

I(s > 0). (4.6)

4.2 Main Results

In classical risk theory, the surplus process of an insurance company is modeled by the compound
Poisson or the general compound renewal risk process, see, e.g., [31]. The calculation of the ruin
probabilities is of a particular interest for both theoretical and applied domains. To avoid the
technical issues and allow for dependence between claim sizes, these models are often approximated
by the risk model (4.1), driven by By a standard fBM. Since the time spent by the surplus process
below zero may depend on wu, in the following we allow T" =: T, in (4.2) to depend on u. As
mentioned in [16], for the one-dimensional Parisian ruin probability we need to control the growth

of T,, as u — oo. Namely, we impose the following condition:

lim T,u'/"=2 =T €[0,00), H € (0,1). (4.7)

uU—00
Note that if H > 1/2, then T, may grow to infinity, while if H < 1/2, then T, approaches zero
as u tends to infinity. As we see later in Proposition 4.2.2; the condition above is necessary and
the result does not hold without it. As for BM, by the self-similarity of fBM we obtain
B
Pr,(u) =P {Elt >0: inf (3) ] > ul_H} .

s€lt,t+Tu/u) max(c1s + q1, 28 + 2

By (t)
max(c1t+q1,cat+q2)

The variance of can achieve its unique maxima only at one of the following points:

Haq Hgo
tey tim —————— tyi=m — 4.8
YT (U—H) T (1—H)e (48)

From (4.3) it follows that ¢; < t5. Again, the order between ¢, t, and ¢, determines the asymptotics
of Pr,(u). Define for H € (0,1) and 7" > 0 Parisian Pickands constant by

Fou(T) = lim lE sup inf eV2Bu(tts)—(t+s) 4
S—o00 t€[0,9] s€[0,T

It is shown in [15] that Fop(T) is a finite and positive constant. Note that Foy(0) = Hapy. Define

for i = 1,2 constants

Dy = Qbta g BEVE o dlgh o da-mrh
o m - P e ¢
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Now we are ready to give the asymptotics of Pr, (u):

Theorem 4.2.1 Assume that (4.3) holds and T, satisfies (4.7).
DIft, & (t1,t2), then as u — oo

1 I(ta=t;) e‘jii{j;cn/ﬁ@(*cﬂ/f)e—QCiqw7 H = 1/2’
Pr,(u) ~ (5) x ¢ € eanTe(eVT) (4.10)

KuFou(TD)(CHut-Mya3(CYulH), H+£1/2,

where it =1 if t, <ty andi =2 if t, > ts.
2)If t, € (t,t5) and lim T,u> YH =0 for H > 1/2, then
U—00

1 H > 1/2,
PTu (u) ~ 6(DHUI_H) X fd/’ H = 1/2’ (411)
For(DT) Ay —H)/H=2) I < 1/2,

where F&, € (0,00) with T' and d defined in (4.6) and

L
tinn — (et +
A= <]H(clt* +q1) — et TH 4 [ H (ot + q2) — c2t*]—1) =" D= w. (4.12)

2% 257 12

|~

The theorem above generalizes Theorem 4.1.1 and Theorem 3.1 in [45]. Note that if 7" = 0, then

the result above reduces to Theorem 3.1 in [45].

As indicated in [16], it seems extremely difficult to find the exact asymptotics of the one-dimensional
Parisian ruin probability if (4.7) does not hold. The initial reason is that the ruin happens over
"too long interval’. To illustrate difficulties arising in approximation of Pr,(u) in this setup we

consider a ’simple’ scenario: let T, = 7' > 0 and H < 1/2. In this case we have

Proposition 4.2.2 If H < 1/2, T, =T >0 and t, € (t1,1t3), then
C‘«@(DHul—H)6—6’1,au2*4H—Cz,au2(1*3H) < P, (u)

< (2+0(1)d(Dyut~H)d (u12H thEH) , (4.13)

*

where C € (0,1) is a fized constant that does not depend on u and

TZH

@ = 2t2H’

Cho = %JD)%I, i=1,2. (4.14)

Note that the proposition above expands Theorem 3.2 in [16] for fBM case.



66
4.3 Simulation of Piterbarg & Pickands constants

In this section we give algorithms for simulations of Pickands and Piterbarg type constants ap-
pearing in Theorems 4.1.1 and 4.2.1 and study their properties relevant for simulations. Since the
classical Pickands constant Hygy has been investigated in several contributions (see, e.g., [30]),

later on we deal with F? and Fop(L).

Simulation of Piterbarg constant. In this subsection we always assume that
L>0 and h(s)=bs(s<0)—asl(s>0), seR, a,b>0.

To simulate 7 we use the approximation

te[—M,M]- s€E[t,t+ L]+

Fla E{ sup inf eﬁB(S)_lerh(S)} ,

where M is sufficiently large and 7 is sufficiently small. The approximation above has several
errors: truncation error (i.e., choice of M), discretization error (i.e., choice of 7) and simulation
error. It seems difficult to give a precise estimate of the discretization error, we refer to [30] for
discussion of such problems. To take an appropriate M and give an upper bound of the truncation

error we derive few lemmas. The first lemma provides us bounds for F7:

Lemma 4.3.1 It holds that

1

. — 1 1
9 7Lrn1n(a,b)q) 2L < ‘Fh <l4+ -4+ -
¢ R S

Note that if L = 0, then the upper bound becomes an equation (see the proof), and thus we obtain

as a product the explicit expression for the two-sided Piterbarg constant introduced in [45]:

E { sup oV2B()—[t|(1+al(t>0)+bI(t<0)) L _ + l + 1 _ ;
teR a b a+b+1

In the next lemma we focus on the truncation error:

Lemma 4.3.2 For M > 0 it holds that

1 1
E sup inf V2B -lslHh(s) L < omal (1 + —) + e7PM (1 + —) . (4.15)
tER\ [~ M, M] SE[tt+L] a b

Now we are ready to find an appropriate M. We have by Lemma 4.3.2 that

‘Fﬁ—E{ sup inf eﬁB(S)|S|+h(S)H < IE{ sup inf eﬁB(S)|Sl+h(S)}
te|

— M, M) SE[tt+L] teR\[— M, M] SE[t,t+L]

2(1+ — 1 emein(a,b)
min(a, b)

IN
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and on the other hand by Lemma 4.3.1
Fl > 26~ LmnehG(y/2L),
hence to obtain a good accuracy we need that

1 . . —
14+ — efmln(a,b)M << efLmln(a,b)q)(\/ﬁ).
min(a, b)

Assume for simulations that min(a, b) > 1; otherwise special case min(a, b) << 1 requires a choice

of a large M implying very high level of computation capacity.

7+L(3+min(a,b))

min(a,b) providing us truncation error smaller than 3-1073; we

For simulations, we take M =
do not need to have better accuracy since there are also the errors of discretization and simulation.
Since we cannot estimate the errors of discretization and simulation, we just take a 'small’ 7 and

a ’big’ number of simulation n. The above observations give us the following algorithm:

1) take M = THEBImn@h) - (005 and n = 10%;

min(a,b)
2) simulate n times B(t), t € [-M, M],, i.e., obtain B;(t), 1 <i <n;

3) compute

n

Fi= sup inf
" " ZZ1 te[—M,M], SEltt+L]-

oV2Bi()~Is|+h(s)

Simulation of Picaknds constant. It seems difficult to simulate Fop (L) relying straightfor-
wardly on its definition. As follows from approach in [12, 30| for any n > 0 with W(t) =

Bop(t) — [t[*"
sup inf e"®
teR sE[t,t+L]
n Z eW(k’W)
keZ

The merit of the representation above is that there is no limit as is in the original definition and
thus it is much easier to simulate Fop (L) by the Monte-Carlo method. The second benefit is that
there is a sum in the denominator, that can be simulated easily with a good accuracy. The only
drawback is that the sup inf in the nominator is taken on the whole real line. Thus, we approximate

Fou (L) by discrete analog of the formula above:

sup inf VO

te[— M, M), SElti+L]r

n Z eW(Wk) ’
ke[—M,M],

]:QH(L) ~E

where big M and small 7,7 are appropriately chosen positive numbers. In the following lemma we

give a lower bound for Fop(L).
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Lemma 4.3.3 For any L >0 and H € (0,1) it holds that

Forr(L) > Ce " sup (e‘ﬁ”LHIP’{ sup Bp(s) < n}) .

n>0.1 s€[0,1]

Taking m = 1/4/2 in the sup above we obtain a useful for large L estimate
Fou(L) > Ce™ P17 [ >0

where C' is some positive number that depends only on H. The following lemma provides us an

upper bound for the truncation error:

Lemma 4.3.4 For some fized constant ¢ > 0 and M, L > 0 it holds that

sup  inf e"®
te[—M, M) s€ftt+L] o M2H

T evoa (|=°
[7M7M]

Fou(L) —E

Based on 2 lemmas above we propose the following algorithm for simulation of Fyy (L):

1) Take M = max(10L,5), 7 =n = 0.005 and n = 10%;
2) simulate n times By(t), t € [-M, M|, i.e., obtain Bg)(t), 1<i<m;

3) calculate

sup inf  eV2Bi ()-1s?!
T 1 <~ te[-M,M], sElti+L]r
L):=— _
Pl n=on ) V2B (kn)—|kn|2H
ke[ M, M,

We give the proofs of all Lemmas above at the end of Section Proofs.

4.4 Approximate Values of Pickands & Piterbarg Constants

In this section we apply both algorithms introduced above and obtain approximate numerical
values for some particular choices of parameters. To implement our approach, we use MATLAB

software.

Piterbarg constant. We simulate several graphs of F7 for different choices of a and b.
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a =10, b =10 a=1,b=10 a=1,b=1

On each graph above the blue line is simulated value and the dashed lines are theoretical bounds

given in Lemma 4.3.1. We observe that the simulated values are between the theoretical bounds,

F} is decreasing function and F}' tends to 1+ 1 + § — —— as L — 0.
Pickands constant. We simulate several graphs of Fyy (L) for different choices of H. We con-

sider BM case H = 0.5, short-range dependence case H < 0.5 and the long-range dependence case

H > 0.5. To simulate fBM we use Choleski method, (see, e.g., [29]).

—

BM case. Here we plot F1(L) and the explicit theoretical value given by

et —\/nL®(—+/L/2) .-
e L/ 4/ LO(\/L/2) -

(see, e.g., [53]). In the graph below the blue line corresponds to the simulated value and the dashed

line represents the exact theoretical value.

Fi(L) =

—

Observe the according to the picture Fi(L) is decreasing and does not drastically differ from

Fi(L). We also point out that the theoretical value is smaller than the simulated one, that goes
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in a row with intuition that a discretization increases the value of the Parisian Pickands constant;

we plot the difference between E(?) and Fi(L):

Fi(L) - Fi(L)

0.025

0.02

0.015

0.01

0.005

As seen from the plot above, our simulations do not contradict Conjecture 1 in [30], i.e., the error

of the discretization may be of order /7 for small 7 > 0.

Short-range dependence case. Here we focus on the short-range dependent case. We consider two

—

particular values of H, namely 0.1 and 0.3, and plot Fou(L) for these values. The red line corre-

sponds to case H = 0.3 while the blue line represents case H = 0.1.

—H =0.1

l —— H = 0.2
H =03
0.8 —— H =0.4|1

L —

Observe that Fyy (L) is a strictly decreasing function of L for both values of H.
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—

Long-range dependence case. We take H = 0.7 and H = 0.9, and plot Foy (L) for these values.
The red and blue lines correspond to cases H = 0.9 and H = 0.7, respectively.

0.9 : ‘ ‘
——H =0.6 |

o8 — H=07
07p H = 0.8/
sl —H =0.9 |

3

<\E 05

5 0.4}
03}
02}

0.1

—

Observe that Fop (L) is a strictly decreasing function of L for both values of H.

4.5 Proofs

Recall that Ky, D, and Cg) are defined in (4.9). The following result immediately follows from
(15, 53]:

Proposition 4.5.1 Assume that T, satisfies (4.7). Then as u — oo

e—c%j/z_clmé(—qﬁ) e—2c101u H=1/2
. —c2T/2 ’ ’
P{sup . g_l:fr ]<BH(t) . Clt) > Q1U} ~ et/ +c1\/27rT<I>(c11\/T) oo X

20 L+ T Ky Fou(TD1)(Cyw! M) 1S(CPul "), H #1/2.

Now we are ready to present our proofs.

Proof of Theorems 4.1.1 and 4.2.1. Since Theorem 4.1.1 follows immediately from Theorem

4.2.1, thus we prove Theorem 4.2.1 only.

Case (1). Assume that ¢, < ¢;. Let

Vi(Ty,u) =P {sup inf (Bg(t) —ct) > q,-u} , i=1,2.

>0 [6t+Tu]

For 0 < € < t; — t, by the self-similarity of fBM we have

T, u) > P > P{3te(ty—eti+e):  inf  Vi(t) >0, inf Va(t) > utH
wl( u)_ Tu(u> - { <1 &l 8) se[t,gTu/u} 1() u se[t,ﬁTu/u] 2<) Y
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= ]P’{Elte(tl—s,tl—l—s): inf Vl(t)>u1H},
sE[t,t+Tw/u)

where

Byt
Vi(t) = H(), i=1,2.

We have by Borel-TIS inequality, see [59] (details are in the Appendix)

U1 (Tyyu) ~ ]P’{E!t €ty —eti+e): inf  Vi(t) > ul_H} , U — 00 (4.16)

SE[tt+Tu/u)

implying Prp, (u) ~ 1(Ty,u) as u — oo. The asymptotics of (7T, u) is given in Proposition
4.5.1, thus the claim follows.

Assume that t, = ¢;. We have

]P’{Elt € [t1,00): inf  Vi(s) > ul_H}

s€ft,t+Lu]

IN

Pr, (u)

< P {Ht € [t1,00) : inf Vi(s) > ul_H} +P{3t€[0,t,]: Va(t) > u'""}.
s€[t,t+2]

From the proof of Theorem 3.1, case (4) in [45] it follows that the second term in the last line

above is negligible comparing with the final asymptotics of Pr, (u) given in (4.10), hence

seftt+Tu)

PTu(u)NP{EItE[tl,oo): inf Vl(s)>u1H}, U — 00.

By the same arguments as in (4.16) it follows that for € > 0 the last probability above is equivalent
with

IP{EIt € [ti,t1+¢]: inf  Vi(s) > ul_H}, U — 00.

SE[t,t+Ty /u)

. e T /aTo(—/T/2)
Since F1(T) = T ATe(yT])
in the notation therein

T > 0 (see [15]) applying Theorem 3.3 in [16] with parameters

_ ti

- _ q{{—?)HHfl(l _ H)47H
at+aq’

H—2
2¢;

1
p1=2, D=—= a=2H A=

we obtain as © — oo

P {Ht € [ty ty +¢: it ]Vl(s) > ulH} ~ Ky For (T Dy)(CPu =) -1 (CPul~H)
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and the claim is established. Case t, > t, follows by the same arguments.

Case (2). Define

By(t
Zy(t) = () . t>0. (4.17)
max(cit + g1, cot + o)

Similarly to the proof of (4.16) we have by Borell-TIS inequality for ¢ > 0 as u — oo

Pr,(u) = P {Elt >0: inf  Zy(t) > ul_H}

s€[t,t+Tu/ul

~ ]P’{Elte (te —e,te+e):  inf  Zgy(t) >u1H}
s€[t,t4+Twu/ul

= p(u).

Assume that H < 1/2. By "the double-sum" approach, see the proofs of Theorem 3.1, Case (3)
H < 1/2 in [45] and Theorem 3.3. case i) in [16] we have as u — o0

seft,t+Ie] seft,t+Du

p(u) ~P {Elt € (tu,tu+e): inf Vi(t) >u1_H}+IF’ {Elt € (ti—e,ti): inf Vh(t) >u1_H} . (4.18)

To compute the asymptotics of each probability in the line above we apply Theorem 3.3 in [16].

For the first probability we have in the notation therein

=~ tH tH_l H t* - t*
G=—r— Bi=1, D=_—\ a=20<1 A=" |H(er +‘I1)2 it
ate +q1 2t (crts + 1)
implying as u — oo
(crts +q)7 DA -G -2)
Pt e (t,t,+e): inf  Vi(t) >u " 3 ~ Fou(~—— T)——1 —®(DyutH)
se[t,t—%%] 2ﬁtz ’H(Clt* + Q1) — Clt*|2ﬁ

Applying again Theorem 3.3 in [16] we obtain the asymptotics of the second summand and the
claim follows by (4.18).

Assume that H = 1/2. In order to compute the asymptotics of p(u) applying Theorem 3.3 in

[16] with parameters

— 1ty — Coty - . 1
e 4 _ @Gt o~ Vo

Clt* =+ a1 ’ 2t*

4
o = g —_= 1, A g EE—— _= s
b= B * Q1 + ety G2 + Caty

we obtain (d(-) and 7" are defined in (4.6))
p(u) ~ FL®(Dyjov/u), u — oco.

Assume that H > 1/2. Applying Theorem 3.3 in [16] with parameters a = 2H > 1 = ; = (5 we

complete the proof since
p(u) ~ (Dyu'~), u— oo.
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Proof of Proposition 4.2.2.

