
 
 
Unicentre 

CH-1015 Lausanne 

http://serval.unil.ch 

 
 
 

Year : 2019 

 

 
Early Modifications of the Adipose Tissue linking Obesity and 

Metaflammation 

 
Caputo Tiziana 

 
 
 
 
 
 
Caputo Tiziana, 2019, Early Modifications of the Adipose Tissue linking Obesity and 
Metaflammation 

 
Originally published at : Thesis, University of Lausanne 
 
Posted at the University of Lausanne Open Archive http://serval.unil.ch 
Document URN : urn:nbn:ch:serval-BIB_609FD80231BE6 
 
 
Droits d’auteur 
L'Université de Lausanne attire expressément l'attention des utilisateurs sur le fait que tous les 
documents publiés dans l'Archive SERVAL sont protégés par le droit d'auteur, conformément à la 
loi fédérale sur le droit d'auteur et les droits voisins (LDA). A ce titre, il est indispensable d'obtenir 
le consentement préalable de l'auteur et/ou de l’éditeur avant toute utilisation d'une oeuvre ou 
d'une partie d'une oeuvre ne relevant pas d'une utilisation à des fins personnelles au sens de la 
LDA (art. 19, al. 1 lettre a). A défaut, tout contrevenant s'expose aux sanctions prévues par cette 
loi. Nous déclinons toute responsabilité en la matière. 
 
Copyright 
The University of Lausanne expressly draws the attention of users to the fact that all documents 
published in the SERVAL Archive are protected by copyright in accordance with federal law on 
copyright and similar rights (LDA). Accordingly it is indispensable to obtain prior consent from the 
author and/or publisher before any use of a work or part of a work for purposes other than 
personal use within the meaning of LDA (art. 19, para. 1 letter a). Failure to do so will expose 
offenders to the sanctions laid down by this law. We accept no liability in this respect.

http://serval.unil.ch/�


	
	

Centre	Intégratif	de	Génomique	
	
	

Early	Modifications	of	the	Adipose	Tissue	linking	
Obesity	and	Metaflammation		

	
Thèse	de	doctorat	ès	sciences	de	la	vie	(PhD)-programme	
Integrated	Experimental	and	Computational	Biology		

	
	

présentée	à	la	
	
	

Faculté	de	biologie	et	de	médecine		
de	l’Université	de	Lausanne	

	
par	
	

Tiziana	CAPUTO	
	

Maîtrise	universitaire	en	Biotechnologie	Pharmaceutique		
diplômée	de	l’Université	de	Milan	

	
	

Jury	
	

Prof.	Luc	Tappy,	Président	
Prof.	Béatrice	Desvergne,	Directrice	de	thèse	

Dr	Federica	Gilardi,	Co-directrice			
Prof.	Johan	Auwerx,	expert	

Prof.	Maurizio	Crestani,	expert	
Prof.	Lluis	Fajas	Coll,	expert	

	
	

Lausanne	2019	



	



a

UNIL I Université de Lausanne

Faculté de biologie
et de médecine

Centre Intégratif de Génomique

Early Modifications of the Adipose Tissue linking
Obesity and Metaflammation

Thèse de doctorat ès sciences de la vie (PhD)-programme
Integrated Experimental and Computational Biology

présentée à Ia

Faculté de biologie et de médecine
de l'Université de Lausanne

Tiziana CAPUTO

Maîtrise universitaire en Biotechnologie Pharmaceutique
diplômée de l'Université de Milan

Iury

Prof. Luc Tappy, Président
Prof. Béatrice Desvergne, Directrice de thèse

Dr Federica Gilardi, Co-directrice
Prof. f ohan Auwerx, expert

Prof. Maurizio Crestani, expert
Prof. Lluis Fajas Coll, expert

par

Lausanne 2019



UNIL I Université de Lausanne

Faculté de biologie
et de médecine

Président.e

Directeur.trice de thèse

Co-directeur.trice

Expert.e.s

Ecole Doctorale
Doctorat ès sciences de la vie

Imprimatur
Vu le rapport présenté par le jury d'examen, composé de

Monsieur

Madame

Madame

Monsieur

Monsieur

Monsieur

Prof. Luc Tappy

Prof. Béatrice Desvergne

Dre Federica Gilardi

Prof. Lluis Fajas Coll

Prof. Johan Auwerx
Prof. Maurizio Crestani

le Conseil de Faculté autorise I'impression de la thèse de

Madame Tiziana Caputo
Master in pharmaceutical biotechnology Università degli Studi di Milano, Italie

intitulée

Early modifications of the adipose tissue
linking obesity and metaflammation

Lausanne, le 27 février 20L9

pour le Doyen
de la Faculté de biologie et de médecine

Prof. Ta ppv



  Acknowledgements 

 1 

Acknowledgements 

This thesis is the fruit of a journey started 5 years ago in the Béatrice Desvergne laboratory. I 

would like to thank Béatrice for hosting me in her lab in the Centre for Integrative Genomics and 

for giving me the opportunity to complete my PhD and become an “almost” independent 

researcher. Thanks Béatrice for trusting me all along the journey and for all your personal inputs 

to develop my scientific and not scientific personality. 

This project would not have started without the work, the help and the support of Federica 

Gilardi. Thanks Fede simply for being there every time I have a problem, a doubt or just a 

depressing moment.  

Thanks to Nicolas Guex for his great support and his contagious enthusiasm. Thanks to our 

collaborators Aurelien Thomas and Nasim Bararpuor for sharing their work, ideas and results. 

Thanks to Marco Pagni and Thuong Van Du Tran for their work and the priceless bioinformatics 

support.  

A big thanks to Catherin Moret for the help with the histological work and to all the people in the 

genomic technology facility of the CIG for all the sequencing performed.  

 

I’m extremely grateful to have shared my life in the lab with amazing colleagues. My special 

thanks goes to Barbara for the great musical moments we had together, to Greta for the 

uncountable psychological sessions, to Michael, to Coralie and to Khan for their precious help. 

Many thanks to Carine for this last year together, for all the coffees and for her Swiss made 



  Acknowledgements 

 2 

organizational skills and finally, thanks to Mariano for the testosterone dosage he was bringing in 

the lab.   

I would like to thank all the people in the CIG and particularly the ones on the 5th floor with 

whom I spent some funny moments and shared ideas. Particularly, thanks to Anita, Laia and Judit 

for all the gossip sessions, all the hilarious moments we had together but especially for the 

technical support. Part of the last result section would not be there without your help girls J.  

Thanks to my family for the support and thanks to my mother for her unconditional love. 

Finally, a special thanks to Jessica for the love, the care, the encouragements and for being my 

safe haven in all these years.  



  Table of Contents 

 3 

Table of Contents 
Summary	.................................................................................................................................	6	

Résumé	...................................................................................................................................	7	

Abbreviations	..........................................................................................................................	8	

Introduction	..........................................................................................................................	12	

I	 From	chronic	overnutrition	to	metaflammation	and	insulin	resistance:	adipose	tissue	and	
liver	contribution	..................................................................................................................	14	

I.1	 Profound	remodeling	of	the	visceral	white	adipose	tissue	in	over-nutrition	and	obesity	.........	15	
I.1.1	 Visceral	WAT	and	subcutaneous	WAT	...................................................................................	15	
I.1.2	 Cellular	and	tissular	responses	of	the	vWAT	in	obesity	.........................................................	17	
I.1.3	 Adipose	tissue	pro-inflammatory	responses	induced	in	obesity:	secretion	of	pro-
inflammatory	cytokines	and	modulation	of	adipokine	secretion	.......................................................	19	
I.1.4	 Recruitment	of	inflammatory	and	immune	cells	in	the	WAT	................................................	21	
I.1.5	 Local	metabolic	consequences	of	vWAT	remodeling	............................................................	28	

I.2	 Diet-induced	modifications	occurring	in	the	liver	....................................................................	30	
I.2.1	 NAFLD	as	a	result	of	the	imbalance	between	uptake	and	export	of	lipid	in	the	liver	...........	30	
I.2.2	 From	NAFLD	to	NASH:	the	role	of	inflammation	in	the	liver	in	obesity	and	overnutrition	...	32	
I.2.3	 The	Adipose	Tissue-Liver	crosstalk	in	metaflammation	........................................................	34	

I.3	 Linking	metabolism	and	inflammation:	insulin	sensitivity	as	the	central	piece	........................	39	
I.3.1	 Insulin	signaling	in	the	liver	and	pathways	to	insulin	resistance	in	the	context	of	obesity.	..	39	
I.3.2	 Molecular	pathways	that	link	inflammation	and	insulin	resistance	......................................	42	
I.3.3	 Lipid	mediators	of	insulin	resistance	.....................................................................................	45	

I.4	 Metaflammation	and	specific	aspects	of	PPARs	.......................................................................	48	
I.5	 CONCLUSIONS	AND	PERSPECTIVES	..........................................................................................	52	

II	 The	adipose	tissue	properties	and	its	diverse	depots	.....................................................	54	
II.1	 Heterogeneity	of	the	adipose	tissue	(AT)	............................................................................	54	
II.2	 Molecular	pathways	driving	adipogenesis	...........................................................................	56	

Aim	of	the	project	.................................................................................................................	62	

Materials	and	Methods	.........................................................................................................	65	

I	 In	vivo	methods	.............................................................................................................	66	
I.1	 Animals	and	diet	.....................................................................................................................	66	

II	 Ex	vivo	methods	.............................................................................................................	67	
II.1	 Quantitative	PCR	and	Gene	expression	analyses	.................................................................	67	
II.2	 RNA	sequencing	(RNA-seq)	.................................................................................................	67	

II.2.1	 Sequencing	data	analysis:	......................................................................................................	68	



  Table of Contents 

 4 

II.3	 ChIP	on	adipose	tissue	........................................................................................................	68	
II.4	 ChIP-seq	..............................................................................................................................	69	

II.4.1	 ChIP-seq	computational	analysis	...........................................................................................	70	
II.5	 Metabolomics	.....................................................................................................................	72	
II.6	 Histology	and	immunohistochemistry	.................................................................................	73	

II.6.1	 Cell	Size	quantification	..........................................................................................................	73	
II.7	 Western	blotting	.................................................................................................................	73	

III	 Statistical	analysis	..........................................................................................................	74	
III.1	 Differential	expression	analysis	...........................................................................................	74	
III.2	 Ruv	correction	of	RNA-seq	dataset	......................................................................................	75	
III.3	 Pathway	analysis	................................................................................................................	75	
III.4	 Cluster	analysis	on	ChIP-seq	dataset	...................................................................................	76	

Results	..................................................................................................................................	77	

I	 Establishing	the	final	experimental	design	via	a	pilot	experiment	..................................	78	
I.1	 Chromatin	immunoprecipitation	protocol	optimization	..........................................................	78	

I.1.1	 Epigenetic	markers	selection	and	optimization	of	ChIP	protocol	for	each	epigenetic	mark	.	78	
I.2	 In	vivo	pilot	experiment	..........................................................................................................	81	

I.2.1	 High	fat	diet	efficiency	...........................................................................................................	81	
I.2.2	 Assessment	of	the	best	intermediate	time	point	to	study	the	inflammatory	response	.......	84	
I.2.3	 Determination	of	the	needed	number	of	mice	at	each	time	point	.......................................	88	

II	 Full	scale	in	vivo	experimental	design	............................................................................	89	
II.1	 Design	of	the	full	scale	experiment	.....................................................................................	89	
II.2	 Phenotypic	evaluation	of	the	response	to	HFD	....................................................................	91	
II.3	 Full	scale	in	vivo	experiment:	Quality	control	and	pooling	strategy	.....................................	93	

II.3.1	 Inflammatory	response	at	8	weeks	of	HFD	treatment	and	sample	selection	.......................	93	
II.3.2	 Inflammatory	response	at	20	weeks	of	HFD	treatment	and	pooling	strategy	......................	98	

II.4	 Full	scale	in	vivo	experiment:	analysis	performed	.............................................................	100	
II.4.1	 ChIP	seq:	quality	controls	and	general	observations	...........................................................	100	
II.4.2	 RNA-seq:	quality	control	and	general	observations	............................................................	103	
II.4.3	 Metabolomics:	general	approach	and	methodology	..........................................................	107	

III	 Distinct	epigenetics	and	expression	profiles	of	the	scWAT	and	vWAT,	in	normal	
conditions	............................................................................................................................	108	

IV	 Different	responses	at	early	time	point	(1week)	highlight	a	distinctive	plasticity	of	the	
vWAT	and	scWAT	.................................................................................................................	112	

IV.1	 Epigenetic	analyses	between	early	and	late	time	points	pinpoint	the	Wnt	pathway	..........	112	
IV.2	 Transcriptomic	analysis	emphasizes	deregulation	of	histone	genes	in	the	vWAT	...............	119	
IV.3	 Modification	of	the	mitochondrial	activity	in	the	scWAT	...................................................	125	

IV.3.1	 Adipocytes	in	culture	maintain	the	characteristic	of	their	origin,	visceral	or	subcutaneous,	
but	not	the	specific	response	to	lipid	overload	................................................................................	130	



  Table of Contents 

 5 

V	 Analysis	at	the	8-week	time-point	confirmed	the	prevalence	of	inflammation	in	the	vWAT
	 136	

VI	 Omics	integration	.........................................................................................................	138	
VI.1.1	 Data	set	preparation	for	integration	...............................................................................	139	

Discussion	............................................................................................................................	146	

I	 Overview	......................................................................................................................	147	

II	 Power	and	limits	of	the	tools	used	................................................................................	148	

III	 Intrinsic	differences	of	the	two	white	adipose	tissue	depots,	........................................	150	

IV	 Inhibition	of	AP	differentiation	in	the	vWAT	may	cause	hypertrophic	adipocytes	and	cell	
death	...................................................................................................................................	151	

V	 Early	changes	occurring	in	over	nutrition	in	scWAT	.......................................................	153	

Appendix	..............................................................................................................................	156	

References	...........................................................................................................................	186	



  Summary 

 6 

Summary  
Obesity is associated with many metabolic disturbances, among which insulin resistance, 
dyslipidaemia and type 2 diabetes. The low-grade systemic inflammatory response or 
metaflammation is a well-established consequence of the diet-induced obesity and is thought to 
play an important role in the development of these co-morbidities.  

The aim of this thesis was to reveal the early events that occur in the white adipose tissue (WAT) 
upon high fat diet (HFD) and which explain its pathological modifications associated to the 
development of the metaflammation process. For that purpose, we placed mice under HFD or 
control diet for 1 week, 8 weeks, and 20 weeks. At each time point, a number of parameters were 
analysed using a combination of systems approaches, i.e. transcriptomics, epigenomics and 
metabolomics approaches, comparing the modifications occurring in two independent WAT 
depots, the visceral WAT (vWAT), prone to inflammation, and the subcutaneous WAT (scWAT), 
which does not develop inflammation.  

The analyses carried out first show that the two tissues present, under baseline conditions, a 
number of intrinsic differences in epigenetic organization, gene transcription and metabolites. . 

The evaluation of genome wide histone acetylation driven by HFD pinpoints a number of 
significant changes in chromatin organization at many genomic loci in the vWAT. More 
particularly, we show that in vWAT, but not in scWAT, genomic regions associated with 
development and cell differentiation genes undergo loss of histone acetylation, suggesting a 
specific inhibition of adipocyte differentiation in the vWAT. These events are already visible 
after only one week of HFD. Other experimental data show that the activation of the anti-
adipogenic pathway Wnt-βcatenin, via an increase of Wnt10b, could contribute to dampen 
adipocyte differentiation in vWAT. 

In contrast, under HFD, scWAT undergoes plastic expansion over time. Histological observations 
show that, in the control situation, scWAT differs from vWAT for the presence of many small 
beige adipocytes with high mitochondrial activity. In the initial phase of HFD treatment, the 
decrease in mitochondrial activity suggested by the transcriptomic analyses, is corroborated by 
the decrease in protein levels of the components of the electron transport chain and the decrease 
in mitochondrial DNA. The concomitant disappearance of small beige adipocytes suggests a 
phenotypic change in the latter, which leads to the generation of white fat cells and increases the 
fat storage capacity. 

In conclusion, our results show that one crucial difference in the response of vWAT and scWAT 
to HFD is represented by the antiadipogenic signals that are rapidly activated specifically in 
vWAT, but not in scWAT. Such response, by interfering with the normal differentiation of 
adipocyte progenitors, leads to hypertrophic expansion of the existing mature adipocytes, which 
ultimately causes cell death and the inflammatory response. Releasing the inhibition of adipocyte 
differentiation in the vWAT would therefore be a possible mean for reducing the inflammatory 
response and the subsequent obesity-related insulin resistance. 
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Résumé 
L'obésité, est associée à de nombreux troubles métaboliques, parmi lesquels l'insulinorésistance, 
la dyslipidémie et le diabète de type 2. La réponse inflammatoire systémique de bas grade, ou 
métaflammation, est une conséquence bien établie de l'obésité et joue probablement un rôle 
important dans le développement de ces comorbidités.  

Le but de cette thèse était de mettre en évidence les événements précoces qui se produisent dans 
le tissu adipeux blanc (white adipose tissue, WAT) lors d'un régime riche en graisses (high fat 
diet, HFD), et qui contribueraient au développement du processus de métaflammation. Pour ce 
faire, nous avons placé des souris sous HFD ou sous régime de contrôle pendant 1 semaine, 8 
semaines et 20 semaines. Dans chaque condition, un certain nombre de paramètres ont été 
analysés en combinant plusieurs approches dites de système, soit la transcriptomique, 
l'épigénomique et la métabolomique. Ces analyses ont été effectuées dans deux types de tissu 
adipeux, le tissu adipeux viscéral (vWAT), sujet à l’inflammation, et le tissu adipeux sous-cutané 
(scWAT), qui ne développe aucune inflammation.  

Les analyses effectuées montrent en premier lieu que les deux tissus présentent, en conditions de 
base, un certain nombre de différences intrinsèques au niveau de l'organisation épigénétique, de 
la transcription des gènes et des métabolites. En comparant à l'échelle du génome les 
modifications des marques d'acétylation des histones induites par le régime riche en graisse, on 
constate, dans le vWAT, des changements importants de l'organisation de la chromatine au 
niveau de nombreux loci génomiques. Plus particulièrement, nous montrons que, dans le vWAT 
et non dans le scWAT, les régions génomiques associées aux gènes liés au développement et à la 
différenciation cellulaire subissent une perte d'acétylation des histones, ce qui suggère un 
inhibition de la différenciation adipocytaire dans le vWAT. Ces changements sont déjà visibles 
après seulement une semaine et renforcés après huit semaines de HFD. D'autres données 
expérimentales montrent que l'activation de la voie antiadipogène Wnt-βcatenin, via une 
augmentation de Wnt10b, pourrait contribuer à inhiber la différenciation des adipocytes dans le 
vWAT. 
A l’opposé, le scWAT subit, sous HFD, une expansion plastique au fil du temps. Les 
observations histologiques montrent que, dans la situation contrôle, le scWAT diffère du vWAT 
par la présence de nombreux petits adipocytes beiges, à forte activité mitochondriale. Dans la 
phase initiale du traitement HFD, la diminution de l'activité mitochondriale est corroborée par la 
diminution des niveaux de protéines des composants de la chaîne des transporteurs d'électrons et 
la diminution de l'ADN mitochondrial. Associé à la disparition des petits adipocytes beiges, cela 
suggère un changement phénotypique de ces derniers qui aboutit à la génération d’adipocytes 
blancs et à l’augmentation de la capacité de stockage de graisse. 
En conclusion, ces résultats montrent que des signaux anti-adipogéniques sont rapidement activés 
dans le vWAT par le traitement HFD. Cette réponse, qui interfère avec la différenciation normale 
des progéniteurs adipocytaires, mène à une expansion hypertrophique des adipocytes adultes 
existants, et, par conséquence, induit la mort cellulaire la réponse inflammatoire. La levée de 
l’inhibition de la différenciation des adipocytes dans le tissu adipeux viscéral serait donc un 
moyen possible de réduire la réponse inflammatoire et la résistance à l'insuline liée à l'obésité qui 
en résulte. 
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Abbreviations 
AA   Aminoacids 

ACADM  Medium-chain Acyl-CoA Dehydrogenase 

ACOX1  Acyl-COA Oxidase 1 

ADAM8  Metallopeptidase Domain-8 

ADRP   Adipose Differentiation-Related Protein  

ALT   Alanine Aminotransferase 
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AP-1   Activator Protein-1  

aPKC   Atypical Protein Kinase C 

ATF6   Activating Transcription Factor 6  
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C/EBPs  CCAAT/Enhancer Binding Proteins 

CCL2    CC- motif Chemokine Ligand 2 

CCL3    CC- motif Chemokine Ligand 3 

CCL4    CC- motif Chemokine Ligand 4 

CCR2   CCL2 Receptor 2 

CPT   Carnitine Palmitoyl Transferase Carrier 

CRP   C-Reactive Protein 

CXCL10  C-X-C motif Chemokine 10  

DAG    Diacyl-Glycerol  
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ER   Endoplasmic Reticulum  

ERK   Extracellular signal-Regulated Kinase 

FABP4  Fatty-Acids Binding-Protein 4 

FATP1   LPL Fatty Acids Transporter 

FFA   Free Fatty Acids 

FGF21   Fibroblast Growth Factor 21 
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Foxo    Forkhead box 

GCK   Glucokinase 

GLUT4  Glucose Transporter 4  

GSK-3   Glycogen Synthase Kinase 3 

HGP   Hepatic Glucose Production 

HIF1α   Hypoxia Inducible Factors  

ICAM-1  Intracellular Adhesion Molecule 

IFNγ   Interferon γ  

IgG   Immunoglobulin G  

IKKβ   Inhibitor of Nuclear Factor IκB 

IL-1RA  IL-10 and IL-1 Receptor Antagonist  

IL15   Interleukin 15  

IL6   Interleukin 6  

iNOS   Nitric Oxide Synthase  

IR   Insulin Receptor 

IRE1   Inositol-Requiring Enzyme 1  

IRFs   Interferon Regulatory Factors 

IRS1/IRS2  Insulin Receptor Substrate 1 and 2 

JNK   Jun N-terminal Kinases 

LPL   Lipoprotein Lipase  

MAC-1  Macrophage Antigen 1 

MAPK   Mitogen-Activated Protein Kinases 

MAPK   Mitogen Activated Protein Kinases 

MCP1   Macrophage Chemoattractant Protein 1  

MIP-1α  Macrophage Inflammatory Protein 1α 

mTORC  Rapamycin complex 

NAFLD  Non Alcoholic Fatty Liver Disease 

NASH   Non Alcoholic Steatohepatits  

NCoR1  Nuclear Receptor Co-Repressor 

NCR1   NK Cell-activating Receptor  
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NEFA   Non-Esterified Fatty Acids 

NFkB   Nuclear Factor κB 

NK   Natural Killer  

NLR   Leucine rich Repeat 

NLRP3  NLR-and Pyrin domain containing 3 

PAI-1   Plasminogen-Activator Inhibitor type 1 

PERK   PKR-like ER Kinase  

PI3K   Phosphatidylinositol 3-Kinase 

PKR   RNA-activated Protein Kinase 

PPARα  Peroxisome Proliferator-Activated Receptors α 

ROS   Radical Oxygen Species  

S6K   S6 Kinase 

scWAT  Subcutaneous White Adipose Tissue 

SLC25A20  Carnitine Acycarnitine Translocase 

SOCS3  Suppressor of Cytokine Signaling 3  

SPTLC  Serine Palmitoyl-Transferase 

SREBP1c  Sterol Regulatory Element-Binding Protein 1c 

T2D   Type 2 Diabetes  

TGs   Triglycerides  

TH1   CD4+ T helper 1 cells  

TIMP1   Tissue Inhibitor of Metallo-Proteinase 1 

TLR4   Toll-Like Receptor 4  

TNF-α   Tumor Necrosis Factor alpha  

TZD   Thiazolidinediones 

UCP1   Uncoupling Protein 1 

UPR   Unfolded Protein Response 

VCAM-1  Vascular Cell Adhesion Molecule  

VEGF   Vascular Endothelial Growth Factor  

VLDL   Very low Density Lipoprotein 

vWAT   Visceral White Adipose Tissue  
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WAT    White Adipose Tissue  

α-SMA  α-Smooth Muscle Actin 

β-ox   β-oxydation 
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I From chronic overnutrition to metaflammation and insulin resistance: 

adipose tissue and liver contribution 

Obesity is a complex chronic disorder with a multifactorial etiology, involving genetics, 

hormones, diet and life style. It is characterized by a massive increase in adipose tissue due to the 

imbalance between daily energy intake and energy expenditure. In the last 30 years, obesity has 

become a worldwide epidemic affecting both adult and children and turning into an extremely 

important public health problem1. Indeed, it is associated to many different (co)morbidities, such 

as cardiovascular diseases, type 2 diabetes (T2D), hypertension, certain cancers and sleep-

disordered breathing, such as sleep apnea, contributing to an increase risk of mortality as well as 

reduced life expectancy. Although carrying a large amount of fat is not necessarily harmful, two 

interlinked systemic disorders contribute to the high morbidity, i.e. insulin resistance and 

inflammation, the latter being thought to play an important role in the pathogenesis of the 

former2. The link between these two processes is illustrated by the increased levels of several 

inflammatory cytokines in serum of T2D patients compared to healthy subjects. Up to 30% of 

obese patients are considered as “metabolically healthy obese individuals” because of their 

normal fasting glucose, normotension, high insulin sensitivity and inflammatory status3,4. This 

concept was substantiated in many clinical studies, although a study showing that insulin-

sensitive and insulin-resistant has recently challenged it obese have similar insulin-dependent 

transcriptional response in subcutaneous adipose tissue5. 
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I.1 Profound remodeling of the visceral white adipose tissue in over-nutrition 

and obesity  

In humans, adipose tissue is distributed over the entire body with many compartments that differ 

in terms of metabolic activity, sympathetic innervation, and contribution to local and systemic 

signaling. Whereas the brown adipose tissue (BAT) is orientated towards use of lipids, coupled to 

a thermogenic process, the white adipose tissue (WAT) is the main location for lipid storage, 

expanding in response to high fat or over-nutrition. The WAT is prone to develop inflammation 

upon obesity and thus is the focus of the present review.  

I.1.1 Visceral WAT and subcutaneous WAT 

When considering the impact on the development of metabolic disorders, two main types of 

WAT have been identified: the subcutaneous WAT (scWAT) which is located under the dermal 

compartment of the skin, and the visceral WAT (vWAT) further divided into the mesenteric 

WAT wrapped around the intestine, the retroperitoneal WAT surrounding the kidney, and the 

omental WAT positioned in the lower part of the abdominal cavity covering the stomach. This 

anatomic classification of the vWAT is not strictly reproduced in mice where omental fat is 

absent, and the tissue presenting the properties of visceral fat in mouse is the gonadal fat.  

Visceral and subcutaneous adipose tissues have different behaviors, particularly highlighted in 

obesity and related metabolic disorders. These differences are of three types. Firstly, adipokine 

nature and secretion profile of vWAT and scWAT differ. For example, the expression and 

secretion of Interleukin 6 (IL6) and Plasminogen-Activator Inhibitor type 1 (PAI-1) are higher in 
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the visceral WAT, whereas leptin and adiponectin are higher in subcutaneous WAT6,7. Secondly, 

the adipokines produced by the scWAT are secreted into the systemic circulation, whereas those 

produced by vWAT are secreted into the portal system, thus having a more direct impact on 

hepatic metabolism. Thirdly, the rate of lipolysis and fatty acids mobilization8 is also different, 

the visceral adipose tissue appearing to be more sensitive to lipolytic effects of catecholamines 

and less sensitive to the antilipolytic effects of insulin, that mobilizes fatty acids into the portal 

vein. Whereas these differences are possibly due to the vWAT vs. scWAT specific environment, 

which includes the innervation and vasculature proper to each depot, recent reports suggested that 

physiological heterogeneity within the adipose tissues could also stem from different 

developmental programs, leading to cell-autonomous differences9,10,11.  

These differences explain at least in part the major distinct response of each WAT depot upon 

obesity in human and in experimental models, including genetically induced obese mice, ob/ob 

and db/db, lacking the coding gene for leptin or for leptin receptor, respectively, as well as diet 

induced obese mice.  

 

In the rest of this chapter, we will thus discuss how the remodeling of the visceral WAT in over-

nutrition and obesity is a sequential process that starts with the development of mature 

hypertrophic adipocytes that have to face oxidative and endoplasmic reticulum (ER) stress. Their 

altered secretome initiates the inflammation process, with the recruitment of a large number of 

macrophages as well as the modification of the profile of pre-existing adipose tissue resident 

macrophages. Finally, activated macrophages lead to the recruitment and activation of T 

lymphocytes, which altogether sustain the progression of obesity-induced inflammation. Recent 

knowledge concerning this process is discussed below. However, it must be reminded that the 
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triggering stimuli as well as the exact temporal sequence of inflammatory cell infiltration and 

their cross-talk with stressed adipocytes is not completely clear, due to its intrinsic complexity 

and the difficulties in taking into account the various experimental contexts (e.g. animal model, 

type of diet, selected time points).  

I.1.2 Cellular and tissular responses of the vWAT in obesity 

WAT has the unique capacity to undergo dramatic remodeling in response to nutritional factors 

by increasing the size of individual cells (hypertrophy) and by recruiting new adipocytes from the 

resident pool of progenitors (hyperplasia). These processes, which aim to positively improve the 

lipid storage capacity of the body, are however accompanied, particularly in vWAT, by a 

reduction of tissue vascularization, leading to areas with lower oxygen availability and 

hypoxia12,13. This results in the vWAT by the alteration of some cellular and tissular responses 

and by an undesirable infiltration and activation of immune and inflammatory cells, observed 

both in experimental models and in humans.  

The first response of the adipose tissue to the high levels of circulating lipids is a hypertrophic 

growth of the pre-existing mature adipocytes as a result of the triglyceride accumulation in the 

unilocular lipid droplet. The hyperplasia process also starts quite rapidly since in mice 

adipogenesis and adipocyte precursor proliferation are already activated 3 days after the 

beginning of a high fat diet feeding in vWAT depots, with the subsequent creation of a pool of 

precursors that will turn into mature adipocytes over a prolonged exposition to the diet (seven 

weeks)14. Notably, the hypertrophic process – rather than the hyperplasia – seems to be the most 

damaging for the cells and thus for the tissue.  
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At the cellular level, one of the consequences of the hypertrophic response is the decrease of 

insulin-dependent glucose uptake because of a dysregulation of cortical actin remodeling and the 

consequent impairment of insulin-dependent glucose transporter 4 (GLUT4) translocation to the 

plasma membrane15. Another alteration in hypertrophic adipocytes is the accumulation of radical 

oxygen species (ROS)16 and dysfunction of the endoplasmic reticulum, a membranous network 

controlling synthesis, maturation, and trafficking of secreted and membrane proteins. The 

accumulation of unfolded proteins in the ER lumen induces an adaptive response known as 

unfolded protein response (UPR) that is mediated by three major transducers: the PKR-like ER 

Kinase (PERK), the Inositol-Requiring Enzyme 1 (IRE1) and the Activating Transcription Factor 

6 (ATF6). Along this line, chronic obesity is associated with endoplasmic reticulum stress in 

adipose tissue17 and free fatty acids (FFA; also called non-esterified fatty acids) induce ROS 

generation as well as endoplasmic reticulum stress by activation of UPR signaling pathways in 

adipocytes.18  

At the tissular levels, adipocyte hypertrophy is associated with a relative deficiency of 

vasculature that creates a local imbalance between oxygen supply and consumption, which, in 

turn, leads to an increase in the level of angiogenic factors and the expression of inflammation 

and ER stress associated genes19. In mice exposed to high fat diet, sign of hypoxia can be 

detected after 3 days of diet together with increased protein level of its main mediator, the 

Hypoxia Inducible Factors (HIF1α), Vascular Endothelial Growth Factor (Vegf) expression 

levels and accumulation of lactate. The link between hypoxia and the appearance of inflammation 

in vWAT, was demonstrated in both mouse models of both HIF1α genetic deletion and 

transgenic overexpression establishing its critical role in the inflammatory response and in the 

onset of insulin20,13. 
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Altogether, these alterations are responsible, at least in part, for the subsequent inflammatory 

response and decreased insulin sensitivity, as discussed below.  

I.1.3 Adipose tissue pro-inflammatory responses induced in obesity: secretion of pro-

inflammatory cytokines and modulation of adipokine secretion  

The first evidence showing the implication of adipose tissue in the obesity-related inflammatory 

response came twenty years ago, when Hotamisligil et al.21 demonstrated that the production of 

Tumor Necrosis Factor alpha (TNF-α) was induced in the visceral fat pad of obese rodents and 

that the neutralization of this cytokine improved their insulin sensitivity. Excessive nutrient 

consumption triggers an inflammatory process, also called “metaflammation”2,22, that is initiated 

and sustained by metabolic cells, which are at the interface between metabolic inputs and the 

inflammatory outputs. Metaflammation is characterized by being low-grade compared to the 

acute inflammatory response, and chronic, as cytokine expression and immune cell infiltration 

appear gradually and remain unresolved over time. WAT is likely the primary site where 

metaflammation originates, although, to a certain degree, other metabolic tissues, such as liver (as 

discussed later), pancreas and gut cells associated with the gut microbiota are also involved, with 

important consequences for metabolic homeostasis. 

Upon nutrient overload, the inflammatory process is likely initiated by the cellular and tissular 

damages, described above. These alterations lead to two main processes. First, they increase the 

number of dead adipocytes showing necrotic-like abnormalities23,24. In turn, these necrotic events 

trigger the recruitment of inflammatory cells that secrete pro-inflammatory soluble mediators. In 

parallel, the adipocytes themselves undergo a global and profound change in their secretome 

profile, with an increased release of mediators of the clotting process, such as PAI-1, but also an 
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increased expression and secretion of pro-inflammatory cytokines25,26 and alterations in the level 

of several adipokines27. 

As mentioned above, TNF-α was the first identified major pro-inflammatory cytokine released 

from the obese adipose tissue, in mice and in humans28,29. It is mainly expressed by monocytes 

and macrophages that infiltrate the obese adipose tissue, as well as by obese adipocytes21 and has 

a central role in many different inflammatory diseases.  

CC- motif Chemokine Ligand 2 (CCL2) also known as Macrophage Chemoattractant Protein 1 

(MCP1), is one key chemokine expressed by the adipocytes whose levels positively correlate 

with the increased adiposity and whose presence is sufficient to induce the recruitment and 

infiltration of macrophages in the adipose tissue initiating the inflammatory response and obesity-

related insulin resistance30. Whereas the work of Kirk et al. reported no differences in adipose 

tissue inflammation or macrophages accumulation in CCL2 deficient mice31, other studies 

showed that lack of CCL2 or of its receptor CCR2 in the adipose tissue reduces macrophage 

accumulation and ameliorates the metabolic profile as well as the insulin sensitivity and hepatic 

steatosis of obese mice30,32.  

IL6 and IL18 are cytokines produced by the adipose tissue and positively correlated with the 

adiposity level33,34, even in a regimen of weight loss35,36. However, the metabolic consequence of 

the increase of these two cytokines remains controversial, as discussed later.   

