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Synopsis: Magnetic Resonance Imaging (MRI) plays an important role for lesion assessment in early stages of 

Multiple Sclerosis (MS). This work aims at evaluating the performance of an automated tool for MS lesion 

detection, segmentation and tracking in longitudinal data, only for use in this research study. The method was 

tested with images acquired using both a "clinical" and an "advanced" imaging protocol for comparison. The 

validation was conducted in a cohort of thirty-two early MS patients through a ground truth obtained from 

manual segmentations by a neurologist and a radiologist. The use of the "advanced protocol" significantly 

improves lesion detection and classification in longitudinal analyses.   

 

Introduction: Magnetic Resonance Imaging (MRI) plays a major role in Multiple Sclerosis (MS) diagnosis, 

follow-up and therapy monitoring. More specifically, the identification of new or resolved lesions and changes in 

lesion size due to the progression of inflammation and demyelination is important to perform early diagnosis
1
, 

quantify ongoing disease activity and monitor treatment effects
2,3

. In this work, we assess the performance of an 

in-house automated tool
4
, only for use in this research study, to detect and segment longitudinal changes in MS 

lesions based on a clinical and an "advanced" MRI protocol
5
.  

 

Material and Methods: 3T MR images were acquired on a MAGNETOM Trio a Tim system (Siemens 

Healthcare, Germany) using a 32-channel head coil. Thirty-two patients with relapsing-remitting MS and disease 

duration <5 years from diagnosis were enrolled in the study, and two MRIs were performed at enrolment (TP1) 

and at two-years (21.4 ± 2.5 months, range 16-27 months) follow-up (TP2). The patient cohort consisted of 13 

males and 19 females, age range 20-60 years at TP1, with a median Expand Disability Status Scale (EDSS) of 

1.5 at both time points. The MRI protocol included:  

 Magnetization-Prepared Rapid Acquisition Gradient Echo (MPRAGE, TR/TI=2300/900ms, voxel size 

(vs)=1.0x1.0x1.2mm
3
);  

 Magnetization-Prepared 2 Rapid Acquisitions Gradient Echo (MP2RAGE, TR/TI1/TI2=5000/700/2500 

ms, vs=1.0x1.0x1.2mm
3
); 

 3D FLuid-Attenuated Inversion Recovery (FLAIR, TR/TE/TI=5000/394/1800, vs=1.0x1.0x1.2mm
3
); 

 3D Double Inversion Recovery (DIR, TR/TE/TI1/TI2=10000/218/450/3650, vs=1.1x1.0x1.2mm
3
).  

At both time points, a supervised classifier based on the k-nearest-neighbour (k-NN) algorithm was used to 

determine the lesion probability of each image voxel using the following features: 1) image intensity in each 

contrast, 2) spatial coordinates in a reference space
6
, and 3) tissue prior probabilities

7
. Manual detection of MS 

lesions (from a neurologist and a radiologist) was used as ground truth (GT) for both time points as well as to 

train the classifier. Minimum lesion size was set at 0.009 mL
8
. Grey- and white-matter (GM, WM) lesions were 

classified in 5 groups with the following criteria
9
:  

(i) new: identifiable on the registered TP2 image but not on the registered TP1 image; 

(ii) enlarged: increase in diameter by at least 50%; 

(iii) resolved: clearly visible on the registered TP1 image but not on the registered TP2 image; 

(iv) shrunken: decrease in diameter by at least 50%; 

(v) unaltered: do not follow any of the above criteria.  

The performance was evaluated through a “leave-one-out” cross-validation. Detection rate (DR, number of 

detected lesions/total GT lesions) per brain for the different types of lesions (i-v) was computed using: (1) 

clinical images (FLAIR and MPRAGE) and (2) clinical and research images (FLAIR, MP2RAGE and DIR, 

“advanced protocol”). The confusion table of average detection rate per lesion type was computed. Lesion 

detection performance was compared between (1) and (2) using the Wilcoxon signed-rank test. Automated 



estimation of total lesion volume difference between TP1 and TP2 per patient was evaluated through a Bland-

Altman plot
10

. 

 

Results: Detection rate for all types of lesions improved significantly when the "advanced protocol" 

(DR=81.3%) was used instead of the “clinical protocol” (DR=78.7%, p<0.01, Figure 2). Statistical differences in 

DR were short of significance for particular lesion types, except for lesion type (iii) (resolved lesions, p<0.05). 

However, the best median detection rates in all lesion types were consistently obtained using the "advanced 

protocol" (Figure 2): (i) 62.5%, (ii) 100%, (iii) 66.7%, (iv) 100%, and (v) 89.4%. Misclassification of different 

types of lesions was also significantly improved for resolved and unaltered lesions using the "advanced protocol" 

(p<0.05, Figure 3). Except for three patients, volume difference quantification lies within ±1.96 standard 

deviations, indicating the good agreement between manual and automated segmentations using any type of 

protocol (Figure 4).  

 

Discussion & Conclusion: The method exhibits good performance in detection of enlarged, resolved and 

unaltered lesions. New and resolved lesions present the lowest DR compared to the other lesion types , possibly 

due to lower size (strongly affected by partial volume) and low contrast (low degree of tissue 

inflammation/demyelination). However, in some cases, new/resolved lesions are detected as enlarged, shrunken 

or unaltered in both time points, which was retrospectively confirmed as correct by an expert. This highlights the 

difficulty in distinguishing focal lesions from diffuse damage, even by experts, and demonstrates the ability of 

the algorithm to detect lesions in both time points that were missed by manual segmentation. When the 

"advanced protocol" is used, the variability of lesion volume differences (TP1-TP2) between manual and 

automated segmentation is lower. This can be explained by the higher sensitivity in detection of cortical lesions 

and the better lesion delineation when advanced sequences are used, as shown in previous work
4
. 

Future work will aim to reduce partial-volume effects and to optimize the weighting of contrasts in order to 

increase the sensitivity of both GM and WM lesion detection.  
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Figure 1 - Slices of FLAIR image from different patients at time point 1 (TP1) and respective time point 2 (TP2). Manual Segmentations 

(GT) and automated segmentations (AUTO) are shown for different types of lesions: new, enlarged, resolved, shrunken, and unaltered (red, 

yellow, green, blue and pink, respectively). 

 

 

Figure 2 - Boxplots of detection rate from all patients across different types of lesions using the clinical (dark gray) and the advanced (light 
gray) protocols. The crosses in the plot represent outliers in the cohort.  



 

Figure 3 - Confusion matrix showing the relation between the manual and automated classification of detected lesions. Values in each cell 

represent the percentage of average detection per lesion type across patients. Top value represents the results using a clinical protocol 
(FLAIR/MPRAGE) and the bottom value of the results using the advanced protocol (FLAIR/MP2RAGE/DIR). Significance of the results 

(p<0.01) are represented by the stars. 

 

 

Figure 4 - Bland-Altman plot for total lesion difference volume TP1/TP2 between manual and automated segmentations. a) results using the 

clinical protocol (FLAIR/MPRAGE). b) results using the advanced protocol (FLAIR/MP2RAGE/DIR).  

 