Lower bound. Take kK = 1 — 3H and recall that o = % We have

Pr(u) > P{Vte [t.—T/u,t,]Va(t) > u'~" and Va(t,) > u' 7 + au”}
> CP{Va(t,) > u" " + au”} (4.19)

—— _ _ 1-H+k __ 2K
~ CODyu'H)e Crov Ca™ gy 00,

where C' is a fixed positive constant that does not depend on u and Cy, and Cy, are defined in

(4.14). Thus, to prove the lower bound we need to show (4.19). Note that (4.19) is the same as
P{3t € [t. — T/u,t.] : Va(t) <u' 7 and Vo(t,) > v + au*} <P {Va(t.) > u' ™ + au*},
with some ¢’ > 0. The last line above is equivalent with

P {Elt € [ut, — T,ut.] : Bg(t) — cat < qou and Bpy(ut,) — cout, > qou + bau”+H}

< P {BH(ut*) — couty > qou + bozu“JrH} ,

where b = ¢yt + go. We have with ¢, (x) the density of By (ut,) that the left part of the inequality

above does not exceed

P {3t € [ut, — T,ut.] : By(ut.) — Bu(t) > bau"" and By(ut,) > bu}

— /]P’{Elt € [ut, — T, ut.] : x — By(t) > bau" "By (ut,) = z} p,(z)dx

bu

bu+1 00
< / P{3t € [ut, — T,ut,] : x — By(t) > baw™ " |By(ut,) = x} p,(x)dz + / oy (z)dx.
bu bu+1

We also have that

bu+1

P{By(ut,) — cout, > qu} = /gpu(x)dx > / ou()dx.

bu

By (2.7) we have that [ ¢, (x)dz is negligible comparing with the last integral above. Thus, to
bu+1
prove (4.19) we need to show

bu+1 bu+1
/ P{3t € [ut, — T,ut.] : x — By(t) > bau""| By (ut,) = 2} ¢, (x)dz < &’ / ou(z)dr,  u— o0,
bu bu

that follows from the inequality

sup P {3t € [ut, — T, ut,] : x — By(t) > bauw""|By(ut,) =z} <&", uw—o00, (4.20)
z€[bu,bu+1]
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where €” > 0 is some number. We show the line above in the Appendix, thus the lower bound
holds.

Upper bound. We have by the self-similarity of {BM

Pr(u) =P {sup inf  Zy(s) > ul_H} ,

t>0 sE[tI+T/u]

where Zy is defined in (4.17). For € > 0 by Borell-TIS inequality with I(t.) = (—u = + s, ta +u"°)

we have

Pq sup inf  Zp(s)>u'"H <PQ sup Zy(t) >u'"H <@ (Dyu') e w00,
teI(t,) SELIHT/u] te1(t)

that is asymptotically smaller than the lower bound in (4.13) for sufficiently small e. Thus, we

shall focus on estimation of

tGI(t*) se [t,t+T/u]

q(u) == IP’{ sup inf  Zgy(s) > ul_H} .

Denote 2%(t) = Var{Zy(t)} and Zy(t) = Zg(t)/z(t). By Lemma 2.3 in [56] we have with M =
max(z(t), z(t + T/u)) (note, 1/M > Dy)

qlu) < P{3telt.): Zut) >u"" Zyt+T/u) >u" "}
= P{3tel(t.): Zu(t)>u""/2(t), Zu(t + T/u) > u' " /2(t + T/u)}
< P{3tel(t): Zu(t)>u"" /M, Zy(t+T/u) >u' " /M}
<

—(ut N (w1 —r(tt 4+ T/ u)
21 +o(1)2 ( M ) ¢ ( M \/1+r(t,t+T/u))
< 2(1+0(1))% (“LH) 3 (DHUI_H\/l - r(t’; i T/“)) , (4.21)

where 7 is the correlation function of Zy. Since r(t,s) = corr(Bg(t), Bu(s)) we have for all
t eIt

T2H
1—r(t,t+T/u) = WU_ZH +O (Wt —t]+t+T/u—t|)+u?), u— o0
implying
1—rt,t+T THD
]DHul_H\/ 7"( 72+ /U> :ul—QHT;I+O(U1—2H(|t_t*| +|t—|—T/u—t*|)+u_1), U — 0.

Thus, by (2.7) we obtain as u — oo

H
i (DHUIH\/l —r(t,t+ T/“)) <3 (uIQHT DH) O ([t—tu |+ 4T /u—tu]) (4.22)

2 2H
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Next we have as u — oo for some C; > 0

_ /i H B e i
q)( M ) ~ B(Dyul~H)em 1wttt T /ut])

and by (4.22) we have for all ¢ € I(t,) and large u

" (u;\—;) - (]D)HulH\/l — T(t,;-f-T/u))

H
< D (DHul—H) ) <u1—2HT DH) e(Cu2_4H—Clu2_2H)(|t—t*|+|t+T/u—t*|)

otH

and the claim follows from the line above and (4.21). O

Proof of Lemma 4.3.1. Lower bound. We have

— sup V2B(s)

e\/iB(s)ﬂs\Jrh(s) > V2B(s) i 67(1+a)Le s€[0,L]

sup inf > inf eﬁB(s)*(H“)sze*(H“)L inf e

)
teR sE[tt+L] s€[0,L] s€l0,L]

Y

where the symbol 'L means equality in distribution between two rvs. Taking expectations of

both sides in the line above we obtain
— su 2B(s
.7:2 > e~ L+ {e SGS[OI,)L]\[ ( )}

and our next step is to calculate the expectation above. It is known (see, e.g., Chapter 11.1 in
[59]) that

P{SEEPL] V2B(s) > :c} = QP{\@B(L) > :c} =20 (\/%) , x>0

x > 0 is the density of sup v/2B(s). Thus, we have
s€[0,L]

. —z2/4L
[
hence we obtain that =

— sup VBB(s % —22 /AL L 7 i L
E {6 ses[op,)L] ( )} — /e—xe dr = € - /6_(2\/E+\/E)2d$ = i
il

[\)

S—g

e dz = 2P (V2L),

VL V7L 0

L

and combining all calculations above we obtain
Fh>2e79(v/2L), L >0.

On the other hand, we have

sup inf eVZBOZlslHh() > jpp oV2ZB()-(1d)lsl 4 V2B(s)—(1+b)s

= inf e
teR sE[tt+L] s€[—L,0] s€[0,L]

and estimating iFfL] eV2B()=(140)s 45 above we have FP > 2e71®(\/2L), L > 0, that completes
s€|0,

the proof of the lower bound.
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Upper bound. Note that F? < F? and hence since a BM has independent branches for positive

and negative time we have with B, an independent BM

Fl, <E {Sup eﬁB(t)—h(t)} = E {max (sup e\/iB(t)—(aJrl)t’ sup 6\/§B(t)—(b+l)|t) }

teR >0 <0

) {max (Sup e\/iB(t)—(a—H)t’ Sup e\/QB*(t)—(bH)t) }

t>0 >0

= B {emeet)

where &, and &, are exponential rvs with survival functions e~ (**D% and e~ D7 respectively,

see [26]. Since &, and &, have exponential distributions the last expectation above can be easily

calculated and we have finally

1 1 1
Efemax(@a&)l — 14 - 4 -~
{e e Sy

and the claim follows. O

Proof of Lemma 4.3.2. First we have

teR\[— M, M] SE[t,t+L] s€[M,00) —00,—M]

E { sup inf eﬁB(S)lSHh(S)} <E { sup e\/iB(S)(a+1)s} +E { Sup e\/iB(s)(lHl)s} .
s€(

Later on, we shall work with the first expectation above. We have

E{ sup eﬁB(S)_(H“)S}

SE[M,00)

= /exP{ sup (V2B(s) — (1 +a)s) > x} dx

2 SE[M,00)
= /exIF’{ Tup )(\/E(B(s) —B(M)—-(1+a)(s—M))>z+M(1l+a)— \/§B(M)} dr.

Since a BM has independent increments we have with B* an independent BM that the last

integral above equals

$€[0,00)

/emlP{ sup (V2B(s) — (1+a)s) >z + M(1+a) — \/WB*(l)}dx

= L e /2 su s) — a)s x a) — z ¢ dxdz
= MR/R/ P{ p (V2B(s) = (1 +a)s) >z + M(1+a) W}dd~

s€[0,00)
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We know that P {sup —ct) > x} = min(1,e72*) for ¢ > 0 and = € R, thus the expression

>0
above equals

// z—22/2 min(Le—(1+a)(:c+M(1+a)—\/Wz))dxdz
R

(14+a)M+=z

=

o0
e
1+a)M+zx
2M

V2r
Y
(14+a)M+=z
l+a)M+=x 1 o (z=VEM(1+a))?
a 2—\2M(14a
= /e (ID((—)d:B—{——/e_’” / e 2 dzdx
V2M 27
R R —00
—(14+a)M+z
(14+a)M+=x 1 o 2
= " P(~—F——")dx + —/e_a‘” e~ 7 dzdx
R/ ( V2M ) V2T J
(14+a)M+=x / _ —(14+a)M+=x
= IO )dr + [ e D dz.
/ ( V2M ) ( V2M )
R R
Integrating the first integral above by parts we have
— (1 M — (1 M
/ew@(H“)—”)dm _ _/ @Oy ey,
V2M V2M
/ <<1+a>M+z>2 J
= e“dx
V2mV2M
_ _ (a= 1)M+x>2 d

mr/

For the second integral we have similarly

/e_“xq)(_(1+a)M+x)dx = —2/@(_(1+G)M+m)/e_”dx

V2M V2M

1 (- (1+a)M+z)

i
x—zz/QdZdl, 1 / / P 22/2—(14a)(x+M (1+a)— Z)dzdx

= e T

a\/ﬁ\/_

R

((1— a)IM+z)2
e dz

mexadl

e—aM

a

Summarizing all calculations above we obtain

E{ sup eV2BO-0ta)tl _ o—aM <1 + 1) .
te[M,00) a
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By the same approach and the symmetry of BM around zero we have

E sup  eV2BO-(H0I L _ —bM <1 + 1)
te(—oo0,—M] b

and hence combining both equations above with the first inequality in the proof we obtain the

claim. O

Proof of Lemma 4.3.3. From [30] it follows that for any L > 0

sup [inf g eW(s)
teR sE[t,t+
Fou(L) =E Tevod (4.23)
R
Observe that sup inf eV > inf ") hence
teR SE[tt+L] s€[0,L]
inf ") -V2 e Br(s)
s€[0,L] _12H € se
R R
Let £ = sup Bg(s), (,P) be the probability space where By is defined and €, = {w € Q :
s€[0,L]
&(w) < m} for m > 0. The last expectation above equals
-V o~ VEE (W)
Tevidr (= ) Jevammtag ™)
R 2 R
V)
>
- / [ e/t g )
O R
_\m 1
> - -
> P{O,)e / o)
Qm R

Taking m = nL¥ we obtain that the last line above equals

L 1 L 1
IP){ sup BH(S) < TLLH} € VanL /mfﬂp(w) = ]P{ sup BH(S) < n} € vanL /md}?(w)
Qm R Qm R

s€[0,L] s€[0,1]

Since uniformly for all n, L > 1/10 it holds that P{Q,,} > C, we have that with some C' > 0
that does not depend on L

1 _
Qm R

Combining the lines above we have uniformly for n, L > 1/10 that

—V2¢ _
LR > C’IP’{ sup Bpu(s) < n} eVt

s€[0,1]
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Since the inequality above holds for all large L, it holds also for all L > 0, maybe with different

positive constant C, this completes the proof. O

Proof of Lemma 4.3.4. By (4.23) we have that

sup [inf g eV ()
te[—M,M] SElL:t+
Fon(L) — B v (|
[_MvM}
sup inf eV® sup inf W
— |(g ] rersclbtL g ) tE=MM] s€[tt+L]
- ‘( [eW®at - [eW®at >
R R
sup inf eV sup inf W)
o te[—M,M] sE[t:t+L] B te[—M,M] SELt+L]
( [ eW®adt B [ eV®at >‘
R [_MvM]
sup VO [ eVOdt
LER\[- M, M] Wi B\=MM)]
E +E sup e
= [eWOdr i [eV0dr [ eWidt
K R (=M, M)

As follows from Section 4 in [30], the last line above does not exceed e=¢M*" and the claim holds.
O

4.6 Appendix
Proof of (4.16). To establish the claim we need to show, that
P {Elt eR\[t1 —e,t1 +¢]:  inf  Vi(s) > ulH} = o(1(Ty,u)), u— 0.
SE[tt+T/u)

Applying Borell-TIS inequality (see, e.g., [59]) we have as u — oo

IP’{EIt eR\[t1 —e,t1 +¢]:  inf  Vi(s) > ulH} < P{3teR\[t; —e,t1+¢]: Vi) > u' 7}

SE[tt+T/u)
(= H _pp)2
< e amEo
where
M=E sup Vi(t) p < oo, m?= max Var{V;(1)}.
{ateR\[tl—e,tlJrs] 1 )} teR\[t1—e,t1+e] o}
Since Var{V;(t)} achieves its unique maxima at ¢; we obtain by (2.7) that
(i H a2 -
e =2 =oP{Vi(th) <u""}), uw— o0

and the claim follows from the asymptotics of 11(T,, u) given in Proposition 4.5.1. O
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Proof of (4.20). Define X, ,(t) = * — Bu(t)|Bu(ut,) = z, t € [ut, — T, u]. To calculate the

covariance and expectation of X, , we use the formulas

cov(A, B) cov(A, C) cov(A, B)
Var{A} Var{A} ’

where A, B and C' are centered Gaussian rvs and x € R. We have for x € [bu,bu + 1] and

cov((B,C)|A =x) = cov(B,C) —

and E{BA=z}=x-

t,sE[ut*—T,ut*]Withvzut*,yzl—%andz:l—iasu—)oo

cov(Xpu(t), Xou(s))

t2H + $2H _ |t _ $|2H (t2H _|_,U2H _ |t _ ’U|2H)($2H +U2H _ ’S _ ,U|2H)

2 4y2H
v ot s t s t t s s
— _2_2H 2_2H_2___2H_ “\2H 1___12H “\2H 1___12H>
(ol oy S Ly gy ey g e
p2H
= (20 =) 201 = )M =2y — P (1= ) 1= (1 - )M 41— )
p2H

— T(Q—4Hy+2—4Hz+O(y2+22)—2|y—z|2H

—(2-2Hy — T+ O(P))(2 — 2Hz — 221 ¢ O(ZQ)))
v2H
_ T<2y2H 22 oy — L2 4 O(y? + 22 _I_ZQHyQH))
(ut, — t)*H + (ut, — s)* — |t — s|?#

= (1+o(1) -

(4.24)

For the expectation we have as u — oo

v 20 |y — 2] x

S = (/o) + (1= t/v)*")

E{Xeu(t)} = (1 - )

2u2H 2
< Gt 11— (1) )
< (bu/2+1)(1 — 1+ 2Hy — o(y) + v*7)
< Hbuy + ébuy2H + o(1).

From the line above it follows that for some C, > 0, H < 1/2, x € [bu,bu+1] and t € [ut,—T, ut,]

ul—2H .
We have
sup P {3t € [ut, — T, ut,]: X, (t) > u"ab}
z€ [bu,bu+1]
= sup  P{3t € [ut. — T, ut] : Xpu(t) — E{X,.(t)} > u" ab—E{X,,(t)}}
z€ [bu,bu+1]

< P{3te[0,T]:Y.(t)+ f(t) >0},

where Y,,(t) = Xy u(ut, =T +1t) —E{X, (ut. =T +1t)}, t € [0,7] and f(¢) is the linear function
such that f(7') = C; and f(0) = —C. < 0. Next we have by (4.24) for all large u and t,s € [0, T

E{(Yu(t)+f()=Yu(s) = f(5))}
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= E{(Yu(t) = Yu(s))?} + C(t —s)°

e ((ut*—t)2H+(ut* — ) (ut, — )2 (ut, — s)H |t s|2H) +O(t — 5)?

< 2/t — s*H,
Thus, by Proposition 9.2.4 in [59] the family Y, (¢) + f(¢), v > 0, ¢t € [0,T] is tight in B(C([0,T1)).
As follows from (4.24), it holds that {Y,(t) 4+ f(t) }sco,r] converges to {Bg(t) + f(t) }iejo,r) in the
sense of convergence of finite-dimensional distributions as © — oo. Thus, by Theorems 4 and 5

in Chapter 5 in [8] the tightness and convergence of finite-dimensional distributions imply weak

convergence
{Yu(t) + f(8) }eetor) = {B(E) + f(t) heo,-

Since the functional F'(g) = sup ¢(t) is continuous in the uniform metric we obtain
t€[0,T]

P{3t € [0,T]:Y.(t)+ f(t) >0} = P{3t €[0,T]: Bu(t)+ f(t) >0}, u— oo.
Thus, to prove the claim it is enough to show that
P{3t € [0,T]: By(t)+ f(t) >0} < 1. (4.25)

We have for some large m with [(s) the density of By (T')

]P’{ sup (Bg(t) + f(t)) < O}

t€[0,T)]

t€[0,T]

> ]P’{ sup (Bu(t) + f(t)) <0 and By (T) < —m}

— /IP’{ sup (Bu(t) + f(t)) < 0|By(T) = s} (5)ds. (4.26)

te[0,7
Define process B,(t) = By (t) + f(t)|Bu(T) = s, t € [0,T]. We have for s < —m and ¢ € [0, T]

. t2H+T2H— |T—t|2H
E{Bs(t)} = ft)+s STeH

tQH B (TQH +t2H _ ‘t _ S‘QH)Q

< —01/2,

Var{B,(t)} = T < Oy
and thus
P {tSB;;](BH(t) 4 f(t) < 0|By(T) = 5} > P {;Bpﬂ (B.(t) —E {Es(t)} ) < 01/2} .

The last probability above is positive for any s < —m, see Chapters 10 and 11 in [51] and hence
the integral in (4.26) is positive implying

t€[0,T]

IP’{ sup (Bg(t) + f(t)) < 0} > 0.

Consequently (4.25) holds and the claim is established. O



Chapter 5

Two-Dimensional Fractional Brownian

Motion Sojourn Ruin Problem

This chapter is based on G. Jasnovidov: Simultaneous Sojourn Fractional Brownian Motion Ruin,

in progress, 2021.

5.1 Introduction & Preliminaries
Consider the risk model defined by
R(t)=u+pt—X(t), t>0, p,u>0, (5.1)

where X () is a centered Gaussian risk process with a.s. continuous sample paths. This model
is very important for the theoretical and applied studies, we refer to Chapters 2, 3 and 4 and
references therein for a list of possible applications. Some contributions (see, e.g., |21, 44]), extend
the classical ruin problem to the sojourn ruin problem. Formally, the sojourn ruin time and ruin

probability are defined by

t

T(u, T,) = {inft >0: /]I(R(S) < 0)ds > Tu}

0

and
P{r(u,T,) < oo}, (5.2)

where T;, > 0 is a measurable function of u. As in the classical case, only for X being a BM the
probability above can be calculated explicitly (see [21])
P /]I(B(s) —cs>u)>T pds= (2(1 +3T)B(eVT) —

0

V2T
LS

—02T
e 2 )e_m, c>0, T,u>0.