The adipokines also play a role in modulating inflammatory responses. Adiponectin has anti-

inflammatory properties, via inhibition of TNF-α synthesis in endothelial and hepatic cells and 

induction of the production of anti-inflammatory cytokines such as IL-10 and IL-1 Receptor 

Antagonist (IL-1RA) in macrophages and dendritic cells37. Adiponectin reduction observed in 

obesity limits these anti-inflammatory effects. In contrast, leptin increases circulating levels of 
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pro-inflammatory mediators released by various cell types, including macrophages. Leptin is an 

adipokine involved in the regulation of food intake through the central nervous system. Mice 

lacking leptin (ob/ob mice) are hyperphagic and develop obesity and insulin resistance, which can 

be reverted by the administration of leptin38. Leptin circulating levels are positively associated 

with the adipose tissue mass, suggesting a possible leptin resistance in obese patients as they do 

not show the expected anorexic response38. The pro-inflammatory activity of leptin is mainly 

mediated by its ability to increase the production of TNF-α and IL6 by monocytes, and of CC-

chemokine ligands by macrophages 39-41. In addition, it increases the production of IL2 and 

Interferon γ (IFNγ) and suppresses the production of the anti-inflammatory cytokine IL4 in T 

cells42. In the obese adipose tissue, pro-inflammatory signals such as TNF-α,43 stimulate the 

production of leptin, which in turn maintains and exacerbates the inflammatory response. 

Resistin is another major secreted adipokine whose levels increase with obesity and correlate with 

both inflammation and insulin resistance in animal models44. The pro-inflammatory action of 

resistin in human mononuclear cells is mediated by the increase of the expression levels of TNF-

α and IL6 in monocytes44 and of adhesion molecules (VCAM1, ICAM1 and pentraxin 3) in 

vascular cells that enhance leukocyte adhesion45.  

Altogether, the obesity- or overnutrition-driven changes in the secretion profiles of these 

cytokines and adipokines in the vWAT are part of the process that leads to the recruitment of 

inflammatory/immune cell in this tissue.  

I.1.4 Recruitment of inflammatory and immune cells in the WAT 

Macrophages are at the front line of the inflammatory process, prevailing in terms of number and 

tissue remodeling activity46. In lean mice, around 10-15% of the vWAT cells are positive for 
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F4/80+, which identifies macrophages. These so-called adipose tissue resident macrophages 

(ATM) have an alternatively activated M2 phenotype (Arg1+, CD206+, CD301+) and localize in 

the interstitial spaces between adipocytes, uniformly distributed through the adipose tissue. M2 

macrophages are crucial for the adipose tissue homeostasis, particularly for their production of 

IL10, a regulatory anti-inflammatory cytokine. However upon obesity, the secretion by the 

hypertrophic adipocytes of pro-inflammatory cytokines such as CCL2, CCL5 and others47 as well 

as that caused by the presence of increased number of necrotic adipocytes48,49 leads to the 

recruitment of circulating monocytes towards the stressed tissue, monocytes which then are 

activated in macrophages (figure. 1). In total, in obese mice, macrophages can reach 45-60% of 

the vWAT cell population50. They localize primarily in “crown-like structure” surrounding dying 

adipocytes51,52 and have a classical pro-inflammatory M1 phenotype (CD11c+, nitric oxidase 

synthase 2+, TNF-α+). They produce pro-inflammatory cytokines, such as TNF-α, iNOS and IL6, 

which further promote obesity-associated inflammation in mice52, but also in obese patients 

where the accumulation of macrophages has been shown to correlate with higher circulating leve 

of TNF-α53,54 

Another concurrent effect, which contributes to the worsening of obesity-related inflammation, is 

mediated by paracrine action of leptin on immune cells. Leptin has been reported as a strong 

mediator of monocytes proliferation, macrophages phagocytosis, cytokine expression and 

chemotaxis55 by stimulating the production of IL2, IL12 and IFNγ56. Moreover, mast cells in the 

adipose tissue of obese mice contribute to leptin production, which in turn affects macrophage 

polarization towards the M1 pro-inflammatory status. Consistently, mast cells from leptin-

deficient mice are able to polarize macrophages towards the less inflammatory M2 phenotype57.  
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Finally, other stimuli in the context of obesity can influence macrophage recruitment and 

activation, such as fatty acids, fetuin-A, Krüppel-like factor 458 or cold exposure59. Unsaturated 

fatty acids have been identified as promoters of macrophage activation in obesity through a 

mechanism mediated by the binding to the pattern recognition receptor Toll-like receptor 4 

(TLR4)60. Recent observations suggested that FFAs are not direct ligands of TLR4 but bind via 

fetuin-A, a glycoprotein produced by the liver that may act as a transporter of FFAs in the 

circulation and as endogenous ligand for TLR4, presenting in this way FFAs to the receptor61. All 

these effects favor not only recruitment of macrophages to the inflated adipose tissue, but also 

their polarization to M1 type. However, some studies have demonstrated a mixed M2/M1 

phenotype in adipose tissue of obese mice and humans62-64, while others depicted a complex 

scenario where the most abundant “metabolically-activated” (MMe) macrophages have a 

different phenotype compared to classically activated M1 macrophages, suggesting that their 

activation is occurring via mechanisms that are different from those occurring during infection65. 

Currently, an active research field is studying ways to counteract the inflammatory response in 

white adipose tissue by pushing the rise in number and activity of brite (brown in white) cells, in 

order to boost the whole-body energy expenditure but also to improve adipose tissue 

inflammation and thus insulin resistance66. Indeed, prolonged cold exposure increases 

adiponectin secretion that in turn is responsible for the activation and recruitment of anti-

inflammatory M2-type macrophages67. 

 

After the first wave of newly recruited M1 macrophages, that have the role to clear necrotic 

adipocytes and remodel the extracellular matrix24, and with the persistence of excessive nutrient 

intake, the activation of the adaptive immune system response is occurring in the adipose tissue. 
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Indeed, activated M1 cells act as antigen presenting cells, via MHC class I and II molecules, 

thereby initiating the response of the adaptive immune system and amplifying the adipose tissue 

obesity-driven inflammation (Figure 1). 

Among the immune cells of the adaptive response, CD4+ T cells are thought to play an important 

role in the progression of the obesity-related inflammatory response. T helper lymphocytes 

expressing CD4 can be subdivided into a TH1 and TH2 sub-lineage, based on their secretion 

profile. TH1-cells tends to secrete pro-inflammatory cytokines responsible for the elimination of 

pathogens and the perpetuation of the inflammatory response. On the other hand, TH2-cells 

produce anti-inflammatory cytokines including IL4, 5, 10 and 13, which promote antibody 

synthesis but inhibit several functions of phagocytic cells. Compared to the scWAT of obese mice 

as well as to vWAT of lean mice, the vWAT of diet-induced obese mice exhibits a higher number 

of pro-inflammatory CD4+ TH1 cells secreting IFNγ (Figure 1). This contributes to the creation of 

a feed forward loop in the obese vWAT, where the increased production of IFNγ by TH1 cells 

favors the classical (proinflammatory) activation of macrophages68. The importance of another 

subset of CD4+ T cells, the regulatory CD4+Foxp3+ Treg cells, in the vWAT is highlighted by its 

relative defection upon inflammatory response of the adipose tissue in obesity. This particular 

population of WAT Treg seems to be extremely important for metabolic processes and for the 

regulation of inflammatory response in vWAT. They are present in high number in lean mice (40-

80% of CD4+ T cells in vWAT), while they are dramatically reduced down to 30% of the initial 

population during obesity69. However, how this particular new cell compartment contributes to 

the worsening of the inflammatory response is not yet clarified. 

Another immune cell type contributing to the creation of a modified milieu in the AT, are the 

CD8+ T, whose depletion improves insulin sensitivity in diet-induced obese mice. These cells 
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localize in close proximity to M1 cells in the crown-like structures, suggesting a possible 

crosstalk between CD8+ and  M1 cells. This hypothesis is also supported by the fact that M1 cells 

that are co-cultured with CD8+ cells increase their production of TNF-α70 (Figure 1).  

B cells, another class of cells belonging to the adaptive immune system, are also playing a role in 

the pathogenesis of obesity-related insulin resistance. In mouse model of diet-induced obesity, B 

cells accumulate in vWAT at early stage (i.e. by 4 weeks), and contribute to the worsening of 

insulin sensitivity. This mechanism is in part mediated by their effect on CD8+ and TH1 cells, 

which are induced to produce proinflammatory cytokines, and in part by their own release of 

Immunoglobulin G (IgGs). In line with this observation, B cell depletion using CD20 monoclonal 

antibody reduced the levels of pro-inflammatory mediators such as IFNγ and TNF-α and 

ameliorated glucose metabolism71. 

This already complex scenario has been recently enriched by two reports that highlighted the 

essential role of Natural Killer (NK) cells in this process. This specialized subset of lymphocytic 

cells has normally two functions. First, they can destroy tumor and infected cells using the 

cytolytic activities of enzymes such as perforin and granzyme. Second, they are able to modulate 

the activity of many immune cells by secreting many different pro and anti-inflammatory 

cytokines, including TNF-α, IFNγ and IL1072 (Figure 1). Two different groups demonstrated that 

NK cell number dramatically increase in the vWAT of HFD-exposed mice and that these cells 

have a major role in the recruitment and the M2-M1 macrophage polarization73,74. Wensveen et 

al. showed how NK cells start to accumulate in the vWAT within few days of high fat diet, with 

the maximum number detected at 2 weeks, and this correlates with the up-regulated expression of 

NK Cell-activating Receptor (NCR1) ligand in adipocytes. In turn, NCR1 is thought to activate 

vWAT-resident NK cells thereby inducing the production of IFNγ, a strong modulator of M1 
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polarization (Figure 1). Similar results come from the work of Lee et al., where the authors show 

how the modified milieu, created by a prolonged high fat diet (12 weeks), induce in the vWAT 

the production of pro-inflammatory cytokines, such as CCL3, CCL4, CXCL10 and IL15, which 

serve as chemo-attractants for NK cells. NK cells are then responsible for the production of 

CCL2 and TNF-α, which will promote monocyte recruitment and activation respectively. 

Together these works agree on the crucial role of NK cells in the early and late phases of obesity, 

showing how selective depletion of this particular immune cell population is able to improve 

metabolic phenotype and insulin resistance of HFD treated mice. 
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Figure 1: Recruitment of inflammatory and immune cells in WAT. 

Upon over nutrition adipocytes secrete pro-inflammatory cytokines: CC- motif chemokine ligand 2, 3 and 4 (CCL2, 

CCL3, CCL4), C-X-C motif chemokine 10 (CXCL10), interleukin 15 (IL15), which induce recruitment and activation 

of inflammatory and immune cells. Monocytes are recruited from the circulation and are activated to become M1 

macrophages producing Tumor Necrosis Factor alpha (TNFα), Interleukin 6 (IL6) and inducible Nitric Oxide 

Synthase (iNOS). M1 macrophages activate cells of the adaptive immune response: CD4+ T helper 1 cells (TH1), 

CD8+, producing interferon γ (IFNγ) and TNFα; B cells, releasing immunoglobulins G (IgGs). Obses adipocytes 

favor the recruitment of natural killer cells (NK) through upregulation of NK cell-activating receptor (NCR1) ligand. 

The increased adipocyte secretion of leptin contributes to the activation of CD4+ cells that worsen the inflammation 

via secretion of interleukin 2, 12 (IL2, IL12) and IFNγ.  
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I.1.5 Local metabolic consequences of vWAT remodeling 

Cellular and tissular damages together with the inflammation of the vWAT along obesity 

development have local metabolic consequences which are interconnected: a decreased insulin 

sensitivity and a limitation of the capacity of the vWAT to store lipids.  

While chapter 4 is dedicated to insulin signaling and its perturbation upon obesity, we can here 

mention two specific actions in adipocytes with that respect. First, we have seen that the 

remodeling of the cortical actin in adipocytes impacts the insulin-dependent translocation of the 

glucose transporteur Glut4 to the membrane. Second, in mice, the enhanced secretion of the 

adipokine Resistin interferes with the normal insulin signaling by increasing the expression of the 

Suppressor Of Cytokine Signaling 3 (SOCS3), a known inhibitor of insulin action in 

adipocytes75. Other more systemic mechanisms are likely to operate and are reviewed in the 

chapter 4. 

One paradoxical consequence of the adipose tissue remodeling and its decreased insulin 

sensitivity during over-nutrition is a limitation of the vWAT to further accumulate lipids. This 

occurs through several mechanisms. The first one is the fact that adipocytes are less sensitive to 

the anti-lipolytic effects of insulin. This results in a sustained lipolysis even in fed state, which 

augments the efflux of FFAs in the systemic circulation (Figure 2). The second fact is that pro-

inflammatory cytokines produced by inflamed WAT, such as IL6 and TNF-α, reduce the activity 

of Lipoprotein Lipase (LPL)76 (Figure 2), the enzyme that hydrolyzes TGs contained in Very low 

Density Lipoproteins (VLDLs) and chylomicrons at the surface of capillary endothelium77. This 

reduction thus impairs the uptake of FA into the adipose tissue for storage. Consistent with this 

important role in the regulation of lipid flux, LPL upregulation in the adipose tissue protects 
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against the ectopic accumulations of lipids by increasing the portion of FAs stored in the 

adipocytes with beneficial effects on obesity-induced insulin resistance78. Interestingly, scWAT 

maintains its ability to correctly store lipids upon HFD feeding, as demonstrated in Interferon 

Regulatory Factors 5 (IRF5) deficient mice79. Thus, a strategy directed at limiting vWAT 

expansion to the expenses of the scWAT might be beneficial for the whole body homeostasis. 

However, some clinical studies are reporting the observation that vWAT and scWAT have no 

difference in terms of adipose tissue macrophage (ATM) accumulation in severe obese patients80. 

This controversy may be linked to the fact that in the extreme conditions of obesity even the 

scWAT looses the capacity to properly store lipids, leading to the accumulation of activated 

ATM. 

 

Thus, inflammation and insulin resistance are major processes that, in the early phase, take place 

in the vWAT upon overnutrition and obesity development. The consequences are not only local 

but results in a systemic low-grade inflammation and increased levels of circulating FFA that will 

particularly affect the liver 
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I.2 Diet-induced modifications occurring in the liver  

The liver has a central metabolic role. More specifically in the context of this review, the liver 

regulates metabolic homeostasis across the alternance of fed and fasting states on daily basis. In 

context of chronic overnutrition, the liver must cope on the one hand with the direct alteration of 

these homeostatic metabolic responses. On the other hand, the liver must also cope with 

metabolites and inflammatory signals coming from the adipose tissue as described above. 

I.2.1 NAFLD as a result of the imbalance between uptake and export of lipid in the liver 

As clarified by the World Gastroenterology Association, NAFLD is a condition defined by 

excessive fat accumulation in the form of triglycerides (steatosis) in the liver. A subgroup of 

NAFLD patients displays liver cell injury and inflammation in addition to excessive fat 

(steatohepatitis), a condition designated as Non Alcoholic Steatohepatits (NASH).  

In obesity, hepatosteatosis represents the first step of NAFLD. Hepatosteatosis correlates quite 

well with abdominal adiposity and its incidence is showing the same positive trend as obesity. In 

a simplified manner, hepatosteatosis results from increased fatty acid uptake, decreased fatty acid 

use, and decreased export in form of VLDL. Adipose tissue-derived FFAs are the major source of 

hepatic fatty acids and they represent 59% of liver fat in NAFLD patients81. The increased fatty 

acid uptake is sustained by the increased expression of CD36 in the liver and skeletal muscle of 

obese patients with NAFLD compared to obese subjects with normal intra hepatic TG content82. 

At the same time, the down-regulation of CD36 and the enhanced lipolysis that take place in the 

adipose tissue, further exacerbate the flux of FFAs towards the liver and the skeletal muscle in 

NAFLD patients (Figure 2). The role of FFA uptake in hepatosteatosis was further corroborated 
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in animal model of NAFLD lacking transporters such as CD36 and FATPs, where reduction of 

liver fatty acid influx prevented steatosis83,84.  

The remaining part of hepatic TG stores derives from dietary fatty acids and de novo Lipogenesis 

(DNL). The increase in DNL precedes the development of steatosis and is due in part to the 

insulin resistance of the muscle, which provokes an increased flux of ingested carbohydrates 

towards the liver85. Compared to healthy subjects, in patients with NAFLD the newly synthetized 

lipids account for a much higher percentage of the total intra-hepatic fatty acids (15-23% vs 

5%)86. Highly lipogenic hepatocytes undergo a phenotypic change characterized by enhanced 

expression of adipogenic genes such as Sterol Regulatory Element-Binding Proteins (SREBPs), 

Adipose Differentiation-Related Protein (ADRP) and PPARγ87,88.  

At the same time, oxidation of fatty acids in the liver is reduced, contributing to their consequent 

accumulation in the liver. More particularly, the expression of the nuclear receptor PPARα89 is 

blunted, resulting in a reduction of fatty acid transport to the mitochondria, via reduction of 

Carnitine Palmitoyl Transferase 1 (CPT1) expression, and decreased fatty acid β-oxidation. 

Reciprocally, liver specific deletion of PPARα also caused the development of hepatic steatosis 

in ageing in mice fed a standard diet90. Finally, the TG outflow rate through VLDL contributes to 

the maintenance of hepatosteatosis. Although subjects with NAFLD have greater VLDL secretion 

than those with normal intrahepatic TG content, this secretion does not increase linearly with the 

increasing TG amount but rather reaches a plateau. Therefore, the increase in VLDL secretion 

rate, in NAFLD patients, is not able to compensate for the increased rate of TG accumulation91.  

Hepatosteatosis per se is not necessarily deleterious, and may remain clinically silent, i.e. the 

metabolic functions of the liver are unaffected by the “simple” accumulation of lipids. However, 

in a number of cases, which in human reach one-third92 of the NAFLD patients, complications 
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can ultimately lead to NASH, where inflammation and fibrosis are severely altering liver 

functions 

I.2.2 From NAFLD to NASH: the role of inflammation in the liver in obesity and 

overnutrition 

A prolonged over-nutrition condition triggers in some case the progression of NAFLD from the 

simple hepatosteatosis to the development of inflammation, fibrosis and NASH93. A “multi-hit” 

hypothesis is presently widely accepted to explain this evolution. As described above, liver lipid 

accumulation and insulin resistance (see also chapter I.4) appears early in NAFLD and worsens 

steatosis as a result of increased DNL. These alterations expose the liver to “multi-hits”, which 

include mitochondrial dysfunction, oxidative damage, altered hepatocyte apoptosis, increased 

levels of fibrogenic and pro-inflammatory mediators and activation of stellate and Kupffer cells89. 

We will focus below on the inflammatory process, which is a main contributor to the worsening 

of the liver status. 

 

The inflammatory response of the liver parallels the increase in hepatic lipid accumulation and 

the development of obesity. Hepatic inflammatory mediators include C-Reactive Protein (CRP),  

PAI-1, fibrinogen and IL-6, which mark the presence of a “subacute inflammation” in the liver94. 

However, as for the adipose tissue, the immune cells are the major contributors of liver 

inflammation. 

Two different populations of macrophages mainly drive the inflammatory response in liver: the 

resident macrophages, known as Kupffer cells, and the recruited macrophages, which migrate 
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into the liver during obesity95. Kupffer cells derive from embryonic progenitors of the yolk sac 

and are found in the liver sinusoids in close proximity with sinusoidal endothelial cells96, where 

they protect against pathogenic compounds. However, their activation, induced by toxic lipid 

droplets present in the liver, seems to represent the “first hit” of NAFLD/NASH pathogenesis97. 

Activated Kupffer cells further enhance hepatic inflammation via the secretion of monocyte 

chemoattractant CCL298, which triggers the recruitment and activation of monocytes from the 

bloodstream. These monocytes are able to infiltrate the liver as a result of liver injury and to 

differentiate into pro-inflammatory M1 macrophages99. The primary role of Kupffer cells is 

supported by the fact that their depletion, using clodronate injections, results in improved liver 

steatosis and insulin resistance100.  

However, liver inflammation is also sustained by other immune cells that entertain complex 

cross-regulation and activation with Kuppfer cells and macrophages101. Dendritic cells are 

antigen presenting cells that participate to the innate immune defense in the liver and provide 

support to macrophages. NK cells are the major lymphocyte population in the liver, representing 

30-50% of total lymphocytes102. NKs as well as T cells are not contributing to the steady-state 

condition of the liver but are extremely important during the inflammatory response. Activated 

Kupffer cells are responsible for the stimulation of these cells through a signaling pathway 

initiated by TLRs. TLR2 or 3 induce Kupffer cells secretion of IL18 and IL1β, thus activating 

NK cells103, while TLR4 is responsible for the upregulation of adhesion molecules such as 

ICAM1 and VCAM on Kupffer cells and hepatic stellate cells, which are then mediating T cell 

trapping and activation104. In addition, neutrophils are polymorphonuclear leukocytes important 

in sustaining the liver inflammation process. Hepatic infiltration of neutrophils is an acute 

response to liver injury, hepatic stress or systemic inflammatory signals105 that aggravates the 
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inflammatory reaction by the secretion of cytotoxic reactive oxygen and nitrogen species or of 

pro-inflammatory cytokines such as IL1β and TNF106. Neutrophil dysfunction is also associated 

with the development of liver fibrosis and cirrhosis in NASH. Indeed, the neutrophil-to-

lymphocyte ratio is higher in patients with NASH and advanced fibrosis, and has been proposed 

as a non-invasive marker to predict advanced liver disease107. 

 

Chronic liver inflammation is also associated with tissue damage and remodeling as well as 

fibrosis108. Hepatic macrophages are able to induce differentiation of hepatic stellate cells, the 

primary cells involved in liver fibrosis, into myo-fibroblasts and to promote their survival with 

the secretion of TNF and IL1109. The establishment of a modified microenvironment, where 

inflammation and fibrosis coexist enhancing liver injury, is thought to be at the base of the 

progression of liver steatosis to NASH. 

I.2.3 The Adipose Tissue-Liver crosstalk in metaflammation 

As described above, there are two main processes that start in the adipose tissue and have an 

impact on the liver environment: the development of systemic low-grade inflammation in obesity, 

and the increase afflux of FFAs to the liver due to increased lipolysis, together with the inhibition 

of LPL activity. The importance of WAT lipolysis was also recently highlighted by the efficiency 

of the pharmacological inhibition of the adipose triglyceride lipase in decreasing insulin 

resistance and hepatosteatosis in mice110. 

In addition to this metabolic regulation, adipose tissue-derived adipokines and pro-inflammatory 

cytokines can directly act on liver metabolism and the development of NAFLD111. Adiponectin, 

for example, has a protective role in the progression of hepatic steatosis to fibrosis and NASH. In 
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the model of diet-induced obesity in rats, adiponectin overexpression stimulates hepatic β-

oxidation and protects the liver from steatosis and inflammation, thus improving insulin 

sensitivity112. Indeed, adiponectin inhibits hepatic DNL and gluconeogenesis by reducing the 

expression of the lipogenic transcription factor SREBP1-c and the rate limiting enzyme 

Phosphoenolpyruvate Carboxy-Kinase (PEPCK), respectively113. In addition, adiponectin 

improves glucose utilization by activating an Adenosine Monophosphate-Activated Protein 

Kinase (AMPK-dependent pathway)114. In agreement with mouse studies, adiponectin levels are 

reduced in patients with NAFLD115 and negatively correlate with liver alanine aminotransferase 

and γ-glutamyltranspeptidase116, which are indicators of liver lesions.  

Leptin, on the other hand, negatively influences the onset and the progression of NAFLD, being 

positively correlated with serum level of Alanine Aminotransferase (ALT) in humans117. 

Moreover, it acts as pro-fibrogenic mediator by stimulating the production of α-Smooth Muscle 

Actin (α-SMA), collagen 1 and the Tissue inhibitor of Metallo-Proteinase 1 (TIMP1) in human 

stellate cells118. However, it has been shown that leptin produced by the adipose tissue has an 

insulin sensitizer effect in the liver and skeletal muscle with regularization of pancreatic β-cell 

activity119. TNF-α and IL-6 also correlated with the progression of NAFLD to NASH and with 

the onset of insulin resistance by increasing the production of SOCS3 in the liver120.  
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Figure 2: Liver-adipose tissue crosstalk in lean and over-nutrition state.  

(A). Lean state. Insulin signaling in the liver induces phosphorylation of the protein kinase AKT. AKT-dependent 

downregulation of forkhead box (Foxo) transcription factor reduces the transcription of gluconeogenic genes, such 

as PhosphoEnolPyruvate CarboxyKinase (PEPCK), and hepatic glucose production (HGP). AKT-dependent 

upregulation of the mammalian target of rapamycin complex (mTORC) upregulates Sterol Regulatory Element-

Binding Protein 1c (SREBP1c) thus inducing de novo lipogenesis (DNL) and triglyceride (TG) synthesis. DNL 

inhibits both the transport of fatty acids in the mitochondria via carnitine palmitoil transferase carrier (CPT) and the 

β-oxydation (β-ox), which is controlled by peroxisome proliferator-activated receptors α (PPARα). Hepatic TGs are 

secreted in the circulation in form of very low density lipoproteins (VLDLs) to reach muscle and adipose tissue 

where they are uptaken, through the action of CD36 and lipopotein lipase (LPL). In adipose tissue, insulin inhibits 

the release of non-esterified fatty acids (NEFAs). 

(B). Over-nutrition. In obesity, hepatic DNL and HGP are both active. PPARγ is upregulated in hepatosteatosis, 

further inducing DNL and hepatic TG content. Aminoacids (AA) derived from the diet influence mTORC/S6 kinase 

(S6K) pathway that trough an inter-tissue connection affects LPL activity in the adipose tissue and thus increases 

circulating TGs. Hepatic VLDL secretion increases, but their uptake by adipose tissue is reduced because of the low 

expression of CD36 and LPL. Conversely, CD36 and LPL are more expressed in muscles and liver that therefore 

internalize more VLDLs. HGP upregulation is due to different processes: 1) lower utilization of glucose due to 

reduced glucokinase (GCK) activity, 2) Increased adipose tissue lipolysis due to insulin resistance and consequent 

increase in the releasing of NEFAs in the circulation. Hepatic acetyl-CoA content and pyruvate carboxylase (PC) 

activity increase, with consequent higher transformation of pyruvate into glucose. In obesity, both liver and adipose 

tissue undergo an inflammatory response with production of pro-inflammatory cytokines: Interleukin 6 (IL6), Tumor 

Necrosis Factor alpha (TNF-α), C-reactive protein (CRP), plasminogen activator inhibitor 1 (PAI-1). 
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Finally, the adipose tissue-derived FFAs may directly act as signaling molecules in the liver via 

interacting with the transcription factor PPARα, triggering the expression of its target genes and 

more particularly Fibroblast Growth Factor 21 (FGF21)121,122. In turn, FGF21 is part of the 

reciprocal cross-talk from the liver to the adipose tissue. It is produced mainly by the liver in the 

fasted state, and has a direct effect on adipose tissue, stimulating both lipolysis and the expression 

of adiponectin123. This signaling to adipose tissue is required for FGF21 activity on increasing 

insulin sensitivity. However, it also has adipose tissue independent activity, more particularly on 

increasing energy expenditure124. It is considered as a good candidate for the treatment of T2D 

and metabolic syndrome primarily for its ability to reduce plasma TGs in rodents and 

humans125,126. FGF21 would act via reducing VLDL secretion in the liver and re-directing TG-

rich lipoproteins towards WAT, via increased activity of CD36 and LPL in this tissue127. Other 

hepatokines might be discovered, since a systematic analyses of the secretome of steatotic 

hepatocytes identified 32 hepatokines differentially secreted by steatotic versus non-steatotic 

hepatocytes. Among them, Fetuin B is increased in patients with hepatosteatosis, and its silencing 

in mice improved glucose tolerance128. 
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I.3 Linking metabolism and inflammation: insulin sensitivity as the central 

piece 

With the onset of T2D, obese patients display an array of metabolic alterations including 

hyperinsulinemia, hyperglycemia and hypertriglyceridemia. High levels of insulin are not able to 

lower the glycemia: thus the name of insulin resistance. This insulin signaling has been at best 

studied in the liver, but resistance appears in all metabolic tissues, particularly the adipose tissue, 

which will be discussed herein in light of their links to metaflammation.  

I.3.1 Insulin signaling in the liver and pathways to insulin resistance in the context of 

obesity. 

Insulin signaling has been extensively studied. Briefly, in terms of processes, the peak of insulin 

in the postprandial period drives both a reduction of hepatic glucose production (HGP), and an 

increase in the rate of lipid production via DNL. In insulin resistant liver, the insulin-dependent 

activation in DNL is maintained, but there is a failure in decreasing glucose production, a process 

known as “selective hepatic insulin resistance”129 (Figure 2). 

In this context, the observation by Lu et al. that mice lacking Akt1, Akt2 and forkhead box 

transcription factor 1 (Foxo1) do not show any defect in insulin-mediated suppression of 

gluconeogenesis130, raised the question whether other mediators could have a role in the 

postprandial reduction of HGP mediated by insulin131. The idea that an inter-tissue connection 

could participate in regulating this metabolic process comes from the observation that the insulin-

dependent suppression of HGP is occurring even in mice with liver specific ablation of insulin 
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receptor132. Subsequently, Perry and colleagues133 demonstrated that HGP is highly sensitive to 

hepatic acetyl-CoA, whose concentration depends on the levels of circulating FFAs. When 

insulin fails to suppress lipolysis in adipose tissue, the high FFA flux to the liver determines a rise 

in the levels of hepatic acetyl-CoA, which, in turn, maintain high the pyruvate carboxylase 

activity and the conversion of pyruvate into glucose (Figure 2).  The critical role of FFAs in the 

regulation of HGP in obesity-related insulin resistance was also pointed by Titchenell et al134. 

These authors suggested that, in fact, insulin action in the liver directly controls only hepatic 

lipogenesis, while HGP is regulated by insulin in an indirect way through the modulation of the 

levels of circulating FFAs. Both these reports thus highlighted the key role of FFAs as mediators 

of the tight connection between liver and adipose tissue in the regulation of HGP in insulin 

resistant mice. It must be noted however that recent studies highlighted some contexts in which 

hepatic lipid production is necessary and even beneficial.  More particularly, the accumulation of 

mono-unsaturated fatty acids such as oleate rather than poly- and unsaturated fatty acids, seems 

rather protective against insulin resistance and glucose intolerance121,135.  

 

Finally, an additional level of complexity comes from the role of amino acids, which in obesity 

can activate the Mammalian Target Of Rapamycin Complex 1/ S6 Kinase (mTORC1/S6K) 

signaling pathway136. This signal then activates an inter-tissue neuronal pathway acting on the 

adipose tissue that results in a reduction of LPL activity and consequent elevation in serum 

TGs137. 
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Figure 3: Insulin signalling pathway.  

A. The interaction of insulin with the membrane Insulin Receptor (IR) and Insulin Receptor Substrate 1 and 2 

(IRS1/IRS2) are represented. The activation of the Phosphatidylinositol 3-Kinase (PI3K) mediates the action of 

insulin on intermediary metabolism, via activation of AKT. PI3K-dependent activation of Sterol Regulatory Element-

Binding Protein 1c (SREBP1c) and S6 Kinase (S6K) is mediated by the mammalian target of rapamycin complex 1 

(mTORC1). In contrast, AKT activation inhibits the activity of Glycogen Synthase Kinase 3 (GSK-3) and the 

Forkhead box (FOXO) transcription factors, mainly resulting in the inhibition of the activity and transcription of 

downstream target. Other consequences of PI3K/AKT activation are the activation of the atypical Protein Kinase C 

(aPKC), which is responsible for the glucose transport in muscles and adipose tissue. 
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I.3.2 Molecular pathways that link inflammation and insulin resistance 

The link between inflammation and the onset of insulin resistance in obese patients remained 

obscure until the hypoglycemic effects of salicylates were re-investigated, leading to the 

identification of the Inhibitor of Nuclear Factor κB (IκB) kinase β (IKKβ)/ NFkB axis as their 

molecular target138. Concomitantly, increased adiposity and dysregulation of lipid metabolism 

were shown to correlate with the activation of a diverse range of stress-responsive pathways 

including the Jun N-terminal Kinases (JNK), IKKβ, and inflammasome, which are important 

mediators of the inflammatory response.  

JNKs are members of the Mitogen-Activated Protein Kinases (MAPK) family, which are induced 

in response to cellular stress signals139 and are able to phosphorylate and activate the protein 

cJun, a member of the Activator Protein-1 (AP-1) transcription factor family. Their role in the 

induction of insulin resistance has been largely studied in the past and several mechanisms are 

proposed to explain how JNKs can induce insulin resistance in response to excess of adiposity. 

First, JNKs are responsible for the phosphorylation of Irs1 in serine-307, inhibiting the 

interaction of Irs1 with the insulin receptor140, whose signaling is normally occurring through the 

counter-regulatory serine/threonine phosphorylation. Second, JNK1 and 2 are proposed as key 

mediators in macrophages to allow their recruitment and activation in the obese vWAT. Mice 

lacking JNK1/2 specifically in myeloid cells are largely protected from the inflammation 

associated to diet-induced obesity, with less severe insulin resistance, decreased accumulation of 

macrophages and a relative lower expression of M1-specific cytokines141. Finally, JNKs have a 

role in the reduction of FA oxidation and in the onset of steatosis and insulin resistance in the 
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liver, mainly acting as a negative regulator of PPARα activity and FGF21 expression in 

hepatocytes, via the activation of the Nuclear Receptor Co-Repressor (NCoR1) complex 142. 

IKKβ is another inflammatory kinase playing a critical role in the onset of insulin resistance. Its 

activity is highly selective toward its physiological substrates, the IκB protein inhibitors of NFkB. 

Phosphorylation by IKKβ directs IkBa to proteasomal degradation, thus allowing the release of 

NFkB, a master transcriptional regulator of inflammation. Once delivered from its complex with 

IkBa, NFkB translocates into the nucleus, where it affects the expression of numerous target 

genes involved in insulin resistance143,144. It has been shown that NFkB is activated in the liver of 

mice fed a high fat diet, whereas a reduction of its activity or an increased expression of IKKβ 

significantly improve glucose and lipid metabolism143,145.  

As described above, IRS1, the first transducer of insulin signaling, can be phosphorylated by 

JNKs. Besides this regulation, IRS1 is also the target of other kinases such as RNA-activated 

Protein Kinase (PKR), Extracellular signal-Regulated Kinase (ERK), Protein Kinase Cθ (PKCθ), 

mTOR and SOCS, whose activity is influenced by the inflammatory status. Thus, insulin 

signaling is sensitive to the antagonizing effects of multiple mediators belonging to different 

cellular pathways related to the inflammatory response. Further highlighting this interference, 

inflammatory kinases also counteract insulin sensitivity by directly activating transcription 

factors such as the AP-1, NFκB and Interferon Regulatory Factors (IRFs) and thus modulating 

the expression of genes important in inflammation but also in glucose, cholesterol metabolism 

and fatty acid synthesis146, as detailed below.  

 

Many of the pro-inflammatory cytokines and adipokines that are produced in obese vWAT, 

including TNF-α, IL6, IL1b and resistin, were shown to modulate the activation of the stress-
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response kinase JNK and IKKβ. Therefore, a feed-forward loop arises in obesity, where increased 

adiposity induces the production of pro-inflammatory cytokines, which, in turn, activate cellular 

signaling pathways leading to the onset of insulin resistance.  