83
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Motivated by [45] (see also [42, 43]), we study a generalization of the main problem in [45] for the

sojourn ruin, i.e., we shall study the asymptotics of

[e9]

Crp, =P /(BH(S) — 15 > quu, By (s) — cas > qu)ds > T, 7,
0
as u — oo. In order to prevent the problem for degenerating to the one-dimensional sojourn

problem by the same reasons as in Chapter 4 we assume that
C1 > Cy > 0, g2 > q1 > 0. (53)

As in Chapter 4 by the self-similarity of fBM we obtain

T Bu()

C =P ]I( >yl ) dt > T,
7. () / max(cit + q1, Cat + ) “ fu
0

The variance of the process above can achieve its unique maxima only at one of the following
points:

Hq, Hag

ty, ti= o tgi=
! > (11— H)e

e (5.4)

From (5.3) it follows that t; < t5. As we shall see later, the order between ¢y, t5 and t, determines
the asymptotics of Cr,. As mentioned in [16], for the one-dimensional Parisian ruin probability
we need to control the growth of T, as u — oo. Namely, we impose the following condition:

lim T,u*"=2 =T € [0,00), H € (0,1). (5.5)

U— 00

Define for some function A and K > 0 constant

o0

B?(:/IF’ /]I(\/iB(s)—M—i—h(s) >x)ds>K e“dx

R —00
when the integral above is finite and Berman’s constant by

S

1
Bog(z) = Slggo g /IP’ /]I(\/iBH(t) —t* 4 2> 0)dt > 2 p e *dz, x>0.
R 0

It is known (see, e.g., [21]) that Bog(x) € (0,00) for all > 0; we refer to [21| and references

therein for the properties of relevant Berman’s constants.
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5.2 Main Result

Define for 1 = 1,2

11 -H 2 2— L1
ity + @1 22728/ () cHql 21— H)*=u
Dy=—++—, Ky = ——— = ‘ D= -*+—7—7"—. 5.6
= M e O T - e
Now we are ready to give the asymptotics of Cr, (u):
Theorem 5.2.1 Assume that (5.3) holds and T, satisfies (5.5).
If t. ¢ (t1,t2), then as u — oo
T V2T T —2¢ciqiu
1. (21+C?T®ciﬁ—l—we2>e v H=1/2
Cr, (u) ~ (5) 7 ( . | ) v / (5.7)
KBy (TD:)(Cul M) #13(Cllul~),  H#1/2,
where i =1 if t, <ty andi=2 if t, > ts.
2) If t, € (t1,t2) and lim T,u?>~YH =0 for H > 1/2, then as u — oo
U—00
1, H>1/2
CTH(U) ~ $(DHU17H) X Ba{,’ H = 1/2 (58)

Boy (DT)Aut—H/H=2) - [ < 1 /2,

where FY, € (0,00),

— 2 -9 2 — —
2(01 - 02) C192 — q1C2 C1q2 — q1C2
and
1 1 thHéil —  (at +q)7
A= (IH(ert, +q) = exte] ™ + [ H(eate + g2) — ot 1) 22—, D= IUZ 0 (5.10)
232H 22th

The theorem above generalizes Theorem 3.1 in [45]: if T = 0, then the result above reduces to
Theorem 3.1 in [45].

Asindicated in [16], it seems extremely difficult to find the exact asymptotics of the one-dimensional
Parisian ruin probability if (5.5) does not hold. To illustrate difficulties arising in approximation
of Cz,(u) in this case we give

Proposition 5.2.2 If H < 1/2, T, =T > 0 and t, € (t1,t3), then

P (ID)Hul_H)e_Cl’au274H_CQ’QU2(173H) < CTu (u)

< (24 o(1)B(DyutH)B (ul—QHTHDH), (5.11)

- 2tH

*

where C € (0,1) is a fived constant that does not depend on u and

T2H

Oéi .
o = ﬁ’ Cz',a = TID)%I’ — 1,2 (512)



86

5.3 Proofs

Recall that Ky, D; and Cg) are defined in (5.6). A proof of the proposition below is given in the
Appendix.

Proposition 5.3.1 Assume that T, satisfies (5.5). Then as u — oo

oo

P /H(BH(t)—clt>q1u)dt>Tu ~
0

7C%T
2

(2(1 +ST)B(erVT) — 22e

KpBoy (TDy)(CPutH)a=1o(CPul 1),  H +#1/2.

>e‘201‘ﬂ“, H=1/2,

Proof of Theorem 5.2.1. Case (1). Assume that ¢, < ¢;. Let
Vi(t) = n and  ;(Ty,u) =P /]I(BH(t) —ct>qu)ds>T, p, i=12.
q.

0

For 0 < € < t; — t, by the self-similarity of fBM we have
t1+e
P / I(Vi(t) > u' 7 Vo (t) > u'~H)dt > T, /u

t1—e
t1+e€

_p / IVi(e) > o' )dt > T, Ju

t1—e

V1(Ty,u) > Cr, (u)

v

We have by Borel-T1IS inequality, see [59] (details are in the Appendix)
t1+e
V1 (Ty,u) ~ P / I(Vi(t) > u'~)ds > T, Ju p, u— oo (5.13)
t—e
implying Cr, (u) ~ 1 (T, u) as u — oo. The asymptotics of ¥;(T,,u) is given in Proposition
5.3.1, thus the claim follows.

Assume that t, = ¢;. We have
P /]I(Vl(s) >u™)ds > T,y < Cr,(u)

t1
o0

P /]1(\/1(3) >u'"Mds > T, p +P{3t€(0,t1] : Vo(t) >u'""}.

t1

IA

From the proof of Theorem 3.1, case (4) in [45] it follows that the second term in the last line
above is negligible comparing with the final asymptotics of Cr, (u) given in (5.7), hence
Cr,(u) ~P /]I(Vl(s) >utMds > T, . u— oo.

t1
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Since t; is the unique maxima of Var{Vi(¢)} from the proof of Theorem 2.1, case i) in [21] we have

o0 1 00
P /]I(Vl(t) >utMdt > T, jupy ~ 51{» /H(Vl(t) >~ H)dt > T, /u
t1 0

1
= 51[” /H(BH(t)—clt>q1u)dt>Tu , U — 00.

0

o0

The asymptotics of the last probability above is given in Proposition 5.3.1 establishing the claim.

Case t, > tq follows by the same arguments.

Case (2). Assume that H > 1/2. We have by Theorem 2.1 in [43] and Theorem 3.1 in [45] with

Rrp,(u) = P{3t>0:Bg(t) —cit > qu, Bg(t) — cat > qou},

Pr,(u) = P {Elt >0: inf (Bg(s)—cs)>qu, inf (Bg(s)—ces) > qgu}

SE[tt+Tu] SE[tt+Tu]

that
O(Dyu' ™) ~ Pr,(u) < Cr,(u) < Ry, (u) ~ ®(Dyu' ), u— oo,

u — u

and the claim follows.

Assume that H = 1/2. First let (5.5) holds with 7, = 7" > 0. We have as u — oo and then
S — oo (proof is in the Appendix)

ut«+S
Cr,(u) ~P / ]I(B(s) — 18> quu, B(s) — cas > qgu) ds >T » = rg(u). (5.14)

uts—S

Next with ¢, the density of B(ut,), n = cit. + q1 = cots + g2 and 9, = 0/t — co = g2/t we have

Ks(u)
ut, uts+5
= /IED { (/ I(B(s) — cas > qou)ds +/ I(B(s) — c15 > qru)ds > T> |B(uty) =nu —x p ¢p(nu — x)dx
R uts—S Ut
= P * I(B(s) — cas > qou)ds
[P oo

Ul +S

+ /]I(B(s) — B(ut,) — c1(s — ut,) — crut, > qru — nu + x)ds > T> |B(uty) = nu — x}gbu(nu — z)dx

Ut

s
= /IP’ {( / I(B(s) — cas > quu)ds + /H(B*(S) — 18> x)ds > T> |B(uty) =nu —z ) ¢u(nu — x)dx

ut«—S
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_n%u 0 g
. — nx 922
= H(ZU(S) + 158 > x)ds + /]I(B*(s) — s> a)ds > T p et v da
V2mut, / ,
U J, J

where Z,(t) is a Gaussian process with expectation and covariance defined below (s <t < 0):

E{Z(0} = 1, cov(Zu(s), Zu(t) = sty (5.15)

Ut ut,

Since Z,(t) converges to BM in the sense of convergence finite-dimension distributions for any

fixed z € R as u — oo we have (details are in the Appendix)

0 s
/]P’ /H(Z()+77*S>x ds+/]1 s)—c18 > x)ds > T 6%_%@5
R 0
y s
~ /]P /H(B(S)+17*8>:U ds—l—/ﬂ s)—c18s>x)ds > T et dx (5.16)
R s s
= K(9).

We have by the formula P{3t > 0: B(t) — ct > x} = e 72 ¢,z > 0 (see, e.g., [20])

0
(]P’{Els <0:B(s)+ns>zxz}+P{3s>0: B.(s) — 15 > x})e%dx—l— / et d

—0o0

K(S) <

0\8 0\8

(6(72"*“7/’5*) + e(72atn/ts) )dx +t./n < 00

provided by t. € (t1,%2). Since K(S) is an increasing function and lim K(S) < oo we have as

S—r00
S — o0
K(S) — /]P’ /]I(B(s)—n*s>x>ds+/H(B*(s)—cls>:U)ds>T et da
R 0 0
te r Nty r cit, n*T
= — [P I{B(s) — d I(B. d *d
77/ /((3) 773>x> s+/( (s) 77s>ac)s> 2 e*dx
R 0 0
i 2
— n z
= /IP /H(\/ﬁB() ||+d()>x> 572 e“dx
R —00
be d
— nBT/ (0,00),

where 7" and d(s) are defined in (5.9). Finally, combining (5.16) with the line above we have as
u — oo and then S — oo

Ks(u) ~ B%@(]Dlﬂ\/ﬂ)
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and by (5.14) the claim follows. If (5.5) holds with 7, = 0, then we obtain the claim immediately
by Theorem 3.1 in [45] and observation that B¢ coincides with the corresponding Piterbarg con-

stant introduced in [45].

Now assume that (5.5) holds with any possible T,,. If (5.5) holds with 7" > 0, then for large u and
any € > 0 it holds that Cyor(u) < Crp,(u) < Ci_oyr(u) and hence

(14 0(1))B7: (14 ®(D1/2v/u) < Cr, (1) < By ®(D1/ov/u) (1 +0(1)).

By Lemma 4.1 in [21] B¢ is a continuous function with respect to x and thus letting ¢ — 0 we

obtain the claim. If (5.5) holds with 7" = 0, then for large u and any € > 0 we have
BI®(Dy/5v/u) < Cr, (u) < Byd(Dyy2v/u)

and again letting € — 0 we obtain the claim by continuity of Bfl,).

Assume that H < 1/2. First we have with 6, = u*?~2In® u as u — oo (proof is in Appendix)

n. Ut +udy
Cr.(u) ~ P / I(Bu(t) — est > qou)dt > T b + P / I(Bu(t) — ext > quu)dt > T
Ut —Udy Ut
=: g1(u) + go(u). (5.17)

Assume that (5.5) holds with 7" > 0. Using the approach from [21] we have

OuTy "u
W = P Tntc ( M(u )dt >1
92( ) M(w) u(q1 ‘l‘Clt*) +CltTu ( )
0
( O u_lu

= P / Ty (ZO(tKTY))dt > Ky

= P / Ty (Z2 (1))dt > K, 3,
0
\

where I,(b) =1(b > a), a,b € R and

_ TDy"

K, - u(eit + qr)

M(u) = inf ——— =Dyu'".
o3 t, () tE[lth,oo) Var{ By (ut)} 1
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For variance 02@) (t) and correlation 7, (s,t) of ZP for t,s € 0,6, T k] it holds that

2zt ALY | H — (1 — H)eyt|
1 — o () = « UH L1V Q24201
7z (2) (g1 + c1t0)? ( )
L—7,0 (5,t) = DFAu* 2t — s*" + O 2|t — s*"6,).

Now we apply Theorem 2.1 in [21|. We have that all conditions of the theorem are fulfilled with

parameters

2B g H — (L Het 1

wie) ==, W)=z, =1, g(u) = (1 + c1ts)?

nSD(t) = BH(t)7 0727<t) = t2H7 A(U) = 1a Y= 17
TL(U) = DHUI_H’ CL1<U) = 07 (IQ(U) = 5UTU_IUK17 Y= 07 Ty = 07 Ty = OO, Y1 = 07 Y = 00, T = K17

O(u) = w/ IO I H 0 B (1 = H)eyt,| 270

and thus as u — 0o

STy 'uky =
/ O(1))dt > Ky ~ By (-t y 21010 Sl P
o (u) () L RADE— 2% | H — (1 — Herts|

0

Similarly we obtain

DV (H -1/ H _
g1(u) ~ BQH( 1H )u(l/H—Q)(l—H) . * “H (I)(DHul_H), U — 00

and the claim follows if in (5.5) T'> 0. Now let (5.5) holds with 7" = 0. Since Pr, (u) < Cr, (u) <
Rr,(u) we obtain the claim by Theorem 2.1 in [43] and Theorem 3.1 in [45]. O

Proof of Proposition 5.2.2. The proof of this proposition is the same as the proof of Proposition
2.2 in [43], thus we refer to [43] for the proof. O

5.4 Appendix

Proof of (5.13). To establish the claim we need to show that

t1+e€
P / I(Vi(s) > u™)ds > T, /u p = o(¢1(Ty,u)), u— co.

i1—¢

Applying Borell-TIS inequality (see, e.g., [59]) we have as u — oo

P / I(Vi(s) > u' " M)ds > T, /up < P{3te[0,00)\[ti —e,t1 +¢]: Vi(t) >u'" "}

[0,00)\[t1—¢,t1+¢€]
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1-H_ )2
< (& 2m2 s

where

M = IE{ sup Vl(t)} < oo, m’= max Var{V;(t)}.

3te[0,00)\[t1—&,t1+¢€] 3te[0,00)\[t1—¢,t1+e]
Since Var{V;(t)} achieves its unique maxima at ¢; we obtain by (2.7) that

! =H _a)?

e =oP{Vi(t) <u""}), u— o

and the claim follows from the asymptotics of 11(T,, u) given in Proposition 5.13.

Proof of (5.14). To prove the claim it is enough to show that as u — oo and then S — oo

P / I(B(t) — cit > quu, B(t) — cat > qou)dt > T p = o(Crp,(u)), u — oo.
[0,00)\ [uts—S,ut«+S]

We have that the probability above does not exceed
P {3t € [0,00)\[ut. — S,ut. + S| : B(t) — c1t > qru, B(t) — cat > qou} .

From the proof of Theorem 3.1 in [45], Case (3) and the final asymptotics of Cr, (u) given in (5.8)

it follows that the expression above equals o(Cr, (u)), as u — oo and then S — oo. O
Proof of (5.16). Define
0 s
Gu,z) =P /H(Zu(s) + 145 > x)ds + /]I(B*(s) —cs>x)ds > T
-5 0
First we show that
M
/G(u,x)eziﬂ_?zt*da: = / G(u,z)ets dz + Appa, (5.18)
R “M

where Ay, — 0 as u — oo and then M — oo. We have

M

T 22 -
Al = ’/G(u’x)e?*_mdx_ /G(%i’f)e”dﬂ
R

-M

M
nx z2 nx nzx
< |/G(u,x)(et*2ut*—et*)dx|+ / G(u,x)et dx
M

lz|>M

=: |Il|+]2
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Since the variance of Z, (see (5.15)) converges to those of BM we have by Borell-TIS inequality

for x > 0, large u and some C' > 0

Gu,z) < P{3Ite[-5,0):(Zu(t) +nt) >z} +P{It €[0,5]: (B.(t) — c1t) > x}
< P{3te[-5,0]: (Z,(t) —E{Z.(t)}) >z} +P{3t €[0,5] : Bu(t) >z} (5.19)
< ef:r2/C.
Let u > M*. For x € [—~M, M] it holds that 1 — e nE < 22? < % and hence for u > M* by

(5.19) we have as M — oo

0 M 0 o0
L] < /e?f(l —eﬁ)dx—i-/exz/m?f(l —e*%)dx < %( / et +/e$2/0+?f) — 0.
M 0 “oo 0
For I, we have
-M o0
I, < /exda:—i-/exz/cezfdx -0, M — oo,
“oo M
hence (5.18) holds. Next we show that
0 S
G(u,z) — P /H(B(s) + 1.8 > :L‘)ds + /]I(B*(s) —cs>x)ds>T p, u— o0
-5 0
that is equivalent with
s s
Tim P (/j(xg@)>a)ds>>T —P t/ﬂ(B@)+%K@:>x>ds>1“ ,
-5 -5
where k(s) =1I(s < 0)n.s —I(s > 0)c;s and
Xu(t) = (Zu(t) + nut)I(t < 0) + (Bi(t) — art)I(t > 0).
We have for large u
[t —s|+ [t — s|? t,s >0
E{(Xu(t) = Xu())} = § =S5 4 |t — o] + 2l — 20 42— 5) 1,5 <0
[t — s — 2 4 g Zsleetad) 4 (s 4 gyt s<0<t

implying for all u large enough, some C' > 0 and t,s € [-S,S + T]
E {(X.(t) — Xu(5))*} < CJt — s].

Next, by Proposition 9.2.4 in [59] the family X, (), v > 0, ¢t € [=S, S+T] is tight in B(C([-5, S+
T))) (Borell o-algebra in the space of the continuous functions on [—S,.S + T generated by the
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cylindric sets).
As follows from (5.15), Z,(t) converges to B(t) in the sense of convergence finite-dimensional
distributions as u — oo, t € [—S,S + T]. Thus, by Theorems 4 and 5 in Chapter 5 in [8] the

tightness and convergence of finite-dimensional distributions imply weak convergence
Xu(t) = B(t) + k(t) = W(t), te[-S,S+T].

By Theorem 11 (Skorohod), Chapter 5 in [8] there exists a probability space €2, where all random
processes have the same distributions, while weak convergence becomes convergence almost sure.
Thus, we assume that X,(t) — W () a.s. as u — oo as elements of C[—S5, 5] space with the

uniform metric. We shall prove that for all z € R

P{ lim /]I(Xu(t) > z)dt = /]I(W(t) > x)dt p = 1. (5.20)

U— 00

Fix z € R. We shall show that as u — oo with probability 1
pa{t € [=5,8]: Xy(w, t)>x>W(w, t) }+pa{t € [=S, 5] W(w,t)>2x>X,(w,t)} = 0, (5.21)

where 5 is the Lebesgue measure. Since for any fixed ¢ > 0 for large v and ¢t € [—S, S| with
probability one |W(t) — X,(t)| < € we have that

pa{t € [=5,5] : Xu(w,t) > 2 > W(w, t)} + pa{t € [-5,5] : W(w,t) > 2 > X, (w, 1)}
< paft € [-S,5]: W(w,t) € [—e + x,¢ + ]}
Thus, (5.21) holds if
P {g% pn{t € =S8, 8] W(t) € [—e + 2,2 +¢]} = o} ~1. (5.22)
Consider the subset 2, C €2 consisting of all w, such that
li_r)r(l)uA{t € [=S,5]: W(ws, t) € [-e+z,2+¢€]|} > 0.

Then for each w, there exists the set A(w,) C [—95, 5] such that pr{A(w,)} > 0 and for t € A(w,)
it holds that W (wy,t) = x. Thus,

P{Q.) =P {un{t €[~ S]: W(t) =z} >0},

the right side of the equation above equals 0 by Lemma 5.4.1 below. Hence we conclude that (5.22)
holds, consequently (5.21) and (5.20) are true. Since convergence almost sure implies convergence
in distribution we have by (5.20) that for any fixed z € R

lim P /]I(Xu(t) St ST S =P /]I(W(t) S @)dt>T

U—00
-5 -5
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By the dominated convergence theorem we obtain

M M 0 s
/ G(u,z)ets do — / P /]I(B(s) + 1us > :L’)ds + /]I(B*(s) — s> a)ds > T petrdr, u— oo.
-M 0

M ~S

Thus, the claim follows from the line above and (5.18). O

Lemma 5.4.1 For anyc >0 and z € R
P{ux{t € [0,00) : B(t) —ct =x} >0} = 0. (5.23)

Proof of Lemma 5.4.1. Let for some fixed z € R the assertion of the lemma does not hold.

Thus, & = [I(B(t) — ¢t > x)dt does not have a continuous df. That contradicts to the explicit
0

expression of the df of £, given in formula (3), p. 261 in [5]. O

Proof of (5.17). We have by the proof of Theorem 3.1 in [45], Case (3) and the final asymptotics
of Cr, (u) given in (5.8)

P / I(By(t) — eit > quu, B (t) — cot > qou)dt > T,
[0,00)\ [uts —udu,utx+udy]
< P{3t € [0,00)\[uty — udy, ut, + udy] : Bu(t) — c1t > qru, By (t) — cot > qou}

= 0o(Crp,(u)), u— o0

and hence

P / I(By(t) — cit > quu, By (t) — cat > quu)dt > T, p ~ Cp,(u), u— oo.

[uts —udy ,uts+udy]

The last probability above is equivalent with ¢;(u) + go(u) as u — oo, this observation follows
from the application of the double-sum method, see the proofs of Theorem 3.1, Case (3) H < 1/2
in [45] and Theorem 2.1 in [21] case 1). O

Proof of Proposition 5.3.1. If H = 1/2, then an equality takes place, see [21], Eq. [5].

Assume that H # 1/2. First let (5.5) holds with 7 > 0. We have for ¢ > 0 with M(u) =

uliH(l_I{)Cl—H—HI{H (recall, I,(b) =I(b > a), a,b € R)

o0

hr () = P /]I(BH(t)—ct>u)dt>Tu
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B s (L= HP [ Bp(tu)M(u) A(1— H) %
= P{uu —)0/11 Coiay > T

Next we apply Theorem 3.1 in [21] to calculate the asymptotics of the last probability above as

u — 00. For the parameters in the notation therein we have

H cH A(1—H)>n
=0 =H, o(t)=t", Tt)=tn, t* = A= =T
(%] « 70-() ) U() H, C(l_H)a HH(l—H)lfH’x 2%[‘[2
2HH(1 — [)2HH - H - H)zf%
B = s , M(u) =u A=) AEa v(u) = uH B ——
and hence we obtain
h, () ~ K Bagr(TD)(Crrut ™) 10 (Cru M), w— o0, (5.24)
where
Cy = < d D=2"mPH 21— H)>V1
H_HH(l—H)lfH an = c (1-H) .

Assume that (5.5) holds with 7" = 0. For € > 0 for all large u we have h_,1/0-2(u) < hy, (u) < ho(u)
and thus

1

KHBQH(ED)(CHuliH)%ili(CHuliH) < hTu (u) < KHBQH(OXCHuliH)ﬁ*l.

Since Bay(+) is a continuous function (Lemma 4.1 in [21]) letting & — 0 we obtain (5.24) for any

T, satisfying (5.5). Replacing in (5.24) u and ¢ by ¢ u and ¢; we obtain the claim. O



96



Chapter 6

Extremes of Reflecting Gaussian Processes

on Discrete Grid

This chapter is based on K. Debicki and G. Jasnovidov: Extremes of reflecting Gaussian processes

on discrete Grid, in progress, 2021.

6.1 Introduction

For X (t¢),t > 0 a centered Gaussian process with a.s. continuous sample paths, stationary incre-
ments and variance function ¢%(¢) := Var (X (¢)) such that ¢(0) = 0, consider the reflected (at 0)

process

Qx(t) = X(t) — ¢t + max (QX(O), — inf (X(s) — cs)) >0, (6.1)

s€[0,t]

where ¢ > 0. The motivation for the investigation of properties of Q x(t) stems from its relation
with the solution of the Skorokhod problems and their applications to queueing theory, ruin theory
and financial mathematics. In particular, the behavior of the buffer content in a fluid queueing
model fed by X and emptied at rate ¢ evolves according to (6.1).

Distributional properties of the unique stationary solution of (6.1), which has the following rep-

resentation

Qx (1) = sup (X(s) = X(t) — (s = 1)), (6.2)

t<s
were intensively analyzed in, e.g., [11, 27, 36, 37|. The extremes of (6.2) were investigated in
[19, 20, 58].
From the point of view of the stochastic modelling, discrete-time models frequently appear to be
more natural. However, despite of its relevance in modelling of, e.g., queueing systems, much less
is known on distributional properties of the discrete counterpart of (6.2), i.e.,

Qsx(t)= sup (X(s)—X(t)—c(s—1)), t € Gs. (6.3)

s€t,00)NGs
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A notable exception is a recent work [42], where the exact asymptotics of P{Qs 5, (0) > u}, as
u — 0o, was derived for H € (0,1).
In this contribution we extend the findings of [40, 42, 47| to a more general class of Gaussian

processes with stationary increments and derive the exact asymptotics of

ST‘fg(u) = ]P’{ sup Qs x(t) > u}, %g(u) = IP’{ inf Qs x(t) > u}, (6.4)

t€[0,T]s tel0,Ts

as u — 0o, for T'> 0 and § > 0, complementing results for continuous time given in [19, 58].

It appears that the influence of the grid size § in (6.4) strongly depends on

)
P i =,

€ [0, o¢],

leading to three scenarios: ¢ = 0, ¢ € (0,00) and ¢ = oco. The case ¢ = co leads to the same
asymptotics as its continuous-time counterpart, which reflects the long-range dependance property

2

of X when its variance o< is superlinear.

6.2 Notation and preliminary results

Let X (t),t € R be a centered Gaussian process with stationary increments, as introduced in Sec-

tion 6.1. Suppose that

A: 0% is regularly varying at oo with index 2a € (0,2) and o(t) is twice continuously differentiable
for any ¢ € (0, 00). Further, the first and second derivatives of o2 are ultimately monotone;
B: 0? satisfies

Q= limme[

0, 00;

U—00 u
Note that if & < 1/2, then ¢ = 0 and if o > 1/2, then ¢ = oco. If @ = 1/2, then ¢ can be either
0, oo or finite and positive constant.

Ciifp=0and a = %, then for k = /c {(isng }a(t) — ¢, with sufficiently small € > 0,
t€{0,20,...

o(u) <k vu

= /47

U — 0. (6.5)
In""u

Conditions A and B are satisfied for a wide class of Gaussian processes with stationary increments,
including family of fractional Brownian motions and integrated stationary Gaussian processes; see
Section 6.4 for details. We note that condition B already appeared in [27], where it was observed
that the form of the asymptotic behavior, as u — oo, of P{Qx(0) > u} introduced in (6.2) is

2

determined by the value of . It appears that cases where o is asymptotically close to a linear

function need particularly precise analysis, for which condition C is a tractable assumption.
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Let

He(M) =T {Sup eﬂf“)—Vaf(f“))} € (0,00), HM(M)=E { inf eﬁﬂ“—"af@(t”} € (0,00), (6.6)

teM teM
where M is a compact subset of R and &(¢), ¢t € R is a Gaussian field with stationary increments

and a.s. continuous sample paths. Define Pickands constant by

2 i ([0, 5] N 6Z)

>
S—o00 S ’ 0 - 0’

where we set 07 = R if ¢ = 0. From [11] it follows that Hg € (0,00) under A and some additional
smoothness conditions on &, while for § > 0 we prove in Lemma 6.5.4 that it is sufficient to suppose
that £ satisfies A to claim that Hg € (0,00). Later on, for § = 0 we simply write H, instead of
HY.

The following result from [27][Proposition 2| (see also [20] [Theorems 3.1-3.3]) will be a useful
reference to the new results presented in the next section. Let ?(t), t > 0 stands for the asymptotic
inverse function of o, i.e., 7 (z) = inf{y € [0,00) : f(y) > z} (for details and properties of the

asymptotic inverse functions see, e.g., [49]) and let

<= \/50'2('“15*)
1 o , 0,00
I — m(u) = inf u(l +ct) A(u) = ( u(l+et) ) # ¢ (0,00) (6.7)
c(l —a) t>0  o(ut) 1, o € (0,00).
Let for X such that ¢ € (0, 00),
2
n(t) = iX(t), t>0. (6.8)

'
As shown in [27]|[Proposition 2|, if o2 is regularly varying at 0 with index 2ay € (0,2] and A is
satisfied, then the following result holds:

,HBQ, Y =00
P{Qx(0) > u} ~ f(u)®(m(u)) x H,, ¢ € (0,00), u—>00, (6.9)
HBQO, Y = 0

where

2mA u 1 o
f(u) =1/ B m(a)Aw) A:(l——a)tf’ B:W. (6.10)

The following result establishes the asymptotics of P{Q;x(0) > u} for § > 0 as u — oo. It
generalizes the findings of [42, 47].

Theorem 6.2.1 Let X (t),t > 0 be a centered Gaussian process with continuous trajectories and

stationary increments satisfying A, B, C. Then, for § > 0, as u — oo, it holds that

Sy iy P =0
P{Qs.x(0) > u} ~ B(m(u)) x HO f (u), ¢ € (0,00) (6.11)

HBaf(u)7 ¥ = 0.
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Remarks 6.2.2 Comparing the asymptotics in (6. ) d (6.11) we have under A-C and the

smooth conditions on o2 necessary for (6.9), with C = =2 € (0,1)
. P{Qsx(0) > U}
1
wsoe P{Qx(0) > u} ),

6.3 Main Results

In this section we derive the exact asymptotics of

te[0,T)s t€[0,T]s

T (U) = ]P’{ sup Qs x(t) > u}, s (u) = IP’{ inf Qs x(t) > u}, (6.12)
as u — oo, for T'> 0 and 6 > 0.

Theorem 6.3.1 Let X (t),t > 0 be a centered Gaussian process with continuous trajectories and

stationary increments satisfying A-C. Then for 6 > 0 as u — oo it holds that

A+ 5D eieiimmy, ¢ =0
7o () ~ ®(m(u)) x ¢ H, ([0, Tl HEf(w), @ € (0,00)
HBaf(u)v ¥ = 0.

Theorem 6.3.2 Let X (t),t > 0 be a centered Gaussian process with continuous trajectories and

stationary increments satisfying A-C. Then for 6 > 0 as u — oo it holds that

. _ HE ([0, T5)HS, 0, 00
(0 ~ S B(m(a) x § (T2 € 000
Hp,, » = 00.

If ¢ = 0, then for the non-degenerated scenario (when set [0, 75 consists of more than 1 element,
i.e., for T'> 0) it seems difficult to derive even logarithmic asymptotics of w’nf( ). One can argue

that ¢5(u) is exponentially smaller than P {Qs x(0) > u} in this case, as u — co. We have the

following proposition giving an upper bound for @/Jmf( ).

Proposition 6.3.3 If ¢ = 0 and for some small € > 0

Vu
ou) < ———, U — 00, 6.13
() < e (613)

then for T' > ¢ with any C < Ltg sup o(t) it holds that
t€l0,T]s
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All our results hold without additional smoothness assumptions in contrary to the continuous

2

time case studied in [20, 27]. Intuition behind absence of known behavior ¢ around zero is that

one can consider a random process on a discrete grid with step 6 > 0 as a sequence of correlated
Gaussian random variables. The covariance of the sequence is determined only by its values on

the grid, hence assumptions concerning behavior of ¢ at 0 are not necessary.

Remarks 6.3.4 Comparing the asymptotics in Theorems 6.2.1, 6.5.1 and 6.3.2 for case p = o0

we observe the so-called strong Piterbarg property for the storage process:
T (W) ~ IP’{Q(;X()>u}~1/)mf( ), T>0, u— oc.
The statement above agrees with Theorem 1 in [19].

Remarks 6.3.5 If ¢ = 0, o = 1/2 in the theorem above and (6.5) does not hold, then from the
proof it follows that (6.11) reduces to the upper bound.

6.4 Examples

Fractional Brownian motion. Let

cH 5 VarHTHE 2373 /7
HI(1— H)- 1 "= CH+1(1 — H)H+1/2 "= H2(1 — H)'/?

Cy =

Applying Theorems 6.2.1, 6.3.1 and 6.3.2 for X being a standard fBM we obtain the following

results:

Corollary 6.4.1 As u — oo it holds that

Dudl $(CutH), H<1/2
]P){Q(S,BH (0) > U} ~ HQBCf/i 720u7 H = 1/2

HBHEH(CHulfH)l/Hili(CHulfH), H > 1/2
Corollary 6.4.2 ForT,6 > 0 as u — oo it holds that

(1 + [£]) 2220 (Cyul 1), H<1/2

IP’{ sup Qs,p,, (1) > w o ~ § Hp, ([0, 262 T pe5) HE S e, H=1/2
te[O,T}g 1/2

Hp, By (Cput~HVE1O(Cput~H), H > 1/2.

Corollary 6.4.3 For T,6 > 0 as u — oo it holds that

innf 0 202T . fHQC 0 —2cu7 H=1/2
P{ inf Qs (1) >u} LB (0,26 Thes )M, e /
tel0Ts Hp, By (Cpu YIS (Cput—1), H > 1/2.
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Note that Corollary 6.4.1 intersects with the results in [40, 42, 47] while Corollaries 6.4.2 and 6.4.3

are discrete counterparts of Theorems 5-7 in [58] and Theorem 1 in [19], respectively.

Gaussian integrated process of SRD and LRD type. For a stationary centered Gaussian

process with a.s. continuous sample paths ((s), s > 0 define the integrated process by

Z(t) = /C(s)ds, t>0. (6.14)

This process is also Gaussian, has a.s. continuous sample paths and stationary increments. In
what follows we consider two classes of processes Z, which differ by property of the correlation
function R(t) := E{{(0)((¢)} of ¢ as t — oc.

SRD case. Following, e.g., [11] (see also [24]), we impose the following conditions on the cor-
relation of (:
R1: R(t) € C([0,00)), tlirn tR(t) = 0;

—o0

t
R2: [ R(s)ds > 0 for all ¢ € (0, c0];
0
R3: [#*|R(t)|dt < cc.
0
The above assertions imply the existence of the first and second derivatives of 0%(t) = Var(Z(t))

and establish the asymptotic behavior of o%(t) at co (see e.g., Remark 6.1 in [11]):

2
o2(t) = 5t—2D+o(t_1), t — o0,

where G = 1/ [ R(t)dt and D = [tR(t)dt. Thus, o7 satisfies A with o = 1/2 and applying
0 0
Theorems 6.2.1, 6.3.1 and 6.3.2 for scenario ¢ € (0, 00) we have

Corollary 6.4.4 If Z(t) is an integrated process defined in (6.14) and R(t) satisfies R1-R3, then
forT >0 and 6 >0 as u — oo

P{Qs7(0) > u} ~ AHIe

IP{ sup Qs.z(t) >u} ~ AHg([O,T](;)ng_CG“,

tE[O,T]5

JP{ inf Q57Z(t)>u} ~  AHI([0,T)s)Hee ",

te [O,T]g

where A = —L—— and £(t) = cGZ(t) /2.

202
c2Gec”G*D

Note that the first asymptotics in Corollary 6.4.4 differs from its continuous-time analog (Theorem

5.1 in [11]) only by the corresponding Pickands constants.
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LRD case. Following, e.g., [27, 36] we characterize LRD case by the following assumptions on
R(t):

L1: R(t) is a continuous strictly positive function for ¢ > 0;

L2: R(t) is regularly varying at oo with index 2a — 2, a € (1/2,1).

Under the above assumptions, by Karamata’s theorem, 0% is regularly varying at oo with index
2cr. Since 2o > 1 we are in ¢ = oo scenario. Hence, applying Theorems 6.2.1, 6.3.1 and 6.3.2 we

immediately obtain the following result.