TNF-α was the first adipose tissue-secreted cytokine directly linking inflammation and insulin 

resistance21. It exerts its action on the adipose tissue by enhancing adipocyte lipolysis and 

increasing Irs1 serine phosphorylation through a mechanism dependent on the activation of 

JNK1/2 in visceral adipose tissue147. TNF-α levels are increased in the adipose tissue and in the 

plasma of obese individuals28, where it correlates with markers of insulin resistance29. Moreover, 

mouse models of genetic loss-of-function for TNF-α, TNF Receptors 1/2, JNKs, are all protected 

when challenged with high fat diet148,149. However, the use of TNF-α as target to treat insulin 

resistance in diabetic patients did not turn to be successful. Clinical trials using short and long-

term administration of TNF-α antagonists were able to reduce systemic inflammatory markers but 

showed poor effects on insulin resistance150-152. 

IL6 is a pro-inflammatory cytokine produced mainly by the adipose tissue that is thought to play 

a role in the onset of insulin resistance. This action would be mediated by IL6-induced reduction 

in GLUT4 and Irs1 expression levels through the activation of the JACK-STAT signaling 

pathway and the increased expression of SOCS3153. However, the direct link between IL6 and 

obesity-induced insulin resistance is controversial. On the one hand, it is thought to suppress 

insulin ability to modulate gluconeogenesis in liver and this was demonstrated both in mice154 

and in vitro, using HepG2 human cell line155. On the other hand, IL6 deficiency worsens hepatic 

insulin resistance and inflammation in a mouse model of diet induced obesity156. These 

contradictory results on IL6 role in insulin resistance can be in part explained by its multiple 
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action in different organs (i.e. skeletal muscle or liver) and in part by its different sources (i.e. 

muscle and adipose tissue).  

The action of IL18 is also debated in the literature with negative effects on insulin sensitivity 

reported in a rat model of metabolic syndrome157, whereas, IL18 deficient mice show 

hyperphagia, obesity and insulin resistance158. 

Finally, the adipokine resistin was initially reported as major player in insulin resistance, thus its 

name. Mice lacking resistin are protected from diet-induced hyperglycaemia, due to AMPK 

increased activity and reduced expression of gluconeogenic genes159. However, in humans, the 

role of resistin is less clear and quite debated, with reports showing a positive association 

between resistin levels and the development of obesity, insulin resistance and T2D160 and others 

refuting any kind of association with the development of metabolic syndrome161,162. One of the 

possible explanations of the difference between mice and human is the different pattern of resistin 

expression, which, in mice, is totally restricted to adipocytes, whereas in humans is exclusively 

observed in macrophages and monocytes163,164. 

I.3.3 Lipid mediators of insulin resistance 

The altered lipid flux that prevails in obesity has been associated to insulin-resistant states, being 

both the cause and the result of insulin resistance. Circulating fatty acids can impair insulin 

signaling mainly in two ways.  

On the one hand fatty acids can interfere with the downstream pathways of insulin binding165, via 

the interaction of long saturated fatty acids, such as palmitate, with the receptors TLR2, TLR4 

and Nucleotide-binding oligomerization domain, Leucine rich Repeat (NLR)-and Pyrin domain 

containing 3 (NLRP3)166,167. Upon ligand binding, TLRs triggers a signaling cascade that leads to 



  Introduction 

 46 

the activation of IKKβ and mitogen activated protein kinases (MAPKs) such as p38, JNK and 

ERK1/2. In parallel, NLRP3 can be activated by host-derived molecules, including excess ATP, 

glucose, ceramides, reactive oxygen species, that are abundant in obese individuals. NLRP3 

activation initiates the assembly of the inflammasome, a large multiprotein complex which 

governs the maturation of the proinflammatory cytokines IL-1β and IL-18168-170. The key role of 

this complex in the obesity-induced adipose tissue inflammatory response has been demonstrated 

by the blunted response to ceramide of macrophages derived from the adipose tissue of Nlrp3 

knockout mice, which display a reduction of macrophage M1 polarization of in the fat tissue170. 

All these multiple pathways activated by overnutrition converge onto the stimulation of the major 

inflammatory kinases JNK and IKKβ, which, as described above, interfere with insulin signal 

transduction. 

On the other hand, the accumulation of intracellular lipid products, such as diacylglycerols 

(DAG) and ceramides can directly be the cause of insulin resistance. This last mechanism raises 

the concept of lipotoxicity, as referred to the ability of excessive lipids to contribute to the 

pathophysiology of metabolic syndrome and T2D171. Once entered in the cell, fatty acids are 

rapidly esterified with coenzyme A to form acyl-CoAs. These intermediates are then transferred 

to a glycerol backbone to form mono-, di- and triacylglycerols. In the liver, the link between 

DAG accumulation and insulin resistance is attributed to the activation of Protein Kinase Cε 

(PKCε)172, which binds and inhibits insulin receptor kinase activity. By knocking down the 

hepatic PKCε expression using specific antisense oligonucleotides, Samuel et al. were able to 

protect rats from lipid induced hepatic insulin resistance, independently of the increased hepatic 

lipid levels173.  



  Introduction 

 47 

Ceramides represent another class of fatty acid derivatives whose intracellular levels are strongly 

associated with insulin resistance174,175. Their biosynthesis occurs through the condensation of 

saturated fatty acids (preferentially palmitate) with amino acids (preferentially serine) to form 3-

ketosphingamine, the scaffold for all sphingolipids. The sphingoid backbone subsequently 

acquires additional fatty acids leading to the production of a series of sphingolipids that include 

ceramides and other more complex products176. Inhibition of ceramide production through the 

administration of myriocin, a potent inhibitor of Serine Palmitoyl-Transferase (SPTLC), prevents 

the development of insulin resistance and diabetes in obese mice177,178. This insulin sensitizing 

effect is mediated by a reduction of the circulating levels of leptin and a concomitant increase of 

adiponectin and FGF21. A decreased of ceramide production was also observed in mice carrying 

an intestinal-specific Farnesoid X Receptor (Fxr) gene deletion and resulted in a down-regulation 

of hepatic SREBP1c and decreased de novo lipogenesis179. Further supporting the beneficial 

effect of the hampering of ceramide production, myriocin administration, as well as Sptlc2 

ablation specifically in adipose tissue, induces macrophage M2 polarization, most prominently in 

the scWAT, with concomitant increase of serum anti-inflammatory cytokine IL10 and reduction 

of pro-inflammatory cythokines IL6, MCP1, and TNF-α180. Conversely, elevated intracellular 

ceramide levels have been shown to stimulate the ability of phosphatase 2A to dephosphorylate 

AKT, thus interfering with insulin signaling175. Notably, both saturated fatty acids and TNF-α 

induce SPTLC expression, and the subsequent production of ceramide, via activation of 

TLR4174,181 and their action is mediated by IKKβ. In the case of the TNFα-mediated cascade, this 

is an emblematic example of how an inflammatory stimulus can promote the production of lipid 

intermediates, which, in turn, impairs insulin action.  
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Lastly, a compelling body of evidence has accumulated in recent years showing how intracellular 

fluctuations of several metabolites, as a function of the metabolic status, may influence the 

activity of chromatin regulators. The resulting epigenetic changes at the level of DNA and histone 

modifications have a major influence on the control of gene transcription during embryonic 

development as well as in the differentiated tissues of the adult organism. 

Example of metabolites influencing chromatin-modifying enzymes include acetyl-CoA, which is 

the universal donor for acetylation reactions,182 and S-adenosylmethionine, which acts as a 

methyl donor substrate stimulating DNA methyltransferase reactions183. The crosstalk between 

metabolites and epigenetic regulation is described in detail elsewhere184. 

I.4 Metaflammation and specific aspects of PPARs 

Peroxisome proliferator-activated receptors (PPARs) are nuclear receptors that function as 

ligand-activated transcriptional regulators, with both activation and repression mechanisms, 

depending on the condition/target. Three PPAR isoforms exist, PPARα, PPARβ/δ and PPARγ, 

which are characterized by distinct functions and expression patterns. Their peculiar role in the 

regulation of glucose and lipid metabolism and inflammation puts PPARs at the crossroad of 

many molecular pathways involved in metaflammation development. This paragraph will mainly 

consider PPAR activity in the adipose tissue and the liver, the tissue focus of this review, and 

their potential use as therapeutic target for the treatment of obesity185,186 

PPARα has a crucial role in regulating hepatic fatty acid catabolism and clearance, as 

demonstrated by its target genes such as CPT1, Carnitine Acycarnitine Translocase (SLC25A20), 

Medium-chain Acyl-CoA Dehydrogenase (ACADM), Acyl-COA Oxidase 1 (ACOX1), that 
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globally induce fatty acid oxidation187. In addition, PPARα enhances the expression of the 

FGF21, a secreted factor that further stimulates hepatic fatty acid utilization, but that also 

improves systemic insulin sensitivity through its extra-hepatic enhancement of glucose 

transporter 1 expression125,188. PPARα displays also anti-inflammatory activity, by interfering 

with NFκB activation189. Altogether, these features make PPARα an interesting therapeutic target 

for obesity, particularly in presence of hepatosteatosis. Selective PPARα-agonists, such as 

fibrates were efficiently used for decades in hyperlipidemic patients to lower plasma 

triglycerides190. However, and despite encouraging results obtained in mouse models of NAFLD, 

these molecules did not prove advantageous in the treatment of NAFLD/NASH in humans, likely 

due to their lower potency in humans, compared to mice191 (reviewed in191 ). Furthermore, a 

number of side effects (i.e. increased risk of acute kidney injury, rhabdomyolsysis and gallstone 

formation) were associated to their long-lasting use192.  

Another key positive modulator of FA oxidation, particularly in skeletal muscle, is PPARβ/δ. 

However, in the liver, FA oxidation is mainly under the control of PPARα, while PPARβ/δ 

selective activation suppresses hepatic gluconeogenesis, enhances carbohydrate catabolism193, 

and has anti-inflammatory effects in the liver by dampening Kupffer cell activation194. In the 

adipose tissue, PPARβ/δ inhibits FFA release. While the selective PPARβ/δ ligand GW501516 

was discontinued from clinical trials for favoring tumor development in several organs, 

KD3010195 is currently in phase III clinical trial for the treatment of obesity, NASH and T2D. A 

detailed description of other PPARβ/δ agonist can be found elsewhere196. 

In the adipose tissue, PPARγ is the master regulator of adipogenesis197 and its activation with 

Thiazolidinediones (TZDs) leads to de novo differentiation of adipocytes. TZDs are potent insulin 

sensitizer agents, but their clinical use in the last years has been strongly limited due the 
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associated risk of increased body weight, bone fractures, congestive heart failure and bladder 

cancer198,199. In humans, PPARγ activation triggers apoptosis of large fat cells in vWAT and 

scWAT and induces differentiation of pre-adipocytes only in scWAT200, thus favoring scWAT 

adiposity201. The formation of new adipocytes with the activation of genes such as Fatty-Acids 

Binding-Protein 4 (FABP4), CD36, LPL Fatty Acids Transporter (FATP1) and SREBP1202, 

improves the uptake and storage of plasmatic FFAs in AT, with the subsequent reduction of 

circulating TGs and of lipotoxic accumulation in non-storage specialized tissues, such as liver 

and muscles203. TZDs also enhance FFA mobilization upon fasting and ameliorate the 

postprandial suppression of FFA release triggered by insulin204. Interestingly, chronic treatment 

of human adipocytes with TZDs initiates a “browning program” characterized by induction of 

Uncoupling Protein 1 (Ucp1)205,206 and of several components of the mitochondrial transport 

chain207, thus initiating a tissue remodeling program that is considered as a promising way to 

combat obesity through consumption of lipids to produce heat.  

Besides their effects on adipogenesis, PPARγ agonists also promote the expression of 

components of the insulin signaling pathway, including the IRS2 and CAP208,209, that contributes 

to enhance adipocyte insulin sensitivity. In addition, PPARγ activation restores the expression 

and secretion levels of different adipokines such as adiponectin, resistin210, IL6, TNF-α211, PAI-1, 

MCP1 and angiotensinogen212 that are altered in obesity. Thus, TZDs display also beneficial 

effects on the development of adipose tissue inflammation upon chronic over nutrition. 

Importantly, such anti-inflammatory properties of PPARγ agonists are the result of their action 

not only in adipocytes, but also in all the PPARγ-expressing immune cells residing in adipose 

tissue. In macrophages, PPARγ acts as negative regulator of classical pro-inflammatory M1 

polarization213 and promotes the shift towards the alternative M2 macrophage activation in 
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response to IL4214, thus reducing the expression of inflammatory markers such as 

Metallopeptidase Domain-8 (ADAM8), Macrophage Inflammatory Protein 1α (MIP-1α), 

Macrophage Antigen 1 (MAC-1), F4/80 and CD68215. In M2 macrophages PPARγ is required to 

induce β-oxidation and mitochondrial biogenesis216 as well as expression of Arginase 1(Arg1), a 

specific M2 marker. In obesity, PPARγ has been proposed to play a crucial anti-inflammatory 

role in the so-called metabolically activated macrophages in the adipose tissue65. Consistently, 

mice lacking PPARγ in myeloid cells when challenged with a high fat diet are more prone to 

develop obesity and insulin resistance, mainly due to mitochondrial dysfunction and altered 

glucose disposal in adipose tissue216,217.  

More recently, PPARγ has been shown to play a role also in regulating the accumulation of Treg 

cells in vWAT. Treg specific PPARγ ablation reduces the population of vWAT Treg cells on 

normal chow diet, while injection of PPARγ agonist into HFD treated mice specifically induces 

an expansion of Treg population in adipose tissue218, with beneficial consequences on the tissue 

inflammatory pattern. 

One special note must be made about hepatic PPARγ activity in obesity. PPARγ, whose hepatic 

expression is very low in lean subjects, is strongly up-regulated in steatotic liver. As a 

consequence, TZD treatment in obese/NAFLD patients favors the transcription of the lipogenic 

transcription factors SREBP1c in the liver, thus increasing the hepatic production of TGs and the 

maintenance of steatosis219. This explains why, in spite of their ability to reduce lipotoxicity by 

favoring lipid storage in adipose tissue, TZDs are not able to counteract the development of 

NAFLD in mice exposed to high fat diet.  

In conclusion, although the long-lasting use of PPAR agonists highlighted the occurrence of 

considerable side effects that raise the necessity to improve their long-term safety profile, the 
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modulation of PPAR activity is still an attractive possibility to ameliorate obesity-related 

inflammation, insulin resistance and NAFLD. The development of safer PPAR agonists still 

requires a deeper understanding of PPAR signaling and their changes in obesity. As an example, 

in the obese state PPARγ was recently shown to undergo phosphorylation at serine 273, a post-

transcriptional modification that alters the transcriptional effects of PPARγ and its sensitivity to 

ligands220,221. The new synthetic compound SR1664, which was shown to block this 

phosphorylation of serine 273, has been recently proposed as an antidiabetic drug222.  Another 

appealing approach that has been explored in the pharmacological use of PPAR agonists is the 

combination of the therapeutic benefits of the activation at least two PPAR isoforms with the 

development of dual PPAR agonists. Although so far most of these molecules displayed safety 

issues, saroglitazar, a dual PPARα/γ activator, has currently been approved in India for the 

treatment of diabetic patients with NAFLD223. Finally, a more systematic consideration of 

species-related differences, when comparing the activity of PPAR agonists in mice and humans, 

would be also beneficial for the successful development of new therapeutic ligands224. The 

systematic and complementary use of system biology approaches, evaluating PPAR activity in a 

given tissue/cell, but integrating such information in the context of the whole organism, will 

perhaps allow accounting for PPAR agonist pleiotropic effects without considering only a single 

receptor-dependent pathway. 

I.5 CONCLUSIONS AND PERSPECTIVES  

Obesity, especially visceral adipose tissue overload, is associated with many metabolic 

disturbances, and more particularly insulin resistance, dyslipidemia and NAFLD. In the last years 

enormous efforts have been made to uncover new mechanisms contributing to the onset of insulin 
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resistance. Particular progresses were made in understanding how nutritional overload, as well as 

particular classes of metabolites and lipids can induce a plethora of pathological modifications in 

different metabolic organs that can alter their physiological activity. 

The low-grade inflammatory response or metaflammation is a well-established consequence of 

the diet-induced obesity and the characterization of the mechanism of recruitment and activation 

of different immune cells population is a very active research field. However, the attempt to study 

the modulation of the immune response playing with the balance between pro- and anti-

inflammatory cells has been pursued mainly in mouse model whose immune system is, for some 

aspects, different from humans, leaving an open question on the feasibility of a treatment based 

on a delicate equilibrium that should favor metabolic outcome without causing other 

perturbations. 

The hope to develop efficient cure to improve insulin resistance in obesity using unique target, 

such as PPARs (but also for example AKT or JNK pathways) faded away over the last years, 

with the evidence that the model in which one factor is the primary responsible for the onset of 

insulin resistance is clearly too simplistic, as is the idea that targeting one single factor will 

correct the myriad of defects. Considering the fact that obesity is a disease where multiple organs, 

endocrine pathways and inflammatory responses are involved, the future challenge will be to 

develop a holistic approach where knowledge of different systems are processed together in order 

to see how they are interconnected in humans. This is the ambitious goal of system medicine, and 

only once it will be achieved, the entry door for personalized medicine. 
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II The adipose tissue properties and its diverse depots 

In this chapter, we give additional information on the adipose tissue. 

II.1 Heterogeneity of the adipose tissue (AT)  

The adipose tissue is a highly plastic tissue composed of preadipocytes, mature adipocytes and 

stromal-vascular cells, coexisting with nerve terminals, blood vessels and lymph nodes, and 

immersed in a complex collagen matrix. In our body, many different adipose tissue depots exist, 

the main difference being between white and brown adipose tissue.  

The white adipocytes store lipids in one large lipid droplet surrounded by a thin layer of 

cytoplasm. However, not all the white depots share the same characteristic. For instance, 

subcutaneous WAT (scWAT) and, the visceral WAT (vWAT) have distinct properties in terms of 

cell composition and response to the obesity-induced inflammation. With respect to the origin, 

these two WAT develop separately. ScWAT appears at mouse embryonic day 16.5-17.5 225,226, 

while vWAT develops later, becoming visible at postnatal day 7227. At the cellular level the 

adipocytes originate from the adipocyte progenitors which are contained in the so-called Stromal 

Vascular Fraction (SVF). These cells have a mesodermal origin and develop from the 

mesenchyme228 .  Some studies showed the apposition of vascular structures to the developing fat 

pad advancing the hypothesis of a possible connection between adipogenesis and 

angiogenesis229,230. However, scWAT is not made uniquely of white adipocytes but it also hosts 

clusters of “beige” or “brite” (brown in white) adipocytes. In spite of their phenotype, these cells 
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do not have the same origin of the brown cells, which derive from a common precursor 

Pax7+/Myf5+, which is generating both brown adipocytes and muscle cells231.  

The brown adipocytes accumulate lipids in several small lipid droplets and are characterized by a 

high number of densely packed mitochondria. The BAT is the main site of non-shivering 

thermogenesis and this is due to a unique biochemical property of the mitochondria in this tissue 

that contains the uncoupling protein 1 (UCP1). This brown specific protein has the function of 

dissipating the proton gradient produced by the respiratory chain, therefore reducing the 

efficiency of ATP synthesis and resulting in the formation of heat. This special thermogenic 

function has an important impact on energy expenditure in rodents. Accordingly, BAT ablation or 

dysfunction induces the acquisition of obese phenotype 232,233 and conversely, its activation via 

cold exposure attenuates weight gain in genetic and dietary mouse models234,235. Adult humans 

have also active BAT in the para-clavicular and spinal region236,237,238. The indication that BAT 

activation promotes a negative energy balance, by increasing energy expenditure and reducing 

body weight, has led to an increasing interest in understanding BAT biology in order to explore a 

possible therapeutic application for the treatment of obesity. interestingly, some multi-locular 

UCP1+ cells are also present in the WAT, especially in the subcutaneous adipose tissue239,240. It 

has been also shown that, white fat cells can differentiate to beige or brite (“brown in white”) fat 

cells in response to different stimuli such as cold exposure or β3-adrenergic stimulation241,242. To 

date, two theories exist to explain the origin of beige/brite adipocytes: 1) de novo differentiation 

from resident progenitors and 2) the transdifferentiation. The first theory hypothesizes the 

existence of a specific population of adipocyte progenitors, which, upon specific stimulation, 

become beige preadipocytes243. This is occurring with the activation of a transcriptional program 

that increases the expression level of characteristic genes like Ucp1, Prdm16 and Zfp516 as well 
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as Pgc1α which is important for mitochondrial biogenesis244,245 . Indeed, beige cells appear to 

have multilocular lipid droplets and increased mitochondrial mass compared to white adipocytes. 

The second theory proposes that mature white adipocytes are the source for beige cells. This 

theory is supported by the observation that cold-induced beige adipocytes are converted to white 

adipocytes after five weeks of exposure to warm246. Moreover, an intermediate adipocyte 

phenotype, between the typical white and brown morphology, was observed during cold 

exposure, suggesting the participation of the adipocytes to the process of interconversion247. 

HFD-feeding represents also a stimulus to activate BAT and increase BAT mass. Such 

phenomenon is known as diet-induced thermogenesis (DIT)248. Of note, this process does not 

induce the recruitment of beige cells in scWAT, suggesting that the increased thermogenic 

capacity induced by cold vs. by HFD is not regulated via the same way. However, a clear picture 

of how HFD-feeding regulates thermogenesis is missing. Further studies are needed to identify a 

therapeutic strategy, which would treat obesity by increasing energy expenditure via activation 

and expansion of BAT mass.  

II.2 Molecular pathways driving adipogenesis 

Adipocytes derive from mesenchymal stem cells through a differentiation process that has been 

usually described as the two phases of adipogenesis. The first, which is referred to as 

determination phase, is characterized by the commitment of pluripotent stem cells to adipocyte 

lineage and the creation of a pre-adipocyte pool that has lost the capacity to differentiate into 

other cell types. In the second phase, the terminal differentiation, these pre-adipocytes acquire the 

characteristic of mature adipocytes as insulin sensitivity and adipokine secretion249 and the 
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machinery necessary for lipid storage and synthesis. This two-step differentiation process 

requires a temporally highly-regulated transcriptional network that has been studied over the past 

three decades. In mammalian cells the Peroxisome Proliferator-Activator Receptor γ (PPARγ) 

and CCAAT/Enhancer Binding Protein α (C/EBPα) are the main regulators of adipogenesis and 

they share a number of target genes250,251. PPARγ is commonly referred to as the “master 

regulator” of adipogenesis, because it is both necessary and sufficient for adipocyte 

differentiation252 . Notably, nothing, transcription factor (TF) or cellular process, is capable of 

promoting or rescuing adipogenesis in the absence of PPARγ. Moreover, this extremely important 

TF not only induces differentiation but also maintains the differentiation state. Indeed, blunting 

PPARγ expression in mature NIH 3T3 cells induces de-differentiation, with loss of lipid 

accumulation and reduced expression of adipocyte markers253. 

The C/EBP family members (C/EBPα, β and δ) are also among the TFs implicated in adipocyte 

differentiation. Their expression is temporally regulated, with an early induction of C/EBPβ and 

C/EBPδ that leads to C/EBPα expression. The importance of these TFs was demonstrated in vivo 

with different mouse models in which deletion of C/EBP genes results in severe abnormalities in 

fat254. However, despite the strong effect on fat development, these TFs cannot overcome the lack 

of PPARγ.  

Another important group of pro-adipogenic regulators includes SREBP1c, Endothelial PAS 

domain protein 1 (EPAS1), Signal Transducer and Activator of Transcription 5 (STAT5) and 

KROX20, as well as the large family of C2H2 zinc-finer proteins KLFs, which regulate different 

processes, as apoptosis, proliferation and differentiation. The ADD1/SREBP1c is a well-known 

adipogenesis regulator, whose levels are found increased during in vitro differentiation of 3T3 

cells. Moreover, the regulation of cholesterol levels mediated by SREBP1c has a regulatory 
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function on PPARγ expression levels255,256,255. EPAS1, also known as hypoxia-inducible factor 

2α, is an important TF involved in vascular remodeling as well as in the ROS management. Its 

role in adipogenesis has been demonstrated in cultured cells where its expression level is 

increased 6 days after induction of adipogenic differentiation. It plays a role, more particularly, in 

the regulation of glucose uptake and thus, in lipid synthesis256. STAT5 is a mediator of the 

prolactin/GH-signaling and may play a regulatory role on PPARγ expression and TG 

accumulation at later stages of NIH 3T3 cells differentiation257,258. KROX20, also known as Early 

Growth Response 2 (Egr2), is a TF belonging to the zinc finger family and is highly expressed in 

the adipose tissue. During adipogenesis it exerts a positive effect on the early step of 

differentiation, by increasing C/ebpβ transcription. However, C/EBPβ-independent mechanisms 

are also hypothesized, since KROX20 and C/EBPβ have a synergistic effect on the differentiation 

of NIH 3T3 cells and only the expression of both results in the differentiation to a fully mature 

adipocyte259.  

Finally, KLFs have different pattern of expression in adipocytes and can either promote or impair 

adipogenesis 260,261. KLF4 is an important regulator of the “determination phase”, it is transiently 

expressed in the first 24h of differentiation and, together with KROX20, induces C/ebpβ gene 

expression262. Other KLFs that act as positive regulator of differentiation include KLF15260, 

KLF5263 and KLF6, which inhibit the expression of Delta like-1 /pre-adipocyte factor-1 

(DLK1/PREF1) in 3T3-L1 cells264. However, some of the KLF proteins act as negative regulator 

of adipocyte differentiation, such as KLF3261 and KLF2, which repress Pparγ2 promoter activity 

when overexpressed in vitro265.  

Recent studies demonstrated that extracellular signaling can influence the pre-adipocyte 

adipogenic capacity. For example, the highly conserved secreted proteins of the WNT family 
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regulate cell fate and development through paracrine and autocrine mechanisms. WNT binding to 

surface receptor activates an intracellular signaling cascade that regulates gene expression via 

canonical (β-catenin mediated) or non-canonical pathways266. The hallmark of the canonical Wnt 

pathway is the accumulation and translocation of β-catenin into the nucleus (Figure 4). In the 

absence of WNT, the cytoplasmic β-catenin is targeted by the β-catenin destruction complex 

which is composed of AXIN, Protein Phosphatase 2A (PP2A), Adenomatosis Polyposis Coli 

(APC), Glycogen Synthase Kinase 3β (GSK3β) and Casein Kinase 1α (CK1α)267. This complex 

phosphorylates the β-catenin and targets it for ubiquitination and subsequent proteosomal 

degradation268. Binding of WNT to its receptor complex, composed of Frizzled (FZ) and LRP5/6, 

triggers a series of events that end up with the dissociation of the destruction complex and 

cytosolic accumulation of the β-catenin. One of the events provoked by WNT binding is the 

translocation to the membrane of AXIN, which binds to the cytoplasmic tail of LRP5/6269,270. The 

binding of AXIN is considered to be the turning point in the activation of the canonical Wnt 

pathway, by inducing the activation of the phosphoprotein Dishevelled (DSH), which induces in 

turn the inhibition of the kinase GSK3β. This series of events prevents β-catenin degradation and 

consequently promotes its translocation to the nucleus, where it acts as a transcriptional co-

activator271. Many binding partners of β-catenin have been discovered, among these the best 

characterized is the complex LEF/TCF 272.  

The first link between Wnt signaling and adipogenesis came with the observation that activation 

of the canonical Wnt pathway in NIH 3T3 cells impairs differentiation to mature adipocytes273. In 

contrast, Wnt pathway disruption leads to spontaneous adipogenesis in pre-adipocytes, indicating 

that WNT protein may function as a “brake” during adipocytes differentiation. A possible 

reciprocal repression between β-catenin and C/EBPβ or PPARγ is also suggested by the fact that 
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the activation of these factors lead to increased proteosomal degradation of β-catenin 274. This 

mechanism requires GSK3β activity as well as physical association between PPARγ and β-

catenin275.  

One of the Wnt-family members that have been extensively studied in adipogenesis is WNT10b, 

because of its anti-adipogenic effect and its role in shifting the development of progenitors from 

adipogenesis towards osteoblastogenesis276. When overexpressed in adipocytes in vivo, Wnt10b 

impairs WAT and BAT formation277. Its expression is restricted to pre-adipocytes and stromal 

cells and not to mature adipocytes. 

In addition to the canonical, Wnt non-canonical pathway has also been linked to adipogenesis. 

However, WNT proteins activating this signaling have a pro-adipogenic function, which is 

thought to be mediated by the antagonizing effects on the canonical pathway. The most studied 

Wnt family members with proved pro- adipogenic function are WNT4 and WNT5a that have 

been shown to impair β-catenin nuclear translocation and thus, stimulate NIH 3T3 cell 

differentiation to mature adipocytes 278-280. 
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Figure 4: Canonical Wnt/βcatenin pathway 

Binding of Wnt protein to its receptors LRP6 and Frizzled induces the recruitment of Dishevelled (Dsh) to the 

membrane and the consequent phosphorylation of LRP6. This leads to the dissociation of the “destruction complex” 

formed by Axin, Adenomatosis Polyposis Coli (APC), Glycogen Synthase Kinase 3β (GSK3β) and Casein Kinase 1α 

(CK1α), as well as the accumulation of β-catenin in the cytoplasm. When β-catenin is not phosphorylated, and thus 

not targeted for degradation, it enters the nucleus and acts as co-activator, binding to TCF/LEF binding sites.  
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Human obesity recently became a global epidemic, causing mortality especially because of the 

many associated co-morbidities. The cause of obesity is linked to the increased energy intake. 

Indeed, the elevated availability of high-calorie food, coupled with the adoption of a sedentary 

life style, results in a positive energy balance, where the energy introduced is much higher of the 

energy consumed. The consequence is an expansion of the adipose tissue and a subsequent 

weight gain. Although carrying a large percentage of fat is not necessarily detrimental, human 

obesity is accompanied by systemic chronic inflammation, which is thought to play an important 

role in the pathogenesis of obesity-related insulin resistance281. Despite the number of reports 

describing the mechanisms by which inflammation induces insulin resistance, very little is known 

about the molecular processes that lead to the onset of inflammation in obesity. Environmental 

inputs, such as nutrition, can modulate cell metabolism and the intracellular concentration of a 

number of metabolites, which can be sensed and, in turn, give rise to inflammation and stress 

responses in different metabolic tissues282. In addition, these metabolites can alter the activity of 

transcription factors and chromatin modifier enzymes, thus potentially causing specific changes 

in the chromatin structure283,284. Along this line, epigenetic regulation is a key component of the 

activation of the inflammatory response in immune cells285. These observations raise the 

important question of whether and how alterations of metabolite balance induced in obesity are 

conveyed to chromatin and what is the contribution of the subsequent epigenetic alterations in 

triggering the inflammatory response in metabolic tissues.  

In order to decipher the pivotal changes promoted in adipose tissue by high caloric nutrient intake 

and involved in triggering inflammation we propose to (i) follow the evolution of WAT 

dysfunctions in a mouse model of diet-induced obesity and (ii) explore the response in both the 
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visceral adipose tissue (vWAT) and subcutaneous adipose tissue (scWAT), each of them having a 

different response with respect to inflammation. 

The present PhD work aims at systematically dissecting the transcriptomic, epigenomic and 

metabolomic responses in the fat tissue of a mouse model of diet-induced obesity. The final goal 

is to identify the alterations that play a causal role in the onset of inflammation. For that purpose, 

the following specific tasks aim at 1) identifying the epigenetic signature promoted by excessive 

nutrient intake (High Fat Diet); 2) integrating metabolomic, epigenomic, and gene expression 

changes triggered by excessive food intake and 3) identifying the specific early events in the 

scWAT and vWAT that drive the development of the obesity-associated chronic inflammation in 

the vWAT and not in the scWAT. For this purpose we treated control mice with HFD for 1, 8 and 

20 weeks. These time points correspond to different stages of the HFD induced inflammatory 

progression, with the acute response at 1 week, the appearance of macrophage infiltration in 

vWAT between 6 and 8 weeks and the chronic inflammation at 20 weeks.  
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I In vivo methods 

I.1 Animals and diet  

Mice were housed 5 per-cage in temperature-controlled room (24 °C) with a 12-hours light/dark 

cycle. Animals had free access to food and water.  

Six-weeks old C57/BL6 male mice are fed with either a HFD (n=170) containing 60% of calories 

coming from fat or a matched control diet (n=180) with 10% of calories from fat for 1, 8 and 20 

weeks.  

The calculation of the food intake was calculated manually weighing food. 

Glycaemia was measured every week after 5 hour fasting, starting at 9 am until 12 am.  

Mice were staggered for the beginning of the HFD in order to have groups of mice matched for 

the period of HFD feeding. This was decided according to the dissection protocol and the precise 

number of mice (20; 10 CTR & 10 HFD) that could be dissected in a time period of 2 hours. This 

time frame was needed to ensure the sampling to be made in the same circadian window for all 

the mice avoiding any interference of the circadian clock in the epigenetic and metabolomic 

analyses  
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II Ex vivo methods 

II.1 Quantitative PCR and Gene expression analyses  

WAT was dissected, frozen in liquid nitrogen and stored at -80°C. Total RNA was extracted and 

purified using RNesy Mini columns (Qiagen) according to the manufacturer’s instruction, 

quantified and retrotranscribed using the iScript cDNA Synthesis kit (BIO RAD). The analyses 

were performed using SYBR Green Real-Time PCR on an Agilent Mx3005P or an Applied 

Biosystems 7900HD Real Time PCR system. Triplicates were checked for reproducibility, and 

then averaged. No reverse transcriptase controls were included to check for genomic 

contamination and no template control (H2O) were included to exclude formation of primer 

dimers. Fold difference in gene expression was calculated as 2-ΔΔCt using cyclophilin B as 

endogenous control gene. Mice fed with control diet were used as the “comparer”.  

II.2 RNA sequencing (RNA-seq)  

RNA-seq was performed on visceral WAT (vWAT) and subcutaneous WAT (scWAT) from 6 

groups of mice. The groups were as follows: 1) 1 week fed with control diet, 2) 1 week fed with 

HFD diet, 3) 8 weeks fed with control diet, 4) 8 weeks fed with HFD diet, 5) 20 weeks fed with 

control diet, 6) 20 weeks fed with HFD diet. For each group 6 biological replicates were used and 

each replicate was generated from a pool of mice: 10 mice for pool at 1 week, 6 mice for pool at 

8 weeks and 5 mice for pool at 20 weeks.  

RNA was extracted and purified using RNesy Mini columns (Qiagen) and RNA quality was 

assessed using Agilent Bioanalyzer. Libraries were prepared using the NuGen RNA-seq kit 
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(NuGen) and sequenced 8 for lane (total 8 lanes) on an Illumina HiSeq2000 to obtain 

approximately between 20 and 30 million single-end reads.  

II.2.1 Sequencing data analysis: 

Purity-filtered reads were adapters and quality trimmed with Cutadapt and filtered for low 

complexity with reaper286. Reads were aligned against Mus musculus version GRCm38 genome 

using STAR286. The number of read counts per gene locus was summarized with htseq-count287 

using M. musculus Ensembl version GRCm38.86 gene annotation. Quality of the RNA-seq data 

alignment was assessed using RSeQC288. 

Reads were also aligned to the M. musculus Ensembl version GRCm38.86 transcriptome using 

STAR286 and the estimation of the isoforms abundance was computed using RSEM289. 

Statistical analysis was performed for genes in R (R version 3.2.3). Genes with low counts were 

filtered out according to the rule of 1 count per million (cpm) in at least 1 sample. Library sizes 

were scaled using TMM normalization (EdgeR package version 3.14.0)290 and log-transformed 

with limma voom function (Limma package version 3.26.9)291 

II.3 ChIP on adipose tissue  

Adipose tissues were dissected, frozen in liquid nitrogen and stored at -80°C.  