Corollary 6.4.5 If Z(t) is an integrated process defined in (6.14) and R(t) satisfies L1-L2, then

as u — oo it holds that

P {tei[gl%g Qs.z(t) > u} ~P{Qs52(0) >u} ~ P{ sup Qsz(t) > u}

te[07T}5

~ %Bgaf(u)qj(m(u))7

where m(u) and f(u) are defined in (6.7) and (6.10), respectively. In this setup of the problem
we observe that the strong Piterbarg’s property holds.

6.5 Proofs

In this section we give proofs of all results. Hereafter, denote by X := for any nontrivial

Var(X)
random variable X. For any u > 0 we have

P{Qsx(0) >u} =P {Sup(X(t) —ct) > u} = IP’{ sup X, (t) > m(u)} ,

teGs tEG(;/u
where m(u) is defined in (6.7) and

X (ut

Xo(t) = =,
u(l+ ct)

Denote by %, the variance function of X,(t), ¢ > 0. In the next lemma we focus on asymptotic

properties of the variance and correlation functions of X, (t); we refer to, e.g., [20] for the proof.

Lemma 6.5.1 Suppose that A is satisfied. For u large enough the maximizer t, of ox, s unique

and t, — t, = C(IO‘TQ) as u — oo. Moreover, for 6§, > 0 satisfying lim 6, = 0 (A, B are defined in
uU—00

(6.10))

1-— un<t)

lim sup _—
Lt —t,)?

U0 4 (ty—Gustu+0u)\{tu}

—1|:0

and (recall, 0® is the variance of X )

1 —Cor(X(us), X(ut))
o2 (uls—t|)
202 (uty)

-1/ =0.

lim sup
U300 ot 5,t€ (tu—0u bu+0u)
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By Lemma 6.5.1 we have that ¢, is the unique minimizer of “((Tl(j;)t) for large u and hence by Potter’s

theorem (Theorem 1.5.6 in [4]) we obtain useful in the following proofs asymptotics of m(u)

~u(l +cty) N u(l+ct) ofuty) u(l+ct)

me) = = i oty o(uty) " teo@) 0 LT (6.15)

Observe that

T () =P {te[ sup Zu(t,s) > m(u)} ,

OvT/u]é/uvtSSEGé/u

where

X(us) — X (ut)
u(l+4c(s —1t))

Zu(t,s) = m(u). (6.16)

Notice that for the variance 0% of Z, it holds, that 0% (s,t) = 0%, (s —t) and for correlation ry,
we have for §, > 0 satisfying lim,_,o, d, = 0 (Lemma 5.4. in [20])
1- TZy (87 t7 81, tl)

02(u|s—s1|)+o2(ult—t1])
202 (uty)

—1|=0. (6.17)

lim sup
U0 ¢ty | < ,5—t,81 —t1 € (—Outtu,tut6u),(8,t)#(s1,t1)

To the rest of the paper we suppose that

w2 Inu, p < 00

utn(u)o(u), ¢ = oo

and set
I(ty) = Gs [ )(=0u + tustu + 6)
for u > 0. The following lemma allow us to extract the main area contributing in the asymptotics

of w%‘f?(U), %n;(u) and P{M;s > u} as u — oo:

Lemma 6.5.2 For any T' > 0 it holds, that as u — oo

T ()~ IP’{ sup Zu(t,s) > m(u)}

tE[O,T/u](;/u,SGI(tu)

P (u)  ~ P{te[ inf Zu(t,s)>m(u)},

0,T/ulsu,s€l(tu)

The lemma below allows us to give upper bounds for the double-sum terms appearing in case

¢ = 0 in Theorems 6.2.1 and 6.3.2.

Lemma 6.5.3 Assume that ¢ = 0. Then uniformly for t # s € I(t,) and all large u with some
e > 0 it holds that

P{X.(t) > m(u), Xu(s) > m(u)} <u 22D (m(u)).
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In the next lemma we prove that the discrete Pickands constant appearing in Theorems 6.2.1,

6.3.1 and 6.3.2 is well defined, positive and finite.

Lemma 6.5.4 For any 6 > 0 and n a centered Gaussian process with stationary increments, a.s.

continuous sample paths and variance satisfying A it holds, that

_ H,({0,5,...,5})
Jim L S =H) € (0,00). (6.18)

We give the proofs of Lemmas 6.5.2, 6.5.3 and 6.5.4 at the end of this section. Now we are ready

to prove main findings of this contribution.

Proof of Theorem 6.2.1: Taking 7' = 0 in Lemma 6.5.2 we obtain that

tel(ty)

P{Qs,(0) > u} ~ IP’{ sup X, (t) > m(u)} , U — 0. (6.19)

Next we consider 3 cases: case i) when ¢ = 0, case ii) when ¢ € (0, 00) and case iii) when ¢ = oc.

Case i). We have by Bonferroni inequality

Z P{X,(t) >m(u)} > IP{ sup X, (t) > m(u)} (6.20)

t€1(ta) tel(tu)

> ) P{Xu () >mw)}— Y P{Xu(t) > m(u), Xu(s) > m(u)}.

tel(ty) t#s€l(ty)
There are less then CuIn? u summands in the double-sum above, hence by Lemma 6.5.3 we have
Z P{X,(t) > m(u), Xy(s) > m(u)} < Cln®(w)u>d(m(u), u— oco. (6.21)
t#s€l(ty)
Next we focus on calculation of the single sum in (6.20). Since by Lemma 6.5.1 sup |ox, (t)—1| —

tel(te)
0 as u — oo (2.7) implies as u — oo

& mw)
> P{X.(t) >mw)} = Y B )
. ox,(t)
el(tu) tel(ty)
m2(u
tezfau) 2mm(u)
m2(u) mz(u) m*(u)
€ 2 Z % T 2
~ [ Xu
v2mm(u), S5
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By Lemma 6.5.1 we have that as u — oo the last sum above is equivalent to

Z e*??”bz(u)%(z‘,ftu)2 - Z 6717’L2(u)%t2

tEI(tu) te(flnT:jvlnT:j)é/u

- 5mU(U) <5mu(“> 2. 6_%t2)

e (= PO LR s
~ 5mu(u)/e2at2dt, u — 00 (6.22)
R
u 2rA
- smu)V B
u 2ra

dm(u) (1 — a)3/2’

om(u) m(u)lnu

where the asymptotic equivalence in (6.22) holds since by (6.15) === — 0 and —n o T ooas
u — 00. Thus,

V2raud(m(u))

T el = a)2m(u)’

> P{XL(1) > m(u)}

tel(ty)

and hence by (6.15),(6.20) and (6.21) we have that

N V2raud(m(u)) " oo
F {t:}ti)Xﬂ(t) ~ m(u)} dc(1 — a)32m(u)’ -

and the claim follows by (6.19).

U — 00 (6.23)

Cases ii-111). For any fixed v > 0 and S € {0, 9,26, ...} denote

oy, A(u)jS ,
Nu - I—SA(U)-I’ tj - U 5 Aj,S,u - [tu + tjatu + tj—i—l]é/uy J € [_Nu - 17Nu]’

where [-] is the ceiling function. We have by Bonferroni inequality that

Z Pj.Su — Z DijiSu S ]P){ sup Xu(t) > m(“)} S Z P38 us (624)

~Nu<j<Ny—1 —Nu—1<i#j<Ny tel(tu) —Nu—1<j<N,

where

tEAj,S,u teAj,S,u tEAi,S,u

PjSu = ]P{ sup X, (t) > m(u)} and p;jisu = IP’{ sup X, (t) > m(u), sup X,(t) > m(u)} )

By [20] we have that the double-sum term above is o(P{M;s > u}) as u — oo. Hence from the
asymptotics of > Pj.su given in (6.25) and (6.26) later on we obtain that the double-sum
—Nu<j<N,—1
term is negligible and hence as u — oo and then S — oo

IP’{ sup X, (t) > m(U)} ~ Z Dj.Swu

tel(tu) — N <j<N,
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and we need to calculate the asymptotics of the sum above. That can be done via uniform ap-

proximation of p; g, for all —N,, —1 < j < N,. As shown for cases i7) and iii) separately below.

In case ii) we have A(u) =1, N, = [‘/asln“], t; = %S and Aj g, = [ty +t;,t, +tj11]. We have by

Lemma 6.5.1 for any € >0, 0 < j < N, for all u large enough with m; (u) =

miw)
=10 & ()

Disu =P {Ht € Ajgu: Xult) > m(u)} < P {at € Ajsu: Xult) > m(?(t t )2}

teEA; sy

< ]P’{ sup Yu(t)>mj_(u)}

< P sup Xo(t) > mi(w)
t€[0,5]s
where X;(t), t € [0,5] is some centered Gaussian process with unit variance and correlation

o?([t=sl)
202 (uty)

above as u — oo is equivalent to H,({0,6,...,S})®(m; (u)), where 7/’ is a centered Gaussian

satisfying 1 — r+ (t,s) ~ u— oo t,s € [0,5]. By Lemma 1 in [19] the last probability

process with stationary increments, a.s. continuous sample paths and variance (asymptotics of

m(u) is given in (6.15))

w(14ct)> 5 2
T u—oo 2t*02(ut*)02(u)0 (t) = @2 (®)

Note that " and 1 defined in (6.8) have the same distributions. Thus,

ST pise S H,{0,6,.,51) Y B(m;(w), u— co.

0<j<Ny 0<j<Ny
Next as u — oo (set C_ = (1;)3) similarly to case i) we have
Z q)(m; (U)) 7m2(u)( 1 71)
OSJSKM ~ Z e 2 (170_(%)2)2
e (m(u)) 0<j<Nu
2 .
m*=(u) S
~ Z e~ 20-(5)?
0<j<Ny

_ Z e_Ci(ijz(u))Q

Sm(u) 6[0, NuSm(u)] Sm(u)

- Sr:(u) (SWL(U) > )

te[ovw\/ﬂlnu} Sm(u)

Since by (6.15) 55 — 0 and % — 00 as u — 0o we have that the sum above converges to

Ik e - dt = % as u — oo. Similar calculation can be done for 7 < 0, hence summarizing all
) _
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calculations above we have as © — oo and then S — oo

uB(m(n)) V7
S pisa < Hy({0,6,....5)) ot I

—Ny<j<Ny

By Lemma 6.5.4 w — HJ € (0,00) as S — oo , hence letting S — oo we have

_NggNupLS,uSHn () \/6_(1+ (1)), o,

By the same arguments we have the lower bound

suP(m(u))

with C = %. Hence letting ¢ — 0 we have that as S — oo and then u — oo

D Pisuc Him?u) \/ %5(7%(%))- (6.25)

_NquSNu

For case #ii) we note that A(u), N, — oo and A(u)/u — 0 as u — oco. We have with my(u) =

1_7&%“2, —N, <k <N, for large S,u
)
Prsu 2Py sup o Xo(t) >mi(u) o > P sup Xu(t) > myw)
teltititlo/u tE€[tk tht1] Aqu) 5legAw)]
3 W AW
(
= Sup Y, () > my(u)
tel0,5- 475 stey A
L Aw)

v

P sup Y. (¢
{te[O,S(lsz)]gel Au)er

= IED{ sup Y. (t) > mk(u)} , U — 00,

t€[075(1752)]651

where €1, g9 are any small positive numbers and Y,,(¢), Y, (¢) are some centered Gaussian processes

with unit variances and correlation functions having expansions as u — oo

(At — s o*(Aw))]t — s*

TYu<t,S) = 1- 202(u)t30‘ +O< 0_2(“) )’
) = 1= oy

Next by Lemma 5.1 in [20] with (in their notation) index set K consisting of 1 element and

g(u) = my(u), O(u,s,t)=|t— s|2‘”‘7 V=B, oy(t)= |t|20‘
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we have uniformly for — N, < k < N,
]P’{ sup Y. (t) > mk(u)} ~ Hp, ([0, S(1 — g9)]5e, )P (mp(u)), u— c0.
te[o)(1752)s}681

Thus, for large S as u — oo

Y pese = Hp(0,(1-22)Sls) Y B(mu(u))(1+o(1)).

—Nuy<k<Ny —Nuy<k<Ny
Next we calculate the sum above. Similarly to cases i-i7) we have as u — oo with @ = 07&1—7;265)2
and [, = 524 — 0
Ny __
kiz_:N @(mk(u)) Ny, _m2(u)( 1 _1)
= N ~ e 2 (170+t%)2
®(m(u)) M)
Ny
~ ZefC+m2(u)ti
k:_Nu
o(u)lnu
SAw) Oy (Itets)? (ESAG) )
~ Z e 2a o (u)
he=— GéuA)(lS)u
klye(—Inu,Inwu),
1 O
=l e
te(—Inu,lnu),
Since [, — 0 as u — oo the expression in the parentheses above converges as u — oo to
/6_@+t2dt _ \/7_1' _ 2AT tf 1 ‘
~ V. B 1+cti/1+¢
R Cy
Thus, summarizing the calculations above we have as u — oo for large S
1 1 — o(u) [2Am 1<
w > ——=—=Hp ([0,(1 —e3)S]s:,)P(m(u = (14 o(1)).
T s 2 (0.0 - Sk ) Bloma) Sy S (0 o)

Letting S — oo then €5 — 0 and then £; — 0 in view of Lemma 12.2.7 ii) and Remark 12.2.10
in [49] we obtain $Hp, ([0, (1 — €2)S]se,) — Hp,. Letting then e — 0 we obtain the lower bound

o(u) [2Am 1S
A(u)V B 1+ ct,

(I+o0(1)), u— oc. (6.26)

Similarly to the calculation of the lower bound we have for — N, < k£ < N, and ¢ > 0 with

W (recall, C_ = 285 as y — 00 and then S — oo

my (u) = = te]? 24

Prsau < Hp, ([0, S)®(my; (u)(1+ o(1)).
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Summing py s, and letting S — 0o as above we have the upper bound

1 = o(u) [2Am t2
Prsu < Hp, P(m(u)) —(1+o0(1)), u— oo
—Nugszvu vi—e¢ Au)V B 1+ct,

Letting € — 0 we obtain the right side in (6.26), thus the claim is established. O

Proof of Theorem 6.3.1. By Lemma 6.5.2 we have
s (u) ~ P sup Zy(tys) >m(u) o,  u— o0. (6.27)
’ t€[0,T/uls 5~ (tu)

As in the proof of Theorem (6.2.1) next we consider three cases: case i) when ¢ = 0, case ii) when

¢ € (0,00) and case iii) when ¢ = 0.

Case i). First we have by Bonferroni inequality

Y ) P{Zts) >m(u)} > P sup  Zy(t, s) > m(u)

T
tE[O,%]é s€I(t) tG[O,;]% ,SEI(ty)
u

Z Z P{Z,(t,s) > m(u)}

tE[O,Z] s s€I(tu)

= YD P{Zut.s1) Zult, 52) > m(u)} .

t€[0,L] 5 s1.s2€1(tw)
u  51#£82

Vv

For the double-sum above we have

Z Z P{Z.(t,s1), Zu(t,s2) > m(u)}

te0,L] S1,;12;;<2tu)

)ﬂ S5

< — _ _
< (1+ [5]) [sup](S ;t )IP’{X s1— 1), Xu(se —t) > m(u)}
15127£szu

< Ci+ [%) 02 ()2~ B(m (w)). (6.28)

where the last inequality above follows from (6.21). For the asymptotics of the single sum we have

) P{Zu(t.s) > m(u)} = Z > P{Xu(s —t) > m(u)}

t€[0,L] 5 s€I(tu) te[0,L]5 s€l(tu)
A+ E) Y P > mw)}, u—
~ — W(T)>m(u)}, u— oo.
5 el(tu)

The last sum above was calculated in the proof of Theorem 6.2.1, hence

S Y P{Z(ts) > mu)} ~ (1+[5]>5\(;/<217T_ff>)§/27§1(2)’ u = 00,

t€[0,Z], s17#s2€1(tu)
u
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By the line above combined with (6.28) we obtain

P sup Zy(t,s) >m(u) p ~(1+]

t€[0,L] 5 ,s€l(tu)
u

T
o

\/% (())
])(

and the claim follows by (6.27).

Case ii). With the notation of Theorem 6.2.1 we have by Bonferroni inequality for u > 0

N, N
)DETES] PP ATREI] £ SR TR S e
j=—Nu te[0, 5] 5 ,5€1 (tu) j==Nu ~Nu<i<j<Nu
where
4;,Su = P sup Zu(tv S) > m(“)
t€[0,L] 5 ,s€A; 5.u
and

=4

gl

qi,5;8u = P {Elt € [07 ]

SEALS’H SEAi,S,u

sup  Zu(t,s) > m(u), sup Z,(t,s) > m(u)}

By [20] we have that the double-sum term above is o(P{Ms; > u}) as u — oo. Hence from the

asymptotics of Z ¢;,s,« given in Theorem 6.3.1 we obtain that the double-sum term is negligible
—Ny

and hence as u —) oo and then S — oo

Ny,
P sup Zu(t,s) >m(u) p ~ Z 45,S.u

t€[0, L] 5 ,s€I(t)
u

and we need to calculate the asymptotics of the sum above. Next we uniformly approximate

each summand in the sum above. For ¢ > 0,7 > 1,5 > T and u large enough we have (recall,

- _ m(u)
mj*l(u) T (9B (T )

u

T m(u)
Gsu = €10, —lsjux Ajsui Zults s) > m}
T m(u)
< Pt 5/ X Djsu: Zu(t,s)>
> U 5/ 755, ( 3) 1—(1—6)%(8—t—tu)2}
- m(u)
< P sup Z,(t,s) > .

t€[0,7]5,5€[0,5]5 1—C_(U=hsy2

=P

—N— ——

sup (t s) > mj—l(“)} )

t€[0,T]5,s€[0,5]s
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- . . . . . . .

where Z (t,s) is some centered Gaussian process with unit variance and correlation r- having
u

an expansion

o(ls — s1])* + o*(|t — t1])

207 (ut,) . (t:s) €10,T) % [0,8], uw—o0. (6.29)

1— 7"7;(25,5,751,51) ~

Applying Lemma 5.1 in [20] with parameters (with X, X being independent copies of X)

O =sup, 6O(u,s,t)= iij(ams —si|)+ (|t —t1]), Vit s) = %(X(l)(t) + X(Q)(s))

we have

IF’{ [ sup Z.(t,s) > mj__l(u)} ~ Hy (1,610, T]s x [0, S]5)®(m;_; (u)).

te OzT]57se[07S]5

Since XM (t) and X (s) are independent we have

HV(t,S)([OvT]é x [0,5]5) = H%X([OvT]zi)H\/EcX([O?S]tS)'

Finally, for ¢ > 0,5 > 1,5 > T and u large we have

P{ B> m<u>} < Hz (0,710 M (0, 1) By (1)) (1 4 0(1).