The tissues were first reduced to powder and then cross-linked. Two different cross-linking 

condition were used, (a) 0,5% formaldehyde for 8 min at RT, (b) 20 mM EGS for 20min at RT 

followed by 8 min with 0,5% formaldehyde, this condition was adapted for ChIP of p300. The 

cross-linking is then stopped using 125mM of glycine. The shearing condition used was 12 cycles 

30’’ON/60’’ OFF, using a Bioruptor Pico (Diagenode).  
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The antibody tested were:  

H2Ac, marker of accessible chromatin (Millipore, 06-866) 

H3K9Ac, marker of active promoters (Abcam, ab4441) 

H3K4me1, marker of enhancer (Abcam, ab8895) 

H3K27Ac, marker of active enhancer (Abcam, ab4729) 

 p300, marker of active enhancer (SC-584) 

H3K4me3, marker of active promoters (Abcam, ab8580) 

pSer5Poll II, marker of active transcriptional elongation (Abcam, ab5131) 

RNAPoll II, marker of transcriptional elongation (SC-67318) 

II.4 ChIP-seq 

Adipose tissues were dissected, frozen in liquid nitrogen and stored at -80°C.  

Each tissues preparation was performed on 8 grams of tissue that was first reduced to powder and 

then cross-linked with 0,5% formaldehyde for 8 min at RT on a shaking platform. The cross-

linking is then stopped using 125mM of glycine. The shearing condition used was 12 cycles 

30’’ON/60’’ OFF, using a Bioruptor Pico (Diagenode).  

The antibody used were: 

H3K27Ac, marker of active enhancer (Abcam, ab4729) 

H3K4me1, marker of enhancer (Abcam, ab8895) 

RNAPoll II, marker of transcriptional elongation (Santa Cruz, 67318) 
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The DNA was stored at -20°C until the verification of ChIP enrichment by qPCR and ChIP-seq 

library preparation.  

Library preparation was performed using Diagenode kit (C05010013) according to the 

manufacturer’s instruction, with the ligation of barcoded adapter to allow a multiplexed 

sequencing of 8 libraries per lane.  

ChIP-seq was performed on visceral WAT (vWAT) and subcutaneous WAT (scWAT) from 6 

groups of mice. The groups were as follows: 1) 1 week fed with control diet, 2) 1 week fed with 

HFD diet, 3) 8 weeks fed with control diet, 4) 8 weeks fed with HFD diet, 5) 20 weeks fed with 

control diet, 6) 20 weeks fed with HFD diet. For each group 2 biological replicates were used and 

each replicate was generated from a pool of mice: 32 mice for pool at 1 week, 20 mice for pool at 

8 weeks and 17 mice for pool at 20 weeks. All the mice used for pool preparation were selected 

based on their inflammatory response as described in the result section (II.3).  

II.4.1 ChIP-seq computational analysis  

100 bases Single-ended tags were mapped to mouse genome Ensemble GRCm38 (mm10) by 

Illumina pipeline Casava 1.82 using Elandv2e.  

Filter: 

We filtered all the tags that did not pass the filter, tags that contain Ns or more than 5 

mismatches, and tags that were mapped outside chromosome sizes of mm10. 

 

Files generated:  

-For analysis: BED files were generated from all the tags remained after filter. The total tags for 

each sample from then on are referred to these numbers. 
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-For USCS genome viewer: bedGraph and bigWig files were generated from the BED files and 

scaled by the total tag number for each sample. 

IP quality control: 

CHANCE was used measure IP strength using BED files 

Significant bins identification: 

We used ChiP-Cor (https://ccg.vital-it.ch/chipseq/chip_cor.php) to analyze the correlation 

between 5’ and 3’ tags position and determined the average ChIP fragment length for each 

sample. 

The mm10 genome was divided into 500 bases long consecutive, non-overlapping bins to 

calculate the ChIP signal. For each bin, each sample has its own value of tag density which is the 

AUC (area under the curve) created by the tags pilled-up from BED file, strand-shifted by half of 

the fragment length produced by ChIP-Cor. The bin values were scaled by the total tags for each 

sample and 30 pseudo-counts were added to stabilize the variance of low scores. The same 

quantifications were done for all the INPUT samples. All the values were then log2 converted. 

The log2 scaled bin values of each ChIP sample and of the corresponding time-tissue-treatment 

INPUT sample were used to compute ratio-mean distribution. This distribution was sectioned 

into 200 step-wise proportions along the mean axis. Smoothing function lowess with smoother-

span 0.2 was applied for only the negative-ratio bin population of each step-wise proportion. 

From the predicted distribution of smooth function, the mirrored bins were selected on the 

positive-ratio population. Distribution function was applied for this positive-ratio population with 

the mean and standard deviation derived from smooth function. The p-values were adjusted for 

false discovery rate (Benjamini–Hochberg). All bins with adjusted p-value less than 0.05 were 

considered significant. 
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This “origami” comparison was done for each replicates of ChIP sample over each replicate of 

INPUT sample. 

We also repeated the same whole genome analysis using bins shifted of half bin size (250 bases) 

in order to collect all the regions where the signal would be split over two consecutive 500 nt 

bins. 

The significant bins in both replicates and both bin sets (non-shift and 250-shifted) were pooled 

into consistency analysis. A bin was considered consistently significant if it was found in both 

replicates, either in the same or shifted position. The final bin set was determined for each 

sample. 

Merging regions: 

All the collected bins for all time points, tissues, diet treatments and IP treatments were pooled 

and merged with maximum distant of 250–two bins separated by 250 bases would be merged–

into significant regions. We have 72314 significant regions in total. The tag density within each 

region were collected and scaled by total tags of each sample and by each region width. 

II.5 Metabolomics  

Metabolites were extracted from 20mg of each adipose depot by using a conventional methanol-

based solvent mixture. This non-discriminant extraction aims to precipitate high-molecular 

weight species while avoiding the possible loss of metabolites and their information292. Each 

extract was then aliquoted for further analyses. 

The aliquots were analyzed on Reverse Phase Liquid Chromatography (RPLC) Mass 

Spectrometry (MS) in both positive and negative polarities for un-targeted measuring of features.  
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II.6 Histology and immunohistochemistry  

scWAT and vWAT were dissected, fixed in a IHC zinc fixative (BD Pharmingen, Cat n° 

550523), embedded and sectioned. Sections were stained with hematoxylin and eosin. 

Immunofluorescences were performed using the following antibody: rat anti-mouse F4/80 

(ABCAM, cat n° ab6640), mouse anti Arginase 1 (BD biosciences, cat n° 610709).  

II.6.1 Cell Size quantification 

Six pictures were taken randomly at the magnification of 10X for all the Haematoxylin and Eosin 

sections. Adipocyte size was calculated on each picture using the Adiposoft software as a plug-in 

of Fiji. This automated program retrieves the number and the area of each counted cell. All the 

information per section was pulled together and a distribution of the cell size was obtained using 

the function histograms in R. The number of cells was counted in a range of size going from zero 

to the maximal cell size for each group. A summary box plot was produced showing the 

variability in the cell number in slots of 50 µM2 each. 

II.7 Western blotting 

Proteins were extracted from powdered tissue using mPER lysing buffer (78501) with added 

protease inhibitor (Roche) and phosphatase inhibitor (Roche) cocktails. The lysates were left 1h 

at 4°C on a rotating wheal and then sonicated 5 cycles 30’’ON/30’’ OFF, using a Bioruptor Pico 

(Diagenode). Debris and fat were cleaned from lysates by centrifugation. Protein concentration 

was determined by Pierce BSA protein assay Kit (23227). After dilution with mPER and 

Laemmli, 15-10 µg of protein was separated by electrophorarsis using NuPAGETM SDS-
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polyacrylamide gels (Invitrogen) and transferred on nitrocellulose membrane using wet transfer. 

Membranes were blocked 1 hour in 5% milk protein, dissolved in tris-buffered saline with 0.05% 

tween (TBS-T) at room temperature and then incubated over-night at 4°C with primary 

antibodies. Bound primary antibodies were detected using peroxidase-coupled secondary 

antibodies and enhanced chemiluminescence (SuperSignal West Pico, 34080). Blots were 

exposed digitally using the Fusion FX system (Vilber) and bands were quantified using ImageJ 

software. Protein levels were normalized using housekeeping protein (Gapdh or Vinculin) and 

data are expressed as arbitrary units.  

III Statistical analysis 

III.1 Differential expression analysis 

Statistical quality controls were performed through sample PCA (all samples and samples per 

week). 

Differential expression was computed with limma293 by fitting samples into three linear models 

per time point and performing the following groups of comparisons: 

Comparisons at week 1 

Visceral HFD vs visceral control (W1V.H-W1V.C) 

Comparisons at week 8 

Visceral HFD vs visceral control (W8V.H-W8V.C) 

Comparisons at week 20 

Visceral HFD vs visceral control (W20V.H-W20V.C) 
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Moderated t-test was used for each contrast. 

The result files contain one row per gene. Columns contain the log2 average expression across all 

samples in the model (AveExpr), the log fold change (logFC), the t or F statistic (t or F), the p-

value of the test (P.Value), the adjusted p-value computed by the Benjamini-Hochberg method, 

controlling for false discovery rate (FDR or adj.P.Val. Next columns are the associated gene 

annotation including gene name and description and so on.  

III.2 Ruv correction of RNA-seq dataset  

Unwanted variation due to epididymus contamination was removed using RUVr (RUVseq 

package version 1.6.2)294. 

III.3 Pathway analysis 

Pathway analysis were performed with R using tools called Signalling Pathway Impact Analysis 

(SPIA)295 or ClusterProfiler296.  

SPIA analysis was performed on the full RNA-seq dataset (16709 protein coding genes) without 

any a priori selection for fold change. The program was provided with pValue and fold change 

coming from the comparison HFD versus Control (see Differential expression analysis). The 

differentially expressed genes were defined with pValue cut-off lower than 0.05.  

ClusterProfiler with Gene Ontology (GO) annotation was applied, when specified, on list of 

genes coming from other analysis with pValue cut-off lower than 0.05 and adjusted p-value 

computed by the Benjamini-Hochberg method.  
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III.4 Cluster analysis on ChIP-seq dataset  

Clustering analysis were performed in R using hierarchical clustering and complete method on 

the fold change of selected genomic regions. Cut-off for tree selection was applied looking at the 

best grouping and set at 15, in order to retrieve 15 different clusters. 
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I Establishing the final experimental design via a pilot experiment 

I.1 Chromatin immunoprecipitation protocol optimization 

I.1.1 Epigenetic markers selection and optimization of ChIP protocol for each epigenetic 

mark 

The identification of the epigenetic modifications possibly involved in the onset of obesity-

related inflammation in the white adipose tissue is achieved by the application of high-throughput 

sequencing technologies coupled with ChIP. In order to have a broad view of the HFD impact on 

the epigenetic landscape, we focused our attention on the histone acetylation status that 

influences chromatin packaging and the accessibility of transcription factors to local chromatin 

regions, and on the distal regulatory elements, which are critical for context-specific gene 

regulation and are associated with characteristic chromatin marks.  

We tested the following histone marks: 

• Histone 4 acetylation (H4Ac) that reflects chromatin accessibility297;	
• Histone 3 lysine 9 acetylation (H3K9Ac), marker of active promoters297;	
• Histone 3 lysine 4 mono-methylation (H3K4me1), which is constitutively associated to 

enhancers297;	
• Histone 3 lysine 27 acetylation (H3K27Ac), to monitor active enhancers297;	
• The cofactor p300, marker of active enhancers sensitive to environmental stimuli298;	
• Histone 3 lysine 27 tri-methylation (H3K27me3), associated to silenced chromatin;	
• Phospho-Serine 5 (pSer5)v and total RNA polymerase II (Pol II) to define the relationship 

between histone modification changes and actively transcribed genes. 	
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Figure 1: ChIP protocol validation of different histone modification markers, the cofactor p300 and phosphorylated 

active RNAPol II (pSer5 RNAPol II) in WAT. In all the graphs, we report the best condition for the 

immunoprecipitated sample in term of antibody amount, and the no antibody (No Ab) condition, as negative control. 

Each marker has been tested for three positive controls (ADRP, RPL27 and RAF1) and two negative controls (UCP1 

and MS6), except H3K4me1 for which Sirt4 and MS6 were used as negative controls. The percentage of input has 

been normalized to Ucp1 or Sirt4 (H3K4me1) signal 

 

ChIP protocols were optimized for each of these histone modification marks. For each antibody, 

different concentrations (2, 5, 10 and 20 µg) were tested in order to identify the concentration 

giving the optimal ratio between enrichment levels and background signals. To evaluate ChIP 

efficiency, we defined a panel of control sequences mapping at the transcription-starting site 

(TSS) of genes actively transcribed or not in mature adipocytes. As positive controls, we 

considered genes such as the Adipose Differentiation-Related Protein (Adrp), Ribosomal Protein 

L27 (Rpl27), Raf-1 and Pparg. As negative controls, we chose the Ucp1 gene, generally not 

expressed in vWAT, and a gene transcribed by the RNAPol III (Ms6).  

The second step of this protocol optimization process was to adjust the crosslinking conditions 

and chromatin shearing process in order to improve the efficiency of ChIP, especially for the co-

factor p300. This important transcriptional co-activator is not directly bound to the DNA and is 

thus, more difficult to immunoprecipitate using the standard ChIP protocol. Nevertheless, by 

using a stronger crosslinker and a gentler sonication system, we were able to improve the 

immunoprecipitation efficiency of p300 and of all the histone modification marks. As shown in 

Figure 1, we obtained a nice enrichment of the positive sequences and a good specificity of the 

signal compared to the no antibody condition for all the considered markers.  

A specific hint must be given concerning the intriguing enrichment pattern obtained for the 

marker of enhancer, H3K4me1, which seemed to be enriched also at the TSS of our negative 

control Ucp1 (data not shown). This is in line with many ChIPseq analyses where this mark 
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displays a dynamic distribution spread in promoter, intronic and intergenic regions297. For this 

reason, as negative control H3K4me1 we added a sequence designed on the TSS of Sirtuin 4 

(Sirt4) that, according to Raghav et al.299, in mature adipocytes is bound by the nuclear 

corepressor receptor corepressor 2 (NCoR2) and its TSS did not show any H3K4me1 tag 

enrichment

I.2 In vivo pilot experiment  

I.2.1 High fat diet efficiency  

Different diet-inducing obesity (DIO) formulas have been described in the literature to mimic the 

high caloric nutrient intake and reproduce the obese pathogenic process. In particular, two HFD 

formulas are the most commonly used, one containing 45% and 35% of calories coming from fat 

and carbohydrate, respectively300, and the other one with a higher percentage of fat (60%)301. 

Although extreme in term of fat content, thus not perfectly reflecting the human food intake, we 

fed the mice with a 60% HFD (cat. D12492), to push the onset of obesity-induced inflammation 

in our experimental group. A specific control diet for this specific HFD, which matched for the 

amount of sucrose (7%, cat. D12450J), was used instead of the regular chow diet, which contains 

35% of sucrose (purple line in Figure 2). In order to avoid any bias due to acute effects in 

changing the chow dietary regimen, we started the experimentation right after the weaning (4 

weeks old mice), feeding both control and HFD groups for two weeks with the appropriate 

control diet (Figure 2).  

To test that this matched control diet would not affect food intake and growth, we first went 

through a pilot experiment, feeding mice with the D12450J control diet or the chow diet normally 
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used in our animal facility (Figure 2A). As shown in Figure 2B, we did not observe any change, 

neither in body weight nor in the food consumption, suggesting that this control diet is well 

tolerated and does not induce weight loss. Following this first assessment, we tested the HFD 

efficiency in a group of 20 mice, 10 of them being switched to HFD after the 2 weeks of 

conditioning with control diet, while the other 10 continuing on the control diet. After six weeks 

of this regimen, the measurement of the body weight confirmed that HFD was efficient in 

inducing body weight gain, giving significant differences already at 2 weeks of treatment (Figure 

2C). 
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Figure 2: (A) Study design for the pilot experiment. Twenty 4-weeks old mice are fed with the new control diet 

D12450J (low sucrose but isocaloric with the usual chow diet) for two weeks, while, as control, 5 age-matched mice 

are fed with the control diet regularly used in the animal facility (AF diet, purple line). After the conditioning period, 

half of the mice (10) in control diet (blue line) is shifted to a 60% HFD for 1 or 6 weeks (orange line) 

(B) Weight gain of 20 and 5 mice fed for two weeks respectively with a 7% (D12450J) or a 35% (CTR Animal 

Facility) sucrose control diet. (C) Weight gain along 6 weeks of HFD treatment *pVal < 0.05, **pVal < 0.01. 
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I.2.2 Assessment of the best intermediate time point to study the inflammatory response 

The time points initially chosen to follow the evolution of the diet-induced obesity (1, 6 and 20 

weeks) were based on evidence reported in the literature, showing the time course of the 

inflammatory response along the HFD treatment. However, the exact timing of appearance of 

activated macrophages in the vWAT is controversial, with different reports showing the first 

increase of markers of activated macrophages starting from 3 until 8 weeks of HFD treatment 

301,302. 

Therefore, it was necessary to carefully evaluate the inflammatory response along the treatment 

period in order to identify the time point in which a macrophage infiltration is significantly 

occurring. We thus checked the inflammation status after 6 weeks of HFD feeding, in the small 

group of mice from the pilot experiment (5 control and 5 HFD). The analyses of the inflammatory 

response were based on the expression level of a panel of inflammatory genes, including markers 

of M1 macrophages and cytokines (Figure 3) and on histological analyses on both vWAT and 

scWAT, using Arg-1 and F4/80 as markers of M2 or M1 macrophages, respectively (Figure 4).  

In the gene expression analysis (Figure 3) the three markers of activated macrophages, Ccl2 

(MCP1), Itgax (CD11c) and Emr1 (F4/80), exhibited a coordinated increase in 2 out of 5 mice, 

indicating that, at this time point, not all the mice have established inflammatory response in the 

vWAT. This heterogeneous response was further found in the expression profile of a panel of 

inflammatory cytokines, such as Tnf (TNFα), Il1b, Il6 and Cxcl12 (SDF1), which are secreted by 

both adipocytes and macrophages in an established inflammatory situation. Indeed, the levels of 

Tnf and Cxcl12 showed only a trend to increase without reaching a statistical significance. 

Altogether, these observations suggested that, after 6 weeks of HFD, vWAT starts to recruit 
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immune cells, but the response is not yet homogeneous in all mice. Importantly, and as expected, 

no signs of inflammation were observed in the scWAT, neither at the level of macrophage 

infiltration nor at the level of cytokines secretion.  
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Figure 3: Gene expression analysis of markers of activated macrophages, Ccl2 (MCP1), Itgax (Cd11c) and Emr1 

(F4/80) (A) and cytokines, Il1b, Il6, Tnf (TNFα) and Cxcl12 (SDF1) (B) in both visceral and subcutaneous adipose 

tissues of mice fed with D12450J control or HFD diet 
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Histological analyses confirmed the gene expression results. As represented in Figure 4A for the 

vWAT, we could identify resident M2 macrophages (Arg1+) in both control and HFD mice, 

whereas only 2 out of 5 mice showed F4/80+ activated macrophages. These results were 

strengthened by the Hematoxylin & Eosin staining, which showed some macrophages 

surrounding adipocytes.  

As expected, the same histological analyses performed in scWAT revealed no sign of F4/80+ cells 

in both control and HFD mice (Figure 4B). The different inflammatory response observed in 

these two white adipose tissue depots, which is consistent with many reports in the literature, 

strengthens the hypothesis that the comparison of the epigenetic and metabolomics profiles in 

vWAT and scWAT may highlight the crucial alterations that play a role in the onset of the 

inflammatory response.  

Taken together these results proved the efficiency of the diet in inducing body weight gain and 

inflammatory activation. However, at 6 weeks of HFD treatment, only 2 mice showed a marked 

vWAT inflammation, with high expression of markers of activated macrophages at the gene and 

protein level. According to this, we decided to feed mice for 2 additional weeks in the final 

protocol, in order to increase the number of mice exhibiting an initiated inflammatory response.  
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Figure 4: Protein expression analysis of markers of M2 (Arg-1+) or M1 macrophages (F4/80+). (A) 

Immunofluorescence (IF) and H/E staining in visceral white adipose tissue (vWAT). The following conditions are 

reported: control (CTR), HFD-adipose tissue with no sign of inflammatory response (low responder) and HFD-

adipose tissue with sign of inflammatory response (high responder). (B) IF and H/E staining in the subcutaneous 

adipose tissue (scWAT). Arrows indicate IF positive cells. Bars indicate 100µm.
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I.2.3 Determination of the needed number of mice at each time point 

The preliminary experiments allowed us to evaluate the sample size, i.e. the number of mice, 

needed for giving sufficient materials for all the analyses to be performed. The calculation took 

into consideration the small amount of WAT present in 7 weeks old mice and the estimated 

number of adipocytes present in chronic inflamed adipose tissue. Indeed, after several weeks of 

HFD, the expansion of the WAT is more likely due to an increase in the adipocytes size, rather 

than to an increase in the number of these cells. Based on the weight of WAT recovered in 

average in the different conditions (Table 1), and based on the amount of tissue needed for ChIP 

(8 grams/chromatin preparation) but also for metabolomic, transcriptomics, inflammatory and 

histological analyses, and the need of performing replicates in order to have statistically 

significant results, we decided to treat 140, 110 and 100 mice respectively for 1, 8 and 20 weeks. 

 

Table 1: averaged WAT mass at different ages. 
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II Full scale in vivo experimental design 

II.1 Design of the full scale experiment 

As defined through the pilot experiment, 350 four-weeks old C57/BL6 male mice are fed for two 

weeks with control (D12450J) diet. After this conditioning period, mice were shifted either to a 

HFD (n=170) containing 60% of calories coming from fat or a matched control diet (n=180) with 

10% of calories from fat for 1, 8 and 20 weeks (Figure 5). These time points correspond to 

different stages of the HFD induced inflammatory progression, with the acute response at 1 week, 

the appearance of macrophage infiltration in vWAT evaluated at 6-8 weeks and the chronic 

inflammation at 20 weeks.  

At each of the three time points, the blood and two different white adipose tissue depots are 

collected, namely visceral adipose tissue (vWAT), represented by the epididymal fat pad and 

subcutaneous adipose tissue (scWAT), represented by the inguinal fat pad. Anatomically well 

separated, these two energy storage compartments are biologically different in terms of secretion 

of adipokines and receptor expression patterns that influence their response to afferent signals. 

More particularly, vWAT has been demonstrated to undergo a more massive activation in terms 

of inflammatory response upon HFD compared to scWAT, as demonstrated by a higher rate of 

macrophage infiltration.  
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Figure 5: Study design for full experiment. 350 4-weeks old mice are fed with the new control diet D12450J (low 

sucrose but isocaloric with the usual chow diet) for two weeks. After the conditioning period 70 mice were shifted to 

a 60% HFD for 1 week, 50 mice for 8 weeks and 50 mice for 20 weeks. 
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II.2 Phenotypic evaluation of the response to HFD 

The evolution of the diet-induced obesity was followed by regular measurements of weight and 

glycaemia in both control and HFD groups. As shown in Figure 6A, we observed a statistically 

significant difference in the gain of weight between controls and HFD already after 1 week of 

treatment. Of note, the HFD group did not develop a strong diabetic phenotype along the feeding 

period evaluated by glycaemia measurements (Figure 6B).  

To confirm that the increase in body weight was directly correlated to the expansion of WAT, we 

evaluated at the time of sacrifice the individual amount of epididymal (vWAT) and inguinal fat 

(scWAT) at each time point (Figure 7) As expected, we observed a significant increase in WAT 

weight at 1 and 8 weeks for both scWAT and vWAT.  
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Figure 6: (A) Weight gain and (B) fasting glycaemia (5h) evolution along the 20 weeks of HFD treatment. *pVal < 

0.05, **pVal < 0.01. 
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Interestingly, at 20 weeks the amount of scWAT is largely increased (4 gr on average), whereas 

there was no difference in the weight of vWAT between the control and the HFD group. On one 

hand, this is in part explained by the physiological weight gain normally occurring during aging 

in the control group. However, there was also a paradoxical decrease in the amount of vWAT, 

from 2.5gr to 1.6gr on average in the HFD group (Figure 7). In contrast, the scWAT compartment 

is displaying a plastic behavior with progressive expansion upon high caloric nutrition, possibly 

linked to anatomical availability of space. 

Altogether, our data definitively prove the efficiency of the HFD in inducing the obese phenotype 

in our experimental group.  

 

 
Figure 7: Ex vivo measurements of vWAT and scWAT weight after 1, 8 and 20 weeks of HFD treatment. 
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II.3 Full scale in vivo experiment: Quality control and pooling strategy 

Based on the amount of adipose tissue needed for ChIP-seq, as explained in the section I.2.3, it 

was necessary to establish a strategy for pooling the mice at each time point. Since the aim of the 

project was to identify changes responsible for the development of obesity-induced inflammation, 

we used the vWAT inflammation as the key criteria for pooling. After 1 week of HFD, 

inflammation has not yet started, and the mice were arbitrarily pooled at this time point. In 

contrast, a detailed evaluation of the systemic and local inflammation was performed in all the 

mice fed with HFD for 8 and 20 weeks in order to define pools of mice with a homogeneous 

inflammatory status and avoid, later, a bias due to a different response to the diet. In particular, 

we measured the circulating levels of proinflammatory cytokines like TNFα, IL1β and IL6, as 

well as insulin, leptin and resistin that are known to be altered upon obesity and are linked to 

inflammation. At the tissue level, we assessed the infiltration of macrophages as well as other 

immune cells. Immunostaining of a panel of markers were performed in the vWAT and scWAT, 

namely F4/80 (M1 macrophages), Nitric Oxide Synthase 2 (M1 macrophages), Arginase 1 (M2 

macrophages), CD8 (Cytotoxic T cells) and CD4 (Helper T cells). The expression levels of 

inflammatory genes were also measured. It included the gene expression of Tnf, Ccl-2 

interleukin-1 receptor antagonist (Il-1Ra), and Itgax, which are known markers of immune cell 

recruitment and activation. 

II.3.1 Inflammatory response at 8 weeks of HFD treatment and sample selection 

Insulin, resistin and leptin levels as well as the vWAT gene expression of Tnf, Ccl-2 and Itgax 

were evaluated in 61 vWAT collected at the 8 weeks time point. All these measurements, in 
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addition to the individual mouse weight, were used as variables to perform a Principal 

Component Analysis (PCA). As shown in Figure 8, a group of HFD treated mice clustered close 

to the control group. These mice were considered as “low responder” mice, in terms of 

inflammatory response, whereas the others were assigned to the “high responder” group (Figure 

8).  

To better establish this categorization in low or high responder, we added a second level of 

information, by coupling histological analyses to the PCA. As represented by the staining in 

Figure 9, resident M2 macrophages (Arg1+) appear to be present in both controls and HFD mice, 

whereas the pro-inflammatory F4/80+ M1 activated macrophages were present only in the “high 

responder” mice that were falling in the positive axis of the principal component 1 (Figure 8). 

The Hematoxylin & Eosin was also revealing a stronger macrophage infiltration in the high 

responders compared to the low responders and to the controls, as shown by the presence of 

“crown-like structures” in the adipocytes surrounding areas. Taken together, the PCA and the 

histological analysis, gave us strong evidence that the mice in the positive dimension of the 

principal component 1 had clear inflammatory response and could be classified as high 

responders (~75% of HFD treated mice). Because the aim of the project is to identify the events 

that contribute to the onset of inflammation, the “low responder” mice were excluded.  

These data suggested that the chosen experimental approach is appropriate to our aim. A 

sufficient number of HFD mice were presenting a quite homogeneous inflammatory phenotype 

for the considered parameters and could be pooled to perform the epigenetic analyses. Using the 

group of high responders mice, we then performed the ChIP-seq analysis on 2 biological 

replicates each of them containing 20 mice. Each of these 2 pools of mice was then split into 3 to 



  Results 

 95 

generate 6 biological replicates (6 mice per group) for the RNA-seq experiment (Figure 10A & 

B).  
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Figure 8: Principal Component Analysis (PCA) performed on 61 mice treated for 8 weeks either with CTR (16) or 

HFD diet (45). 7 variables were used: gene expression levels of Ccl2 (MCP1), Itgax (CD11c) and Cxcl12 (SDF1), 

plasmatic levels of insulin, resistin andlLeptin, and individual mouse weight. In the plot, the control group is 

represented in black while the HFD mice in red. A red panel was added to indicate the mice selected as “High 

Responders”. Each point represents a mouse. The nomenclature of the mice is as follow:  

The first number is the week of treatment  

Thefollowing letter is referring to the type of diet, C in black or H in red 

The last number is the discriminant of the individual mouse
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Figure 9: Examples of Immunofluorescence and H/E staining performed in the visceral adipose tissue (vWAT) of 

mice after 8 weeks of HFD. Control group (CTR), low responder HFD (low expression of inflammatory markers) 

and high responder (high expression of inflammatory markers) HFD. Bars indicate 100 µm.  
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Figure 10: Experimental procedure and pooling strategy. (A) Single mouse extraction was performed for 

Metabolomics. 2 biological replicates were used to perform ChIP-seq on H3K4me1, H3K27Ac and RNAPol II. 6 

biological replicates were used for RNA-seq. (B) number of mice used for each pool at the different time points.  
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Interestingly, the presence of these two subpopulations of HFD-fed mice differing in terms of 

obesity-driven inflammation raises the question of which mechanisms are underlying their 

distinct behavior. By pooling separately low responders and high responders HFD samples, this 

difference could be exploited to highlight epigenetic modifications occurring exclusively in the 

high responders that could play a critical role in the inflammatory onset. However, due to time 

constraints, this has not yet been exploited. 

 

II.3.2 Inflammatory response at 20 weeks of HFD treatment and pooling strategy 

A similar characterization of individual inflammatory response was performed on mice fed for 20 

weeks with HFD. Principal Component Analysis was performed on 58 samples (20 CTR and 38 

HFD) using the same variable used at 8 weeks (expression levels of Ccl2, Itgax, Cxcl12 as well as 

plasmatic levels of insulin, leptin and resistin). As for the 8-weeks time point we decided to 

consider as high responder the mice in the positive dimension of the component 1 and exclude 

only one mouse falling in the negative region (Figure 11). Similarly to the 8-weeks time-point, 2 

pools of mice (17 mice each) per condition were prepared for ChIP-seq. For the RNA-seq instead, 

we used 6 pools of 5 mice (see Figure 10 for the replicates scheme).  
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Figure 11: Principal Component Analysis (PCA) performed on 58 mice treated for 20 weeks either with CTR (20) or 

HFD diet (38). 7 variables were used: gene expression levels of Ccl2 (Mcp1), Itgax (CD11c) and Cxcl12 (SDF1), 

plasmatic levels of insulin, resistin and leptin and individual mouse weight. In the plot the control group is 

represented in black while the HFD mice in red. A red panel was added to indicate the mice selected as “high 

responders”. 
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II.4 Full scale in vivo experiment: analysis performed 

II.4.1 ChIP seq: quality controls and general observations  

To characterize the diet-induced changes in the global enhancer and promoter organization, we 

profiled the genome-wide landscape of H3K27Ac and H3K4me1 histone modifications, as well 

as the phosphorylated isoform of RNAPol II (5PSerRNAPol II), by performing ChIP-seq analysis 

in both vWAT and scWAT at all the time points. To check the efficiency of each single 

immunoprecipitations (IPs), we performed bioinformatics analysis using a tool known as 

CHANCE (ChIP-seq ANalytics and Confidence Estimation). The IP strength is calculated by 

comparing the IP cumulative percentage enrichment over the relative background signal given by 

the input, namely the chromatin precipitation performed without the use of any antibody. This 

tool is not perfect for our dataset, as it is using a previous version of the mouse annotation (mm9). 

However, this is negligible since both the inputs and the IPs are mapped to the same genome 

annotation. These analyses confirmed that the IPs were technically successful for H3K27Ac and 

H3K4me1, but not for 5SerPol II where the antibody worked only for some sample of the first 

time point (Figure 12). We thus repeated the ChIP using an antibody recognizing the total form of 

the RNAPol II. New CHANCE analysis confirmed that these IPs were perfectly working.  

We then divided the genome into 500 bases long consecutive and non-overlapping bins to 

calculate the signal for both IP and input and used a function called “origami” to calculate the IP 

enrichment over the input for all the bins in the genome. A final step was used to merge the bins 

into regions (72314) that were the same for all the time points and the 2 tissues. The signal in 

these regions was scaled according to the total tags in each sample and to the region width, 

generating the data thus used for subsequent analyses, 
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Figure 12: CHANCE output for the multi-IP normalization module. For each plot, the x-axis corresponds to 

percentages of bins (from 0 to 1), which represent 500bp pieces of the genome, giving the idea of the percentage of 

genome. The y-axis corresponds to percentages of the total number of reads. In each plot 4 curves are present, 

relative to two control (C1, C2) and two HFD (H1, H2) replicates together with their respective INPUT lines. The 

point at which the distance between the IP and input percentages is maximized shows the percentage of genome for 

which the IP is enriched compared to the input. The green dotted line (*) represents the “consensus”, an in silico 

built profile based on signal processing techniques designed to identify regions of mutual enrichment. The greater 

the separation between IP and Input, the better the IP enrichment will be. Each column represent a ChIP and each 

row a different conditions (type of tissue, length of the diet). In all the ChIP performed using 5PSerRNAPol II 

antibody the difference in enrichment between the inputs and the IPs are not statistically significant. 
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II.4.2 RNA-seq: quality control and general observations 

A first quality control (QC) check was applied on the RNA-seq, establishing that all the QC 

metrics were within the optimal values. We thus proceeded to the RNA-seq analysis, taking into 

account only the protein coding genes (16709) as shown in table 2. In a second QC test, we 

performed PCA to assess the quality of the replicates using all the genes as variables and all the 

experimental conditions. This analysis revealed a non-coherent clustering of the 6 biological 

replicates coming from the samples prepared from visceral adipose tissue of mice under control 

diet in all the time points (Figure13A). The fact that only the control vWAT was affected made us 

think of a possible contamination by other tissues surrounding the visceral fat, more specifically 

the epididymis. We thus looked for candidate genes exclusively expressed in the epididymis and 

not in the fat, such as reproductive homeobox 5(Rhox5), perm adhesion molecule 1 (Spam1) and 

the F-actin-capping protein subunit alpha 3 (Capza3), and checked their expression in the RNA-

seq dataset. As shown in Figure 14 the epididymal contamination is clear in 2 out of the 6 

replicates in all the time points. In these two replicates, the expression of these genes is 

amazingly high compared to the other samples, reflecting a contamination of the vWAT by the 

adjacent epididymal tissue. The strategy used to address this problem and remove the influence of 

these genes on the global variability of the dataset was to add a normalization step by removing 

the unwanted variation, with the help of an R tool called RUVseq294. This method can be applied 

to large heterogeneous studies where a batch effect is expected but there is no predefined factor 

of interest to correct, i.e. specific set of genes. This normalization enables the data set correction 

by removing the unwanted variation, but maintaining the variation of interest, gene expression 

changes in control vs HFD treated mice for example. This gave us a new data set where the 
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unwanted variation introduced by the tissue contamination has been normalized. As shown by the 

PCA in Figure 13B, the clustering of the control vWAT replicates improved.  

 

Category Total Sum	>	0 In	analysis
3prime_overlapping_ncRNA 2 1 0
antisense 2343 2229 636
bidirectional_promoter_lncRNA 47 47 28
IG_LV_gene 4 2 0
IG_or_TR_gene 490 427 162
IG_or_TR_pseudogene 203 105 1
IG_pseudogene 2 0 0
lincRNA 3960 3271 848
macro_lncRNA 1 1 0
miRNA 2202 1136 49
misc_RNA 563 315 27
Mt_rRNA 2 2 2
Mt_tRNA 22 11 5
polymorphic_pseudogene 54 38 12
processed_pseudogene 6970 5134 338
processed_transcript 755 712 394
protein_coding 22018 20705 16709
pseudogene 101 82 16
ribozyme 22 12 2
rRNA 354 122 2
scaRNA 51 29 7
scRNA 1 0 0
sense_intronic 263 257 168
sense_overlapping 25 23 6
snoRNA 1508 577 75
snRNA 1383 705 38
sRNA 2 1 0
TEC 2593 2459 1138
transcribed_processed_pseudogene 184 155 61
transcribed_unitary_pseudogene 6 6 5
transcribed_unprocessed_pseudogene 179 144 67
unitary_pseudogene 24 22 8
unprocessed_pseudogene 2375 1135 72
TOTALS 48709 39865 20876

 
Table 2: The first column gives the name of different gene categories. The second column shows the total number of 

all the genes falling in the specific category. The third column shows the number of genes per category after 

selecting only the genes that have at least 1 read count in at least 1 sample. The last column represents the number of 

genes that have at least 1 count per million (cpm) in at least 1 sample. These genes are the ones we take into account 

in our analysis.
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Figure 13: Principal 

component analysis 

(PCA) performed 

before (A) and after 

(B) Ruv correction. In 

each panel all the time 

points, tissues as well 

as all the replicates are 

showed. (A & B): A 

shape code is defining 

the treatment: triangles 

are representing the 

control and dots the 

HFD treated mice. 

Different colours are 

assigned to distinguish 

the diet and the tissue. 

Blue represents the 

subcutaneous controls, 

red represents 

subcutaneous HFD, 

light blue represents 

visceral controls and 

orange the visceral 

HFD. 

After the Ruv 

correction (B) the 

intra-group variability 

is reduced improving 

the separation between 

groups.  

Ruv correction is used 
here to remove the 
unwanted variation 
introduced by 
epididymis 
contamination in the 
vWAT. 
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Figure 14: Example of epididymis specific genes. Each panel represents the expression of an epididymis specific 

gene (indicated above the panel). The y-axis represents the count per million (CPM) and on x-axis each histogram 

represent a sample. A color code is assigned to each group of biological replicates. The expression of these 

epididymis specific genes is consistently high in different samples of the visceral controls in all the time points (i.e 

MB25 and MB22, MB46 and 48).
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II.4.3 Metabolomics: general approach and methodology 

Part of the project was dedicated to the characterization of metabolite changes occurring in the 

white adipose tissue in the context of obesity. These analyses were performed by the group of 

Professor Aurélien Thomas, in the frame of the collaborative project Inflawat, in which the 

present PhD works is embedded.  

For this part, we performed the metabolite measurement on single mouse extracts. The samples 

were analyzed through Reverse Phase liquid chromatography (RPLC) mass spectrometry (MS) in 

both positive and negative polarities. These analyses were performed on the 1-week and 8-weeks 

time points, on both scWAT and vWAT.  

 

 

 



  Results 

 108 

III Distinct epigenetics and expression profiles of the scWAT and vWAT, in 

normal conditions 

We first explored the basal differences between the two tissues, vWAT and scWAT, independent 

of the diet effect. For that question, we focus on the global epigenetic landscape of H3K27Ac as 

well as the transcriptomics, using an unbiased approach.  

Principal component analysis was performed using as variables all the 72314 genomic regions 

profiled by ChIP-seq (see paragraph II.4.1, page 101) in all 24 samples, corresponding to the 

replicates of the different tissues at different time points. The same analysis was performed using 

the 16709 protein coding genes and the 72 corresponding samples of the RNA-seq (see paragraph 

II.4.2, page 104). The PCA plots and the samples clusters revealed a strong difference between 

the tissues, at both epigenetic and transcriptomic level, that was independent of the diet, since the 

vWAT of both controls and HFD treated mice are clustering far from the scWAT (Figure 15A). 

Moreover, the PCA performed on the RNA-seq dataset revealed, in each tissue, a strong diet 

effect that is more pronounced in the vWAT compared to the scWAT.  

Using the RNA-seq data, we identified two sets of genes that, independently of the age of mice, 

are significantly more expressed in vWAT (791 genes) and in scWAT (298 genes). Pathway 

analysis of these genes first identified several pathways related to development (Figure 16). This 

is consistent with the possible different origin of adipocyte precursors, with a mesodermal origin 

for the vWAT, and a skeletal muscle derived origin for the scWAT. The results also highlight in 

scWAT a more pronounced expression of genes important for fatty acids metabolism and 

oxidation, and suggest a higher mitochondrial activity, as revealed by the enrichment in terms 
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linked to mitochondrial respiration. In the vWAT, the differentially expressed genes belong to 

pathways related to cell shape, growth, and motility. 

We then looked at the epigenetic architecture of the promoter and gene body of few genes coding 

for transcription factors that are known to be tissue specific, specifically Wt1 and Tcf21 for the 

vWAT, and Tbx15 and Lhx8 for the scWAT. As shown in Figure 16B, we observe important 

H3K4me1 tag enrichment on the promoter of both Wt1 and Tbx15 genes. Such pattern is in line 

with the knowledge that this histone modification is a broad marker specifying enhancer identity 

but not activation. H3K27Ac instead conveys the information concerning gene activation. For 

this marker, there is indeed a tissue specific enrichment in tags on these two promoters as shown 

in the Figure 16B. This further demonstrates that these enhancers are active exclusively in one of 

the tissues.  

These observations revealed the clear intrinsic differences of the two adipose tissue tissues, not 

only in global gene expression, but also in the epigenomic organization.  

 

 

 

 

 

Figure 15: (A) Principal Component Analysis (PCA) performed using the full ChIP-seq dataset relative to the 

H3K27Ac on the left, and the full RNA-seq dataset on the right. In each panel the dots represent a sample. A shape 

code is defining the treatment: triangles are representing the control and dots the HFD treated mice. The number of 

dots and triangles are representative of the number of replicates: 2 per time point for the ChIP-seq and 6 per time 

point for the RNA-seq.  

(B) Genome browser view of tag enrichment. In each panel the first four lines represent the inputs, the four lines in 

the middle represents the H3K4me1 IPs and the last four the H3K27Ac IPs. The two-left panels show tag enrichment 

on the promoter and gene body of a visceral adipose tissue specific gene, Wt1. The two-right panels show tag 

enrichment on the promoter and gene body of a subcutaneous adipose tissue specific gene, Tbx15. 

Different colours are assigned to distinguish the diet and the tissue (A & B): blue represents the subcutaneous 

controls, red represents subcutaneous HFD, light blue represents visceral controls and orange the visceral HFD. 



  Results 

 110 

Groups

CTR scWAT

HFD scWAT

CTR vWAT

HFD vWAT

A

100

50

0

50

0 100

PC1: 22.6%
P

C
2
: 
1
7
.7

%

RNAseq

200

100

0

100

200 100 0 100 200

PC1: 41.8%

P
C

2
: 
1
6
.7

%

  ChIPseq H3K27Ac

INPUT

CTR1

INPUT 

CTR2

INPUT 

HFD1

INPUT 

HFD2

H3K4ME1 

HFD 1

H3K4ME1

HFD2

H3K27Ac

CTR1

H3K27Ac

CTR2 

H3K27Ac

HFD1

H3K27Ac

HFD2

Wt1 Tbx15

B

H3K4ME1

CTR1

H3K4ME1

CTR2

INPUT

CTR1

INPUT 

CTR2

INPUT 

HFD1

INPUT 

HFD2

H3K4ME1 

HFD 1

H3K4ME1

HFD2

H3K27Ac

CTR1

H3K27Ac

CTR2 

H3K27Ac

HFD1

H3K27Ac

HFD2

H3K4ME1

CTR1

H3K4ME1

CTR2

Wt1 Tbx15

scWAT
scWATvWAT vWAT



  Results 

 111 

Figure 16: Gene ontology 

pathway enrichment analysis of 

subcutaneous adipose tissue 

(scWAT) specific genes and 

visceral adipose tissue (vWAT) 

specific genes.  
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IV Different responses at early time point (1week) highlight a distinctive 

plasticity of the vWAT and scWAT 

The general aim of our study was to highlight biological changes induced by the over nutrition 

that could explain the different outcome observed in the visceral and subcutaneous adipose 

tissues. We thus started the analyses by looking at the early changes (1 week of diet) that would 

allow to understand the mechanisms of the different responses in the scWAT vs. the vWAT 

observed at the later time point.  

IV.1 Epigenetic analyses between early and late time points pinpoint the Wnt 

pathway 

Our first interest was the identification of genomic regions acquiring epigenetic modifications 

after 1 week of diet.  

We first used H3K27Ac, a marker of active enhancer, and performed statistical analyses to 

compare control- and HFD-treated mice in the two tissues at the different time points (Figure 17). 

This analysis allowed the identification of the regions with a statistically significant difference 

(pVal < 0.05) together with their fold change, corresponding to the red and green dots in the 

volcano plots shown in Figure 17. We then retrieved all the regions that were significantly 

changed either in the vWAT or in scWAT at 8 weeks (5984 regions) and analyzed their behavior 

also at one week. For that purpose, we performed a cluster analysis, using their Log fold change 

at 8 and 1 weeks. As seen in the heatmap (Figure 18A), most of the tested regions show quite a 

similar pattern between the scWAT and the vWAT. However, two interesting clusters showed a 

distinctive pattern in the two tissues both at 1 and 8 weeks (Figure 18A).  
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Figure 17: ChIP-seq volcano plots. In each panel the x-axis and the y-axis represent respectively the Log fold 

change (LogFC) and the Log P value of the comparison between control and HFD treated mice. Each dot represents 

a genomic region that can be coloured in 1) red if its P value is lower than 0.05, 2) green if its P value is lower than 

0.05 and the LogFC absolute value is higher of 1, 3) orange if its LogFC absolute value is higher of 1, 4) black if it is 

falling into any of the 3 categories. 
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The regions of the first cluster (359 regions) were characterized by having an increased 

H3K27Ac occurring with the diet in scWAT in contrast to reduced acetylation levels in vWAT. 

This behavior was already present at 1 week but was more marked after 8 weeks of diet. The 

second cluster (711 regions) presented the same acetylation profile but with less marked 

differences between 1 and 8 weeks in the vWAT. 

To refine this analysis, we analyzed back the tag density obtained in ChIP-seq for the H3K4Ac, 

H3K4me1 and RNAPolII over the 359 regions of cluster 1 (Figure 18B). Interestingly, the 

acetylation and methylation levels between vWAT and scWAT are extremely different in normal 

conditions, with an averaged tag density much lower in the scWAT. This suggests that the 

enhancers that are differentiating the response to HFD in the two depots are in normal condition 

more accessible for transcription in vWAT than in scWAT. The analysis also shows that the level 

of RNAPol II on the regions belonging to cluster 1 are in line with those of H3K27Ac, with an 

average tag density significantly reduced in vWAT at 8 weeks. On the other hand, H3K4me1 

levels are significantly reduced at 1 week but not changing at 8 weeks, suggesting that this 

regulation is happening only in the early phase of overfeeding. Finally, it must be noted that the 

changes in H3K27Ac tag density in the scWAT, are not statistically significant (Figure 18B). 

Thus the distinct pattern between vWAT and scWAT mainly stems from the decreased H3K27Ac 

and RNAPolII marks in the regions of the cluster 1, and with a lesser intensity in the regions of 

the cluster 2. 

To dig insight the biological functions of these regions, we annotated them to the closest gene 

from the center of each region. This step gave us a list of 323 genes from the first cluster and 674 

genes from the second one. Gene Ontology annotations (Figure 18C & D) obtained with the 

genes of the first cluster gave a strong enrichment of pathways linked to fatty acid metabolism, 
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for the presence of genes like Ppara, Hacd2, Psapl1, Scd4, Elovl6, Gpat2, Acsf2, Pla2g5, Alox12, 

Pck1, Degs1, Acsbg1, which are associated to sphingolipid and long fatty acid metabolism. This 

cluster also contains developmental genes (Nrp2, Irx4, Mfng, Tshz2, Shroom3, Nat8f2, Ackr3, 

Celsr1, Ambra1, Fzd4, Sufu, Farp1, Slit3, Wnt4, Hoxa3, Slc26a8, Smoc1, Asb1, Etl4, Fgf1, Sik1, 

Ihh, Pitx2, Bmp8a, Zfp423) and some genes that are part of the Wnt pathway (Wnt4, Rspo1, Fzd4, 

Mmp7, Camk2b, Axin2). ). Pretty similar to the first, the second cluster is enriched in terms 

involved in cell commitment and regulation of cell growth.  Taken together, the decreased 

H3K27Ac marks in these regions in the vWAT would therefore suggest that upon HFD treatment 

the visceral fat undergoes a reduction in fatty acid metabolism and a perturbation in cell growth 

and cell differentiation, when compared to the scWAT.  

 

 

 

 

 

 

 

 

 

 

 

Figure 18: (A) ChIP-seq cluster analysis. Hierarchical cluster analysis and heatmap showing the Log fold (LogFC) 

change of genomic regions (5984), obtained with the comparison between control and HFD treated mice. In the 

panel, blue and red represent, respectively, LogFC lower and higher than 0. The orange and the green rectangle 

highlight the clusters of interest. 

(B) Box plot of average tag density on the 359 regions in the cluster 1 (orange) for RNAPolII, H3K4me1 and 

H3K27Ac.  

(C& D) Pathway Enrichment analysis performed on genes annotated respectively in the orange or green clusters. In 

each panel the x-axis shows the gene ratio. The dots are coloured based on the significance of each pathway and the 

size represents the number of genes that are annotated in the pathways 
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Among the different hits highlighted by ChIP-seq analysis, we were particularly interested in the 

Wnt pathway, which was represented both in cluster 1 (Wnt4, Rspo1, Fzd4, Mmp7, Camk2b, 

Axin2) and in cluster 2 (Usp34, Nle1, Prickle1, Gsk3b, Tcf7l2, Src, Nfkb1, Dlx5, Mitf, Zfp703, 

Tnks, Ctnnb1, Smad3). Wnt is known to contribute to the regulation of adipocyte differentiation. 

We, thus, checked the expression of different Wnt genes, which have distinct properties with 

respect to adipogenesis. Interestingly, many Wnt genes are already differentially expressed in the 

vWAT and scWAT in control mice, with decreased Wnt2 and Wnt10b and increased Wnt2b, 

Wnt5b and Wnt7b, in vWAT compared to scWAT (Figure 19A). This suggesting that Wnt 

pathway and its action might be intrinsically different in the two tissues. Considering the role of 

Wnt in controlling adipogenesis and knowing that defects in adipogenesis can have an impact on 

the generation of hypertrophic adipocytes, we hypothesized a possible involvement of Wnt as a 

crucial player in the different response of vWAT and scWAT to HFD diet. Consistent with this 

idea, Wnt10b, which is a well-known negative regulator of adipogenesis303,304, has an increased 

expression after 1 week of diet exclusively in the vWAT (Figure 19B). To further test the 

possible implication of the canonical Wnt pathway, we looked at the β-catenin phosphorylation 

status in the tissue. As shown in Figure 19C, the β-catenin phosphorylation was reduced in the 

vWAT exclusively, after 1 week of HFD. Lower level of phosphorylated β-catenin indicates that 

the protein is less targeted for proteasomal degradation and thus, free to access the nucleus and 

activates the transcription of anti-adipogenic genes.  

Collectively these results show that Wnt10b and the activation of the canonical Wnt/β-catenin 

pathway may be important in differentiating the vWAT and scWAT early response to HFD. 

Moreover, this pathway could contribute to the regulation of the epigenetic landscape of the 

genomic regions that are linked to cell differentiation.  
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Figure 19: (A) Gene 

expression level of 

visceral or 

subcutaneous specific 

genes. The y-axis shows 

the normalized log 

count per million values. 

In each box plot is 

showed the average of 

the controls in the 

dataset (6 per time 

point). (B) Wnt10b 

expression level in 

visceral and 

subcutaneous adipose 

tissue. (C) Western blot 

performed with 

antibodies against the 

phosphorylated and the 

total β-catenin. In the 

picture four controls 

and four mice treated 

for 1 week with HFD 

are showed. Vinculin is 

used as loading control. 

On the bottom is showed 

the relative 

quantification as ratio 

between phosphorylated 

and total β-catenin.
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IV.2 Transcriptomic analysis emphasizes deregulation of histone genes in the 

vWAT 

We then focused our attention on the transcriptomic changes occurring in the two tissues, in the 

acute response to the diet. To explore the early response to the diet in the two tissues at the 

transcriptional level, we compare control and HFD treated mice in the two tissues, separately and 

at the different time points (Figure 20). We used this analysis to retrieve the pValue and the Fold 

Change for further pathway analyses that we performed using an R tool called Signalling 

Pathway Impact Analysis (SPIA). This tool uses pVvalue of the entire dataset to highlight 

significant pathways. The result obtained, using the SPIA tool highlighted some common 

pathways deregulated in both vWAT and scWAT. Two main pathways emerged: ECM-receptor 

interaction and focal adhesion, likely reflecting the changes in a huge number of gene coding for 

membrane proteins (Figure 21; see also Figure 24). These changes in membrane proteins are 

possibly due to the hypertrophic response to the diet happening in the two adipose tissues.  

In contrast, some pathways happened to be significant exclusively in one of the tissues. 

Specifically, Systemic Lupus Erythematosus (SLE) and Alcoholism were deregulated in vWAT. 

Since these pathways were meaningless for the biology of the adipose tissue, we identified, 

within these pathways, the genes that were changing with the diet (Table 3). A careful inspection 

of these genes revealed that both SLE and Alcoholism pathways in the vWAT were statistically 

significant because of changes in genes common to both pathways. Indeed, 27 histone genes, 

coding for all the variants of nucleosomal histones (H2A, H2B, H3, H4) were more expressed in 

HFD condition compared to control. The increase in histone gene transcription is usually 

associated to cell proliferation. We thus looked at the cell size distribution in sections colored 
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with hematoxylin and eosin of both vWAT and scWAT, in order to highlight changes in the 

number of cells in different range of size. As shown in Figure 22, we observed a striking 

difference in the two tissues in the frequency of the cell population ranging between 0 - and 50 

µm2. Indeed, the count of small cells is dropping significantly in scWAT in response to HFD, 

while no change is occurring in vWAT. Finally, cells of intermediate size ranging from 50 to 

300µm2, are decreasing in vWAT in HFD condition, emphasizing the shift in cell size distribution 

towards a population of bigger cells. In line with the hypertrophic effect of the over-nutrition, a 

significant increase in the very big cells (> 1300µm2) was measured in both vWAT and scWAT. 

Collectively, our results showed that the number of small cells is well maintained in the vWAT 

but not in the scWAT after 1 week of HFD, while hypertrophy, with increased frequency of big 

cells is present in the two tissues. 
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Figure 20: RNA-seq volcano plots. In each panel the x-axis and the y-axis represent respectively the Log fold change 

and the Log Pvalue of the comparison between control and HFD treated mice. Each dot represents a gene that is 

coloured in 1) red if its PValue is lower that 0.05, 2) green if its PValue is lower that 0.05 and the LogFC absolute 

value is higher of 1, 3) orange if its LogFC absolute value is higher of 1, 4) black if it is not falling in the other 3 

categories 
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Hist2h4 0.54 0.00001
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Hist1h3a 0.87 0.00325

Hist1h2bg 0.87 0.00035
Hist2h2bb 0.92 0.00008
Hist1h3d 0.97 0.00127
Hist1h3b 0.97 0.00385
Hist1h3c 1.02 0.00027
Hist1h4f 1.04 0.00001
Hist1h3g 1.05 0.00266

Hist1h2bh 1.08 0.00142
Hist1h2bn 1.11 0.00006
Hist1h2bl 1.17 0.00107
Hist1h2ab 1.19 0.00147
Hist1h2bj 1.19 0.00157
Hist1h2bk 1.20 0.00322
Hist1h2af 1.35 0.00027
Hist1h3i 1.36 0.00055

Hist1h2an 1.38 0.00329
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Figure 21: (A) Signalling Pathway Impact Analysis (SPIA) performed at 1 week. Two-dimensional plots illustrating 

the relationship between the two types of evidence considered by SPIA. The X-axis shows the over-representation 

evidence (PNDE), while the Y-axis shows the perturbation evidence (PTERT). Each pathway is represented by a 

point. Pathways above the oblique red line are significant at 5% after Bonferroni correction, while those above the 

oblique blue line are significant at 5% after FDR correction. The vertical and horizontal thresholds represent the 

same corrections for the two types of evidence considered individually. (B) List of genes deregulated in the visceral 

adipose tissue, which are in common between Systemic Lupus Erythematosus and Alcoholism.  
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Gene Name Fold	
Change p.Value

Creb3l4 -1.39 0.00291
Hist2h2be -0.36 0.00014

Hdac2 -0.24 0.00089
Atf2 -0.18 0.00334
Gnas 0.17 0.00039
Atf4 0.18 0.00373

Creb3 0.18 0.00038
Hist1h2be 0.26 0.00192

Calm3 0.27 0.00359
Hras 0.30 0.00251
Ntrk2 0.31 0.00002
Hdac5 0.31 0.00268

Adora2a 0.36 0.00191
Gnai2 0.37 0.00001
Gnb2 0.38 0.00070

Creb3l1 0.39 0.00224
Hist1h4d 0.41 0.00340

H2afj 0.42 0.00292
Hist2h4 0.54 0.00001
Hist1h4h 0.54 0.00035
Hist4h4 0.64 0.00157

Hist2h2ac 0.69 0.00104
Hist1h3e 0.74 0.00052
Hist1h3f 0.84 0.00016
Hist1h2bb 0.84 0.00017
Hist1h3a 0.87 0.00325
Hist1h2bg 0.87 0.00035
Hist2h2bb 0.92 0.00008
Hist1h3d 0.97 0.00127
Hist1h3b 0.97 0.00385
Hist1h3c 1.02 0.00027
Hist1h4f 1.04 0.00001
Hist1h3g 1.05 0.00266
Adcy5 1.06 0.00000

Hist1h2bh 1.08 0.00142
Hist1h2bn 1.11 0.00006
Hist1h2bl 1.17 0.00107
Hist1h2ab 1.19 0.00147
Hist1h2bj 1.19 0.00157
Hist1h2bk 1.20 0.00322
Hist1h2af 1.35 0.00027
Hist1h3i 1.36 0.00055

Hist1h2an 1.38 0.00329

Gene Name Fold 
Change p.Value

Hist2h2be -0.36 0.00014
Hist1h2be 0.26 0.00192

Snrpb 0.31 0.00359
C4b 0.35 0.00525
C1qb 0.38 0.00065

Hist1h4d 0.41 0.00340
C1qa 0.42 0.00057
H2afj 0.42 0.00292
C1qc 0.44 0.00012

Hist2h4 0.54 0.00001
Hist1h4h 0.54 0.00035
Hist4h4 0.64 0.00157

Hist2h2ac 0.69 0.00104
Hist1h3e 0.74 0.00052
Hist1h3f 0.84 0.00016
Hist1h2bb 0.84 0.00017
Hist1h3a 0.87 0.00325
Hist1h2bg 0.87 0.00035
Hist2h2bb 0.92 0.00008
Hist1h3d 0.97 0.00127
Hist1h3b 0.97 0.00385
Hist1h3c 1.02 0.00027
Hist1h4f 1.04 0.00001
Hist1h3g 1.05 0.00266
Hist1h2bh 1.08 0.00142
Hist1h2bn 1.11 0.00006
Hist1h2bl 1.17 0.00107
Hist1h2ab 1.19 0.00147
Hist1h2bj 1.19 0.00157
Hist1h2bk 1.20 0.00322
Hist1h2af 1.35 0.00027
Hist1h3i 1.36 0.00055

Hist1h2an 1.38 0.00329

Systemic Lupus 

Erythematosus 
Alcoholism

 
Table 3: Deregulated genes in visceral adipose tissue upon 1 week of HFD. List of genes present in Systemic Lupus 

Erythematosus and alcoholism pathways with their Fold Change and p.Value . 
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Figure 22: Boxplots of cell size distribution calculated on sections of visceral (A) and subcutaneous adipose tissue 

(B) in controls and 1 week HFD treated mice. The y-axis shows the cell number and the x-axis the cell size, divided 

in ranges of 50 µm2. A strong difference in cell size is observed in the first two size ranges (0-50 and 50-100 µm2) 

between controls and HFD treated mice. Cells bigger than 800 µM2 are more frequent in HFD mice in both tissues.
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IV.3 Modification of the mitochondrial activity in the scWAT 

The pathway enrichment analysis performed on the scWAT results gave the same kind of 

apparently not coherent pathways as we had seen in the vWAT. In the scWAT, the highlighted 

pathways were linked to central nervous degenerative disease, such as Huntington, Parkinson and 

Alzheimer disease (Figure 23A). Once again we looked at the individual genes in the pathways 

(Table 4). Similarly to the vWAT, we discovered that a group of genes, mainly belonging to the 

Electron Transport Chain (ETC), were shared between the three pathways. These mitochondrial 

genes were all down regulated in the scWAT upon 1 week of diet (Figure 23B).  

To validate this observation, we looked at the protein levels of some of the ETC proteins by 

Western blot, as well as at the mitochondrial abundance estimated using the quantification of 

mitochondrial DNA in the two tissues in both control and HFD situation. As shown in Figure 

24A, we could validate the reduction of the complexes I, III, IV in HFD condition in the scWAT. 

This reduction in mitochondrial protein is correlated to an overall reduction in the mitochondrial 

mass as showed by the reduction of mitochondrial DNA. Together, these observations support the 

hypothesis that the observed down-regulation of the mitochondrial respiration can be due to a 

global reduction of the mitochondrial number (Figure 24B).  
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Casp3 -0 .82 8E-07
Cycs -0 .66 3E-04

Cox5a -0 .47 4E-05
Uqcrb -0 .46 5E-03
Uqcrq -0 .45 3E-04

Ndufs4 -0 .43 1E-06
Cox7b -0 .40 8E-04
Uqcr10 -0 .40 1E-03
Ndufs1 -0 .38 7E-05
Ndufv2 -0 .38 2E-04
Ndufb6 -0 .37 4E-03
Ndufb9 -0 .37 3E-05

Ndufa10 -0 .37 3E-04
Sdhd -0 .37 3E-05

Uqcrc2 -0 .36 2E-04
Cox6c -0 .36 3E-03
Atp5f1 -0 .35 1E-03

Ndufa12 -0 .34 2E-03
Ndufa4 -0 .32 9E-04
Cox7a2 -0 .32 9E-04
Cox6b1 -0 .32 1E-03
Ndufa5 -0 .32 5E-03
Cox6a1 -0 .31 4E-03

Sdha -0 .30 1E-04
Uqcrh -0 .30 1E-04

Ndufb5 -0 .30 2E-04
Ndufa6 -0 .30 8E-04
Ndufa1 -0 .30 3E-03

Ndufab1 -0 .29 2E-03
Atp5o -0 .24 7E-04
Sdhc -0 .24 2E-03
Sdhb -0 .23 5E-03

Atp5a1 -0 .22 4E-03

scWAT genes

A B

 
Figure 23: (A) Signalling Pathway Impact Analysis (SPIA) performed at 1 week. Two-dimensional plots illustrating 

the relationship between the two types of evidence considered by SPIA. The X-axis shows the over-representation 

evidence (PNDE), while the Y-axis shows the perturbation evidence (PTERT). Each pathway is represented by a 

point. Pathways above the oblique red line are significant at 5% after Bonferroni correction, while those above the 

oblique blue line are significant at 5% after FDR correction. The vertical and horizontal thresholds represent the 

same corrections for the two types of evidence considered individually. (B) List of genes deregulated in the 

subcutaneous adipose tissue, which are in common between Parkinson disease, Huntington disease and Alzheimer 

disease.  
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Gene Name Fold	Change p.Value

Casp3 -0.82 8E-07
Ndufs4 -0.43 1E-06

Ubb 0.44 1E-05
Ndufb9 -0.37 3E-05

Sdhd -0.37 3E-05
Cox5a -0.47 4E-05
Ndufs1 -0.38 7E-05
Sdha -0.30 1E-04

Uqcrh -0.30 1E-04
Ndufv2 -0.38 2E-04
Ndufb5 -0.30 2E-04
Uqcrc2 -0.36 2E-04
Pink1 0.36 2E-04

Ndufa10 -0.37 3E-04
Uqcrq -0.45 3E-04
Cycs -0.66 3E-04
Atp5o -0.24 7E-04
Cox7b -0.40 8E-04
Ndufa6 -0.30 8E-04
Ndufa4 -0.32 9E-04
Cox7a2 -0.32 9E-04
Atp5f1 -0.35 1E-03
Uqcr10 -0.40 1E-03
Cox6b1 -0.32 1E-03

Sdhc -0.24 2E-03
Ndufab1 -0.29 2E-03
Ndufa12 -0.34 2E-03

Lrrk2 -0.27 2E-03
Cox6c -0.36 3E-03
Ndufa1 -0.30 3E-03

Ppif -0.34 3E-03
Cox6a1 -0.31 4E-03
Vdac2 -0.20 4E-03
Ndufb6 -0.37 4E-03
Atp5a1 -0.22 4E-03
Uqcrb -0.46 5E-03
Ndufa5 -0.32 5E-03

Sdhb -0.23 5E-03

Parkinson Disease 

Gene Name Fold 
Change p.Value

Casp3 -0.82 8E-07
Cycs -0.66 3E-04
Cox5a -0.47 4E-05
Uqcrb -0.46 5E-03
Uqcrq -0.45 3E-04
Ndufs4 -0.43 1E-06
Cox7b -0.40 8E-04
Uqcr10 -0.40 1E-03
Ndufs1 -0.38 7E-05
Ndufv2 -0.38 2E-04
Ndufb6 -0.37 4E-03
Ndufb9 -0.37 3E-05
Ndufa10 -0.37 3E-04

Sdhd -0.37 3E-05
Uqcrc2 -0.36 2E-04
Cox6c -0.36 3E-03
Atp5f1 -0.35 1E-03

Ide -0.34 3E-03
Ndufa12 -0.34 2E-03
Ndufa4 -0.32 9E-04
Cox7a2 -0.32 9E-04
Cox6b1 -0.32 1E-03
Ndufa5 -0.32 5E-03
Cox6a1 -0.31 4E-03
Sdha -0.30 1E-04
Uqcrh -0.30 1E-04
Ndufb5 -0.30 2E-04
Ndufa6 -0.30 8E-04
Ndufa1 -0.30 3E-03
Ndufab1 -0.29 2E-03
Atp5o -0.24 7E-04
Sdhc -0.24 2E-03
Sdhb -0.23 5E-03

Atp5a1 -0.22 4E-03
Capn2 0.23 6E-04
Calm3 0.29 2E-03
Psen2 0.36 1E-05
Apbb1 0.37 9E-04
App 0.41 9E-07
Lrp1 0.48 5E-05
Apoe 0.48 2E-05

Alzheimer Disease 

Gene Name Fold 
Change p.Value

Casp3 -0.82 8E-07
Cycs -0.66 3E-04
Cox5a -0.47 4E-05
Uqcrb -0.46 5E-03
Uqcrq -0.45 3E-04
Ndufs4 -0.43 1E-06
Cox7b -0.40 8E-04
Uqcr10 -0.40 1E-03
Ndufs1 -0.38 7E-05
Ndufv2 -0.38 2E-04
Ndufb6 -0.37 4E-03
Ndufb9 -0.37 3E-05
Ndufa10 -0.37 3E-04

Sdhd -0.37 3E-05
Uqcrc2 -0.36 2E-04
Cox6c -0.36 3E-03
Atp5f1 -0.35 1E-03

Ppif -0.34 3E-03
Ndufa12 -0.34 2E-03
Ndufa4 -0.32 9E-04
Cox7a2 -0.32 9E-04
Cox6b1 -0.32 1E-03
Ndufa5 -0.32 5E-03
Cox6a1 -0.31 4E-03
Sdha -0.30 1E-04
Uqcrh -0.30 1E-04
Ndufb5 -0.30 2E-04
Ndufa6 -0.30 8E-04
Ndufa1 -0.30 3E-03
Ndufab1 -0.29 2E-03
Atp5o -0.24 7E-04
Sdhc -0.24 2E-03
Sdhb -0.23 5E-03

Atp5a1 -0.22 4E-03
Pparg -0.21 2E-03
Tfam -0.21 6E-03
Vdac2 -0.20 4E-03
Creb3 0.16 1E-03
Hip1 0.27 2E-03
Cltb 0.34 2E-05

Creb3l1 0.44 8E-04
Dnah3 0.79 5E-03

Huntington Disease 

 
Table 4: Deregulated genes in subcutaneous adipose tissue upon 1 week of HFD. List of genes present in Parkinson, 

Alzheimer and Huntington disease pathways, with their Fold Change and p.Value . 
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The scWAT was previously shown to harbor both white and beige adipocytes231,242, and therefore 

to have a higher mitochondrial mass compared to the visceral fat. To investigate if tissue 

composition was altered in scWAT upon HFD, we performed histological analysis to quantify the 

number of beige adipocytes (UCP1+) in control and HFD treated mice. As shown in Figure 24C, 

the scWAT appear to have many cluster of small UCP1+ cells with multi-locular lipid droplets, 

characteristic of beige adipocytes, which are strongly reduced upon HFD. The reduction in 

UCP1+ cells also correlated with a drop in the number of cells ranging up to 100 µm2 (Figure 

22B), suggesting that the small cells, which are lost upon HFD, are possibly contributing to the 

hypertrophic expansion of white UCP1- adipocytes. 
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Figure 24: (A) Western 

blot performed using a 

cocktail of antibodies 

against different proteins 

of the electron transport 

chain complexes. In the 

picture four controls and 

four mice treated for 1 

week with HFD are 

showed. Vinculin is used as 

loading control. (B) 

Mitochondrial DNA 

quantification. The y-axis 

represents the ratio 

between the expression of a 

mitochondrial 16S and a 

genomic gene (ln11). (C) 

UCP1 

immunohistochemistry. On 

the left control 

subcutaneous adipose 

tissue section where 

clusters of UPC1+cells are 

visible. A reduction in 

UPC1+, small cells is 

detected in the 

subcutaneous adipose 

tissue of HFD treated mice, 

right panel. *pVal < 0.05. 
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IV.3.1 Adipocytes in culture maintain the characteristic of their origin, visceral or 

subcutaneous, but not the specific response to lipid overload  

Our results on WAT epigenomic and transcriptomic changes showed that one aspect that is really 

differentiating vWAT and scWAT acute response to HFD relates to the ability of the tissue to 

remodel its adipocyte cell population through adipocyte differentiation and proliferation. In order 

to dig into the mechanisms of how HFD treatment affects the adipogenic potential, we wondered 

whether the HFD would exert its effect directly on adipocytes and/or the action on cell 

differentiation is mediated by the tissue environment. To dissect these two components, we 

isolated the stromal vascular fraction (SVF), either from vWAT or scWAT, and differentiated 

adipocyte progenitors (APs) in vitro. APs are multipotent stem cells, which can fully differentiate 

into mature adipocytes. These are different from the pre-adipocytes that are one step further, as 

they already went through the first step of adipocyte differentiation.  