§/u> SEA] S,u

The rest of the proof is the same as in Theorem 6.2.1 case ii), thus the claim is established. [

Case iii). By Theorem 6.2.1 we have
75 (W) > P{M;s > u} ~ Hp, f(u)P(m(u)), u— oo

By (6.27) we have

7o (W) < P{ sup Zu(t,s) > m(u)} (1+0(1), u— oc.

t€[0,T/u],s—t€(—0u+tu,tu+0y)

From the proof of Theorem 3.1 in [20] it follows that the last probability above does not exceed
(1+ o(1))Hp, f(u)®(m(u)), u — co. Combining both bounds above we obtain the claim. O

Proof of Theorem 6.3.2. Assume that ¢ € (0,00). First by Lemma 6.5.2 we have

t€[0,L]5,, sel(ty)

%lf;()NIF’{ inf  sup Z,(t,s) > m(u )}, U — 00.

With notation of Theorem 6.2.1 in view of the final asymptotics of 1/Jmf( ) given in Theorem 6.3.2

repeating the proof of Theorem 6.3.1 we have as u — oo and then S — oo

]P’{ inf  sup Z,(t,s) > m(u } Z IP’{ 1nf sup  Zy(t,s) >m(u)}.

t€[0, L)/, s€l(ty) t€[0,L]5,, s€A 5.0
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Next we uniformly approximate each summand in the sum above. For ¢ > 0,5 > 1,5 > T and u

large enough similarly to the proof of Theorem 6.3.1 we obtain (recall, m;_(u) = - E)mé“()(j_l) ) -)
(1) B (T-DS

]P’{ inf  sup Z,(t,s) > m(u)} < IP’{ inf  sup Z,(t,s) > mj_l(u)} ,

te[ov%}é/u SeAj,S,u tE[O,TL; 56[075]5

where 7; (t,s) is a centered Gaussian process with unit variance and correlation satisfying (6.29).

Applying Lemma 5.1 in [20] with parameters (with X, X ) being independent copies of X)

® =infsup, O(u,s,t) = %(0208 —sil) o (ft—tl)), V(ts)= gc(X(l)(t) +X®(s))

we have as u — 0o

IP’{ inf  sup Z,(t,s) > m;l(u)} ~ E{ inf  sup eﬁv(t’s)_var(v(t’s))} D(m;_(u)).

t€[0,T]s se[0,5]5 te[0,T]s s¢[0,9)s

Since XM (t) and X (s) are independent we have
E inf V2V (t,8)—Var(V (t,s)) __ qyinf 0.7 3 0. 915).
{tel[(r)l,T]ases[lél,glge H%X([ ’ ]J)H%X([ +5lo)
Thus, as u — oo
P{ nf s Z(ts) > m<u>} < HL ([0, T))H o (0. S)5)B(my , (u).
t6[07%]5/u S€EA; 5 @ ’

The rest of the proof is the same as in Theorem 6.2.1, thus the claim is established.

Assume that ¢ = oo. Let R(s,t) = X(s) — X(t) —¢(s — t), t,s > 0. Using the idea from
[19], (the next equation after (2)) we write

sup
T8 (U) (0,75 t<seGs te[0,T)s t<s€Gs

) .
——— = Pq inf sup R(s,t) >u| sup sup R(s,t)>u
te

IP’{ sup R(s,t) > u}

t<seGys

tel0,Ts

> 1- ) |1-
"

sup sup R(a,b) > u}

a€l0,T]s a<beGs

By Theorems 6.2.1 and 6.3.1 we have that the right part of the expression above tends to 1 as

u — 0o. Thus, we have §(u) ~ ¢35 (u) ~ Hp, f(u)®(m(u)), u — oo and the claim follows. [

Proof of Proposition 6.3.3. Since 7" > § with any K € [0,T]s, a € (0,t,),b > 0 and J(t,) =
[—a + ty, t, + b] we have

sr(w) < Uk (u)
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< 1@{331,52 € J(t) NGy : Z(0,51) > m(u),zu(%,@) > m(u)}
+P{3s ¢ J(tu) : Zu.(0,8) > m(u)}
=t pi(u) + p2(u).
Estimation of pi(u). Fix some s1, 5, € J(t,) NG5 and let (W1, W) = (Zu(0, 51), Zu(E, 55)). We

have that (W, W3) is a centered Gaussian vector with Var(Wi), Var(W;) < 1 and correlation
rw, (51, s2) satisfying (see (6.17))

o(ulsy — ) + 0*(K)
202(ut,)

o*(K)

7 (55 € J(t).
simgr(yy 1% €M)

1 —rw,(s1,82) > (14 0(1)) > (1+0(1))

Thus, by Lemma 2.3 in [56]

O (m(u)) TP{W, > m(u), Wa(u) > m(u)} < 36(m(u)\/1 — TWH(S1,S2)>

- 2
= o(K)m(u)
= {1+ o1 2L
(1+0(1)) 20 (0)
— o(K)(1+ ct.)u
= 33((1+o(1 ).
30 (L+0(1)) 212007 ()
Note that ¢ = 0 implies ) — 00 as u — o0o. Thus, since there are less than Cu? In® v points in
(J(t,) NGs) x (J(t,) ﬂGg) we have with any Cx < % by (6.13) as u — oo

"([5359023*)”) < B(m(u)B(Cr_zp5)

Estimation of pa(u). Since Z,(0, s) < Xu(s), s >0, it follows from the estimation of R;(u) and

p(w) < Cul(in?u) - 3B(m(u)B((1+o(1))

Ry(u) in the proof of Lemma 6.5.2 (see (6.32) and (6.33), respectively) that for appropriately
chosen a € (0,t,),b > 0 and small ¢ > 0

—_— m2 u
pa(u) <P{3s € [0,a] : Xu(s) > m(u)}+P{3s € [t. + b,00) : Xu(s) > m(u)} < @(m(u))@e_%.
Combing this inequality with the upper bound of p;(u) we obtain that for any K € [d,T]s it holds
that

(1) < B(m(u))T ((CKUQL(U)), w00

and taking the supremum with respect to K we obtain the claim. [l

Proof of Corollary 6.4.4. First we give a proof of the first statement. Since Z(t) is a Gaussian
process with stationary increments, a.s. sample paths and variance satisfying A applying Theorem

6.2.1 with parameters

. of(u) 2
= lim = —
¥ u—00 U G

€(0,00), a=1/2, t,=1/c, Au) =1, A=2VC, D= c*/c/2,
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3/2G3/2D _1/2
V2

we have ®(m(u)) ~ e ueG-G*D__L__

Folu™), fluw) = 22 i+ o), n(e) = 200

u — oo implying

m(u) = V2Gev/u + —— ="

2v/nGeu’
1 212
P {3t € [0,00) : Z(t) —ct > u} ~ Hp 13 2Ge—uce_c Dy oo

and the first claim follows. Applying Theorems 6.3.1 and 6.3.2 with the same parameters we
obtain the second and third claims, respectively. 0

Proof of Lemma 6.5.2. First we show the first claim. We have

P sup sup Z,(t,s) > m(u)
te[0,L]5 sel(tu)

< U() (6.30)

< P sup sup Zy(t,s) >m(u) p +P ¢ sup sup  Zy(t,s) > m(u)
tG[O,%]Q s€l(tu) tE[O,%]Q SE(G%\I(tu))

Our first aim is to show that

P sup sup  Zy(t,s) > m(u) p = o(®(m(u))), u— oo. (6.31)
te0,L] SE(G%\I(tu))

Since for any fixed 0 <t < s random variables Z,(t, s) and X, (s —t) have the same distributions
we have with I'(t,) = (=2 +t., 2 + t.) N Gsy

IP’{ sup sup  Zy(t,s) > m(u)} < Z IP’{ sup  Zy(t,s) > m(u)}

te[0,T/uls /v s€(Gs 0\ (tu)) te[0,T/uls v s€(Gs/u\ (tu))

— Z }P{ ( sup Xu(S—t)>m(U)}
T/uls/u

tefo, s€(Gsyu\(tu))

< (4]

Sdie

])P{ ( sup Xu(s) > m(u)} :

s€(Gs/u\I' (tu))

We have that for any chosen small € and large M the last probability above does not exceed

> P{X(t) > m(u)}

tE(G s \I'(tw))

VAN
"}
|
—~
2
S
~—
~—
@
N
+
2|
]
N
q/-\
)
=
+
@
S
S
=
N———
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—: 2B (m(u))(Ry(u) + Ry(u) + R(u)).

Thus, to establish (6.31) we need to prove that Ry (u)+ Ra(u)+ Rs(u) — 0 as u — co. By Lemma

6.5.1 t,, is unique for large u and we have

o(ut)

ox, (1) = ————m(u) =

~u(l+ct)

o(ut) 1+ ct,
o(uty) 1+t

Estimation of Ri(u). We have for all large v and t € [0, €]5/,,

o(ut)
o(ut,)

O'Xu(t) § C

i) Assume that ut > Inwu. Then with h being a slowly varying at oo function and 0 < € < a by
Potter’s theorem (Theorem 1.5.6 in [4]) we have
t t h(ut ty
O(U ) — (_)a (u ) S Cta(_)é S (Ctafﬁ.
o(ut,) “t,” h(uty) t
ii) Assume that ut < Inu. Since ¢t € [0,¢]5/, we have ut > 6 for ¢t # 0. Then for € € (0, ) and

large u

t
o(ut) <u @9 sup o(t) < u @9 Inw.
O-(Utu) te[d,In u]

Combining the above inequalities we have that for sufficiently small ¢ and for all ¢ € [0,¢]s/.

uniformly for large u it holds that ﬁ — 1> 2. Thus, for small enough ¢ > 0
Xy
Ri(u) < Cue ™™ 50, u— . (6.32)

Estimation of Re(u). By Potter’s theorem we have for M large enough and 0 < € <1 —«

o(ut) b
o(uty) = (E) '

Since t, — t* as u — oo we have for some small € > 0

taJre’

UXu(t) S C < t_e,

1+4+ct —

hence for all ¢ > M uniformly for u large it holds that 02;@ — 1 > 2t°. Choosing M large enough
Xu

and ¢ sufficiently small we have as u — oo

2 6m2 u m2(u
Rofw) < Y e = N ot < e 0, (6.33)

t€[M,00)5 /4 te[M,00)s

FEstimation of Rs(u). We have by Lemma 6.5.1 that with some C > 0
1—ox,(t)>C(t—t,)? tele M|

and hence by (6.15) for t € [, M]s\I(t,) it holds that

— 1) >m?(u)(1 —ox,(t) > C(t — t,)*m?*(u) > Cln*u.
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m2(u) ( 1

Thus, for t € [e, M]s\I(t,) it holds that e 2 20 Y < u~C"% and we obtain
Rs(u) < uCiu~ ™" 50, u— oo.

Combining the estimate above with (6.32) and (6.33) obtain (6.31). It follows from the calculations
in Theorem 6.3.1 that

P{ sup  sup Zu(t,s) >m(u) p > ®(m(u)), u— o0
t€[0,L]5 sel(tu)

and the first claim follows by (6.30) and (6.31).

Next we show the second statement of the lemma. Again, by Bonferroni inequality we have

IP’{ inf sup Z,(t,s) > m(u)}

te[O»%] s Sel(tu)
u

< P (u)

IA

IP’{ inf  sup Z,(t,s) > m(u)} +PJ inf sup  Zy(t,s) > m(u)

tel0. 25 ser(ta) tel0, 3]s s€(G s \I(tw))

It follows from the calculations in Theorem 6.3.1 that

P {te[inf sup Z,(t,s) > m(u)} > ®(m(u)), u— o0

0’%]§ Sel(tu)
u

and by (6.31) we obtain that

P< inf sup  Zu(t,s) >m(u) p = o(®(m(u))), u— oco.
100,315 5€(G 5 \I(tu)

Combining both statements above we obtain the second claim of the lemma. 0

Proof of Lemma 6.5.3. Fix some ¢t # s € I(t,). Since oy, (t),0x,(s) < 1 we have by Lemma

2.3 in [56] with 7,(t, s) = Corr(X,(t), X.(s))
P{X,(t) > m(u), Xu(s) > m(u)} < P{X,(t)>m(u), Xu(s) > m(u)}
< Bm(u))B(m(u)y L))

If & < 1/2, then by Lemma 6.5.1 as u — oo for some € > 0 it holds that m(u)\/l_T“T(t’s) > uf and
thus uniformly for ¢ # s € I(t,)

) <e 3" u— o0. (6.34)
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If « =1/2, then t, = 1/c and by Lemma 6.5.1 and (6.5) we have that for some & > 0 as u — oo

m2(u) 1 —r,(t,s) v (1+ct.)?c?(uls —t]) u?c*o?(uls —t|)
2 2 8ot (uty) 204 (u)

> (1/2+¢€)Inu
implying as u — oo

1 —ru(t,s)

Bm(u)y|—

) S u71/27€l'
Combining the line above with (6.34) we obtain the claim. O
Proof of Lemma 6.5.4. Let a = K¢, where K is a large natural number that we shall choose

later on. By the proofs of Theorem 15 and Lemma 16 in [23] we have with 0727 being the variance

of n that

0,a,2a,...,S}) 1 2 T 4o
lim inf H,({0,a,2a, .., 2 - /e
S—o0 S CL

0

2

We have that for all u large enough a%(t) > Ct implying that f e e dt < 00. Choosing sufficiently
0

large K we have

lim ing 70({0:8,20,.., S} o Hy({0,0,2a,.., 5))
S—00 S S—o00 S

1
—-=>0.
a
Next we prove that for I(S) := w it holds that for large S € Gy
I(S) > I(S +9). (6.35)
We have

(S+0)I(S+5) < E { sup eﬁn(t”%(t)} +E {eﬁ"@”)*ff%(s”)} F(S +0)
te{0,d,...,S}

= SI(S)+ F(S+9),

where F(M) =P< argmax (vV2n(t) — o2(t)) = M} for M € Gs. Thus, to claim (6.35) we need

te{0,d,...,M} !
to show that for large S

SI(S) > F(S +9). (6.36)

Since liminf 7(S) > 0, we have that §1(S) > ¢ for all S and some positive €, but on the other

S—o0

hand as S — oo it holds that
F(S+6) < P {ﬁn(s +8) — 02(S +68) > V2(0) - 03(0)}
= P{V2(S+0)— XS +8) 20} -0,

consequently (6.36) holds and hence I(.S) is non-increasing for large S. Thus, Slim I(S) € (0,00)
—00
and the claim holds. U



Chapter 7
Properties of Pickands Constants

In this chapter we give new results on Pickands-type constants.

7.1 Introduction

The classical Pickands constant Hoy plays an important role in the theory of Gaussian process
and appears in many asymptotics of the ruin probabilities, see, e.g., [59]. However, the exact value
of the classical Pickands constant is known only for H = 1/2. Thus, naturally arises the question
of approximation of the classical Pickands constants. The main difficulty in approximation of Hog
by using the classical definition is the limit. The other technical issue is simulation of {BM on

continuous interval [0, S].

In practice, Hop is approximated by the discrete Pickands constant. It is known, see [12], that

(ISLI% HSy = Hop. Therefore, to approximate Hop we need to answer two main questions:

Q1: How to approximate/simulate H3;,?
Q2: What is the error of discretization, i.e., what is the speed of convergence of Hoy — H3y to 0

as 0 — 07

The first question is answered in [30], the approximation involves an alternative representation of
HS,; without limit. We also give Lemma 7.2.5 that may help to estimate an error of simulation in

approach of [30].

For the second question, the following conjecture is formulated in [30]:
Conjecture 7.1.1 It holds that

446
Ay = lim —HQH o

lim 57 € (0,00).

119
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We think that the above conjecture is true, but it seems very difficult to prove it for H # 1/2. In
Theorem 7.2.1 we give a relatively precise upper bound for Hyy — H3y, and all small § > 0, while

in Theorem 7.2.2 we prove the conjecture for H = 1/2 and calculate A,/ explicitly.

The question of speed of convergence of the discrete Pickands constants to continuous ones is

related to the estimation of

sup Bp(t) — sup Bpg(t).
t€[0,1] t€[0,1]5

as 0 — 0. We refer to [6, 7| for the interesting analysis of the expression above. For BM case, (i.e.,

when H = 1/2) we refer to [28] for the survey of the known results for the current moment.

7.2 Main Results

The theorem below gives an upper bound for Hoy — H3,, for all small 4.

Theorem 7.2.1 [t holds that for H € (0,1) and all sufficiently small § > 0
Hom — Hyp < —C67 Ino.

Next we focus on BM case. We start with the theorem providing us an alternative representation
of H°.
Theorem 7.2.2 For any 6 > 0 it holds that
= B(\/0k/2) \ -1
H? = (5 exp(2 e . 7.1
(Bexp(23_ =) (7.)

The theorem above follows by Lemma 5.16 and Remark 5.17 in [46], in Section 7.4 we present an

alternative proof. Differentiating the formula above with respect to 6 we obtain
Corollary 7.2.3 H° is a strictly decreasing function with respect to & for all § > 0.

Now we can prove Conjecture 7.1.1 for H = 1/2 relying on Theorem 7.2.2 and calculate A; 5.

Theorem 7.2.4 It holds with ¢ being the Fuler-Riemann zeta function that

. Hi—H]  ¢(1/2)
limy = =

It is interesting, that the constant —C(l—\/;) is the limit in the theorem above. This constant ap-

> 0.

pears in many problems concerning the difference between supremum of BM on a continuous and

discrete grids, see [28].
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Next we present a lemma establishing tail properties of the rv appearing in the Dieker’s represen-

tation of the classical Pickands constant, see Proposition 1 in [30]. Namely,

Sup e(\/iBH(t)_ltPH)

teR )
Hopy = E e E{cy)} € (0,00). (7.2)
R

Since this representation is useful for approximations of Hyy via Monte-Carlo simulations (see
[30]) it is worth to know the heaviness of tail of {x. In the following lemma we prove that {y has

a light tail.
Lemma 7.2.5 For any large x with £y defined in (7.2) it holds that

P{¢y > a} < e Oe

7.3 Technical Lemmas
In this section we present and prove four lemmas needed for our proof of Theorem 7.2.1. Let
Z(t) = V2B (t) — |t]", teR.

The first lemma allows us to estimate the difference between the continuous and discrete time

supremum on a finite interval.

Lemma 7.3.1 For sufficiently small § > 0 it holds that

IP’{ sup Z(t) — sup Z(t) < —(5H1n(5} >1— e O

t€(0,1] te(0,1]s

Proof of Lemma 7.3.1. Note that for any b > 0 it holds that

t€[0,1] te[0,1]s

P{sup Z(t) — sup Z(t)>b}

IN

P(3t € [0,1]s,s € [t,t + 0] : Z(s) — Z(t) > b)
< Y P{Ise[tt+6]: Z(s) - Z(t) > b}
tel0,1]s
- ¥ IP’{EIs € [t,t+ 6] : V2(By(s) — Bu(t)) — 21 + 21 > b} .

te[0,1]s

Since for any considered s, in the sum above it holds, that —s?# + t27 < 0, the last sum above

does not exceed

P {33 € [t,t + 6] : V2(By(s) — Bu(t)) > b} .

tel0,1]s
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Next, by the stationarity of increments of fBM we have

Z P{as € [t,t+ 0] : V2(By(s) — By(t)) > b} <

tel0,1]s

P{Ht €[0,0] : V2By(t) > b}

S S

i {at € (0,1 : V2By(t) > ba—H} .

Taking b = —6 In ¢ we finally have for sufficiently small §

1 Iné
PS sup Z(t) — sup Z(t) > —6"Ind; < —P{Elt €[0,1] : Bu(t) > _n_}
t€[0,1] t€[0,1]5 Y \/§

2
S e—C In® ¢

9

where the last line above follows from Borell-TIS inequality (see [50]). Rewriting the statement

above we have

P{ sup Z(t) — sup Z(t) < —6H1n(5} > 1 g Ol

t€[0,1] te[0,1]s

and the claim follows. O

Lemma 7.3.2 For any large x it holds that

P< sup AW > b < e~ Cln*z
tel0,1]

Proof of Lemma 7.3.2. Observe that

IP’{ sup e?® > x} = ]P{ sup (V2By(t) — t*) > lnm} < ]P’{ sup Bpy(t) > lnm/\/ﬁ} < e Oz

t€[0,1] te[0,1] te[0,1]

where the last line follows by Borell-TIS inequality. O

The following lemma provides us a crucial bound for Hoy — HS ;.

Lemma 7.3.3 For sufficiently small 6 > 0 it holds that

Hon —HgH < 2(]E sup O R sup eZ®) )
t€[0,1] tel0,1]s

Proof of Lemma 7.3.3. As follows from the proof of Theorem 1 in [33], the first equation on
p.12 with ¢s = [1/d]6 ([-] is the integer part) it holds that

How — Hoy < cdllE{ sup eZ?® — sup eZ(t)}

tE[O,Cg] tE[O,Cg]g

te[0,c5) tel0,c5)s te(0,1] te[0,1]5

< 2E{ sup € — sup eZ(t)} < QE{ sup eZ® — sup eZ(t)}

and the claim follows. OJ

The next lemma is a general observation on properties of a random variable with a light tail.
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Lemma 7.3.4 For any p > 0, non-negative rv & such that P{& > x} < e O™’z gnd Ny C Q such
that P{Nys} < e~C™°% it holds that

/f(’w)dﬂ”(w) <o, 5 —0.

Proof of Lemma 7.3.4. We have
[ewitre) = E(iwe New)
< E{E(W)¢(w) > as)},

where a > 0 is such number that P{¢ > as} = e=C1*3 Next with any p > 0 for sufficiently small
0 > 0 we have

o0

E{@IE>a)) = [PLENE> ap) > a}ds

0

= /]P’{S]I(f>a5) >x}d$+/]P’{§]I(§>a5) > x}dr

o0

< a5P{£>a5}+/P{§>x}dx.

as

Since P{{ > z} is a decreasing function with respect to x for the integral above we have

0 o (k+1)as
/P{§>x}d$ = > / P{¢ > 2}dx
ags k=1 kag

< a5y P{¢> kas}.
k=1

By the lines above in order to prove the lemma it is sufficient to show that for any p > 0 uniformly

for small § it holds that

2 A o) <7 7.3
k=1
We have that
o as/d oo ]
aaZP{5>ka5} < a5<ZP{§>a5}+ Z o—Cln k:)
h=t k=1 p—

oo

2

a —Cln

SP{E>ash+a; Y e MK
k=as/é

IN
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For the sum above we have

o0

Z e~ O’k < (=Cln*(as/8) _ o(0"), §—0
k=as/é

and hence to prove (7.3) it is sufficient to show that
a2
X‘SIP’ {&>as}=0(8"), d—0. (7.4)
By the choice of a5 we have
2 2
%IP’ {€>as} < %B_CIHQ(S

and thus (7.4) does not follow from the line above only if as > e“™*9_ In this case (7.4) follows

by the assertion that P{¢ > 2} > e~“™** and the claim is established. O

7.4 Proofs

Now we are ready to perform our proofs.

Proof of Theorem 7.2.1. Set A = sup Z(t) and A\s = sup Z(t). We have by Lemma 7.3.3

te(0,1] tel0,1]s
Hopy — Hoy < 2E {e’\ - e“} =2E {e’\5 (e’\”\5 - 1>} :

Let As C € consists of w € Q such that A — \; < —§7Ind and B; = Q\As. We have for small

60>0
E {e’\5 (e’\_’\‘5 — 1)} = /e)“S <e’\_)“‘ - 1>dIP’(w) + /e’\‘S (e’\_’\5 — 1)dIP’(w)

As Bs
< 2 / s (A—Ag)d[?’(w) + / (€ — &) dP(w)
As Bs
< 2sup ()\—/\5> /e’\dIP’(w)+/e’\dIP(w)
wEAs
As Bs
< =267 lné/e)‘dIP’(w) +/6AdIP’(w)
Q Bs
< —C(SHIH(S—F/@)‘CZP(?U),
Bs

where the second line from the end follows by Lemma 7.3.1. By Lemma 7.3.2 e satisfies conditions

of Lemma 7.3.4 and hence we have

/e’\dIP’(w) =o(6"), §—0.

Bs
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and the claim follows. O

Proof of Theorem 7.2.2. We shall compute the asymptotics of
Ys(u) :=P{3t € G): B(t) —ct >u}, u— o0

in two different ways and then compare the answers.

First approach. In [40, 47] it is shown that
Vs(u) ~ Haese >, u — 00, (7.5)

Second approach. Let
X; = B(dII(t)) — coI1(t), t >0,

where I1(¢) is a standard Poisson process with intensity 1 and § > 0. Since a trajectory of I1(t), ¢ >
0 with probability one is {0,1,2,...} we have for all u > 0

Ys(u) =P{IHt >0: X, >u},

and later on we focus on the computation of the right side in the line above. Since X;,t > 0 is a
Lévy process we have by Theorem 8.2 in [26]

1 1
wk(0,0) 1'(0, —w)’

P{3t>0: X, >u} ~e"

where the definitions of w, k(a,v) and I'(0, —w) are given in p.116: third line in paragraph
"General case", p.37: (3.10) and p.117 in [26], respectively. In our case w > 0 solves the equation
E {esN (=09} = 1 implying w = 2c. Next we calculate k(0, a). For Fy(z) be the df of X; we have
L tO —t tl L t2
Fi(r)=e EIP’{B(O) —0xc<z}+e FP{B(é) —dc<zx}+e 5[?{3(25) —20c<z}+.., xR

Differentiating we obtain the density g;(x)

th T+ dc 2 x + 20c

gt(w)=et<1!\/g¢( 75 )+2!\/%¢( NeT )+...>, z €R,

where ¢ is the density of a standard Gaussian rv. To compute
o 0
0 0

we calculate this integral for each summand in g;(x).

(e7" — e ") gy(z)dzdt

~ | —

[ ole o]

b e g WP w+kbe

0 0

S
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(e 9] o0

:U+(5kc /1 —t / x+0ke.
= dx — —e dt az Jo
/ w—/¢ Vor Otk;lx/_ v
[ ‘%5k0 v [ i (E ke i
= 2 | 2t/ = d —/ t—dt/ Sk g
0/ k [ IRV (57
1 i _G Z
= —(I)(c\/_ li/e % (z4+(c4a)Vok)2+c?5k—kd(cta)? )dZ
k2k k\/on
0
= @@(C\/_)——‘I)((Ha)\/ﬁ)ew_
Since Z (e~ e—ax)e—tk&kﬁ(b(ﬁkéc)converges uniformly to > 1(e_t_€—ax)e—tk!ij%¢(x\jgc>7 ot >

k=1
0 as n —> oo we can change the order of integration and summation and write

[e.9]

K0.0) = exp (3 (%6((% Vo) M W@(N_ )).
k=1
Thus, we obtain
= 2k — 1
= exp (; B (cV/ok) o > (7.6)
Next we have
. 15 Sk(a®+2ac) =1 =
1(0,a) F00) = exp ( E (c+ a)Vok)e 2 > exp <Z H@(cﬂ))

i
i
I

We show in the Appendix that

(exp ( i % (c+a) )6W>) la=—w = cdexp( B(cV/ok)) (7.7)

NE
| =

>
Il

1

and hence
1'(0,a)|qg=—w = 0 exp(i % (eV/ok)) exp (i 55(0@))
=1 k=1
Hence by (7.6) and the line above
wk(0,0)1(0, —w) = 2c*5exp( i ® C\/_ ) exp (i k_ ) exp <i (eV/ok) 22;})
k=1 k=1 k=1

= ( \/
= 2c% exp( 22 (c
k=1
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Finally we have

2 D(eVk) \ 1
>0 - ~ p2cu 2 ]
P{3t>0:X;,>u}~e (20 dexp(2 kE_l — )> , U — 00
Since ¢s(u) = P{3t > 0: X; > u} by (7.5) we obtain
. D(eV/0k) \ 1
_ (9.2
Hop2s = <20 dexp(2 321 2 ))
Putting 7 = 2¢2J in the formula above we obtain the claim. U

Proof of Corollary 7.2.3. First we show that v(n) = nexp(2 Z S 7716/2)) is an increasing

function for n > 0. We have for any 0 < a < b and n € [a, b]

TP &)
V) = exp(2)  — J(1-20" [%Qﬁ (7.8)
> 6( %) N4l > %
= exp(?Z ? )( _ﬁz \/E>7

justification of the differentiating in (7.8) is in the Appendix. We have

\F\[/ - Wdz——/ 1/2d( ) = \}Er(1/2)—1

and we obtain by (7.8) that v'(n) > 0 for any n > 0. Thus, H, is decreasing for n > 0, and since

by the classical definition Hy > H,, for any n > 0 we obtain the claim. O

Proof of Theorem 7.2.4. Since Hy = 1 (see, e.g., [26]) by Theorem 7.2.2 we obtain that

A = lim —HO — My = lim 1= 1/vtn) UU(U),
n—0 \/ﬁ n—0 \/ﬁ

where (recall) v(n) = nexp(2 Z S nk/ ). Since H,, = v(n)~* — 1 as n — 0 (see, e.g., [30]) we

conclude that limv(n) =1 and hence
n—0

v —1

Implementing the L’Hopital’s rule we obtain by (7.8)

: <D et
A—%%/((—:?/)_)—th( neprkz:; ( %;\/E>>
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Note that by the definition of v(n) observation that lim v(n) = 1 implies

n—0
~© (/)
Vinexp(2 )~ —, n—=0

and hence

Let v = /1/2, thus

A (-G ) =1 e ).

where Li 1 is the polylogarithm function, see, e.g., [9]. As follows from equation (9.3) in [62]

z—0 1

1/2) 1
_ C<\//E)__l (Zg1/2— (=

Thus, to prove the claim is it enough to show that

o 2%k (_1)k
glﬁiir[l);C(l/Q - k)% = 0.

lim = (1 - %Li (e*x2)> ~ lim2 (1 . % (F(1/2)(:c2)*1/2 4 C(1/2) + kf; C(1/2 — k)
1)’“)

=)

(7.9)

By the Riemann functional equation (equation (2.3) in [32]) and observation that ((s) is strictly

decreasing for real s > 1 we have for any natural number k

C(1/2 k)| < 22 n2PRD(L/2 + k)C(L/2 + k)
< 27F0(k +1)¢(3/2)
C(3/2)k!
ok

Thus, for |z| < 1 we have

> cz-p=

k

s [C(1/2 -k
wZ'(/k! )

] <
< 2%(¢(3/2) iz M= ((3/2)x
k=1

and (7.9) follows, this completes the proof.
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Proof of Lemma 7.2.5. We have for any M > 0

sup Z(t) sup  Z(t)
eteR etel—M,M]
oL >ry = P > x and Z(t) achieves its maxima at t € [—M, M]
[ e?dt
R

¢ 7
R

sup Z(t)
EtER\[—M, M]
[ e?®dt
R

sup  Z(t)
etel—M, M)

[ eZdt
R

+ P > x and Z(t) achieves its maxima at ¢t € R\[—M, M]

< P >z % +P{3t e R\[-M, M]: Z(t) > 0}

sup  Z(t)
etel—M,M]

[ eZ®adt
[_MvM]
= (M, 2) + pa(M). (7.10)

IN

>z +2P{3t>M:Z(t) >0}

FEstimation of po(M). We have for all M > 1
pa(M) < Z]P’{Ht e [kM, (k + 1)M] : V2By(t) — 27 > o}
k=1

— ip {Ht c[1,1+ %] V2By (t) (kM) > (kM)2Ht2H}

< Z]P’{Ht € (1,2 : V2By(t) > (kM)H}
k=1
o (kM)2H
< Ce 10
k=1
M2H
S e 10
and hence for any M > 1 we have
Mm2H
pa(M) < Ce™ 10, (7.11)

Estimation of p1(M,z). Observe that for any sufficiently large M

M-1 sup Z(t) M-1
¥ ey ¥ axlw)
n(M,z) < P 1;;_—11\/1 >z =P %>x
> [ Pt > be(w)
k=—M [k, k+1] k=—M
Since event

M-1

> ap(w)

k=—M

>

—1

k:Z;M br.(w)
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implies that for some k € [—M, M — 1]; event

happens, we have

M-1

ag(w)/br(w) > x

> ar(w) M1 ) sup e”("
k=—M ap(w te(k,k+1]
P > <ZIP’{ >x e <2M sup P T
M1 - bk(UJ) }_ ke[—M,M eZ(t)dt
Y by(w) =i S
k=—M
and thus we obtain that
sup eZ®
telk,k+1]
M,z) <2M P —————
(M, z) < ke[sj}l\?,M] [0 x
[k, k+1]
Since e, x € R is a convex function we have by the Jensen’s inequality
/ e?Oat > exp( / Z(t)dt)
[k, k+1] [k k+1]
implying
sup e?® ( sup  Z(1)
telk,k+1] etelkh+1]
P ——0rn— > < P >
[ eZWdt = exp( [ Z(t)dt) ‘
[k k+1] L [k,k+1]
(
= PJ sup Z(t) — Z(t)dt >Inx
telk,k+1]
L [k,k+1]
p
=P / ( sup Z(t)— Z(s))ds > Inzx
telk,k+1]
[k, k1]
< P{3t,sek,k+1]:Z(t) — Z(s) > Inz}
( Inz — sup ([t[*" —[s]*")
t,s€k,k+1]
< PR dt,selk,k+1]: By(t) — By(s) >
< [ |+ Bu(t) — Bu(s) NG
1 _ OM2H71
< ]P’{Hte[O,l]:BH(t)> =7 }

V2

Thus, for all sufficiently large M

(M, x) < QM]P’{EIt €[0,1] : Bu(t) >

V2

and combining the statement above with (7.10) and (7.11) we have

sup eZ®

telk,k+1]

"\ Toa
R

>x

~ M2H

Inz — CMQH_I}

Inz — CM?*H-1

<Ce 10 + 2MIP’{EI75 €1[0,1]: Bu(t) >

et
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Assume that H < 1/2. Then choosing M = z in the inequality above we have for all large x

sup eZ®
telk k+1 _
[ ] > <e Cln?z

"\ Tooa =
R

Assume that H > 1/2. Taking M = C’(In I)ﬁ with sufficiently small C” > 0 we obtain

sup e?®

H
telk,k+1] < 56—0”(1“)27211—1 i O’z ~ ~Chn’

P —fez(t)dt >x
R

and the claim follows.