We first assayed the efficiency of the differentiation protocol by checking the phenotypic change 

of these cells. As shown in Figure 25A and C, both vWAT and scWAT-derived primary APs 

efficiently differentiate to adipocytes and no noticeable differences were observed between the 

two types of cells. As expected, the differentiation was accompanied by an increased Fabp4 

expression compared to non-differentiated cells, further proving their transition to mature 

adipocytes. We then analyzed gene expression of specific markers of the two original adipose 

tissue depots, in order to check whether, upon a prolonged time in culture, the cells maintained 

their tissue identity. In particular, we checked some of the genes that we confirmed to be 

differentially expressed in the two tissues (see RNA-seq analysis, paragraph III page 109). Our 

results show that the expression of tissue specific markers, such as Wt1, Tcf21, Tbx15 and Lhx8, 
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is kept along the 14 tested days and confirm that these cells in culture maintain tissue properties 

(Figure 25B).  

We then inspected the mechanism by which HFD influences the adipogenic potential in the 

visceral adipose tissue by measuring the gene expression level of mature adipocyte markers, such 

as Fabp4, Peroxisome proliferator-activated receptor γ (Pparg) and CCAAT/ enhancer-binding 

protein α (Cebpa). In vivo Pparg expression is reduced in both vWAT and scWAT at 1, 8 and 20 

weeks, with a more marked drop in vWAT (Figure 26A). A similar behavior is observed for 

Cebpa whose expression, however, is not changing after 1 week of diet. Finally, an opposite 

regulation between vWAT and scWAT is occurring in the level of expression of Fabp4. In 

vWAT Fabp4 levels increase after 1 week of diet, and then go down at 8 and 20 weeks. On the 

other hand, in the scWAT, the expression of this gene is increasing at both 1 and 8 week of HFD 

and remains stable at 20 weeks.  

To mimic HFD effect in vitro, we treated differentiated adipocytes from vWAT and scWAT with 

palmitic acid (PA) during 24, 48 and 96 hours, because it is one of the widely used FA to induce 

inflammatory response in cultured adipocytes305. As shown in Figure 26B, the treatment with PA 

is not mimicking the effect of the HFD in the tissue with respect to the expression level of Fabp4, 

Pparg and Cebpa. The only significant change is a decreased expression of Fabp4 after 96 hours 

of PA exposure on the primary adipocytes. In adipocyte cultures from scWAT treated with PA, 

all the tested genes were increased after 24h compared to the vehicle-treated, albeit these effects 

were fluctuating, with a reduction at 48h and an increase at 96h. These small changes in gene 

expression, even if statistically significant, were not considered as relevant due to their 

fluctuation. Thus, the treatment with PA of vWAT adipocyte culture is not inducing the same 

reduction of the adipogenic potential observed with the HFD in the vWAT.   
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Finally, following our observations of the changes affecting the action of the canonical 

Wnt/βcatenin pathway in vWAT, we evaluated the expression level of Wnt10b. Unexpectedly, 

this gene was not expressed in either APs or mature adipocytes. The absence of WNT10b in the 

culture system may represent an explanation to the fact that, by mimicking the HFD treatment in 

vitro, we could not reproduce the effect on adipocyte differentiation observed in mice. Moreover, 

one possible explanation to the lack of Wnt10b in primary cultures might be that Wnt10b is not 

expressed by adipocytes, but by other cells that are present in the tissue. Interestingly, in our 

hands, primary culture cells obtained from vWAT were expressing Itgax (CD11c), a known 

marker of activated macrophage cells, suggesting that these last are probably not those cells 

expressing Wnt10b (Figure 26C).   
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Figure 25: (A & B) Gene expression levels measured in non-differentiated or differentiated primary adipocytes 

isolated from visceral or subcutaneous adipose tissue. (A) aP2 is used as marker of mature adipocytes. (B) Selection 

of genes that are visceral (Wt1 and Tcf21) or subcutaneous (Tbx15 and Lhx8) specific. (C) Adipocytes progenitors 

(APs) and mature adipocytes morphology. Before the starting of the differentiation protocol the APs show a 

fibroblast like shape that changes to a round lipid filled shape after some days of treatment with the differentiating 

cocktails. 



  Results 

 134 

Ve

PA 24
h

PA 48
h

PA 96
h

0.0

0.5

1.0

1.5

Fabp4

R
el

at
iv

e 
ex

pr
es

si
on

  **

Ve

PA 24
h

PA 48
h

PA 96
h

0.0

0.5

1.0

1.5

2.0

2.5

Pparg

R
el

at
iv

e 
ex

pr
es

si
on

  

*

Ve

PA
 24

h

PA
 48

h

PA
 96

h
0.0

0.5

1.0

1.5

2.0

Pparg

R
el

at
iv

e 
ex

pr
es

si
on

  

**

**

**

Ve

PA 24
h

PA 48
h

PA 96
h

0.0

0.5

1.0

1.5

R
el

at
iv

e 
ex

pr
es

si
on

  

Ve

PA 24h

PA 48h

PA 96h

Ve

PA
 24

h

PA
 48

h

PA
 96

h
0.0

0.5

1.0

1.5

2.0

Cebpa

R
el

at
iv

e 
ex

pr
es

si
on

  

Ve

PA 24h

PA 48h

PA 96h

*

*

Ve

PA 24
h

PA 48
h

PA 96
h

0.0

0.5

1.0

1.5

Fabp4

R
el

at
iv

e 
ex

pr
es

si
on

  ***

vWAT

scWAT

A

1 8 20 1 8 20
11

12

13

14

15

R
el

at
iv

e 
ex

pr
es

si
on

  

Fabp4

**

1 8 20 1 8 20
11

12

13

14

15

Fabp4
R

el
at

iv
e 

ex
pr

es
si

on
  

*

*

**

1 8 20 1 8 20
6.5

7.0

7.5

8.0

8.5

9.0

9.5

R
el

at
iv

e 
ex

pr
es

si
on

  
Pparg 

**

**

***

1 8 20 1 8 20
6.0
6.5
7.0
7.5
8.0
8.5
9.0
9.5

R
el

at
iv

e 
ex

pr
es

si
on

  

Pparg 

**

**

****

1 8 20 1 8 20
7.0

7.5

8.0

8.5

9.0

9.5

Re
la

tiv
e 

ex
pr

es
si

on
  

CTR

HFD

***

****

1 8 20 1 8 20
7.0

7.5

8.0

8.5

9.0

9.5

Cebpa 

R
el

at
iv

e 
ex

pr
es

si
on

  

CTR

HFD
****

****

3T
3

vW
AT 

sc
WAT

0

5

10

15

Itgax

R
el

at
iv

e 
ex

pr
es

si
on

  

Cebpa

Cebpa 

B

C

vWAT

scWAT

 
Figure 26: Gene expression levels of mature adipocyte specific genes measured in: (A) visceral and subcutaneous 

adipose tissue in controls and HFD treated mice for 1, 8 and 20 weeks; (B) differentiating cells treated with vehicle 

(ethanol 100%) or palmitic acid (200µM) for 24, 48 or 96 h. (C) Itgax expression level in 3T3 cells or primary cells 

isolated from visceral or subcutaneous adipose tissue*pVal < 0.05, **pVal < 0.01, ***pVal < 0.001, ****pVal < 

0.0001.



  Results 

 135 

Collectively, our data suggest that, upon 1 week of HFD feeding, vWAT undergoes a possible 

alteration in cell growth and differentiation sustained by epigenetic changes at the level of histone 

acetylation and RNAPol II occupancy. The increased expression of Wnt10b and the changes in β-

catenin phosphorylation indicate that the canonical Wnt/β-catenin pathway may block cell 

differentiation. Moreover, the in vitro results and the finding that Wnt10b is not expressed in cell 

culture system suggest that not only adipocytes, but also other cells in the tissue matrix are 

involved in this mechanism. On the other hand, the main effect observed in scWAT is a reduction 

in mitochondrial activity and mass, as well as in beige adipocytes quantity.  

In conclusion, the differences in the response to over-nutrition seem mediated by tissue intrinsic 

differences, which might ultimately lead to the different response to over nutrition in the two 

adipose tissue depots. 
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V Analysis at the 8-week time-point confirmed the prevalence of 

inflammation in the vWAT 

To explore the gene expression changes occurring in vWAT and scWAT when the inflammatory 

response is already established, we performed pathway analysis on the intermediate time point (8 

weeks). Similarly to what we did at 1 week, we applied the SPIA tool to highlight the biological 

pathways differently deregulated in the two adipose tissues. The results obtained showed a clear 

inflammatory response in the vWAT where we observed a number of pathways linked to 

inflammation, including NF-KB and TNFα signaling (Figure 27). A substantial number of pro-

apoptotic genes were also deregulated (Endog, Aifm1, Birc2, Akt2, Capn2, Casp9, Nfkb1, 

Tnfrsf1a, Traf2, Dffa, Fas, Trp53, Casp3, Tradd, Map3k14, Casp8, Bax, Tnfrsf10b, Apaf1, Tnf). 

This increased transcription of pro-apoptotic genes nicely fits with the hypothesis that the vWAT 

undergoes a hypertrophic expansion until the mature adipocytes reach their maximal size, after 

which the process of apoptosis is engaged due to the FA overload. This increased cell death could 

be at the basis of the inflammatory progression in this tissue, where the macrophages have the 

role of cleaning up the cell remnants and form the known crown-like structures around the dead 

adipocytes48. In the scWAT instead, there is a lower number of statistically significant 

deregulated pathways, reflecting a minor or absent inflammatory response. Interestingly, we 

observe among the pathway Cell Cycle and Systemic Lupus Erythematosus. As for the 1-week 

pathway analysis, the SLE pathway is appearing as significantly deregulated because of the 

increased expression of histone genes. This may suggest that the scWAT could go through a 

hyperplastic expansion only at this stage, with the activation of adipocyte progenitor expansion.  
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Figure 27: Signalling Pathway Impact Analysis (SPIA) performed at 8 weeks. Two-dimensional plots illustrating the 

relationship between the two types of evidence considered by SPIA. The x-axis shows the over-representation 

evidence (PNDE), while the y-axis shows the perturbation evidence (PTERT). Each pathway is represented by a point. 

Pathways above the oblique red line are significant at 5% after Bonferroni correction, while those above the oblique 

blue line are significant at 5% after FDR correction. The vertical and horizontal thresholds represent the same 

corrections for the two types of evidence considered individually. 
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VI Omics integration 

Since one of the ambitious goal of the project was to integrate different -omics datasets, namely 

the ChIP-seq, RNA-seq and Metabolomics, a conspicuous part the work was focused on the 

research and application of methods able to integrate datasets with very different kind of 

variables, i.e. metabolites levels and gene expression. For this purpose, we decided to apply a 

series of multivariate analysis, contained in the R package mixOmics with the final goal of 

identifying some candidate genes and metabolites, which could explain the different tissue 

behavior upon HFD treatment306. These bioinformatic approaches are well suited for large 

datasets where the number of variables (genes, metabolites and genomic regions) are much higher 

compared to the number of samples (biological replicates) and have the big advantage of 

reducing the dimensionality of the dataset by generating new variables, called components, which 

are created by the combinations of all the variables in the data. These components are then used 

to study the correlation between variables of the different dataset that should be integrated. 

We performed the analysis at the early and intermediate time-point (1 & 8 weeks). To identify the 

key differences between vWAT and scWAT, we performed the analysis to contrast the response 

to HFD in the two tissues using a tool called DIABLO (Data Integration Analysis for Biomarker 

discovery using Latent variable approaches for Omics studies)307. DIABLO is applying a 

supervised Generalized Canonical Correlation Analysis (sGCCA) in order to identify correlated 

(co-expressed) variables, measured in heterogeneous dataset, which can explain the categorical 

outcome of interest (supervised analysis).  
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VI.1.1 Data set preparation for integration  

One important requirement for the application of this tool is that the variables in the different 

datasets are measured on the same samples. For this reason, the results from the untargeted 

metabolomics, that was performed in single mice, were averaged in pools containing the same 

mice as the RNA-seq, in order to have 6 replicates per condition.  

The second important step is the refinement of the datasets, which is necessary to eliminate the 

possible noise coming from the entire dataset. Indeed, for this particular analysis, it is better to 

focus on a selected set of variables that are extremely significant for the biological output of 

interest. Thus, we selected a subpart of genes and metabolites, retrieving only those contributing 

the most to the differences in the response to the diet at 8 weeks between the two tissues.  

For the RNA-seq, this step was performed using Limma, which fits samples into a linear model, 

and the following comparisons: 

• Tissue difference in controls; subcutaneous CTR vs visceral CTR (SC CTR –V CTR)	
• Tissue difference in HFD; subcutaneous HFD vs visceral HFD (SC HFD –V CTR)	
• Interaction (V HFD –V CTR) - (SC HFD –SC CTR)	

These comparisons returned a list of genes (5741 and 4717 for the 1 and 8 weeks, respectively), 

whose differences are statistically significant when comparing visceral and subcutaneous adipose 

tissue and upon HFD are uniquely regulated in the visceral fat. This analytical strategy was 

chosen because of the interest in identifying genes that could explain the progression of the 

inflammatory response in the vWAT.  

The metabolomic dataset was refined by applying a Partial Least Squares Discriminant Analysis 

(PLS-DA), which is a supervised statistical method used for predictive model, where the 

difference between samples is maximized according to a known discriminative variable. In this 

case the discriminative variable was applied to the tissue difference (scWAT vs. vWAT) 
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independently of the diet. This method enabled us to identify 700 and 208 metabolites out of 

1783 for the 1 and 8 weeks, respectively, which were extremely significant in the comparison 

between the tissues.  

Once the datasets were refined, we put the different datasets together defining the blocks, in this 

case RNA-seq and Metabolomics, in which we want to evaluate the correlation. The second 

important step was to establish the optimal number of variables to select in each block. This was 

done by running a simulation model on a small random set of variables of the two blocks, which 

provide the number and the selected variables that can be used for the validation model. 

MixOmic is providing many tools for graphical interpretation of the correlation between variables 

of the different blocks. The one that, for us, was the most interesting is the network which is 

plotting the variables with different colors, according to the dataset i.e. RNA-seq or 

metabolomics, as well as colored edges connecting these variables, representing the degree of 

correlation (from 0 to 1).  

The networks obtained represent genes and metabolites, in red and light blue, respectively. Each 

node is linked by edges colored in green or red based on the correlation degree (Figure 28 & 29). 

The plot obtained at 8 weeks identified three different clusters. The first cluster analyzed can be 

associated to the basal difference of the tissue, since the genes appearing were already identified 

as being vWAT or scWAT specific (eg, Wt1, Tcf21, Lhx8, Muc16, Tbx15). Interestingly, all the 

metabolites present in this cluster are positively correlated to the scWAT specific genes. For 

instance, we observe the presence of many derivatives of glutamic acid, such as N-acetyl-aspartyl 

glutamic acid (NAAG), N-acetyl-aspartic acid (NAA) and N-acetyl glutamic acid (NAG). The 

amount of these metabolites is, indeed, much higher in control scWAT compared to vWAT. By 

inspecting the network obtained at 1 week we found, again, a cluster of genes and metabolites 

that are associated to the tissue differences. Indeed, it contains Tbx15 and Tcf21 together with 
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other genes that are transcribed more either in scWAT (Shox2, Zfhx4) or in vWAT (Col6a5 and 

Prelp). As for the 8 weeks, we find NAAG and NAA as metabolites correlated to these genes, 

further suggesting that this is a signature of the tissue irrespectively of the diet and the mouse age. 

The second cluster, observed in the network at 8 weeks, contains a mix of genes, some linked to 

cell differentiation (Meis1, Gata6, Hoxa5) and others to oxygen availability and hypoxia (Agt and 

Hif3a). These genes have a common behavior in their expression. On the one hand, we have 

genes whose expression is higher in basal condition in the scWAT (Pcolce2, Kcnj14) and then 

significantly upregulated with the diet in both tissues. On the other hand, we have genes that are 

more expressed in the vWAT in control condition and which are downregulated with the diet in 

both tissues. Interestingly, among the co-expressed metabolites we find glutamic acid and malic 

acid, whose levels are known to be increased in obesity in vWAT308. Glutamic acid, in our data 

set, is more abundant in scWAT in control condition but its levels increase with the diet only in 

the vWAT. A corresponding cluster was not clearly seen in the plot at 1 week. However, we find 

Glutamate Pyruvate Transaminase (Gpt) in one of the clusters in the network, suggesting that 

glutamate metabolism could be affected with the diet in the vWAT.   

The last inspected cluster at 8 weeks contains a number of lipid species, Di-acyl glycerol (DGs), 

mono-acyl glycerol (MGs) and 2-arachidonoyl glycerol (2-AG) that are all upregulated in vWAT 

only after 8 weeks of diet. The 2-AG is an endogenous agonist of the cannabinoid receptors and a 

known regulator of food intake, which exerts an effect on fasting glycaemia and triglyceride 

levels in humans309,310. Interestingly, all the lipids becoming more abundant in vWAT are 

relatively long species with high number of carbon molecules (>C40). The only metabolite that  
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Figure 28: Network generated using DIABLO in R, showing the integration of RNA-seq and metabolomics at 8 

weeks. In the pictures the red and the light blue nodes are metabolites and genes respectively. Each red node is 

linked to one or more blue one by an edge that can be red or green based on the positive or negative correlation 

between the corresponding gene and metabolite. The orange, the green and the blue dashed lines indicate cluster 1, 

2 and 3, respectively.  
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Figure 29:  Network generated using DIABLO in R, showing the integration of RNA-seq and metabolomics at 1 

week. In the pictures the red and the light blue nodes are metabolites and genes respectively. Each red node is linked 

to one or more blue one by an edge that can be red or green based on the positive or negative correlation between 

the corresponding gene and metabolite. . The orange, the green and the blue dashed lines indicate cluster 1, 2 and 3, 

respectively.  
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has a negative correlation with the genes in the cluster (Lyso- Phosphatidyl Choline, LysoPC) has 

instead a lower number of carbons (C24). Moreover, genes important for lipid metabolism appear 

in this cluster, such as the Phospholipase A2 group VII (Pla2g7) and the 

Dehydrogenase/reductase SDR family member 9 (Dhrs9). Interestingly, we observed a similar 

behavior in the network produced with the 1-week data set. Indeed, the lipid species highlighted 

at 1 week, LysoPc and PC, have all less than 28 carbons and are all downregulated with the diet 

in the two tissues.  

The fact that the level of 2-AG, DGs, and MGs are significantly increased only in vWAT at 8 

weeks, suggests that this cluster may be linked with the inflammatory response.  

Collectively, pathway analysis and data integration approaches allowed to highlight the known 

differences in the inflammatory response between vWAT and scWAT. In addition, the data 

integration performed with DIABLO brought new interesting hypotheses on the intrinsic 

difference of the tissues and the characterization of the different response to over-feeding. One of 

these hypotheses, regarding the increased level of 2-AG in the vWAT upon HFD treatment is 

presently explored by Nasim Bararpour, from the group of Aurélien Thomas, in the frame of the 

collaborative project InflaWAT. 
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I Overview 

The overall aim of this thesis was to highlight the epigenetic and transcriptomic changes 

occurring along with the progression of obesity in the white adipose tissue (WAT). Our particular 

interest was in dissecting the modifications occurring in two different white depots, the visceral 

(vWAT) and the subcutaneous (scWAT) adipose tissues, because of their different susceptibility 

to develop inflammation upon prolonged over nutrition. Of note, inflammation is known to play a 

major role in the development of obesity-related metabolic diseases, such as insulin resistance 

and type 2 diabetes (T2D)2,171. The vWAT, more than the scWAT, is known to be one of the first 

site where the obesity-induced chronic, systemic and low grade inflammation, also known as 

metaflammation, originates24,215,311. Comparing the early responses of these two tissues would 

thus give some insights in the molecular mechanisms, either contributing to inflammation in the 

vWAT or protecting the scWAT from such a detrimental event.  

To achieve this goal, we used a mouse model of diet-induced obesity and we performed ChIP-

seq, RNA-seq and Metabolomics on vWAT and scWAT at different steps. The time points were 

chosen according to different stages of obesity development, namely the acute response (1 week), 

the appearance of macrophage infiltration in vWAT (8 weeks) and the chronic inflammation (20 

weeks). 
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II Power and limits of the tools used 

Pathways analyses 

RNA-seq is a high-throughput gene expression approach that allows measuring the expression 

levels of thousands of genes contemporarily. However, this technique is just the first step of a 

biological investigation and serves to generate hypothesis based on the identified differentially 

expressed genes (DE). The approach used here (SPIA), for the identification of differentially 

regulated pathways in the different experimental conditions is a novel method which differs from 

the classic gene set enrichment analysis (GSEA), which is based only on the expression levels of 

the genes that belong to the pathway. The SPIA tool, indeed, integrates also the topology of the 

pathways improving the specificity and the sensitivity of the discoveries, being not biased by the 

arbitrary selection of fold change thresholds. The classical method is not suiting our project 

because it considers each functional category individually, thus, it is not appropriate for a system 

biology approach. The strength of the method that we used is that it takes into account the 

position of the gene in the pathway and its interaction with other genes both in the same and other 

pathways. In other words, if one gene is crucial in triggering the activity of the pathway, changes 

in the expression levels of this gene are considered much more influent than changes in several 

downstream genes in the pathway.  

Integrating data sets of different nature, via DIABLO  

The integration of different Omics datasets is, to date, a big challenge for biologists, due to the 

lack of tools able to take into account very different variables coming from high throughput 

approaches such as data from epigenetics, transcriptomics and proteomics or metabolomics. 
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One of the first issues in the integration is linked to the experimental design, which has to be 

extremely rigorous in order to have measurements coming exactly from the same samples. This 

allows to overcome possible biases introduced by the sample variability and minimize only to the 

one coming from the different ‘omics technological platforms used for the measurements. 

The method used in this project to integrate RNA-seq and metabolomics is part of an R package, 

mixOmics306, and is called Data Integration analysis for Biomarker discovery using Latent 

variable approaches for Omics studies (DIABLO)307. The advantage of this tool is that it has an 

integrated algorithm to identify correlated variables i.e. genes and metabolites, which allows to 

identify interesting features that can help in generating hypothesis.  

However, the major weakness of this approach is that it is based on a supervised correlation 

analysis, meaning that it is fundamental to declare in advance the different categories of interest 

i.e. tissue differences, diet-related changes etc. Moreover, in order to avoid difficulties in the 

interpretation of the results, a variable selection is needed first, in order to provide, from each 

dataset, only the variables that are contributing the most to the contrasts of interest.  

Another strategy pursued to integrate RNA-seq and metabolomics is based on the identification 

of modules of correlated genes, meaning group of genes having the same expression changes in 

the different experimental conditions. For each module of genes, the correlation with specific trait 

of interest, such as the contrast between vWAT and scWAT, or between controls and HFD in one 

tissue at a specific time point, is then calculated. This first analysis is used to select a set of 

features to use for modeling the metabolic event in each tissue. The modeling part is mainly 

pursued by Thoung Van Du Tran and Marco Pagni, and does not belong to this thesis. 
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III Intrinsic differences of the two white adipose tissue depots, 

We first show that there are basal differences between the two analysed tissues. These differences 

can arise from many features, like the different origins of the adipocyte progenitors or the 

environmental dissimilarities, such as the peripheral innervation and the specific relationship with 

the circulation9-11.  

With respect to the origin, the two WATs are developing separately. The scWAT appears in mice 

at embryonic day 16.5-17.5 in mice225,226, while the vWAT develops later, becoming visible at 

postnatal day 7227. At the cellular level, adipocytes are originating from adipocyte progenitors that 

are contained in the so-called stromal vascular fraction (SVF). These cells have a mesodermal 

origin, developing from the mesenchyme228 and studies showing the apposition of vascular 

structures to the developing fat pad, advanced the hypothesis of a connection between 

adipogenesis and angiogenesis229,230. In the mature tissue, scWAT is not made uniquely of white 

adipocytes but it also hosts clusters of “beige” or “brite” (brown in white) adipocytes. This is 

consistent with what we observed in the histological section of scWAT, showing a strong 

difference in UCP1+ cells, as well as in cell number, compared to vWAT. This difference in beige 

cell population also correlates with the dissimilarity in the expression of genes linked to lipid 

metabolism and oxidation, as shown by the pathway analysis in Figure 16. Finally, at epigenetic 

and transcriptomic levels, we could confirm the presence of genes that are specifically expressed 

in one or the other tissue, i.e. Wt1 and Tcf21, Tbx15 and Lhx8 that are vWAT and scWAT 

specific, respectively.  

Among other tissue intrinsic differences that could have an impact on diet-induced inflammation, 

we also highlighted metabolites whose abundance is unbalanced in the two tissues. The N-acetyl-

aspartyl glutamic acid (NAAG) and histamine are indeed, highly present in the scWAT 
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independently of the diet and the age of the mice. This can be explained, at least in part by the 

higher expression in the vWAT of the Folh1 gene, which is coding for the glutamate carboxy-

peptidase II. Knowing that this enzyme is metabolizing NAAG, generating N-acetyl-aspartate 

(NAA) and glutamate, we could infer that the levels of NAAG are lower in the vWAT because it 

is more metabolized.  

However, tissue differences could also arise from other cell type apart from adipocytes. Indeed, 

the occurrence of histamine among the tissue specific metabolites can be related to the presence 

of mast cells in the tissue, as described by Altintas et al312.  

IV Inhibition of AP differentiation in the vWAT may cause hypertrophic 

adipocytes and cell death 

The analysis of the early changes occurring in white adipose tissue upon 1 week of high fat diet 

treatment highlighted an increase in histone gene transcription in the vWAT. A massive increase 

in histone gene transcription is normally linked with cell proliferation. Indeed, during the S-phase 

of the cell cycle, nucleosomes are disassembled and subsequently re-assembled with newly 

synthetized histones and DNA313. The observed augmentation of histone genes could be 

associated to adipocyte progenitor (APs) expansion as described by Jeffery et al14. In this paper 

the authors describe how 3 days of high fat feeding induce, in male mice, a rapid and transient 

proliferation of APs specifically in vWAT, suggesting that the hyperplastic expansion of the 

visceral fat is starting at the very beginning of the diet treatment.  

On the other hand, our ChIP-seq analyses revealed that, upon HFD treatment, the vWAT 

undergoes a reduction in histone acetylation, already detected at 1 week and exacerbated at 8 

weeks, on many genes of fatty acid metabolism, regulation of cell growth and differentiation. 
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Such decrease in H3K27Ac, which would imply a reduced activity of the corresponding genes, 

would suggest rather a decreased cell proliferation, in conflict with the literature.  

These conflicting results, prompted us to develop the following hypothesis: the active expansion 

of APs occurring very early in the vWAT, as showed in the literature, is happening concomitantly 

to a block in the process of cell differentiation. This hypothesis is supported by the fact that many 

genes belonging to the non-canonical Wnt pathway, as well as other fundamental pathways for 

cell differentiation, i.e. Ihh, Bmp8a, appear in the group of genomic regions with reduced 

H3K27Ac at 1 and 8 weeks in the vWAT, but show no change in the scWAT. Along this 

hypothesis, the increased gene expression of Wnt10b, a known anti-adipogenic mediator, together 

with the reduced phosphorylation levels of β-catenin, which are observed in the vWAT uniquely, 

further support a negative effect of HFD on AP differentiation in vWAT. This inhibition in 

adipocyte differentiation could be the cause of the hypertrophic expansion of the tissue, due to 

mature adipocyte overload.  

Of note, the storage capacity of a fat cell is not unlimited and once they reach their maximal size, 

adipocytes die48. This is consistent with the increased level of apoptotic genes, observed in 

vWAT after 8 weeks of HFD. The concomitant appearance of immune cell recruitment in the 

tissue underscores a possible correlation between the increased cell death rate and the 

inflammatory response. Finally, it might also explain, at least in part, the remarkable decrease of 

vWAT weight after 20 weeks of HFD (Figure 9). A similar behavior of vWAT in response to 

HFD was also reported by Strissel et al301, who observed an active process of remodeling after 16 

weeks, in which the rate of adipocyte death (80%) exceeded the rate of tissue repair, resulting in 

net adipocyte and vWAT loss. The authors further showed that after 20 weeks of HFD, the 

frequency of adipocyte death was decreased while the number of newly formed adipocytes 
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increased by fourfold. As a consequence of the high prevalence of small adipocytes, the vWAT 

mass remained reduced despite the restoration of the cell number301.  

Taken together, our results pinpoint the block in adipocyte differentiation as a key mechanism 

that characterizes the early response of vWAT to over nutrition. Moreover, this effect is proposed 

as a distinctive behavior that can explain the different response observed in the two white adipose 

tissue depots. Canonical Wnt pathway activation, and in particular WNT10b, are proposed to be 

the mediators of such differentiation shut off. Additional studies will be required to understand 

the molecular changes underlying the different activation of the Wnt signaling observed in vWAT 

and scWAT. 

 

V Early changes occurring in over nutrition in scWAT 

In contrast to vWAT, scWAT is known to undergo a metabolically healthy expansion upon 

overnutrition in both humans and mice, but the reason explaining the different behavior of this 

tissue has not been elucidated yet. The scWAT, in the early phase of obesity development, is not 

undergoing a clonal expansion of adipocyte progenitors, as shown previously by Jeffery et al 14. 

However, it still maintains its capacity to increase in size, a phenomenon that could be explained 

by two mechanisms.  

According to our observations, in scWAT, short-term treatment with HFD induces a tissue-

specific reduction of mitochondrial activity and mass, with disappearance of the UCP1+ cells. 

These data suggest that, upon HFD, there is a loss of beige adipocytes in scWAT. The 

disappearance of beige adipocytes without cell death evidence could be explained by the trans-

differentiation of these cells from beige to white adipocytes. The existence of such a mechanism 
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has been hypothesized by the Cinti group247 with the demonstration that, upon cold stimulation, 

the number of beige adipocytes is increasing without any sign of cell death. Moreover, BrDU 

staining showed that these newly formed beige adipocytes are not derived from the clonal 

expansion of APs, because BrDU-, suggesting that they can only be generated by white cell trans-

differentiated to beige adipocytes. Trans-differentiation could thus represent a way for the tissue 

to provide new mature adipocytes, which improve the storage of fatty acid excess, at the expense 

of the “burning” capacity of the tissue.  

Another mechanism possibly contributing to scWAT ability of healthy expand in response to 

HFD is highlighted by our ChIP-seq analysis. Indeed, our data identified a group of genomic 

regions that lose acetylation after 1 and 8 weeks of diet only in vWAT and that are linked to 

genes, such as Zfp423 (Figure 18C & D), involved in adipogenesis, at the level of both AP clonal 

expansion and differentiation. Interestingly, in normal condition, these regions have a lower 

acetylation, methylation, as well as a less important RNAPol II occupancy in the subcutaneous 

compared to the visceral adipose tissue. This peculiar epigenetic landscape suggests that, in 

scWAT the chromatin is more compacted and less prone to be transcribed at the level of these 

enhancers, making this tissue less prone to hyperplastic expansion. This is in line with tracing 

experiments performed using the Adipochaser mice, showing that the scWAT, when exposed to 

HFD, undergoes primarily hypertrophic expansion with low rate of adipogenesis314. Interestingly, 

Wnt10b, in normal condition, is expressed at higher level in scWAT compared to vWAT, in line 

with the idea that the scWAT is less prone to undergo adipogenesis. This observation strengthens 

the role of WNT10b, making it a possible key regulator of the hyperplastic expansion of the white 

adipose tissue.  
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After 8 weeks of HFD, scWAT changes are characterized by an increased expression of cell 

cycle-related and histone genes, as evidenced by pathway analysis performed at 8 weeks (Figure 

27). This could indicate that, upon a prolonged exposure to overfeeding, the scWAT is 

undergoing a hyperplastic growth, which ensure a healthy expansion of the tissue. In line with 

this hypothesis, the expression levels of Fabp4 in the scWAT are increasing at 8 weeks, 

suggesting that more adipocytes are present in the tissue at this stage of overnutrition (Figure 

26A).  

Taken together all these observations suggest that in the first phase of HFD treatment in scWAT 

the process of clonal expansion of the progenitors is not occurring, probably because of the beige 

adipocyte trans-differentiation to white. This process is providing the tissue with new mature 

white adipocytes, which can contribute to the storage of the excessive FAs. In contrast, at later 

time points of HFD feeding, the expansion of a new pool of pre-adipocytes is probably occurring, 

which could explain the progressive expansion of the tissue, as observed by the tissue weight 

after 20 weeks of diet (Figure 9). 

 

In summary, adipose tissue dysfunctions, mainly at the level of the vWAT, are contributing to the 

onset of obesity-related secondary diseases such as insulin resistance. vWAT, despite a first 

attempt to increase the number of APs, undergoes a block in pre-adipocyte differentiation that 

prevents the formation of mature adipocytes. This is then causing the hypertrophic expansion of 

the mature adipocytes that once reached their maximal size undergo cell death and recruitment of 

immune cells. Thus, an early intervention, facilitating the differentiation of the primed pre-

adipocytes, could be a strategy to help the vWAT to cope with the excess of fatty acids, reduce 

cell stress and death as well as improve the inflammatory response. 
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The close association of obesity with an increased risk of metabolic diseases,

such as insulin resistance, type 2 diabetes, and nonalcoholic fatty liver dis-

ease, is now well established. In this review, we aim first to describe the

inflammatory process activated in response to overnutrition, especially in the

liver and the adipose tissue. We then discuss the systemic effects of low-grade

inflammation on the onset of insulin resistance. Particular attention is given

to a series of very recent reports that identify not only processes but also

molecules (lipids and metabolites) that interfere with the normal insulin sig-

naling. Finally, special notes concerning the roles of peroxisome proliferator-

activated receptors in the various processes will be made.

Keywords: insulin resistance; liver-adipose tissue cross-talk; metaflam-

mation; PPARs; visceral white adipose tissue

Obesity is a complex chronic disorder with a multifac-

torial etiology, involving genetics, hormones, diet, and

life style. It is characterized by a massive increase in

adipose tissue due to the imbalance between daily

energy intake and energy expenditure. In the last

30 years, obesity has become a worldwide epidemic

affecting both adult and children and turning into an

extremely important public health problem [1]. Indeed,

it is associated with many different (co)morbidities,

such as cardiovascular diseases, type 2 diabetes (T2D),

hypertension, certain cancers, and sleep-disordered

breathing such as sleep apnea contributing to an

increase risk of mortality as well as reduced life expec-

tancy. Although carrying a large amount of fat is not

necessarily harmful, two interlinked systemic disorders

contribute to the high morbidity, that is, insulin resis-

tance and inflammation, the latter being thought to

play an important role in the pathogenesis of the

former [2]. The link between these two processes is

illustrated by the increased levels of several inflamma-

tory cytokines in serum of T2D patients compared to

healthy subjects. Up to 30% of obese patients are con-

sidered as ‘metabolically healthy obese individuals’

because of their normal fasting glucose, normotension,

high insulin sensitivity, and inflammatory status [3,4].

This concept was substantiated in many clinical stud-

ies, although it has been recently challenged by a study

showing that insulin-sensitive and insulin-resistant

obese have similar insulin-dependent transcriptional

response in subcutaneous adipose tissue [5].

Both the adipose tissue and the liver are primary

targets of increased fluxes of fat upon obesity. In this

review, we will first discuss the critical role of adipose

tissue in metabolic homeostasis. We will mainly focus

on how the altered circulating fatty acid levels affect

adipose tissue homeostasis, modify the profile of

Abbreviations

ATF6, Activating Transcription Factor 6; ATM, adipose-tissue macrophages; ER, endoplasmic reticulum; FFA, free fatty acids; GLUT4, glu-

cose transporter 4; HGP, hepatic glucose production; IRE1, Inositol-Requiring Enzyme 1; NAFLD, nonalcoholic fatty liver disease; PERK,

PKR-like ER Kinase; PPARs, peroxisome proliferator-activated receptors; ROS, radical oxygen species; TGs, triglycerides; UPR, unfolded pro-

tein response; WAT, white adipose tissue.
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adipokines and cytokines secreted by the adipocyte,

and favor the recruitment of immune cells. These

events are indeed considered as important contributors

to the pathogenesis of the metabolic syndrome. The

inflammatory responses of the liver will then be dis-

cussed. Indeed, the rise in human obesity has been

recently correlated with an increased prevalence of

nonalcoholic fatty liver disease (NAFLD) [6]. NAFLD

is considered as the hepatic manifestation of the meta-

bolic syndrome and is characterized by an excessive

accumulation of triglycerides (TGs) in the hepatocytes,

known as ‘hepatosteatosis’, in the absence of alcohol

abuse or viral infection. Based on epidemiological

studies, the percentage of obese subjects showing signs

of NAFLD (75%) is increasing exponentially com-

pared to lean subjects (16%), whereas it is close to

100% among the obese patients with T2D [7]. Impor-

tantly, we will emphasize how the signaling cross-talks

between liver and adipose tissue relies both on inflam-

matory and metabolic signals. In the section Linking

metabolism and inflammation, we will more specifi-

cally discuss the nature and actions of different actors

that contribute to the insulin resistance in the context

of inflammation. A final section will summarize the

role that the transcription factor peroxisome prolifera-

tor-activated receptors (PPARs) plays in the onset of

inflammation and insulin resistance.

Profound remodeling of the visceral
white adipose tissue in overnutrition
and obesity

In humans, adipose tissue is distributed over the entire

body with many compartments that differ in terms of

metabolic activity, sympathetic innervation, and con-

tribution to local and systemic signaling. Although the

brown adipose tissue (BAT) is orientated toward use

of lipids, coupled to a thermogenic process, the white

adipose tissue (WAT) is the main location for lipid

storage, expanding in response to high fat or overnu-

trition (see Box 1). The WAT is prone to develop

inflammation upon obesity and thus is the focus of the

present review.

Visceral WAT and subcutaneous WAT

When considering the impact on the development of

metabolic disorders, two main types of WAT have

been identified: the subcutaneous WAT (scWAT)

which is located under the dermal compartment of the

skin, and the visceral WAT (vWAT) further divided

into the mesenteric WAT wrapped around the intes-

tine, the retroperitoneal WAT surrounding the kidney,

and the omental WAT positioned in the lower part of

the abdominal cavity covering the stomach. This ana-

tomic classification of the vWAT is not strictly repro-

duced in mice where omental fat is absent, and the

tissue presenting the properties of visceral fat in mouse

is the gonadal fat.

Visceral and subcutaneous adipose tissues have dif-

ferent behaviors, particularly highlighted in obesity

and related metabolic disorders. These differences are

of three types. Firstly, adipokine nature and secretion

profile of vWAT and scWAT differ. For example, the

expression and secretion of Interleukin 6 (IL6) and

Plasminogen-Activator Inhibitor type 1 (PAI-1) are

higher in the vWAT, whereas leptin and adiponectin

are higher in subcutaneous WAT [8,9]. Secondly, the

adipokines produced by the scWAT are secreted into

the systemic circulation, whereas those produced by

vWAT are secreted into the portal system, thus having

a more direct impact on hepatic metabolism. Thirdly,

the rate of lipolysis and fatty acid mobilization [10] is

also different, the visceral adipose tissue appearing to

be more sensitive to lipolytic effects of catecholamines

and less sensitive to the antilipolytic effects of insulin,

that mobilizes fatty acids into the portal vein.

Although these differences are possibly due to the

vWAT- vs scWAT-specific environment, which

includes the innervation and vasculature proper to

each depot, recent reports suggested that physiological

heterogeneity within the adipose tissues could also

stem from different developmental programs, leading

to cell-autonomous differences [11–13].
These differences explain at least in part the major

distinct response of each WAT depot upon obesity in

human and in experimental models, including geneti-

cally induced obese mice, ob/ob and db/db, lacking

the coding gene for leptin or for leptin receptor,

respectively, as well as diet-induced obese mice.

In the rest of this chapter, we will thus discuss how

the remodeling of the vWAT in overnutrition and obe-

sity is a sequential process that starts with the develop-

ment of mature hypertrophic adipocytes that have to

face oxidative and endoplasmic reticulum (ER) stress.

Their altered secretome initiates the inflammation pro-

cess, with the recruitment of a large number of macro-

phages as well as the modification of the profile of

pre-existing adipose tissue-resident macrophages

(ATM). Finally, activated macrophages lead to the

recruitment and activation of T lymphocytes, which

altogether sustain the progression of obesity-induced

inflammation. Recent knowledge concerning this pro-

cess is discussed below. However, it must be reminded

that the triggering stimuli as well as the exact temporal

sequence of inflammatory cell infiltration and their
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cross-talk with stressed adipocytes is not completely

clear, due to its intrinsic complexity and the difficulties

in taking into account the various experimental con-

texts (e.g., animal model, type of diet, selected time

points).

Cellular and tissular responses of the vWAT in

obesity

White adipose tissue has the unique capacity to

undergo dramatic remodeling in response to nutri-

tional factors by increasing the size of individual cells

(hypertrophy) and by recruiting new adipocytes from

the resident pool of progenitors (hyperplasia). These

processes, which aim to positively improve the lipid

storage capacity of the body, are however accompa-

nied, particularly in vWAT, by a reduction in tissue

vascularization, leading to areas with lower oxygen

availability and hypoxya [14,15]. This alters in the

vWAT some cellular and tissular responses and results

in an undesirable infiltration and activation of immune

and inflammatory cells, observed both in experimental

models and in humans.

The first response of the adipose tissue to the high

levels of circulating lipids is an hypertrophic growth of

the pre-existing mature adipocytes as a result of the

triglyceride accumulation in the unilocular lipid dro-

plet. The hyperplasia process also starts quite rapidly

since in mice adipogenesis and adipocyte precursor

proliferation are already activated 3 days after the

beginning of a high-fat diet feeding in vWAT depots,

with the subsequent creation of a pool of precursors

that will turn into mature adipocytes over a prolonged

exposition to the diet (7 weeks) [16]. Notably, the

hypertrophic process—rather than the hyperplasia—
seems to be the most damaging for the cells and thus

for the tissue.

At the cellular level, one of the consequences of the

hypertrophic response is the decrease in insulin-depen-

dent glucose uptake because of a dysregulation of cor-

tical actin remodeling and the consequent impairment

of insulin-dependent glucose transporter 4 (GLUT4)

translocation to the plasma membrane [17]. Another

alteration in hypertrophic adipocytes is the accumula-

tion of radical oxygen species (ROS) [18] and dysfunc-

tion of the ER, a membranous network controlling

Box 1. The adipose tissue properties and its diverse depots

Heterogeneity of the adipose tissue (AT)

Adipose tissue is a highly plastic tissue composed of preadipocytes, mature adipocytes, and stromal-vascular cells,

coexisting with nerve terminals, blood vessels and lymph nodes, and immersed in a complex collagen matrix.

The two main properties of AT

• Capacity to store and to release lipids, depending on the energy demand of the organism.

• Secretion of bioactive peptides, called adipokines, that act both locally and systemically for the maintenance of

energy homeostasis. Main adipokines are leptin, adiponectin, and resistin, which regulate feeding behavior and

energy expenditure. Other cytokines can also be expressed by adipocytes.

Both the storage function and the secretome are altered upon overnutrition.

The white, brown, and brite adipocytes

The white adipocytes store lipids in one large lipid droplet surrounded by a thin layer of cytoplasm. The white adi-

pose tissue (WAT) grows through increased cell size and increased cell number. The subcutaneous WAT (scWAT)

and the visceral WAT (vWAT) have distinct properties (see the main text).

The brown adipocytes accumulate lipids in several small lipid droplets and are characterized by a high number of

densely packed mitochondria and expression of the uncoupling protein UCP1. The stored lipids are mainly used in

nonshivering thermogenesis. The brown adipose tissues (BAT) are, in humans, mainly localized in the para-clavicular

and spinal region [227–229].
The brite or ‘brown-in-white [230]’ adipocytes correspond to inducible brown cells appearing in a predominantly

white fat depot. The ‘browning’ process is induced by cold or beta-adrenergic stimuli and depends on the genetic

background and on the location [231]. Raising the number and the activity of human brown cells can boost the

whole-body energy expenditure, and is therefore the focus of enormous research efforts.

White adipocytes derive from mesenchymal stem cells, whereas brown adipocytes derive from precursor cells in the

embryonic mesoderm [232].
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synthesis, maturation, and trafficking of secreted and

membrane proteins. The accumulation of unfolded

proteins in the ER lumen induces an adaptive response

known as unfolded protein response (UPR) that is

mediated by three major transducers: the PKR-like

ER Kinase (PERK), the Inositol-Requiring Enzyme 1

(IRE1), and the Activating Transcription Factor 6

(ATF6). Along this line, chronic obesity is associated

with ER stress in adipose tissue [19] and free fatty

acids (FFA; also called nonesterified fatty acids)

induce ROS generation as well as ER stress by activa-

tion of UPR signaling pathways in adipocytes [20].

At the tissular levels, adipocyte hypertrophy is asso-

ciated with a relative deficiency of vasculature that cre-

ates a local imbalance between oxygen supply and

consumption, which, in turn, leads to an increase in the

level of angiogenic factors and the expression of inflam-

mation and ER stress-associated genes [21]. In mice

exposed to high-fat diet, sign of hypoxia can be

detected after 3 days of diet together with increased

protein level of its main mediator, the hypoxia induci-

ble factors (HIF1a), vascular endothelial growth factor

expression levels, and accumulation of lactate. The link

between hypoxia and the appearance of inflammation

in vWAT was demonstrated in both mouse models of

both HIF1a genetic deletion and transgenic overexpres-

sion establishing its critical role in the inflammatory

response and in the onset of insulin [15,22].

Altogether, these alterations are responsible at least

in part for the subsequent inflammatory response and

decreased insulin sensitivity, as discussed below.

Adipose tissue proinflammatory responses

induced in obesity: secretion of proinflammatory

cytokines and modulation of adipokine secretion

The first evidence showing the implication of adipose

tissue in the obesity-related inflammatory response

came 20 years ago, when Hotamisligil et al. [23]

demonstrated that the production of tumor necrosis

factor alpha (TNF-a) was induced in the visceral fat

pad of obese rodents and that the neutralization of

this cytokine improved their insulin sensitivity. Exces-

sive nutrient consumption triggers an inflammatory

process, also called ‘metaflammation’ [2,24], that is ini-

tiated and sustained by metabolic cells, which are at

the interface between metabolic inputs and the inflam-

matory outputs. Metaflammation is characterized by

being low-grade compared to the acute inflammatory

response, and chronic, as cytokine expression and

immune cell infiltration appear gradually and remain

unresolved over time. WAT is likely the primary site

where metaflammation originates, although, to a

certain degree, other metabolic tissues, such as liver

(as discussed later), pancreas, and gut cells associated

with the gut microbiota are also involved, with impor-

tant consequences for metabolic homeostasis.

Upon nutrient overload, the inflammatory process is

likely initiated by the cellular and tissular damages,

described above. These alterations lead to two main

processes. First, they increase the number of dead adi-

pocytes showing necrotic-like abnormalities [25,26]. In

turn, these necrotic events trigger the recruitment of

inflammatory cells that secrete proinflammatory sol-

uble mediators. In parallel, the adipocytes themselves

undergo a global and profound change in their secre-

tome profile, with not only an increased release of

mediators of the clotting process, such as PAI-1, but

also an increased expression and secretion of proin-

flammatory cytokines [27,28] and alterations in the

level of several adipokines [29].

As mentioned above, TNF-a was the first identified

major proinflammatory cytokine released from the

obese adipose tissue, in mice and in humans [30,31]. It

is mainly expressed by monocytes and macrophages

that infiltrate the obese adipose tissue, as well as by

obese adipocytes [23] and has a central role in many

different inflammatory diseases.

The CC-motif Chemokine Ligand 2 (CCL2) also

known as Macrophage Chemoattractant Protein 1

(MCP1), is one key chemokine expressed by the adipo-

cytes whose levels positively correlate with the increased

adiposity and whose presence is sufficient to induce the

recruitment and infiltration of macrophages in the adi-

pose tissue initiating the inflammatory response and

obesity-related insulin resistance [32]. Although the

work of Kirk et al. reported no differences in adipose

tissue inflammation or macrophages accumulation in

CCL2-deficient mice [33], other studies showed that lack

of CCL2 or of its receptor CCR2 in the adipose tissue

reduces macrophage accumulation and ameliorates the

metabolic profile as well as the insulin sensitivity and

hepatic steatosis of obese mice [32,34].

Interleukin 6 and IL18 are cytokines produced by the

adipose tissue and positively correlated with the adiposity

level [35,36], even in a regimen of weight loss [37,38]. How-

ever, the metabolic consequence of the increase in these

two cytokines remains controversial, as discussed later.

The adipokines also play a role in modulating

inflammatory responses. Adiponectin has anti-inflam-

matory properties, via inhibition of TNF-a synthesis in

endothelial and hepatic cells and induction of the pro-

duction of anti-inflammatory cytokines such as IL-10

and IL-1 receptor antagonist (IL-1RA) in macro-

phages and dendritic cells [39]. Adiponectin reduction

observed in obesity limits these anti-inflammatory

3064 FEBS Letters 591 (2017) 3061–3088 ª 2017 Federation of European Biochemical Societies

Metaflammation: adipose tissue and liver contributions T. Caputo et al.



effects. In contrast, leptin increases circulating levels of

proinflammatory mediators released by various cell

types, including macrophages. Leptin is an adipokine

involved in the regulation of food intake through the

central nervous system. Mice lacking leptin (ob/ob

mice) are hyperphagic and develop obesity and insulin

resistance, which can be reverted by the administration

of leptin [40]. Leptin circulating levels are positively

associated with the adipose tissue mass, suggesting a

possible leptin resistance in obese patients as they do

not show the expected anorexic response [40]. The

proinflammatory activity of leptin is mainly mediated

by its ability to increase the production of TNF-a and

IL6 by monocytes, and of CC-chemokine ligands by

macrophages [41–43]. In addition, it increases the pro-

duction of IL2 and interferon c (IFNc) and suppresses

the production of the anti-inflammatory cytokine IL4

in T cells [44]. In the obese adipose tissue, proinflam-

matory signals such as TNF-a [45], stimulate the pro-

duction of leptin, which in turn maintains and

exacerbates the inflammatory response.

Resistin is another major secreted adipokine whose

levels increase with obesity and correlate with both inflam-

mation and insulin resistance in animal models [46]. The

proinflammatory action of resistin in human mononuclear

cells is mediated by the increase in the expression levels of

TNF-a and IL6 in monocytes [46] and of adhesion mole-

cules (VCAM1, ICAM1, and pentraxin 3) in vascular cells

that enhance leukocyte adhesion [47].

Altogether, the obesity- or overnutrition-driven

changes in the secretion profiles of these cytokines and

adipokines in the vWAT are part of the process that

leads to the recruitment of inflammatory/immune cell

in this tissue.

Recruitment of inflammatory and immune cells

in the WAT

Macrophages are at the front line of the inflammatory

process, prevailing in terms of number and tissue remod-

eling activity [48]. In lean mice, around 10–15% of the

vWAT cells are positive for F4/80+, which identifies

macrophages. These so-called ATMs have an alterna-

tively activated M2 phenotype (Arg1+, CD206+,

CD301+) and localize in the interstitial spaces between

adipocytes, uniformly distributed through the adipose tis-

sue. M2 macrophages are crucial for the adipose tissue

homeostasis, particularly for their production of IL10, a

regulatory anti-inflammatory cytokine. However, upon

obesity, the secretion by the hypertrophic adipocytes of

proinflammatory cytokines such as CCL2, CCL5, and

others [49] as well as that caused by the presence of

increased number of necrotic adipocytes [50,51], leads to

the recruitment of circulating monocytes toward the

stressed tissue, monocytes which then are activated in

macrophages (Fig. 1). In total, in obese mice, macro-

phages can reach 45–60% of the vWAT cell population

[52]. They localize primarily in ‘crown-like structure’ sur-

rounding dying adipocytes [53,54] and have a classical

proinflammatory M1 phenotype (CD11c+, nitric oxidase

synthase 2+, TNF-a+). They produce proinflammatory

cytokines, such as TNF-a, iNOS, and IL6, which further

promote obesity-associated inflammation not only in

mice [54] but also in obese patients where the accumula-

tion of macrophages has been shown to correlate with

higher circulating levels of TNF-a [55,56].

Another concurrent effect, which contributes to the

worsening of obesity-related inflammation, is mediated

by paracrine action of leptin on immune cells. Leptin

has been reported as a strong mediator of monocytes

proliferation, macrophages phagocytosis, cytokine

expression, and chemotaxis [57] by stimulating the pro-

duction of IL2, IL12, and IFNc [58]. Moreover, mast

cells in the adipose tissue of obese mice contribute to

leptin production, which in turn affects macrophage

polarization toward the M1 proinflammatory status.

Consistently, mast cells from leptin-deficient mice are

able to polarize macrophages toward the less inflam-

matory M2 phenotype [59].

Finally, other stimuli in the context of obesity can

influence macrophage recruitment and activation, such

as fatty acids, fetuin-A, Kr€uppel-like factor 4 [60], or

cold exposure [61]. Unsaturated fatty acids have been

identified as promoters of macrophage activation in

obesity through a mechanism mediated by the binding

to the pattern recognition receptor Toll-like receptor 4

(TLR4) [62]. Recent observations suggested that FFAs

are not direct ligands of TLR4 but bind via fetuin-A, a

glycoprotein produced by the liver that may act as a

transporter of FFAs in the circulation and as endoge-

nous ligand for TLR4, presenting in this way FFAs to

the receptor [63]. All these effects favor not only recruit-

ment of macrophages to the inflated adipose tissue but

also their polarization to M1 type. However, some stud-

ies have demonstrated a mixed M2/M1 phenotype in the

adipose tissue of obese mice and humans [64–66], while
others depicted a complex scenario where the most

abundant ‘metabolically activated’ (MMe) macrophages

have a different phenotype compared to classically acti-

vated M1 macrophages, suggesting that their activation

is occurring via mechanisms that are different from

those occurring during infection [67].

Currently, an active research field is studying ways

to counteract the inflammatory response in WAT by

pushing the rise in number and activity of brite

(brown-in-white) cells, in order to not only boost the
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whole-body energy expenditure but also to improve

adipose tissue inflammation and thus insulin resistance

[68]. Indeed, prolonged cold exposure increases adipo-

nectin secretion that in turn is responsible for the acti-

vation and recruitment of anti-inflammatory M2-type

macrophages [69].

After the first wave of newly recruited M1 macro-

phages, that have the role to clear necrotic adipocytes

and remodel the extracellular matrix [26], and with the

persistence of excessive nutrient intake, the activation

of the adaptive immune system response is occurring

in the adipose tissue. Indeed, activated M1 cells act as

antigen presenting cells, via MHC class I and II mole-

cules, thereby initiating the response of the adaptive

immune system and amplifying the adipose tissue obe-

sity-driven inflammation (Fig. 1).

Among the immune cells of the adaptive response,

CD4+ T cells are thought to play an important role in

the progression of the obesity-related inflammatory

response. T helper lymphocytes expressing CD4 can be

subdivided into a TH1 and TH2 sublineage, based on

their secretion profile. TH1-cells tend to secrete proin-

flammatory cytokines responsible for the elimination

of pathogens and the perpetuation of the inflammatory

response. On the other hand, TH2 cells produce anti-

inflammatory cytokines including IL4, 5, 10, and 13,

which promote antibody synthesis but inhibit several

functions of phagocytic cells. Compared to the scWAT

of obese mice as well as to vWAT of lean mice, the

vWAT of diet-induced obese mice exhibits a higher

number of proinflammatory CD4+ TH1 cells secreting

IFNc (Fig. 1). This contributes to the creation of a

feed-forward loop in the obese vWAT, where the

increased production of IFNc by TH1 cells favors the

classical (proinflammatory) activation of macrophages

[70]. The importance of another subset of CD4+ T

cells, the regulatory CD4+Foxp3+ Treg cells, in the

vWAT is highlighted by its relative defection upon

inflammatory response of the adipose tissue in obesity.

This particular population of WAT Treg seems to be

Fig. 1. Recruitment of inflammatory and immune cells in WAT. Upon overnutrition, adipocytes secrete proinflammatory cytokines: CC-motif

chemokine ligand 2, 3, and 4 (CCL2, CCL3, CCL4), C-X-C motif chemokine 10 (CXCL10), interleukin 15 (IL15), which induce recruitment and

activation of inflammatory and immune cells. Monocytes are recruited from the circulation and are activated to become M1 macrophages

producing tumor necrosis factor alpha (TNFa), Interleukin 6 (IL6), and inducible nitric oxide synthase (iNOS). M1 macrophages activate cells

of the adaptive immune response: CD4+ T helper 1 cells (TH1), CD8
+ T cells, producing interferon c (IFNc) and TNFa; B cells, releasing

immunoglobulins G (IgGs). Obese adipocytes favor the recruitment of natural killer cells (NK) through upregulation of NK cell-activating

receptor (NCR1) ligand. The increased adipocyte secretion of leptin contributes to the activation of CD4+ cells that worsen the inflammation

via secretion of interleukin 2, 12 (IL2, IL12), and IFNc.
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extremely important for metabolic processes and for

the regulation of inflammatory response in vWAT.

They are present in high number in lean mice (40–
80% of CD4+ T cells in vWAT), while they are dra-

matically reduced down to 30% of the initial popula-

tion during obesity [71]. However, how this particular

new cell compartment contributes to the worsening of

the inflammatory response is not yet clarified.

Another immune cell type contributing to the

creation of a modified milieu in the AT, are the CD8+

T cells, whose depletion improves insulin sensitivity in

diet-induced obese mice. These cells localize in close

proximity to M1 cells in the crown-like structures, sug-

gesting a possible cross-talk between CD8+ and M1

cells. This hypothesis is also supported by the fact that

M1 cells that are cocultured with CD8+ cells increase

their production of TNF-a [72] (Fig. 1).

B cells, another class of cells belonging to the adap-

tive immune system, are also playing a role in the

pathogenesis of obesity-related insulin resistance. In

mouse model of diet-induced obesity, B cells accumu-

late in vWAT at early stage (i.e., by 4 weeks), and

contribute to the worsening of insulin sensitivity. This

mechanism is in part mediated by their effect on

CD8+ and TH1 cells, which are induced to produce

proinflammatory cytokines, and in part by their own

release of Immunoglobulin G (IgGs). In line with this

observation, B-cell depletion using CD20 monoclonal

antibody reduced the levels of proinflammatory media-

tors such as IFNc and TNF-a and ameliorated glucose

metabolism [73].

This already complex scenario has been recently

enriched by two reports that highlighted the essential

role of natural killer (NK) cells in this process. This spe-

cialized subset of lymphocytic cells has normally two

functions. First, they can destroy tumor and infected

cells using the cytolytic activities of enzymes such as per-

forin and granzyme. Second, they are able to modulate

the activity of many immune cells by secreting many dif-

ferent pro- and anti-inflammatory cytokines, including

TNF-a, IFNc, and IL10 [74] (Fig. 1). Two different

groups demonstrated that NK cell number dramatically

increase in the vWAT of mice exposed to high-fat diet

(HFD) and that these cells have a major role in the

recruitment and the M2-M1 macrophage polarization

[75,76]. Wensveen et al. showed how NK cells start to

accumulate in the vWAT within few days of high-fat

diet, with the maximum number detected at 2 weeks,

and this correlates with the upregulated expression of

NK Cell-activating Receptor (NCR1) ligand in adipo-

cytes. In turn, NCR1 is thought to activate vWAT-resi-

dent NK cells thereby inducing the production of IFNc,
a strong modulator of M1 polarization (Fig. 1). Similar

results come from the work of Lee et al., where the

authors show how the modified milieu, created by a pro-

longed high-fat diet (12 weeks), induce in the vWAT the

production of proinflammatory cytokines, such as

CCL3, CCL4, CXCL10, and IL15, which serve as

chemo-attractants for NK cells. NK cells are then

responsible for the production of CCL2 and TNF-a,
which will promote monocyte recruitment and activa-

tion, respectively. Together these works agree on the

crucial role of NK cells in the early and late phases of

obesity, showing how selective depletion of this particu-

lar immune cell population is able to improve metabolic

phenotype and insulin resistance of HFD-treated mice.

Local metabolic consequences of vWAT

remodeling

Cellular and tissular damages together with the inflam-

mation of the vWAT along obesity development have

local metabolic consequences which are interconnected:

a decreased insulin sensitivity and a limitation of the

capacity of the vWAT to store lipids.

While section Linking metabolism and inflammation

is dedicated to insulin signaling and its perturbation

upon obesity, we can here mention two specific actions

in adipocytes with that respect. First, the remodeling

of the cortical actin in adipocytes impacts the insulin-

dependent translocation of the glucose transporteur

Glut4 to the membrane. Second, in mice, the enhanced

secretion of the adipokine Resistin interferes with the

normal insulin signaling by increasing the expression

of the Suppressor Of Cytokine Signaling 3 (SOCS3), a

known inhibitor of insulin action in adipocytes [77].

Other more systemic mechanisms are likely to operate

and are reviewed in the section Metaflammation and

specific aspects of PPARs.

One paradoxical consequence of the adipose tissue

remodeling and its decreased insulin sensitivity during

overnutrition is a limitation of the vWAT to further

accumulate lipids. This occurs through several mecha-

nisms. The first one is the fact that adipocytes are less

sensitive to the antilipolytic effects of insulin. This

results in a sustained lipolysis even in fed state, which

augments the efflux of FFAs in the systemic circula-

tion (Fig. 2). The second fact is that proinflammatory

cytokines produced by inflamed WAT, such as IL6

and TNF-a, reduce the activity of lipoprotein lipase

(LPL) [78] (Fig. 2), the enzyme that hydrolyzes TGs

contained in very low-density lipoproteins (VLDLs)

and chylomicrons at the surface of capillary endothe-

lium [79]. This reduction thus impairs the uptake of

FA into the adipose tissue for storage. Consistent with

this important role in the regulation of lipid flux, LPL
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upregulation in the adipose tissue protects against the

ectopic accumulations of lipids by increasing the por-

tion of FAs stored in the adipocytes with beneficial

effects on obesity-induced insulin resistance [80]. Inter-

estingly, scWAT maintains its ability to correctly store

lipids upon HFD feeding, as demonstrated in Inter-

feron Regulatory Factors 5 (IRF5)-deficient mice [81].

Thus, a strategy directed at limiting vWAT expansion

to the expenses of the scWAT might be beneficial for

the whole-body homeostasis. However, some clinical

A

B
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studies are reporting the observation that vWAT and

scWAT have no difference in terms of adipose tissue

macrophage (ATM) accumulation in severe obese

patients [82]. This controversy may be linked to the

fact that in the extreme conditions of obesity even the

scWAT looses the capacity to properly store lipids,

leading to the accumulation of activated ATM.

Thus, inflammation and insulin resistance are major

processes that, in the early phase, take place in the

vWAT upon overnutrition and obesity development.

The consequences are not only local but results in a

systemic low-grade inflammation and increased levels

of circulating FFA that will particularly affect the

liver.

Diet-induced modifications occurring
in the liver

The liver has a central metabolic role. More specifi-

cally in the context of this review, the liver regulates

metabolic homeostasis across the alternance of fed and

fasting states on daily basis, as summarized in Box 2.

In context of chronic overnutrition, the liver must

cope on the one hand with the direct alteration of

these homeostatic metabolic responses. On the other

hand, the liver must also cope with metabolites and

inflammatory signals coming from the adipose tissue

as described above.

NAFLD as a result of the imbalance between

uptake and export of lipid in the liver

As clarified by the World Gastroenterology Associa-

tion, NAFLD is a condition defined by excessive fat

accumulation in the form of triglycerides (steatosis) in

the liver. A subgroup of NAFLD patients displays

liver cell injury and inflammation in addition to exces-

sive fat (steatohepatitis), a condition designated as

nonalcoholic steatohepatits (NASH).

In obesity, hepatosteatosis represents the first step

of NAFLD. Hepatosteatosis correlates quite well with

abdominal adiposity and its incidence is showing the

same positive trend as obesity. In a simplified manner,

hepatosteatosis results from increased fatty acid

uptake, decreased fatty acid use, and decreased export

in form of VLDL. Adipose tissue-derived FFAs are

the major source of hepatic fatty acids and they repre-

sent 59% of liver fat in NAFLD patients [83]. The

increased fatty acid uptake is sustained by the

increased expression of CD36 in the liver and skeletal

muscle of obese patients with NAFLD compared to

obese subjects with normal intrahepatic TG content

[84]. At the same time, the downregulation of CD36

and the enhanced lipolysis that take place in the adi-

pose tissue, further exacerbate the flux of FFAs

toward the liver and the skeletal muscle in NAFLD

patients (Fig. 2). The role of FFA uptake in hep-

atosteatosis was further corroborated in animal model

of NAFLD lacking transporters such as CD36 and

FATPs, where reduction in liver fatty acid influx pre-

vented steatosis [85,86].

The remaining part of hepatic TG stores derives

from dietary fatty acids and de novo lipogenesis (DNL)

(see Box 2 for DNL in physiological context). The

increase in DNL precedes the development of steatosis

and is due in part to the insulin resistance of the mus-

cle, which provokes an increased flux of ingested car-

bohydrates toward the liver [87]. Compared to healthy

subjects, in patients with NAFLD the newly syn-

thetized lipids account for a much higher percentage of

Fig. 2. Liver-adipose tissue cross-talk in lean and overnutrition state. A. Lean state. Insulin signaling in the liver induces phosphorylation of

the protein kinase AKT. AKT-dependent downregulation of forkhead box (Foxo) transcription factor reduces the transcription of

gluconeogenic genes, such as PhosphoEnolPyruvate CarboxyKinase (PEPCK), and hepatic glucose production (HGP). AKT-dependent

upregulation of the mammalian target of rapamycin complex (mTORC) upregulates Sterol Regulatory Element-Binding Protein 1c (SREBP1c)

thus inducing de novo lipogenesis (DNL) and triglyceride (TG) synthesis. DNL inhibits both the transport of fatty acids in the mitochondria

via carnitine palmitoil transferase carrier (CPT) and the b-oxydation (b-ox), which is controlled by peroxisome proliferator-activated receptors

a (PPARa). Hepatic TGs are secreted in the circulation in form of very low-density lipoproteins (VLDLs) to reach muscle and adipose tissue

where they are taken up, through the action of CD36 and lipopotein lipase (LPL). In adipose tissue, insulin inhibits the release of

nonesterified fatty acids (NEFAs). (B) Overnutrition. In obesity, hepatic DNL and HGP are both active. PPARc is upregulated in

hepatosteatosis, further inducing DNL and hepatic TG content. Aminoacids (AA) derived from the diet influence mTORC/S6 kinase (S6K)

pathway that, through an intertissue connection, affects LPL activity in the adipose tissue and thus increases circulating TGs. Hepatic VLDL

secretion increases, but their uptake by adipose tissue is reduced because of the low expression of CD36 and LPL. Conversely, CD36 and

LPL are more expressed in muscles and liver that therefore internalize more VLDLs. HGP upregulation is due to different processes: (a)

lower utilization of glucose due to reduced glucokinase (GCK) activity, (b) increased adipose tissue lipolysis due to insulin resistance and

consequent increase in the releasing of NEFAs in the circulation. Hepatic acetyl-CoA content and pyruvate carboxylase (PC) activity increase,

with consequent higher transformation of pyruvate into glucose. In obesity, both liver and adipose tissue undergo an inflammatory response

with production of proinflammatory cytokines: interleukin 6 (IL6), tumor necrosis factor alpha (TNF-a), C-reactive protein (CRP), plasminogen

activator inhibitor 1 (PAI-1).
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the total intrahepatic fatty acids (15–23% vs 5%) [88].

Highly lipogenic hepatocytes undergo a phenotypic

change characterized by enhanced expression of adi-

pogenic genes such as Sterol Regulatory Element-Bind-

ing Proteins (SREBPs), Adipose Differentiation-

Related Protein (ADRP), and PPARc [89,90].

At the same time, oxidation of fatty acids in the liver

is reduced, contributing to their consequent accumula-

tion in the liver. More particularly, the expression of the

nuclear receptor PPARa [91] is blunted, resulting in a

reduction of fatty acid transport to the mitochondria,

via reduction of Carnitine Palmitoyl Transferase 1

(CPT1) expression, and decreased fatty acid b-oxida-
tion. Reciprocally, liver-specific deletion of PPARa also

caused the development of hepatic steatosis in aging in

mice fed a standard diet [92]. Finally, the TG outflow

rate through VLDL contributes to the maintenance of

hepatosteatosis. Although subjects with NAFLD have

greater VLDL secretion than those with normal intra-

hepatic TG content, this secretion does not increase lin-

early with the increasing TG amount but rather reaches

a plateau. Therefore, the increase in VLDL secretion

rate, in NAFLD patients, is not able to compensate for

the increased rate of TG accumulation [93].

Hepatosteatosis per se is not necessarily deleterious,

and may remain clinically silent, that is, the metabolic

functions of the liver are unaffected by the ‘simple’

accumulation of lipids. However, in a number of cases,

which in humans reach one-third [94] of the NAFLD

patients, complications can ultimately lead to NASH,

Box 2. The healthy liver

Anatomy and cellular composition

The liver is a central metabolic organ, which receives blood from:

• The gastrointestinal tract and the spleen via the hepatic portal circulation. This blood is rich in nutrients coming

from the absorbed food. The first passage through the liver of potentially toxic substances allows their detoxifi-

cation prior to reaching the systemic circulation,

• The hepatic artery, which delivers oxygen to the cells

The drained blood coming from both the portal vein and the hepatic artery join the general circulation via the

inferior vena cava.

Eighty percent of the liver volume is occupied by hepatocytes, the parenchymal cells that perform the majority of

hepatic metabolic activities.

Nonparenchymal cells consist of Kupffer cells (specialized macrophages), endothelial cells, and also NK, NKT, and

CD4+ T immune cells [233], which together play an important role in the hepatic immune response [234]. Stellate

cells, which store vitamin A, are mainly quiescent in the healthy liver, and are rather characterized by their profibrotic

activity in the damaged liver.

The healthy liver in feeding condition

The high levels of glucose reaching the liver in postprandial state first drive its condensation into glycogen to reconsti-

tute the glycogen store.

The excess of glucose is used for de novo lipogenesis (DNL), in which pyruvate coming from glycolysis enters a pro-

cess leading to palmitate via acetyl-CoA and malonyl CoA [235]. The fatty acids generated by DNL, together with

dietary fatty acids are converted in triglycerides and released in the bloodstream in the form of very low-density

lipoproteins (VLDLs).

Dietary amino acids can be used by the liver as a source of energy, or to generate proteins and glucose.