7.5 Appendix

Proof of (7.7). By the definition of derivative we have

L = 3( lim exp < - 2": %6((0 + a)\/@)e(waz%)) la=—2c

Oa \ n—>oo —
1 k(2 1
= lim (—( lim exp ( — ) —®((A—c)Vik)e % A)A) — lim exp ( - —CID(—C\/5/<;)>>).
A—0 A n—00 ] k n— o0 = k
Since Y +®(—cVok) > £ 3 1 > 2% we have
k=1 k=1
n 1_
lim exp ( - —d(—cV (5k)> < lim n~ 2 = 0.
n—o00 k n—00
k=1
Thus, since ®(z) =1 — &(—z), z € R we have
- L 1 —oh(2e-)A
b= (gt (=22 gR(8 —ovaRe )

) 1 . "1 —5k(2c—A)A "1 —5k(2c—A)A
= Jim (5 Jim (e (- 25 )exp<k_1 F B = Va5 ) ) )

) 1 . "1 —sk@e—a)a . . L, P —8k(2c—A)A
=y (g im (oo (= 05 0)) ) el (i e (3 000 = )VAR55))
=: L1 X LQ,

if L1 and Lo are finite limits, that we shall show later on. Note that for any A > 0 by Taylor’s
formula ) 67:,4 = —In(1 — e=*) and hence

k=1

1 1 —§(2c—A)A
. =0(2c=A)A . — € 2
lekﬂ)(Zexp(ln(l—e )>>_£LDOT_5C€(O’OO)'
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Since for any small A > 0

"1 “5k(2e—A)A e 1
> 0((e—Apek)e B(cVok/2) <Z <
k=1 k=1
we have that
o 1— —8k(2c—A)A
Lo —exp(ili%;?b((c—A)\/@)e 2 > € (0, 00).
Next we focus on the expression in the exponent above. We have
1
1 —8k(2c—A)A VA, 1— —5k(2c—A)A <1 —5k(2c—A)A
ZE AWek)e = = E@((C—A)\/@)672 + ) E@((C—A)\/@)eiQ
k=1 k=1 k:ﬁ
= S51+95
For S5 we have
Sy < Y B(eVok/2) < Cem VAR, (7.12)
=

Next we have for k < 1/v/A

B((c — AWGE) — B(eV/ok)| < CAVE < OVA, |1 — e 52 < CkA < CVA

implying
I — —ok(2e-A)A  —
E|@((C—A)\/%)e > —B(eVok)| < CVAJE.
Hence
s, %
1Sy — ZE‘P(C k)| < CVA - < CVAInA
k=1 k=1
We have by the line above and (7.12)
=1 —ok(ze—a)A A 1
ZE AWok)e™ 2 E B(cVok)| < CVAInA
k=1 k=1

and hence letting A — 0 we obtain Ly = exp(z 1®(cv/6k)). Finally we have

L=1LxLy=¢f exp(z %6(0@))
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Proof of (7.8). To prove the claim we need to show that for any 0 < a < b we can differentiate

o0

f(z) = Z@(Z\/E), z € [a,b]

k=1

by terms, i.e., switch order of differentiation and integration. According to paragraph 3.1 p. 385
in [48] it is enough to show that with f,(z) = 3. ®(2vk), 2 € [a, D]
k=1

1) exists zg € [a,b] such that the sequence { f,,(20) }nen converges to a finite limit,

2) fl(z),z € [a,b] converge uniformly to some function.

The first condition holds since ®(z) < e=**/? for 2 > 0. For the second condition we need to prove

that uniformly for all z € [a, ] it holds that ) f/.(2) — 0 as n — oo. We have
k=n+1

%) 0o ¢(Z\/E) 00 e_ZQk,/Q o
N ACERS =Y = <Cem™ 50, n— oo

and the claim holds.
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Chapter 8
Alternative Proofs of Some Results

In this chapter we give alternative proofs of some results of the previous chapters.

8.1 Proof of (2.9).

We give an elementary proof based on some elegant properties of BM. We use the independence of
the increments property and the explicit formulas for ruin probability over a finite and the infinite

horizons.

Observe that for any u > 0

P sup Z(t)>up < P sup Z(t) >up+P sup Z(t) >u
t¢ [T ,To ] t€[0,T ] te[To,00)

= pi(u) + pa(u).

Estimation of p1(u). By the following explicit expression of the ruin probability over a finite

horizon (see [26])

P {QE%B@) —ct) > u} ) (% + C\/:F> ) (% - C\/:F> . T.e,u>0 (81)

and (2.7) we obtain that

pl(u) S efZCquanU’ U — 00.

Estimation of p2(u). Using the independence of the increments of BM and that Z(7)) is a Gaussian

rv with mean —cT." and variance T, we have

plw) = [ P{supKZ(t)—Z(T;)Hx]>u\Z<TJ>=x}dFu<x>

t>To
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= /IP’ sup Z(t —T.)) >u—x p dF,(x)
2 t>To

_ ((E+CTJ)2

= {supZ > u—x}e 2Ty dx

\/ 2777”r >0

9 2 (z+cTJ)2 (z+cT+)2

— —2cu cx 2T7]L dl’ + +

\/ 27rTJr A /27TT+

— u+ ch _ u— T,k
= B(—=1) + e P(—="),

VIS VIS

where F), is the df of Z(T,[). By (2.7) for all large u the expression above does not exceed

e~2eu=Cln*u thyg we conclude that
pz(u) < G—QCu—Cln2u

Combining both estimates above we obtain that as u — oo

P sup Z(t)>u,p < g 2u=Clnu
t¢[Te T ]

. _ 2 . . .
and since e~ ¢ * decreases faster than any power function as u — oo we obtain the claim. [

8.2 Proof of (3.18).

Here we present an elementary proof of (3.18) based on the independence of the increments of BM.

We have by Borell-TIS inequality that

¢5(u)NP{3t€[t*—lnTZ,t*+mTZ]g:Z(t)>\/ﬂ}, U — 00, (8.2)

for details see proof of (3.12) in Appendix in Chapter 3. Next for any fixed S,u > 0 we consider

the intervals

Njsu=[tutiSu ' t,+(G+1)Su™s, —N,<j<N,

gl

where N, = [S™!'In(u)y/u| and [-] is the ceiling function. Let

Bt Bt
pj,S,u:P{ sup (t) >\/_} for j >0, pj,S,u:]P{ sup ()

ten; s 1t + Q1 teA; g Cot + Q2

>\/ﬂ} for j < 0.

Note that A = A_; [JAy. We have

]P’{i,gEZ(t)>\/ﬂ} < P{Hte[t*—%,t*+%]i:2(t)> u}
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< Zp]su+2p]su+lP’{supZ() \/ﬂ} (8.3)

— = teA

and thus to prove the claim we need to derive a sufficiently accurate asymptotic upper bound for

the sums in the line above.

Ny,
Approzimation of Y pjs.. We have
j=1

pj,s,uzp{ sup 2t >f} { sup <B<t>—¢am>>¢a},

teA; . C1U + @1 tEA; 5u

where

Vo = gv/u and ,u:ﬁ.

q1
By the independence of the increments of BM with o = 2, ¢, g, = t, + jSv™2, S = S¢2, § = 0¢?
and ¢, ; the df of | /¢; 5, we have

Dj,su
P{Jea,s. : (B(t) — Vout) > a}
jsS (J+1)S
= Poteftut+ - tut =———]s : B(t) - Blejso) - Vau(t — ¢js.) + Blejse) — Vauesy > vVa
= /IP’ {Elt e [0, %]5 : B(t) — Vaut — Vaucj s, > Va — x|\ /¢ s.N = x} 0y j(x)dz
R

B(tv tv?
= /IP’{EItU2 € [0, 5¢7] 25 - (v ) \/_,u —Vapc; s, > a—x} ©y.j(x)dz

R

= /RIP) {Elt € [0,5); : (B(t)/v —vu(cjs0 +t/v?) > v — x} ©yj(z)dx

— E/RIP{Ht € 0,85 : (B(t)/v—vu(cjse +1/v?) > v — (v — x/v)} @u;(v—2/v)dT

v

1 A
= - / P{Ht € [0,5]; : (B(t) — pt) >z + /,LCj’S’vUQ} v, j(v—x/v)dx
R

1 A
= - / ]P’{Ht € [0,5);: (B(t) — pt) > a:} ©p i (V(1 + pejs0) — x/v)de
R
e~V (1+ncss,0)%/(2¢,5,0)

_ P {3t € [0.8];: (B(t) — pt) > o} tmoslenses/Cousu?) gy,
R

V\/27TCj 54

By the same arguments as in the proof of Theorem 2.1.1 in Chapter 2 we have with x =

Tput*
ﬂb as

U — 0

/ P {30, (BUt) — pt) > o} eCense)/ensa=s?/Cousa®) gy
R

~ /]P’{Elt € [0,8); : (B(t) — ut) > x} eXdx

R
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=: J(9).
Clearly, J(S) is a non-decreasing function and
0 00 1 oo
J(9) < / eXdx + /]P’{Elt >0:B(t)— ut >z}eder = —+ /e(_Q’”X)xdx < 00,
X
—00o 0 0

provided that L < 2, which follows from ¢; < t*. Thus, we have that

lim J(S) € (0, 00).

S—o00

Hence we have as u — oo and then S — oo

(14pej g.0)> <1+m*)2)

zpm <ol Z SRR G g g
j=1
Setting
a(t) = (L4 ut)?/2t = 1/(2) + p+ @°t)2,  d(t) = (=1/* + u*)/2
we have a(t* + z) > a(t*) + j2d/(t*) as * — +0. Since jS/u for 1 < j < N, uniformly tends to

+0 as ©u — oo we have

2
N 2( (tuej s5.0)"  (14+ut*)2

) N 24! (%) [ 04 +5S

—U — * _'U a J

E e 25,8, 2 < E e” 2 ) u— 0.
i=1

j=1

We have with w = a'(t*)¢?/2 > 0

Ny Ny,

_ ) (OutiS _ o _
Ee““(t)(u):e“’augeJSWSCeWS, S — o0.
=1 j=1

In the light of the calculations above, we have

1 —v2(1+ut )2

ij Su > 0= 2t* —wS < C@(]D)l/g\/ﬂ)e_“’s

Similarly we obtain that

Z p]Su = Dl/?\/_>

Combining both bounds above we have

Ny —2
S pisat Y Disu < ODypy/u)e S
Jj=1 j=—Nu

and letting S — oo we obtain in view of bounds for P {sup Z(t) > \/ﬂ} given in (3.22) that as
teA
u — oo and then S — oo

Ny -2
ij,s,u + Z Dj,Su = O (]P’ {sup Z(t) > \/ﬂ}) .
J=1 j=—Nu

teA

Thus, the claim follows by the line above, (8.2) and (8.3).
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8.3 Proof of Theorem 4.2.1, Case (2), H = 1/2.

Here we give a proof of Theorem 4.2.1, Case (2), H = 1/2 using the independence of the incre-
ments of BM. The proof is based on the same ideas as the proof of Theorem 5.2.1.

By the same arguments as in the proof of Theorem 5.2.1 we have as u — oo and then S — oo

p(u) ~ P {Elt eA: inf Z(s)> \/ﬂ} =: ps(u), (8.4)

T
s€ftt+]

where A = [—S/u + t.,t. + S/u]. Denote
Ay =[S +uty, =T +uty), Ag=[-T+uty,uty), As=[ut.,ut.+S].

Let ¢,(z) be the density of B(ut,) and B, be an independent copy of the same BM. For S > T
with

0= crta+ gy = oty + o = C142 —Cqu7 e = n ey = C]2(C1 —02)’ B2(S) _ B(s) — ¢y
1 — Co ty @2 —q
we have
ps(u)

= P {Elt € [-S +ut,,ut, + 5] : [infT](B(s) — max(c1s + quu, cas + qou)) > 0}
sE|t,t+

= P{Eltl €Ay :  inf  By(s) > qu

s€[t1,t14+T]

or dty € Ay . inf  Bs(s) > qu, inf (B(s) — B(uty) — c18) > qu — B(ut,)
SE[t2,uts] s€[utx,ta+T)

or Itz € Ag: inf (B(s) — B(uty) —c18) > qru — B(ut*)}
SE[tg,t3+T]

SE[thtl-‘rT}

= /gbu(nu — ) X ]P’{Eltl €A inf  Bs(s) > qu
R

or Ity € Ay i inf  Bs(s) > qou, inf  (B.(s —uty) — c1(s — uty) — citau) > qu — (nu — x)

SE[t2,utx] SE[uts,t2+T]

or Itz € Az :  inf  (B.(s —uts) — c1(s — uty) — crtau) > qu — (nu — x)|B(ut,) = nu — x}dm

SG[t3,t3+T]
= /gzﬁu(nu — 1) X P{Htl €Ay:  inf  By(s) > qu
sE[t1,t1+T]
R
dts € Ay : inf B > , inf B.(s) — >

or Stz 2 se[ltgl,ut*} 2(8) s SG[O,tglETfut*}( <S) 018) .

or dtz € Ag: inf (By(s) — c18) > x| B(uty) = nu — x}dm
s€[tz—ut«,tz+T—uty]

211,

6_ 2t

— | P
\2mut,
R

or 3ty € [-T,0) : sei[?Qf,O](Zu(S) +1.8) > x, SE[Oi?Qf+T](B*(s) —cs) >

{Eltl €[-S,-T): Se[tilrngT](Zu(s) +1n.8) >
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or I3 €[0,5]: inf (Bi(s) —c18) > x}e%_;ﬁdx,
s€(ts,t3+T]

G(u,x) et Zurs dx
V2mut,
R

where Z,(t) is a Gaussian process with expectation and covariance defined by

E{Z.(t)} = _ft, cov(Zu(s), Zu(t) = —L _4t,  s<i<o.

)
ut, U,

Next, since Z,, weakly converges to BM (this is shown in the proof of Theorem 5.2.1) and by the
independence of B(z) and B(y) for x > 0 > y we write as u — 0o

€T IL‘2
/G(u,a:)ertl*m*dx ~ /]P’{Eltle[—S,—T): inf  (B(s) +nes) > (8.5)
seft1,t1+T]
R R
dto € [=T,0) : inf (B «s) >x, inf (B(s)— >
or 3ty € [=T,0) : inf (B(s)+m.s) >, inf  (Bls)—cis) >

or Jt3 € 0,5] : Se[tigiT](B(s) —8) > x}et* dx
=: I(9).

From the proof of Theorem 2.1, Case (2), H = 1/2 in [42] we have that 51im I(S) € (0,00).
—00

Denote

2 ~
0 = 7;—2, k(s) =n.sl(s < 0) —c1sl(s > 0), k(s) = %k(s)
We have
I1(S) = [PL3te[-S,S]: inf (B(s)+k td
(S) { €[S, 5] se[1t2+T}< (s) + k(s)) > x} etrdx

I
P %\“ T~

2 t*
P{Elt €[-5,5]: se{igﬁﬂ (B(Stz )+ —k(sn ) > x} e“dx

* *

*

n

P{ sup inf  (B(s) + k(s)) > x} e“dx

te[—08,05) SE[L,1+0T]

~+

*

n te[—08/2,05/2) sE[tt++0T/2]

p{ sup inf (\/iB(s)—|sy+/2;(2s)+|s|>>z}ewdx

_ Ly sup inf VEBE-lsde) |
n te[—05/2,08/2] SE[L1+0T/2)]

recall that d(s) is defined in (4.6). Thus, we have that

L : _ L
I(S) = —E {sup inf  eV2B6) |S|+d(s)} = —Hipy € (0,00), S — oo.
n teR SE[Lt+0T/2] n
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Finally combining (8.5) with the line above we have that as u — oo and then S — oo

2’LL

e 2tx
ps(u) ~ V2mut, m

hence the claim follows by (8.4).

H@T/Z ~ 6(]D)l/? \/E)H%w

8.4 Proof of Lemma 5.4.1.

Here we present an elementary proof of Lemma 5.4.1 that does not require specific knowledge
o

about the distribution of [I(B(t) — ¢t > z)dt. The key-properties for our proof is the indepen-

0
dence and stationarity of the increments of BM.

Denote for 0 < a < b
f(la,0]) =P{3z e R: paft € [a,0] : B(t) —ct =2} >0},  f(S):=f([0,5]), S=0.
We shall prove that
f(S)y=1—-e* kel o0 (8.6)

We have for any 0 < a < b with NV being a Gaussian rv independent of B with variance a and

zero expectation

f([a,0])) = P{3z € R: pup{t € [a,b] : B(t) —ct =z} >0}
= P{Jz €R: pup{t € [a,b] : B(t) — B(a) — c(t — a) + B(a) = x + ac} > 0}
= P{3zeR:ur{t€[0,b—a]: B(t) —ct+N =z +ac} >0}
= P{IyeR:pur{t€[0,b—a]:B(t)—ct=y} >0}
= flb—a)

[
[
[
[

By the inclusion-exclusion principle for any 0 < a < ¢ < b it holds, that

f(la, b)) = 1= (1 = f([a, ¢]))(1 = f([e, b]))-

By the last two equations above it follows, that for any S, S > 0

f(S1+82) =1 = (1= f(51))(1 = f(52)). (8.7)

Since f(S) is non-decreasing and non-negative, then exists %ir% f(S)>0.
_>
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i) Assume that éii% f(S) =¢e > 0. Then by (8.7) we have that for any n € N

f(S)zl—(l—f(g))”Z1—(1—5)”—>1, n — oo,

hence f(S) =1 for all S > 0 and (8.6) holds for k = occ.

ii) Assume that lim f(S) = 0. We have that f(S) is continuous: by (8.7) for any & > 0

f(S+e) = f(S)=1- (1= f())1— fle)) — f(5) = fe) = f(S)f(e) < f(e) =0, —0.

Denote g(S) = 1 — f(S). Then we have that 0 < ¢(S) < 1 is a continuous function and by (8.7)
g(Sy + S5) = g(S1)g(S), Sy, Sy > 0.

By Chapter 8, exercise 6 in [61] this yields that g(S) = e *° for k € [0, 00] and (8.6) holds.

Assume, that the assertion of the lemma does not hold. Then by (8.6) we have

lim f(S) = 1.

S—o00

We have for S > 1 and some family of positive numbers Ag, such that Ag, , < Ag, , for S; < S,
with AO = Al,x >0

F(S) = P{ua{t:€[0,9]: B(t) —ct = a} = Ag, > 0}

S
< P {/]I(B(t) —ct > x)dt > AS@}
0
<P /]I(B(t)—ctzx)dton
0
Thus, for § > 1
£(S) <P /]I(B(t) LS a)dt> Ay, e Ay > 0,0 €R.

0

The probability above is strictly less than one, that contradicts Slim f(S)=1. 0
— 00
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