The healthy liver in fasting condition

Glycaemia levels are maintained through glycogenolysis and then through hepatic glucose production by gluconeoge-

nesis.

The white adipose tissue releases FFAs in the bloodstream as lipolysis products, which are internalized in the liver

via specific transporters.

Hepatic fatty acid oxidation produces ketone bodies, which will fuel extrahepatic tissues particularly upon prolonged

fasting.

The nuclear receptor PPARa is a lipid sensor and a key regulator of mitochondrial b-oxidation, peroxisomal b-oxida-
tion, and other aspects of fatty acid metabolism [236,237], in the liver during fasting.
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where inflammation and fibrosis are severely altering

liver functions.

From NAFLD to NASH: the role of inflammation

in the liver in obesity and overnutrition

A prolonged overnutrition condition triggers in some

case the progression of NAFLD from the simple hep-

atosteatosis to the development of inflammation, fibro-

sis, and NASH [95]. A ‘multihit’ hypothesis is

presently widely accepted to explain this evolution. As

described above, liver lipid accumulation and insulin

resistance (see also Metaflammation and specific

aspects of PPARs) appears early in NAFLD and wors-

ens steatosis as a result of increased DNL. These alter-

ations expose the liver to ‘multihits’, which include

mitochondrial dysfunction, oxidative damage, altered

hepatocyte apoptosis, increased levels of fibrogenic

and proinflammatory mediators and activation of stel-

late and Kupffer cells [91]. We will focus below on the

inflammatory process, which is a main contributor to

the worsening of the liver status.

The inflammatory response of the liver parallels the

increase in hepatic lipid accumulation and the develop-

ment of obesity. Hepatic inflammatory mediators include

C-reactive protein, PAI-1, fibrinogen, and IL-6, which

mark the presence of a ‘subacute inflammation’ in the

liver [96]. However, as for the adipose tissue, the immune

cells are the major contributors of liver inflammation.

Two different populations of macrophages mainly

drive the inflammatory response in liver: the resident

macrophages, known as Kupffer cells, and the

recruited macrophages, which migrate into the liver

during obesity [97]. Kupffer cells derive from embry-

onic progenitors of the yolk sac and are found in the

liver sinusoids in close proximity with sinusoidal

endothelial cells [98], where they protect against patho-

genic compounds. However, their activation, induced

by toxic lipid droplets present in the liver, seems to rep-

resent the ‘first hit’ of NAFLD/NASH pathogenesis

[99]. Activated Kupffer cells further enhance hepatic

inflammation via the secretion of monocyte chemoat-

tractant CCL2 [100], which triggers the recruitment

and activation of monocytes from the bloodstream.

These monocytes are able to infiltrate the liver as a

result of liver injury and to differentiate into proinflam-

matory M1 macrophages [101]. The primary role of

Kupffer cells is supported by the fact that their deple-

tion, using clodronate injections, results in improved

liver steatosis, and insulin resistance [102].

However, liver inflammation is also sustained by

other immune cells that entertain complex cross-regu-

lation and activation with Kuppfer cells and

macrophages [103]. Dendritic cells are antigen-present-

ing cells that participate to the innate immune defense

in the liver and provide support to macrophages. NK

cells are the major lymphocyte population in the liver,

representing 30–50% of total lymphocytes [104]. NKs

as well as T cells are not contributing to the steady-

state condition of the liver but are extremely important

during the inflammatory response. Activated Kupffer

cells are responsible for the stimulation of these cells

through a signaling pathway initiated by TLRs. TLR2

or 3 induce Kupffer cell secretion of IL18 and IL1b,
thus activating NK cells [105], while TLR4 is responsi-

ble for the upregulation of adhesion molecules such as

ICAM1 and VCAM on Kupffer cells and hepatic stel-

late cells, which are then mediating T-cell trapping and

activation [106]. In addition, neutrophils are polymor-

phonuclear leukocytes important in sustaining the liver

inflammation process. Hepatic infiltration of neu-

trophils is an acute response to liver injury, hepatic

stress, or systemic inflammatory signals [107] that

aggravates the inflammatory reaction by the secretion

of cytotoxic reactive oxygen and nitrogen species or of

proinflammatory cytokines such as IL1b and TNF

[108]. Neutrophil dysfunction is also associated with

the development of liver fibrosis and cirrhosis in

NASH. Indeed, the neutrophil-to-lymphocyte ratio is

higher in patients with NASH and advanced fibrosis,

and has been proposed as a noninvasive marker to

predict advanced liver disease [109].

Chronic liver inflammation is also associated with

tissue damage and remodeling as well as fibrosis [110].

Hepatic macrophages are able to induce differentiation

of hepatic stellate cells, the primary cells involved in

liver fibrosis, into myofibroblasts and to promote their

survival with the secretion of TNF and IL1 [111]. The

establishment of a modified microenvironment, where

inflammation and fibrosis coexist enhancing liver

injury, is thought to be at the base of the progression

of liver steatosis to NASH.

The adipose tissue-liver cross-talk in

metaflammation

As described above, there are two main processes that

start in the adipose tissue and have an impact on the

liver environment: the development of systemic low-

grade inflammation in obesity, and the increased afflux

of FFAs to the liver due to increased lipolysis,

together with the inhibition of LPL activity. The

importance of WAT lipolysis was also recently high-

lighted by the efficiency of the pharmacological inhibi-

tion of the adipose triglyceride lipase in decreasing

insulin resistance and hepatosteatosis in mice [112].
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In addition to this metabolic regulation, adipose tis-

sue-derived adipokines and pro-inflammatory cytoki-

nes can directly act on liver metabolism and the

development of NAFLD [113]. Adiponectin, for exam-

ple, has a protective role in the progression of hepatic

steatosis to fibrosis and NASH. In the model of diet-

induced obesity in rats, adiponectin overexpression

stimulates hepatic b-oxidation and protects the liver

from steatosis and inflammation, thus improving insu-

lin sensitivity [114]. Indeed, adiponectin inhibits hep-

atic DNL and gluconeogenesis by reducing the

expression of the lipogenic transcription factor

SREBP1-c and the rate-limiting enzyme Phospho-

enolpyruvate Carboxy Kinase (PEPCK), respectively

[115]. In addition, adiponectin improves glucose uti-

lization by activating an adenosine monophosphate-

activated protein kinase (AMPK-dependent pathway)

[116]. In agreement with mouse studies, adiponectin

levels are reduced in patients with NAFLD [117] and

negatively correlate with liver alanine aminotransferase

(ALT) and c-glutamyltranspeptidase [118], which are

indicators of liver lesions.

Leptin, on the other hand, negatively influences the

onset and the progression of NAFLD, being positively

correlated with serum level of ALT in humans [119].

Moreover, it acts as profibrogenic mediator by stimu-

lating the production of a-smooth muscle actin (a-
SMA), collagen 1 and the tissue inhibitor of metallo-

proteinase 1 (TIMP1) in human stellate cells [120].

However, it has been shown that leptin produced by

the adipose tissue has an insulin sensitizer effect in the

liver and skeletal muscle with regularization of pancre-

atic b-cell activity [121]. TNF-a and IL-6 also corre-

lated with the progression of NAFLD to NASH and

with the onset of insulin resistance by increasing the

production of SOCS3 in the liver [122].

Finally, the adipose tissue-derived FFAs may directly

act as signaling molecules in the liver via interacting

with the transcription factor PPARa, triggering the

expression of its target genes and more particularly

fibroblast growth factor 21 (FGF21) [123,124]. In turn,

FGF21 is part of the reciprocal cross-talk from the liver

to the adipose tissue. It is produced mainly by the liver

in the fasted state, and has a direct effect on adipose tis-

sue, stimulating both lipolysis and the expression of adi-

ponectin [125]. This signaling to adipose tissue is

required for FGF21 activity on increasing insulin sensi-

tivity. However, it also has adipose tissue-independent

activity, more particularly on increasing energy expendi-

ture [126]. It is considered as a good candidate for the

treatment of T2D and metabolic syndrome primarily

for its ability to reduce plasma TGs in rodents and

humans [127,128]. FGF21 would act via reducing

VLDL secretion in the liver and redirecting TG-rich

lipoproteins toward WAT, via increased activity of

CD36 and LPL in this tissue [129]. Other hepatokines

might be discovered, since systematic analyses of the

secretome of steatotic hepatocytes identified 32 hepa-

tokines differentially secreted by steatotic vs non-

steatotic hepatocytes. Among them, Fetuin B is

increased in patients with hepatosteatosis, and its silenc-

ing in mice improved glucose tolerance [130].

Linking metabolism and inflammation:
insulin sensitivity as the central piece

With the onset of T2D, obese patients display an array

of metabolic alterations including hyperinsulinemia,

hyperglycemia, and hypertriglyceridemia. High levels

of insulin are not able to lower the glycemia: thus the

name of insulin resistance. This insulin signaling has

been at best studied in the liver, but resistance appears

in all metabolic tissues, particularly the adipose tissue,

which will be discussed herein in light of their links to

metaflammation.

Insulin signaling in the liver and pathways to

insulin resistance in the context of obesity

Insulin signaling has been extensively studied. An

overview of insulin signaling in the liver, with a focus

on the elements relevant for this review is shown in

Figure 3.

Briefly, in terms of processes, the peak of insulin in

the postprandial period drives both a reduction in hep-

atic glucose production (HGP), and an increase in the

rate of lipid production via DNL. In insulin-resistant

liver, the insulin-dependent activation in DNL is main-

tained, but there is a failure in decreasing glucose pro-

duction, a process known as ‘selective hepatic insulin

resistance’ [131] (Fig. 2).

In this context, the observation by Lu et al. that

mice lacking Akt1, Akt2, and forkhead box transcrip-

tion factor 1 (Foxo1) do not show any defect in insu-

lin-mediated suppression of gluconeogenesis [132],

raised the question whether other mediators could

have a role in the postprandial reduction of HGP

mediated by insulin [133]. The idea that an intertissue

connection could participate in regulating this meta-

bolic process comes from the observation that the

insulin-dependent suppression of HGP is occurring

even in mice with liver specific ablation of insulin

receptor [134]. Subsequently, Perry et al. [135] demon-

strated that HGP is highly sensitive to hepatic acetyl-

CoA, whose concentration depends on the levels of

circulating FFAs. When insulin fails to suppress
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lipolysis in adipose tissue, the high FFA flux to the

liver determines a rise in the levels of hepatic acetyl-

CoA, which, in turn, maintain high the pyruvate car-

boxylase activity and the conversion of pyruvate into

glucose (Fig. 2). The critical role of FFAs in the regu-

lation of HGP in obesity-related insulin resistance was

also pointed by Titchenell et al. [136]. These authors

suggested that, in fact, insulin action in the liver

directly controls only hepatic lipogenesis, while HGP

is regulated by insulin in an indirect way through the

modulation of the levels of circulating FFAs. Both

these reports thus highlighted the key role of FFAs

as mediators of the tight connection between liver

and adipose tissue in the regulation of HGP in insu-

lin-resistant mice. It must be noted, however, that

recent studies highlighted some contexts in which

hepatic lipid production is necessary and even benefi-

cial. More particularly, the accumulation of

monounsaturated fatty acids such as oleate rather

than polyunsaturated fatty acids, seems rather protec-

tive against insulin resistance and glucose intolerance

[123,137].

Finally, an additional level of complexity comes

from the role of amino acids, which in obesity can

activate the Mammalian Target Of Rapamycin Com-

plex 1/S6 Kinase (mTORC1/S6K) signaling pathway

[138]. This signal then activates an intertissue neuronal

pathway acting on the adipose tissue that results in a

reduction of LPL activity and consequent elevation in

serum TGs [139].

Molecular pathways that link inflammation and

insulin resistance

The link between inflammation and the onset of insu-

lin resistance in obese patients remained obscure until

A

B

Fig. 3. Insulin signaling pathway. (A) The interaction of insulin with the membrane insulin receptor (IR) and insulin receptor substrate 1 and

2 (IRS1/IRS2) are represented. The activation of the phosphatidylinositol 3-kinase (PI3K) mediates the action of insulin on intermediary

metabolism, via activation of AKT. PI3K-dependent activation of Sterol Regulatory Element-Binding Protein 1c (SREBP1c) and S6 Kinase

(S6K) is mediated by the mammalian target of rapamycin complex 1 (mTORC1). In contrast, AKT activation inhibits the activity of Glycogen

Synthase Kinase 3 (GSK-3) and the Forkhead box (FOXO) transcription factors, mainly resulting in the inhibition of the activity and

transcription of downstream target. Other consequences of PI3K/AKT activation are the activation of the atypical Protein Kinase C (aPKC),

which is responsible for the glucose transport in muscles and adipose tissue. (B) Metabolic pathways activated by insulin in muscle, liver,

and adipose tissue.
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the hypoglycemic effects of salicylates were reinvesti-

gated, leading to the identification of the Inhibitor of

Nuclear Factor jB (IjB) kinase b (IKKb)/NFkB axis

as their molecular target [140]. Concomitantly,

increased adiposity and dysregulation of lipid metabo-

lism were shown to correlate with the activation of a

diverse range of stress-responsive pathways including

the Jun N-terminal Kinases (JNKs), IKKb, and

inflammasome, which are important mediators of the

inflammatory response.

Jun N-terminal Kinases are members of the Mito-

gen-Activated Protein Kinases (MAPK) family, which

are induced in response to cellular stress signals [141]

and are able to phosphorylate and activate the protein

cJun, a member of the Activator Protein-1 (AP-1)

transcription factor family. Their role in the induction

of insulin resistance has been largely studied in the

past and several mechanisms are proposed to explain

how JNKs can induce insulin resistance in response to

excess of adiposity. First, JNKs are responsible for the

phosphorylation of Irs1 in serine-307, inhibiting the

interaction of Irs1 with the insulin receptor [142],

whose signaling is normally occurring through the

counter-regulatory serine/threonine phosphorylation.

Second, JNK1 and 2 are proposed as key mediators in

macrophages to allow their recruitment and activation

in the obese vWAT. Mice lacking JNK1/2 specifically

in myeloid cells are largely protected from the inflam-

mation associated with diet-induced obesity, with less

severe insulin resistance, decreased accumulation of

macrophages and a relative lower expression of M1-

specific cytokines [143]. Finally, JNKs have a role in

the reduction of FA oxidation and in the onset of

steatosis and insulin resistance in the liver, mainly act-

ing as a negative regulator of PPARa activity and

FGF21 expression in hepatocytes, via the activation of

the Nuclear Receptor Co-Repressor (NCoR1) complex

[144].

The IKKb is another inflammatory kinase playing a

critical role in the onset of insulin resistance. Its activ-

ity is highly selective toward its physiological sub-

strates, the IjB protein inhibitors of NFkB.

Phosphorylation by IKKb directs IkBa to proteasomal

degradation, thus allowing the release of NFkB, a

master transcriptional regulator of inflammation. Once

delivered from its complex with IkBa, NFkB translo-

cates into the nucleus, where it affects the expression

of numerous target genes involved in insulin resistance

[145,146]. It has been shown that NFkB is activated in

the liver of mice fed a high-fat diet, whereas a reduc-

tion in its activity or an increased expression of IKKb
significantly improve glucose and lipid metabolism

[145,147].

As described above, IRS1, the first transducer of

insulin signaling, can be phosphorylated by JNKs

(Fig. 3). Besides this regulation, IRS1 is also the target

of other kinases such as RNA-activated Protein

Kinase (PKR), Extracellular signal-Regulated Kinase

(ERK), Protein Kinase Ch (PKCh), mTOR, and

SOCS, whose activity is influenced by the inflamma-

tory status. Thus, insulin signaling is sensitive to the

antagonizing effects of multiple mediators belonging to

different cellular pathways related to the inflammatory

response. Further highlighting this interference, inflam-

matory kinases also counteract insulin sensitivity by

directly activating transcription factors such as the

AP-1, NFjB and interferon regulatory factors (IRFs)

and thus modulating the expression of genes important

not only in inflammation but also in glucose, choles-

terol metabolism and fatty acid synthesis [148], as

detailed below.

Many of the proinflammatory cytokines and

adipokines that are produced in obese vWAT, includ-

ing TNF-a, IL6, IL1b, and resistin, were shown to

modulate the activation of the stress-response kinase

JNK and IKKb. Therefore, a feed-forward loop arises

in obesity, where increased adiposity induces the pro-

duction of proinflammatory cytokines, which, in turn,

activate cellular signaling pathways leading to the

onset of insulin resistance.

Tumor necrosis factor alpha was the first adipose

tissue-secreted cytokine directly linking inflammation

and insulin resistance [23]. It exerts its action on the

adipose tissue by enhancing adipocyte lipolysis and

increasing Irs1 serine phosphorylation through a mech-

anism dependent on the activation of JNK1/2 in vis-

ceral adipose tissue [149]. TNF-a levels are increased

in the adipose tissue and in the plasma of obese indi-

viduals [30], where it correlates with markers of insulin

resistance [31]. Moreover, mouse models of genetic

loss-of-function for TNF-a, TNF Receptors 1/2,

JNKs, are all protected when challenged with high-fat

diet [150,151]. However, the use of TNF-a as target to

treat insulin resistance in diabetic patients did not turn

to be successful. Clinical trials using short- and long-

term administration of TNF-a antagonists were able

to reduce systemic inflammatory markers but showed

poor effects on insulin resistance [152–154].
Interleukin 6 is a proinflammatory cytokine pro-

duced mainly by the adipose tissue that is thought to

play a role in the onset of insulin resistance. This

action would be mediated by IL6-induced reduction in

GLUT4 and Irs1 expression levels through the activa-

tion of the JACK-STAT signaling pathway and the

increased expression of SOCS3 [155]. However, the

direct link between IL6 and obesity-induced insulin
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resistance is controversial. On the one hand, it is

thought to suppress insulin ability to modulate gluco-

neogenesis in liver and this was demonstrated both in

mice [156] and in vitro, using HepG2 human cell line

[157]. On the other hand, IL6 deficiency worsens hep-

atic insulin resistance and inflammation in a mouse

model of diet-induced obesity [158]. These contradic-

tory results on IL6 role in insulin resistance can be in

part explained by its multiple action in different

organs (i.e., skeletal muscle or liver) and in part by its

different sources (i.e., muscle and adipose tissue).

The action of IL18 is also debated in the literature

with negative effects on insulin sensitivity reported in a

rat model of metabolic syndrome [159], whereas IL18-

deficient mice show hyperphagia, obesity, and insulin

resistance [160].

Finally, the adipokine resistin was initially

reported as a major player in insulin resistance, thus

its name. Mice lacking resistin are protected from

diet-induced hyperglycemia, due to AMPK increased

activity and reduced expression of gluconeogenic

genes [161]. However, in humans, the role of resistin

is less clear and quite debated, with reports showing

a positive association between resistin levels and the

development of obesity, insulin resistance and T2D

[162] and others refuting any kind of association

with the development of metabolic syndrome

[163,164]. One of the possible explanations of the

difference between mice and human is the different

pattern of resistin expression, which, in mice, is

totally restricted to adipocytes, whereas in humans is

exclusively observed in macrophages and monocytes

[165,166].

Lipid mediators of insulin resistance

The altered lipid flux that prevails in obesity has been

associated to insulin-resistant states, being both the

cause and the result of insulin resistance. Circulating

fatty acids can impair insulin signaling mainly in two

ways.

On the one hand fatty acids can interfere with the

downstream pathways of insulin binding [167], via the

interaction of long saturated fatty acids, such as palmi-

tate, with the receptors TLR2, TLR4 and Nucleotide-

binding oligomerization domain, Leucine-rich Repeat

(NLR) and Pyrin domain containing 3 (NLRP3)

[168,169]. Upon ligand binding, TLRs trigger a signal-

ing cascade that leads to the activation of IKKb and

MAPKs such as p38, JNK, and ERK1/2. In parallel,

NLRP3 can be activated by host-derived molecules,

including excess ATP, glucose, ceramides, reactive oxy-

gen species, that are abundant in obese individuals.

NLRP3 activation initiates the assembly of the inflam-

masome, a large multiprotein complex which governs

the maturation of the proinflammatory cytokines IL-

1b and IL-18 [170–172]. The key role of this complex

in the obesity-induced adipose tissue inflammatory

response has been demonstrated by the blunted

response to ceramide of macrophages derived from the

adipose tissue of Nlrp3 knockout mice, which display

a reduction in macrophage M1 polarization in the fat

tissue [172].

All these multiple pathways activated by overnutri-

tion converge onto the stimulation of the major

inflammatory kinases JNK and IKKb, which, as

described above, interfere with insulin signal transduc-

tion.

On the other hand, the accumulation of intracellular

lipid products, such as diacylglycerols (DAG) and cer-

amides can directly be the cause of insulin resistance.

This last mechanism raises the concept of lipotoxicity,

as referred to the ability of excessive lipids to con-

tribute to the pathophysiology of metabolic syndrome

and T2D [173]. Once entered in the cell, fatty acids are

rapidly esterified with coenzyme A to form acyl-CoAs.

These intermediates are then transferred to a glycerol

backbone to form mono-, di-, and triacylglycerols. In

the liver, the link between DAG accumulation and

insulin resistance is attributed to the activation of Pro-

tein Kinase Ce (PKCe) [174], which binds and inhibits

insulin receptor kinase activity. By knocking down the

hepatic PKCe expression using specific antisense

oligonucleotides, Samuel et al. were able to protect

rats from lipid-induced hepatic insulin resistance, inde-

pendently of the increased hepatic lipid levels [175].

Ceramides represent another class of fatty acid

derivatives whose intracellular levels are strongly asso-

ciated with insulin resistance [176,177]. Their biosyn-

thesis occurs through the condensation of saturated

fatty acids (preferentially palmitate) with amino acids

(preferentially serine) to form 3-ketosphingamine, the

scaffold for all sphingolipids. The sphingoid backbone

subsequently acquires additional fatty acids leading to

the production of a series of sphingolipids that include

ceramides and other more complex products [178].

Inhibition of ceramide production through the admin-

istration of myriocin, a potent inhibitor of Serine

Palmitoyl Transferase (SPTLC), prevents the develop-

ment of insulin resistance and diabetes in obese mice

[179,180]. This insulin sensitizing effect is mediated by

a reduction in the circulating levels of leptin and a

concomitant increase in adiponectin and FGF21. A

decrease in ceramide production was also observed in

mice carrying an intestinal-specific Farnesoid X Recep-

tor (Fxr) gene deletion and resulted in a
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downregulation of hepatic SREBP1c and decreased

DNL [181]. Furthermore, supporting the beneficial

effect of the hampering of ceramide production, myri-

ocin administration, as well as Sptlc2 ablation specifi-

cally in adipose tissue, induces macrophage M2

polarization, most prominently in the scWAT, with

concomitant increase in serum anti-inflammatory cyto-

kine IL10 and reduction in proinflammatory cythoki-

nes IL6, MCP1, and TNF-a [182]. Conversely,

elevated intracellular ceramide levels have been shown

to stimulate the ability of phosphatase 2A to dephos-

phorylate AKT, thus interfering with insulin signaling

[177]. Notably, both saturated fatty acids and TNF-a
induce SPTLC expression, and the subsequent produc-

tion of ceramide, via activation of TLR4 [176,183] and

their action is mediated by IKKb. In the case of the

TNFa-mediated cascade, this is an emblematic exam-

ple of how an inflammatory stimulus can promote the

production of lipid intermediates, which, in turn,

impairs insulin action.

Lastly, a compelling body of evidence has accumu-

lated in recent years showing how intracellular fluctua-

tions of several metabolites, as a function of the

metabolic status, may influence the activity of chro-

matin regulators. The resulting epigenetic changes at

the level of DNA and histone modifications have a

major influence on the control of gene transcription

during embryonic development as well as in the differ-

entiated tissues of the adult organism.

Example of metabolites influencing chromatin-modi-

fying enzymes include acetyl-CoA, which is the univer-

sal donor for acetylation reactions [184], and S-

adenosylmethionine, which acts as a methyl donor

substrate stimulating DNA methyltransferase reactions

[185]. The cross-talk between metabolites and epige-

netic regulation is described elsewhere [186].

Metaflammation and specific aspects
of PPARs

Peroxisome proliferator-activated receptors (PPARs)

are nuclear receptors that function as ligand-activated

transcriptional regulators, with both activation and

repression mechanisms, depending on the condition/

target. Three PPAR isoforms exist, PPARa, PPARb/d,
and PPARc, which are characterized by distinct func-

tions and expression patterns (Table 1). Their peculiar

role in the regulation of glucose and lipid metabolism

and inflammation puts PPARs at the crossroad of

many molecular pathways involved in metaflammation

development. This paragraph will mainly consider

PPAR activity in the adipose tissue and the liver, the

tissue focus of this review, and their potential use as

therapeutic target for the treatment of obesity

[187,188].

The PPARa has a crucial role in regulating hepatic

fatty acid catabolism and clearance, as demonstrated

by its target genes such as CPT1, Carnitine Acycar-

nitine Translocase (SLC25A20), Medium-chain Acyl-

CoA Dehydrogenase, Acyl-COA Oxidase 1, that glob-

ally induce fatty acid oxidation [189]. In addition,

PPARa enhances the expression of the FGF21, a

secreted factor that further stimulates hepatic fatty

acid utilization, but that also improves systemic insulin

sensitivity through its extrahepatic enhancement of

glucose transporter 1 expression [127,190]. PPARa

Table 1. Peroxisome proliferator-activated receptors (PPARs). PPARs are ligand-activated transcription factors that bind, in form of

heterodimers with the Retinoid-X-receptor (RXR), to specific DNA sequences called PPAR-Responsive Elements (PPRE), at the regulatory

regions of target genes [238]. The three PPAR isoforms, PPARa, PPARb/d, and PPARc, are encoded in separate genes and share a high

structural homology, except for their ligand-binding domain.

Receptor Expression Function Natural ligands Synthetic ligands

PPARa Liver, skeletal muscle, heart, intestinal

mucosa, and brown adipose tissue

Induces the expression of genes involved in

lipid and lipoprotein metabolism, mitochondrial

and peroxisomal fatty acid oxidation, ketone

synthesis (reviewed in Ref. [240]) and has

anti-inflammatory effects

Omega-3 dietary

fatty acids and

eicosanoids

Fibrates,

Wy-14643

PPARb/d ubiquitously expressed, particularly

in tissues with high metabolic rate,

such as liver, skeletal muscle, heart,

adipose tissue, and macrophages

[239]

Regulates fatty acid oxidation, lipid and

cholesterol metabolism, and has anti-

inflammatory effects (reviewed in Ref. 241)

Unsaturated fatty

acids and

eicosanoids

GW501516,

GW0742,

L-165041

PPARc It has two isoforms.

PPARc1: ubiquitously expressed;

PPARc2: white and brown adipose

tissue [239]

Master regulator of adipocyte differentiation

and lipid storage. It also regulates glucose and

fatty acid transporters and has anti-

inflammatory effects (reviewed in Ref. [242])

Prostaglandin and

eicosanoids

TZDs, GW1929,

GW2090,

SR1664
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displays also anti-inflammatory activity, by interfering

with NFjB activation [191]. Altogether, these features

make PPARa an interesting therapeutic target for obe-

sity, particularly in the presence of hepatosteatosis.

Selective PPARa-agonists, such as fibrates were effi-

ciently used for decades in hyperlipidemic patients to

lower plasma triglycerides [192]. However, and despite

encouraging results obtained in mouse models of

NAFLD, these molecules did not prove advantageous

in the treatment of NAFLD/NASH in humans, likely

due to their lower potency in humans, compared to

mice [193] (reviewed in Ref. [193]). Furthermore, a

number of side effects (i.e., increased risk of acute kid-

ney injury, rhabdomyolsysis, and gallstone formation)

were associated with their long-lasting use [194].

Another key positive modulator of FA oxidation,

particularly in skeletal muscle, is PPARb/d. However, in

the liver, FA oxidation is mainly under the control of

PPARa, while PPARb/d-selective activation suppresses

hepatic gluconeogenesis, enhances carbohydrate catabo-

lism [195], and has anti-inflammatory effects in the liver

by dampening Kupffer cell activation [196]. In the adi-

pose tissue, PPARb/d inhibits FFA release. While the

selective PPARb/d ligand GW501516 was discontinued

from clinical trials for favoring tumor development in

several organs, KD3010 [197] is currently in phase III

clinical trial for the treatment of obesity, NASH, and

T2D. A detailed description of other PPARb/d agonist

can be found elsewhere [198].

In the adipose tissue, PPARc is the master regulator

of adipogenesis [199] and its activation with Thiazo-

lidinediones (TZDs) leads to de novo differentiation of

adipocytes. TZDs are potent insulin sensitizer agents,

but their clinical use in the last years has been strongly

limited due to the associated risk of increased body

weight, bone fractures, congestive heart failure, and

bladder cancer [200,201]. In humans, PPARc activation

triggers apoptosis of large fat cells in vWAT and

scWAT and induces differentiation of preadipocytes

only in scWAT [202], thus favoring scWAT adiposity

[203]. The formation of new adipocytes with the activa-

tion of genes such as Fatty Acids-Binding Protein 4

(FABP4), CD36, LPL Fatty Acids Transporter

(FATP1), and SREBP1 [204], improves the uptake and

storage of plasmatic FFAs in AT, with the subsequent

reduction in circulating TGs and of lipotoxic accumula-

tion in nonstorage specialized tissues, such as liver and

muscles [205]. TZDs also enhance FFA mobilization

upon fasting and ameliorate the postprandial suppres-

sion of FFA release triggered by insulin [206]. Interest-

ingly, chronic treatment of human adipocytes with

TZDs initiates a ‘browning program’ characterized by

induction of Uncoupling Protein 1 (Ucp1) [207,208] and

of several components of the mitochondrial transport

chain [209], thus initiating a tissue remodeling program

that is considered as a promising way to combat obesity

through consumption of lipids to produce heat.

Besides their effects on adipogenesis, PPARc agonists

also promote the expression of components of the insu-

lin signaling pathway, including the IRS2 and CAP

[210,211], that contributes to enhance adipocyte insulin

sensitivity. In addition, PPARc activation restores the

expression and secretion levels of different adipokines

such as adiponectin, resistin [212], IL6, TNF-a [213],

PAI-1, MCP1, and angiotensinogen [214] that are

altered in obesity. Thus, TZDs display also beneficial

effects on the development of adipose tissue inflamma-

tion upon chronic overnutrition. Importantly, such anti-

inflammatory properties of PPARc agonists are the

result of their action not only in adipocytes but also in

all the PPARc-expressing immune cells residing in adi-

pose tissue. In macrophages, PPARc acts as negative

regulator of classical proinflammatory M1 polarization

[215] and promotes the shift toward the alternative M2

macrophage activation in response to IL4 [216], thus

reducing the expression of inflammatory markers such

as Metallopeptidase Domain-8 (ADAM8), Macrophage

Inflammatory Protein 1a (MIP-1a), Macrophage Anti-

gen 1 (MAC-1), F4/80, and CD68 [217]. In M2 macro-

phages PPARc is required to induce b-oxidation and

mitochondrial biogenesis [218] as well as expression of

Arginase 1 (Arg1), a specific M2 marker. In obesity,

PPARc has been proposed to play a crucial anti-inflam-

matory role in the so-called metabolically activated

macrophages in the adipose tissue [67]. Consistently,

mice lacking PPARc in myeloid cells when challenged

with a high-fat diet are more prone to develop obesity

and insulin resistance, mainly due to mitochondrial dys-

function and altered glucose disposal in adipose tissue

[218,219].

More recently, PPARc has been shown to play a

role also in regulating the accumulation of Treg cells in

vWAT. Treg-specific PPARc ablation reduces the pop-

ulation of vWAT Treg cells on normal chow diet, while

injection of PPARc agonist into HFD-treated mice

specifically induces an expansion of Treg population in

adipose tissue [220], with beneficial consequences on

the tissue inflammatory pattern.

One special note must be made about hepatic

PPARc activity in obesity. PPARc, whose hepatic

expression is very low in lean subjects, is strongly

upregulated in steatotic liver. As a consequence, TZD

treatment in obese/NAFLD patients favors the tran-

scription of the lipogenic transcription factors

SREBP1c in the liver, thus increasing the hepatic pro-

duction of TGs and the maintenance of steatosis [221].
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This explains why, in spite of their ability to reduce

lipotoxicity by favoring lipid storage in adipose tissue,

TZDs are not able to counteract the development of

NAFLD in mice exposed to high-fat diet.

In conclusion, although the long-lasting use of

PPAR agonists highlighted the occurrence of consider-

able side effects that raise the necessity to improve

their long-term safety profile, the modulation of PPAR

activity is still an attractive possibility to ameliorate

obesity-related inflammation, insulin resistance, and

NAFLD. The development of safer PPAR agonists

still requires a deeper understanding of PPAR signal-

ing and their changes in obesity. As an example, in the

obese state, PPARc was recently shown to undergo

phosphorylation at serine 273, a post-transcriptional

modification that alters the transcriptional effects of

PPARc and its sensitivity to ligands [222,223]. The

new synthetic compound SR1664, which was shown to

block this phosphorylation of serine 273, has been

recently proposed as an antidiabetic drug [224].

Another appealing approach that has been explored in

the pharmacological use of PPAR agonists is the com-

bination of the therapeutic benefits of the activation at

least two PPAR isoforms with the development of

dual PPAR agonists. Although so far most of these

molecules displayed safety issues, saroglitazar, a dual

PPARa/c activator, has currently been approved in

India for the treatment of diabetic patients with

NAFLD [225]. Finally, a more systematic considera-

tion of species-related differences, when comparing the

activity of PPAR agonists in mice and humans, would

be also beneficial for the successful development of

new therapeutic ligands [226]. The systematic and com-

plementary use of system biology approaches, evaluat-

ing PPAR activity in a given tissue/cell, but integrating

such information in the context of the whole organism,

will perhaps allow accounting for PPAR agonist pleio-

tropic effects without considering only a single recep-

tor-dependent pathway.

Conclusions and perspectives

Obesity, especially visceral adipose tissue overload, is

associated with many metabolic disturbances, and

more particularly insulin resistance, dyslipidemia, and

NAFLD. In the last years enormous efforts have been

made to uncover new mechanisms contributing to the

onset of insulin resistance. Particular progresses were

made in understanding how nutritional overload, as

well as particular classes of metabolites and lipids can

induce a plethora of pathological modifications in dif-

ferent metabolic organs that can alter their physiologi-

cal activity.

The low-grade inflammatory response or metaflam-

mation is a well-established consequence of the diet-

induced obesity and the characterization of the

mechanism of recruitment and activation of different

immune cell population is a very active research

field. However, the attempt to study the modulation

of the immune response playing with the balance

between pro- and anti-inflammatory cells has been

pursued mainly in mouse model whose immune sys-

tem is, for some aspects, different from humans,

leaving an open question on the feasibility of a

treatment based on a delicate equilibrium that

should favor metabolic outcome without causing

other perturbations.

The hope to develop efficient cure to improve insu-

lin resistance in obesity using unique target, such as

PPARs (but also, for example, AKT or JNK path-

ways) faded away over the last years. The evidence

that the model in which one factor is the primary

responsible for the onset of insulin resistance is

clearly too simplistic, as is the idea that targeting one

single factor will correct the myriad of defects

observed in the context of obesity and insulin resis-

tance. Considering the fact that obesity is a disease

where multiple organs, endocrine pathways, and

inflammatory responses are involved, the future chal-

lenge will be to develop a holistic approach where

knowledge of different systems are processed together

in order to see how they are interconnected in

humans. This is the ambitious goal of system medi-

cine, and only its achievement will open the door for

personalized medicine.
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